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Abstract

This pape introduces a nove schene for teging register-trander
level controller/data paths using built-in self-test (BIST). The
scheme uses the cortroller netlist and the data path of a circuit
to extract a teg cortrol/data flow (TCDF) which conssts of op-
erations mappel to modues in the circuit and variables mapped
to registers. This TCDF is used to derive a set of symboalic justi-
fication and propagdion paths (known asteg environmen) to test
soneof the opaationsand variablespreseninit. If it becomedif-
ficult to geneate such teg environmeiswith the derived TCDFs a
few test multi plexers are addel at sutable points in the circuit to
increaseits controllahility and observability. Thistest environment
can then be used to exercisea modue or register in the circuit with
pseudoandampattern geneatorswhich are placed only at the pri-
mary inpus of the circuit. Theted responsscan be andyzeal with
signature andyzes which are only placed at the primary outputs
of thecircuit. Evely moduein the modde library is macde random-
pattern testable, whenever possble, using gate-leve testahility in-
settion techniques Finally, a BIST cortroller is syrtheszed to pro-
vide the necessay cortrol signds to form the differert tes envi-
ronmerts during teging, and a BIST architedure is supeimposed
on the circuit. Expeimertal resuts on anumbe of indugrial and
universty berchmarks shaw that high fault coveage (>99%) can
be obtained with our scherrein a smdl numbe of ted cydesat an
avaagearea (dday) overheal of only 6.4% (2.5%).

1 Introduction

Due to the increasing complexity of integrated circuits, BIST is
emerging as a popuar teding techrique for large and complex de-
signs BIST has several advartagesover other te¢ approache[1],
[2], e.q, it gets rid of the need to do test generation and enables
at-sped testability. Previously, BIST techniques at the logic level
hawe targeted better test pattern generators [3], and reduction in
teg overhead [4]. In this pape, the BIST problem is targeted at
the register-transfer level (RTL). Owing to the drastic reduction in
the number of circuit elemerts one needto tacke at the RTL, the
problem becanes more tradable. At the RTL, there have been
some efforts to reduce test overheads by using a testability analy-
sis schane bas& on randannes and transpaerncy of modues[5].
However, the complexity of this method becomes prohibitive asthe
bit-width increasesA BIST schenefor teging data paths of daa-
flow intensve RTL circuitswaspresenedin [6]. A schenefor teg-
ing the controller was preserted in [7]. However, in this work the
classof circuits was restricted with the requirement that at most one
multi plexer/bus exists along any register-to-register transfer path.
Al so, the scheme only dedt with register loads and multi plexer se-
led lines coming out of the cortroller, and did not consder many
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other typesof cortrol lineslike ALU sded linesetc. Another BIST
schemetargeting data paths of data-flow intensive RTL circuits was
presentedin [8]. It reduced the complexity of testability analysisby
concelbrating on subspae state coverage However, since it relies
on arithmetic units for test generation and compadion, its applica-
bility to control-flow intensive circuitsis limited.

