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Abstract
This paper introduces a novel scheme for testing register-transfer
level controller/data paths using built-i n self-test (BIST). The
scheme uses the controller netlist and the data path of a circuit
to extract a test control/data flow (TCDF) which consists of op-
erations mapped to modules in the circuit and variables mapped
to registers. This TCDF is used to derive a set of symbolic justi-
fication and propagation paths (known as test environment) to test
someof theoperationsandvariablespresent in it. If it becomesdif-
ficult to generatesuch test environmentswith thederivedTCDFs, a
few test multiplexers are added at suitable points in the circuit to
increaseits controllabilit y and observabilit y. This test environment
can then beused to exercisea moduleor register in thecircuit with
pseudorandompattern generatorswhich areplacedonly at thepri-
mary inputs of the circuit. Thetest responsescan beanalyzed with
signature analyzers which are only placed at the primary outputs
of thecircuit. Every module in themodule library ismaderandom-
pattern testable, whenever possible, using gate-level testabilit y in-
sertion techniques. Finally, a BIST controller is synthesizedto pro-
vide the necessary control signals to form the different test envi-
ronments during testing, and a BIST architecture is superimposed
on the circuit. Experimental results on a number of industrial and
university benchmarks show that high fault coverage (>99%) can
beobtained with our schemein a small number of test cyclesat an
averagearea (delay) overheadof only 6.4% (2.5%).

1 Int roduction
Due to the increasing complexity of integrated circuits, BIST is
emerging as a popular testing technique for large and complex de-
signs. BIST has several advantagesover other test approaches[1],
[2], e.g., it gets rid of the need to do test generation and enables
at-speed testabilit y. Previously, BIST techniquesat the logic level
have targeted better test pattern generators [3], and reduction in
test overheads [4]. In this paper, the BIST problem is targeted at
the register-transfer level (RTL). Owing to the drastic reduction in
the number of circuit elements oneneeds to tackleat the RTL, the
problem becomes more tractable. At the RTL, there have been
some efforts to reduce test overheads by using a testabilit y analy-
sis schemebased on randomnessand transparency of modules [5].
However, thecomplexity of thismethod becomesprohibitiveasthe
bit-width increases. A BIST schemefor testing datapaths of data-
flow intensiveRTL circuitswaspresentedin [6]. A schemefor test-
ing the controller was presented in [7]. However, in this work the
classof circuitswasrestricted with therequirement that at most one
multiplexer/bus exists along any register-to-register transfer path.
Also, theschemeonly dealt with register loads and multiplexer se-
lect lines coming out of the controller, and did not consider many
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other typesof control lines likeALU select linesetc. Another BIST
schemetargeting datapathsof data-flow intensiveRTL circuitswas
presentedin [8]. It reducedthecomplexity of testabilit y analysisby
concentrating on subspacestate coverage. However, since it relies
on arithmetic units for test generation and compaction, its applica-
bilit y to control-flow intensivecircuits is limited.

In this paper, wepresent aBIST schemefor testing acontroller-
data path RTL circuit without imposing any major design restric-
tions. The only assumptions we make are that the circuit have a
separate data path and controller, and a reset state be present in
thecontroller. We can handleboth data-flow intensiveand control-
flow intensivecircuits. The schemeworks by replacing RTL mod-
ules in thecircuit which are random-pattern resistant with random-
pattern testableversions. If thecircuit is originally designedwith a
module library composedof random-pattern testablemodules, then
this step is unnecessary. Next, the control and data flow of the
circuit are extracted form the controller/data path using the tech-
nique presented in [9]. This is termed as test control/data flow
(TCDF). It consists of operations mapped to modules in the cir-
cuit and variables mapped to registers. The TCDF is used along
with the functional information of modules to obtain a set of jus-
tification and propagation paths called test environments for some
operations/variables in them [10]. The test environment of an op-
eration (variable) guarantees the existence of a test path from the
primary input portsof thecircuit to the inputsof themodule(regis-
ter) to which theoperation (variable) ismappedandapath from the
output of the module (register) to a primary output port of the cir-
cuit. If it becomesdifficult to generatesuch test environmentswith
the existing TCDFs, a few test multiplexers are added at suitable
points in thecircuit to increase its controllabilit y and observability
[11]. Note that the methods presented in [9]-[11] are targeted to-
wards deterministic test generation, not BIST. Since the search for
a test environment is donesymbolically, it is very fast and needsto
be done only once for each module or register in the circuit. The
test environment can then be used to exercise a module or regis-
ter in the circuit with pseudorandom pattern generators (PRPGs)
which are placed only at theprimary inputs of the circuit. The test
responses can be analyzed with multiple-input signature registers
(MISRs), which are only placed at the primary outputs of the cir-
cuit. The test environments are also analyzed to see if primary in-
put registers can themselves be converted to PRPGs and primary
output registers converted to MISRs to reduceoverheadsfurther.