In this pape, we presenaBIST schemefor teging a cortroller-
data path RTL circuit without impodgng any major desgn redric-
tions The only assunptions we make are tha the circuit have a
separate data path and controller, and a reset state be present in
the cortroller. We can hande both data-flow intensve ard cortrol-
flow intensve circuits. The scheneworks by regadng RTL mod-
ulesin the circuit which are randan-pattern resstart with randan-
pdtern tegable versions If the circuit is origindly desgned with a
modue library composel of randan-patern tedade modues then
this step is unrecessaty. Next, the control and data flow of the
circuit are extraded form the controller/data path using the tech-
nique presened in [9]. This is termed as teg control/data flow
(TCDF). It conssts of operations mappel to modues in the cir-
cuit and variables mappel to registers. The TCDF is usal along
with the fundiond information of modues to obtain a s of jus-
tification and propagation paths cdled teg environmerts for some
opeationgvariablesin them [10]. The teg environmert of an op-
eration (variable) guaartees the existene of a ted pah from the
primary inpu ports of the circuit to the inputs of the modue (regis-
ter) to which the opeaation (variabl€) is mappeal and a pah from the
output of the modue (register) to a primary output port of the cir-
cuit. If it becamesdifficult to geneate such tes environmertswith
the existing TCDFs, a few test multiplexers are added at suitable
pointsin the circuit to increase its controll ability and observability
[11]. Note that the methods preseted in [9]-[11] are targeted to-
wards deterministic tes geneation, not BIST. Since the seach for
ateg environmertisdore symbadlicdly, it is very fag and needto
be dore only once for ead modue or register in the circuit. The
teg environment can then be usel to exercise a modue or regis-
ter in the circuit with pseudoandam pattern geneators (PRPGSs)
which are placed only at the primary inputs of the circuit. Thetest
responsgcan be andyzed with multiple-input signaure registers
(MISR9, which are only placed at the primary outputs of the cir-
cuit. The test environments are also analyzed to seeif primary in-
put registers can themsdves be converted to PRPG and primary
output registers converted to MISRs to redue overhead further.

In Sedion 2, the procedue is explained with examples The
BIST architedure is discussdin Sedion 3. Themethod is formal-
ized in Sedion 4. The experimental resuts and condusonsarein
Sedions5 ard 6, respetively.

2 Motivational Examples

In this sedion, weill ustrate the complete RTL BIST schemewith a
few examples.

2.1 Making RTL modulesrandom-pattern testalle

If elements presethin the RTL desgn library are not individudly
randan-pdtern tedale, then they can degrade the faut coverage
of an RTL circuit. In pradice, mogst RTL elemerts are randan-
pattern testable. For example, adders, subtraders, shifters, multi-
plexers, registers, and buses are all randan-pattern tedable. Even
32-hit versions of these elements are fully tested with less than 50
pseudoandam vedors. A 32-bit multiplier is completely tested
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with approximately 500 pseudorandom vectors. The redtldso
neck lies with the comparators which are highly random-pattern
resistant. Hence, in order to boost the random pattern fétstath
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Figure 4: The TCDF folf seng
until its register loads again. Thus, the variable-to-register binding
information is developed in each cycle and the variables bound to a
particular register noted. On the other hand, we find that in the first
cycle,REGlandREGS3are connected to hardwired constants. We
name these constard$andc2, respectively.

In cycle 2, we identify the operations that take place. For each
module in the circuit, we find out the operand selected at each of
its input ports by analyzing the rttiplexer trees at itsriputs. For
example, the left input of the addé&tDD1, is connected tiREG3

i3,v2, v4

REGS5: il
REG6: i2

cycle 3 ADD1: +1, +3
v YOIe S D02 +2
v2 ADD3: +4
MUL1: 1
T cycle 4 sUB1: -1
va4 V) V6 OR1: |1
@ AND1: &1

cycle 5
02

these modules, we resort to some logic-level techniques. This canand the right input teREG1 We check if both these registers have

be done with the help of some test poinis, extra control/observe

some live items in them. In this case, they do and theyca@rend

points [2]. For the scheme we have devised, a less-than (equal-to)c1, respectively. In addition, we check if any of the registers (there
comparator can be made fully random-pattern testable with only may be many due to fanout) at the output of the module load at
one (1/8) extra control and one extra observe point [12]. These ex- the'end of the second cycle, and if the multiplexer configuration at
tra control and observe points are connected to PRPGs and MISRsthe input of these registers is such that the output of the module is
respectively. Thus, they do not require any extra test pins when theselected. In case ¢fDD1, REG2indeed loads at the end of the
comparator is part of an RTL circuit. second cycle. Hence, we create a new variahlén REG2 and an

. - as+1. Similarly, we analyze all other modules in order to obtain
Figure 1 shows the RTL circuit of benchmafeengtaken from the set of operations that execute in the second cycle, as shown in
[13]. This particular RTL implementation was synthesized by the rigyre 3 (here the initial values of the constants are aiso shown in
Genesishigh-level synthesis system [10]. The shaded test multi- 5\ ets). By repeating this procedure for five cycles, we generate
plexer is not a part of the original circuit and will be discussed later.

> . K ~'- the TCDF shown in Figure 4. In this figure, constacitsand c2
The first step in the BIST process is to extract the TCDF using gre the initial values of the loop outputs. This method is general
the RTL data path and controller netlist. For this, the procedure

; . . ) enough to handle operation chaining,Ithaycling, and structural
presented in [9] is used. First, the controller state table is extractedpipe”%ing P g.fnayeling

from the controller netlist. This can lwone by a state machine . .

extraction prograne.g, SIS [14]. It starts from the controller reset 2.3 Test environment generation

state and extracts the input/output and state transition information We use the obtained TCDF to generast environment®r all the

of all reachable states. The extracted controller state tallserig RTL elements in the circuit. Before we can explain the test envi-

is shown in Figure 2. ronment generation procedure, we need to define a few terms. The
The basic idea behind extracting the TCDF from the RTL cir- general controllabilityCyq of a TCDF variable is the ability to con-

cuit is to extract operations executed in each cycle and keep tracktrol it to any arbitrary value from the system primary inputs. The

of variables present in each register or latch. We identify all regis- observabilityO, of a TCDF variable is the ability to observe any

ters that load in the first cycle by analyzing the load signals of all arbitrary value at it at a system primary output. Similarly, we can

the registers in the data path from the outputs in the state table. IfdefineCqy (controllability to some arbitrary constaq). C; (con-

a load signal is 1 in any cycle, then the register loads in that cycle. trollability to 1), Cy (controllability to 0), andC,; (controllability

In our example, in cycle 1, all registers exc&HEG2load. If there to the all-1s vector) are special case<gf The verifiabilityV of

are any latches, they load by default in each cycle. We next ana-a TCDF variable is the ability to verify its value by either control-

lyze the multiplexer tree that fee@ach of the registers or latches ling or observing it. Controllability, observability and verifiability

and check if any input port is connected to the register/latch input are all Boolean parameters and only take the values of 1 or 0, de-

in the first cycle. The multiplexer tree configuration in any cycle is pending on whether the variable has the correspondiiligyadr

obtained by looking at the values of the select signals of those mul- not [10]. Next, we add another field to these parameters, which

tiplexers in the state table. We find tHatPORTZ IN-PORT2and designates the cycle when the particular property of a variable is

IN-PORT3are connected tREGH REG6G andREGA4 respectively, desired. Hencezq(2) of a TCDF variable means that we need to

in the first cycle. Hence, three variables are born in these three reg-control that variable to an arbitrary value in cycle 2.

isters. We call thenil, i2 andi3, respectively. A variable is live Let us take the example of operatiod. The test environment



of this operation will be used to test add&PD3 in the RTL cir- zero zero DATA PATH

cuit and is obtained as follows. For operatiofh, we needzy(a) Y

of v3, Cy(a) of i2 andOy(a +1) of v6. Oy(a +1) of v6is trivially mi

achieved since6 is mapped tREG1which is connected to pri- 1—OOT o

mary outputOUT-PORT1 Cy(a) of i2 is transformed t€y(a — 2) 2 [ rec1

of i2 which is trivially satisfied a$2 is a primary input variable. .

Cy(a) of v3is transformed through operatieri to Cy(a — 1) of vl L L o
Y

andCqy(a - 1) of il. C4(a — 1) of v1is transformed through opera-
tion +1 to eitherCy(a — 2) of clandCq(a — 2) of c2, orCy(a - 2) |

of c2 andCy(a - 2) of c1. Since either objective is unachievable D l/ }Qz/w
as bothclandc2 are constants, we backtrack and transfQgto) o1 i

of v3to Cq(a — 1) of viandCgy(a — 1) of il through operation-1. ~  ~—F—————vr—— Ly
Cy(a — 1) of il is transformed t&y(a — 2) of il which is trivially
satisfied asl is a primary input variableCy(a — 1) of vlis trans- s CONTROLLER
formed toCqy(a — 2) of c1 andCqy(a — 2) of c2. Both of these are
now satisfied and, hence, all objectives for testidgare fulfilled. A

Next, we examine the test environmentand assignavalueof 1to It "t L‘ I Wft flag DATA ADDRESS
the lowest symbolic cycle value, which is £ 2), and calculate all Mt inflag L' 29 "PP

the cycle values accordingly. Thus, if we contifondi2 in cycle
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1 and observe6 in cycle 4, we have testet# with a test vector Figure 5: RTL circuit ofBarcode
applied at the primary inputs. From the BIST point of view, this Controller ctate

means that if we place a pair of pseudorandom vectors-portl inputs an

andPl-port2in cycle 1 derived from PRPGs, and analyze the out- 00000 Y

put atOUT-PORT1in cycle 4 with an MISR, we have tested adder 0L00000e S0 Binding Information:
ADD3with a pseudorandom pattern. Make t1 = 1 REGL: il v1

2.4 Test multiplexer insertion Ocbooor |12 Appi:+
Sometimes, it may not be possible to achieve a test environment P s3

for an RTL element using the existing behavior of the circuit. In vi

the exampler'seng ADD2 is symbolically untestable since opera- R é s4

tion +2 mapped toADD2 does not have a test environment. This Vol o

is because of the reconvergent fanout of const2nt(Note that . ) )
c2is a constant in the first iteration of the CDFG only, but it can Figure 6: TCDF for testing ADD1 iBarcode

be controlled to an arbitrary value at the beginning of the second
iteration). c2 needs to be non-zero for providing general control-
lability to the left input of+2, but also needs to be zero for propa-
gating its output4 through||1. In such cases, we solve the prob-
lem by adding a test multiplexer, as shown in Figure 1. Thus, vari-
ablev4, which is mapped tdREG4 is observable at the primary

need to be controlled. The TCDF generated for the incrementer,
ADDJ, is shown in Figure 6. In the figure, the (:=) operation de-
notes a register-to-register transfer. Here, since there is no direct
input possible from the primary input to the module input, the ex-
traction procedure does a shortest path analysis on the controller

outputOUT-PORT2 The procedure for adding test multiplexers St transition graph, and creates a test path by placing the test
is gFi)ven in [11]. It utiIizeg a badnes®ont forgTCDF varigbles multiplexertest muxIas shown in Figure 5 [9]. Then, the TCDF is

to identify testability bottienecks in the TCDF, and thus the RTL generated along with the controller input signals and the test mul-
circuit to which the TCDF is mapped. It then inserts appropriate UPIEXer select signals required to generate such a TCDF. During
test multiplexers at those points. This procedure tries to avoid the 1€ BIST mode, these signals are fed to the controller from a BIST
critical path, whenever possible, while adding the test multiplexers. controller. Thus, a TCDF foADD1 s guaranteed. After this, test
Since a large number of solutions typically exist for overcoming a e_rIV||ronmentgenerat|||on can proceﬁled as expl)llalned in ﬁe?tlon 2.3. A
testability bottleneck, avoiding the critical path is usually possible. SNgle TCDF is usually not enough to test all data path elements in
The select signals of these test multiplexers come from a BIST con-& control-flow intensive RTL circuit.
troller which is described later. _ 2.6 Synthesizing a BIST controller

Registers may be similarly targeted for test environment genera- . i ) .
tion by generating a test environment for any one variable mappedThe BIST controller is instrumental in guaranteeing the existence
to it. Test environments can also be generated for multiplexers. of test environments for all the RTL elements in the test mode. Let
However, test multiplexers are added to overcome test environmentUS take the example d@arcode The external inputs of the con-
bottlenecks for radules only, since they become an overkill for troller, the status signals and the test multiplexer select signals re-
the other RTL elements. The fault coverage is not compromised duired to test modul&DD1 are shown in Figure 7(a). The signals
because of this, as will be evident from the experimental results. 'equired to test moduleDD2 are shown in Figure 7(b). The BIST
From the above discussion, it is clear that the test environment of controller can be implemented as a finite-state machine (FSM) that
an RTL element guarantees that a test path exists from the primarylust generates all these input signal sequences one after another.
input(s) to the input(s) of the element and from the output of the  Hence, a trivial way of synthesizing the BIST controller would be
element to a primary output. We will be utilizing this fact for the 0 just append the input signal sequences required for the test en-

BIST scheme. vironments of all the RTL elements, and derive an FSM for those
ificati f Iflow i . N many cycles, as shown in Figure 7(c). In the test mode, each
2.5 Modifications for control-flow intensive circuits RTL element s tested with pseudorandom vectors from the PRPGs

We explain the modifications for control-flow intensive designs placed at the primary inputs, and the MISRs at the primary outputs,
with the help theBarcodeexample shown in Figure 5. This cir-  in a sequential fashion. When the BIST controller steps through
cuit is used as a preprocessor to read barcodes printed on objectsall its states, it resets to the first state and each RTL element con-
The main problem in extending the approach outlined before lies tinues getting its pselorandom vectors, and so on. However, this

in the status signals fed by the data path to the controller. Now trivial approach can lead to large overheads. To reduce the BIST
the TCDF for an operation is usually input vector dependent as the controller overheads, we try to merge the input signal sequences
data and control flow of the data path change according to the inputfor various test environments. For example, the input sequences of
vectors applied. Hence, in order to generate a fixed TCDF for an ADD1andADD2 can be merged to test both the modules simulta-

operation during the test mode, the status inputs of the controller neously with the same pseudorandom vector at the primary inputs,
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as shown in Figure 7(d). This reduces the number of states in the »| Controller T\ s, B4
BIST controller, and consequently the overhead. ool Sgnals d>(n+m)

The compaction technique that we use here is similar to the ones e > PORT
used in test vector compaction for automatic test pattern genera- 0 - normal mode| MUK L SR
tion. First, a test environmentand the corresponding controller and 1 - BIST mode
test multiplexer mput sequence for an untested RTL element are . . .
generated. Such a sequence typically has many don't-care values Figure 8: The BIST architecture
for unspecified signals, as shown in Figure 7. Using this initial se- specified cycles, we need to reconfigure the data path using the test
guence as a constraint, static test compaction techniques are usethultiplexers. The BIST controller also provides these select sig-
to merge other input sequences with it to come up with compact se-nals. While testing the data path elements that produce the status
guences. During compaction, we use existing test set compactionsignals, such as comparators, we need to observe the status signals
techniques [15], [16]. coming out of the data path to get full observability of the element

During test environment generation for a module, we also check outputs. In this case, the BIST controller makes sigBalandS;,
if other RTL elements like registers and multiplexers get tested in 1 and O respectively. At each cycle, pseudorandom vectors are fed
the process. For example, while testing modAED1 in Barcode into the primary input ports from PRPGs and the outputs captured
we see that registeREG landREG4also get tested with the same  at the primary output ports with MISRs. While testing the con-
test environment. This is because in the test environment, there ex-roller, we can directly control the controller inputs using the PRPG
ists at least one variable mapped to each of these registers whichat the primary input port and directly analyze controller outputs by
is controlled from a primary input and observed at a primary out- the MISR at the primary output port. The BIST mal&sS=1 to
put. In such cases, separate test environments are not generated f@btain this particular configuration. In some rare cases, it might so
testing these registers. This is useful in bringing down the BIST happen that the sum of the number of controller output bits and the

controller overhead further. status output bitsn(+ m) exceeds the number of output bits of the
. hi data pathd). In that case, the MISR width at the output port has to
3 Imposing a BIST Architecture be increased to capture these extra bits.

Once the BIST controller is synthesized, the test hardware is in- It is frequently possible to convert existing input registers (reg-
tegrated with the original RTL circuit to facilitate its testing during isters connected to primary input ports) to PRPGs and output regis-
BIST mode by imposing a BIST architecture on it. A low-overhead ters (registers connected to primary output ports) to MISRs, instead
solution to this problem is shown in Figure 8. In this figure, the of adding extra PRPGs and MISRs. This reduces the overhead even
added test hardware is shaded grey. (We assume one extra pin téurther. However, this can only be done if the occurrence of a cir-
provide theTestmode signal.) The controller outputs are multi- cular path can be avoided in the BIST mode. In other words, the
plexed with a data path primary output port to facilitate testing of input and output registers should not be involved in any test envi-
the controller [10]. This multiplexer does not resultin a delay over- ronmentin a circular path [17]. For example, in the RTL circuit of
head, as the delay of a multiplexer or even a multiplexer tree at the Tsenginput registerREG5andREG6can be converted to PRPGs,
output of a primary output register is usually much less than the whereas in the RTL circuit dBarcode output registerREG4and
clock period. REG5can be converted to MISRs.

The status signals are made directly observable by multiplexing
the status signal lines from the data path with an output port, and4 The RTL BIST Scheme
made controllable during BIST mode by feeding the status inputs In this section, we formalize our RTL BIST scheme. The complete
of the controller from the BIST controller. The BIST controlleris scheme is summarized in Figure 9. First, we extract a controller
activated during test mode by tfestpin. Its resetsignal is con- state table from the controller logic netlist. This candmme by a
nected to the controllaeset The BIST controller feeds: (i) the  state machine extraction program starting from the reset state of the
selectsignals of the test multiplexers that are added to the circuit, controller. Then we select an untested RTL data path element. We
(i) two bits §) and$S; that control the select signals of multiplexer  extract a TCDF that can be used to test this element along with the
M and the output multiplexer, respectively. In the normal mode, controller input sequence required to generate it. This is done with
the test-multiplexer select lines, thestsignal, and signal§; and the help of the procedure given in [9] using the RTL data path and
S should be 0. the controller state table. Next, we perform a symbolic testability

The data path and the controller are tested separately. In the testinalysis (STA) of the TCDF and try to obtain test environments of
mode, theTestpin is set. While testing the data path, the BIST as many untested data path elements as possible. This is done using
controller gives a suitable control flow which is achieved by con- the symbolic justification and propagation techniques presented in
trolling the controller mput signals to a desired sequence. Signals [10] and [11]. This procedure may add additional test multiplexers
S, andS, are both set to O for testing the data path elements other to the data path to increase the controllability and observability of
than the ones that produce the status signals for the controller. Atthe circuit at certain points where there are testability bottlenecks.



Get test environment and
controller input sequence Table 2: DFT hardware placement overheads

needed for it (S1)

Extract state table from $ Area Delay
controller netlist of circuit Modify existing controller input Circuit Orig. ‘ Mod. | Ovhd. | Orig. | Mod. ‘ Ovhd.
i =~ S mevging with eXsting seqeence | 06) | (0s) | (ns) | (%)
y Tsen 58654 | 60531 3.2 70.2 | 71.8 2.3
Select untested RTL elements Palin— 723951 7a1a3 2074375719
GCD 16734 | 18893 | 12.9 553 | 56.9 2.9
{ Barcode | 20516 | 23573 | 149 | 34.2 | 359 | 50
Extract TCDF for testing Amvabs 19564 21168 8.2 29.7 30.2 1.7
RTL elements es Amvdual | 28765 | 31728 | 10.3 | 32.3 | 329 1.0
l — Y would remain the same even for 32-bit wide data paths. This is a
perform STA of TCDF, e o e major advantage over many previous testability analysis schemes
add test muxs if needed sequence [5] where the CPU time for analysis explodes with an increase in

the data path bit-width.
In Column 2 of Table 2, the original area of the circuits after

Modify circuit with BIST technology mapping is given. This is a relative figure obtained
architecture from the layouts of the standard cells used, and hence has no units.
. Column 3 shows the area after the circuits have been modified by
Figure 9: The RTL BIST Scheme the BIST architecture and test hardware. The area overhead is

mainly due to the extra PRPGs and MISRs, the BIST controller,

Table 1: Circuit size and DFT hardware statistics the Testpin, the extra logic for making the comparators random-

Circurt Bitwidth | #lis. | #EFs | #test | CPU ime pattern testable, and test multiplexers in the data path and BIST ar-
H ‘ ‘ ‘ ‘ muxs (sec.) H chitecture. The percentage overheads are given in Column 4. In
Tseng 16 5246 | 100 T 575 Columns 5, 6 and 7, the corresponding figures for delay are pro-
Paulin 16 6876 | 116 1 35 vided. The delay represents the clock periotd@dmosecondsThe
GCD 16 1329 | 50 0 0.0 average area and delay overheads are 6.4% and 2.5%, respectively
Barcode 16 1518 34 2 13 (the average is calculated based on total area/delay of all the exam-
Amvabs 12 1456 | 40 T 0.8 ples for the original and modified cases). The area and delay over-
Amvdual 12 2056 | 46 1 0.9 heads are much smaller than conventional BIST techniques due to

the utilization of functional information and existing data and con-
The input sequence at the select signals of these telsiplexers trol flows of the circuit in the test mode.
needed for the particular test environment is noted. The controller  In Figure 10, the testability results for the original circuits (with-
input sequence and the test Itiplexer select signal sequence are out any testability hardware) and the circuits augmented by our
stored. If possible, they are merged with existing sequences gen-BIST scheme are shown. The fault coverage numbers are obtained
erated for testing other data path elements. The above process idy fault simulating the pseudorandom patterns obtained from the
repeated until all data path elements are tested. Then a BIST conPRPGs (linear feedback shift registers were used as PRPGs) on the
troller is synthesized from the stored input sequences. Test envi-circuits using PROOFS [19]. The fault coverage numbers obtained
ronments are analyzed to detect the occurrence of circular pathsby our method are above 99% for all the examples (with a min-
Input and output registers, for which circular paths are not a prob- imum of 99.1% at 4,500 cycles fakmvdualand a maximum of
lem, are converted to PRPGs and MISRs, respectively. Otherwise,99.7% forPaulin), and the number of test cycles required to get
extra PRPGs and MISRs are added along with test multiplexers atover 99% fault coverage is never more than 4,000.
the primary input ports and primary output ports of the circuit only. To check if most of the untested faults in the original circuits
Finally, the circuit is integrated with the BIST components using were random-pattern resistant, we increased the number of clock
the BIST architecture described in the previous section. cycles to 40,000. By doing so, the increase in the fault coverage
; (compared to the fault coverage at 4,500 clock cycles) for the origi-
> Ex.perlm.ental Results . . nal circuits ofTsengPaulin, GCD, Barcode AmvabsandAmvdual
In this section, we present experimental results obtained by apply-yyas only 2.1%, 0.3%, 3.2%, 4.0%, 3.2%, and 5.5%, respectively.
ing our BIST scheme to six example circuits. Among thdseng This points to the need of employing a BIST scheme, such as the
andPaulin are data-flow intensive circuits literature [L§CDand one presented in this paper.
Barcodeare control-flow intensive circuits taken from [18dmv- In order to see how different parameters vary with a change in
absandAmvduakare two subcircuits of an MPEG decoder that was qR/it-width, we evaluated the BIST architecture for 8, 16 and 32 bit
designed in the industry. The area and delay results were obtainedyige data paths of the examplseng Figure 11 shows how area
after technology mapping the gate-level implementation of the RTL yerhead (AO), delay overhead (DO), and number of cycles re-
circuits using thestdcell22.genlibcell library in the SIS [14] logic quired to attain 99% fault coverage (#cycles_99%fc) vary with
synthesis system. - I _ bit-width. Similar results were obtained for other examples as well.
Table 1 shows the characteristics and specifications of these cir-The AO and DO curves are predictable since the testability hard-
cuits. The BIST overheads are reported in Table 2 and the testabil-yare does not scale as fast as the data path size. The almost linear
ity results are shown in Figure 10. In Table 1, Column 2 shows the jhcrease in #eyclefor_99% fc is also very encouraging.
bit-width of the circuit data paths. In Columns 3 and 4, the literal- .
counts of the original technology-mapped circuit and the number of 6 Conclusions
flip-flops are given, respectively. The number of test multiplexers In this paper, we presented a new BIST scheme for testing RTL
added to the data path by the DFT procedure is given in Column 5. controller/data path circuits. The scheme uses functional informa-
Note that this number just shows the number of extra multiplexers tion of modules and symbolic tesflity analysis techniques to ob-
in the data path and does not include the multiplexers in the BIST tain test environments of all the RTL elements in the circuit. The
architecture which are added by default to all circuits, and which test environment of an element guarantees that the element can be
have been taken into accountwhile calculating the overheads in Ta-fed by pseudorandom vectors provided at the primary inputs and
ble 2. In Column 6, the CPU time required for symbolic testability its test response observed at a primary output. If it is not possible
analysis is given in seconds. This is on a SparcStation 20 with 256 to generate the test environment of a module, then teliptexers
MB DRAM. Since the analysis is symbolic, it is independent of are added to the circuit at suitable points to increase the control-
the bit-width of the data path. Hence, the testability analysis time lability and observability of the circuit. Then a BIST controller is
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Figure 10: Fault coverage curves for the six example circuits
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Figure 11: Effect of bit-width on the BIST parameters
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in self test for high-level synthesis,” iRroc. VLSI Test Symppp.
132-139, May 1995.

[9] I. Ghosh, A. Raghunathan, and N.K. Jha, “A design for testabil-
ity technique for RTL circuits using control/data flow extraction,” in
Proc. Int. Conf. Computer-Aided Desigop. 329-336, Nov. 1996.

[10] S. Bhatia and N.K. Jha, “Behavioral synthesis for hierarchical testa-
bility of controller/data path circuits withanditional branches,” in
Proc. Int. Conf. Computer Desigpp. 91-96, Oct. 1994.

[11] 1. Ghosh, A. Raghunathan, and N.K. Jha, “Design for hierarchical
testability of RTL circuits obtained by behavioral synthesiEEE
Trans. Computer-aided Desigwol. 16, pp. 1000-1001, Sept. 1997.

[12] I. Ghosh, N.K. Jha, and S. Bhawmik, “A BIST scheme for RTL
controller-data paths based on symbolic testability analysis,” Tech.
Rep. CE-J98-005, EE Dept., Princeton Univ.

[13] L. Avra, “Allocation and assignment in high-level synthesis for self-

synthesized to produce the necessary values of the status inputs of  testable data paths,” iroc. Int. Test Confpp. 463-471, June 1991.

the controller in the test mode and the test multiplexer select signal
values. Finally, PRPGs and MISRs are added at the primary inputs
and primary outputs of the circuit respectively, and a BIST archi-
tecture imposed on the whole RTL circuit. The advantages of the
scheme are: (i) comparatively low area and delay overheads, (ii)
very high fault coverage, and (iii) low test application times.
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