In Section 2, the procedure is explained with examples. The
BIST architecture is discussed in Section 3. Themethod is formal-
ized in Section 4. The experimental results and conclusionsare in
Sections5 and 6, respectively.
2 Motivational Examples
In this section, weill ustrate thecompleteRTL BIST schemewith a
few examples.
2.1 Making RTL modules random-pattern testable
If elements present in the RTL design library are not individually
random-pattern testable, then they can degrade the fault coverage
of an RTL circuit. In practice, most RTL elements are random-
pattern testable. For example, adders, subtracters, shifters, multi-
plexers, registers, and buses are all random-pattern testable. Even
32-bit versions of these elements are fully tested with less than 50
pseudorandom vectors. A 32-bit multiplier is completely tested



0 1

REG1

REG2

SUB1

REG6

REG3

REG5

MUL1ADD3

REG4

ADD2

OUT−PORT1 OUT−PORT2

IN−PORT1 IN−PORT2 IN−PORT3

CONTROLLER

DATA PATH

0 1

OR1

AND1

0 1

0 1

0 1

0 10 1

0 1

ADD1

Zero

l1

l2

l3

l4

l5 l6

m1 m2

m3
m4

m5

m6

m7

t1

One

10

test mux

Logic netlist

Control signals

Figure 1: The RTL circuit forTseng
INPUT    STATE                              OUTPUTS
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1     ANY   S0    1    0    1    1    1    1    0    1    1    1    0    0    0  
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Figure 2: Controller state table ofTseng

with approximately 500 pseudorandom vectors. The real bottle-
neck lies with the comparators which are highly random-pattern
resistant. Hence, in order to boost the random pattern testability of
these modules, we resort to some logic-level techniques. This can
be done with the help of some test points,i.e., extra control/observe
points [2]. For the scheme we have devised, a less-than (equal-to)
comparator can be made fully random-pattern testable with only
one (n/8) extra control and one extra observe point [12]. These ex-
tra control and observe points are connected to PRPGs and MISRs,
respectively. Thus, they do not require any extra test pins when the
comparator is part of an RTL circuit.

2.2 Extracting control/data flow information
Figure 1 shows the RTL circuit of benchmarkTsengtaken from
[13]. This particular RTL implementation was synthesized by the
Genesishigh-level synthesis system [10]. The shaded test multi-
plexer is not a part of the original circuit and will be discussed later.

The first step in the BIST process is to extract the TCDF using
the RTL data path and controller netlist. For this, the procedure
presented in [9] is used. First, the controller state table is extracted
from the controller netlist. This can bedone by a state machine
extraction program,e.g., SIS [14]. It starts from the controller reset
state and extracts the input/output and state transition information
of all reachable states. The extracted controller state table ofTseng
is shown in Figure 2.

The basic idea behind extracting the TCDF from the RTL cir-
cuit is to extract operations executed in each cycle and keep track
of variables present in each register or latch. We identify all regis-
ters that load in the first cycle by analyzing the load signals of all
the registers in the data path from the outputs in the state table. If
a load signal is 1 in any cycle, then the register loads in that cycle.
In our example, in cycle 1, all registers exceptREG2load. If there
are any latches, they load by default in each cycle. We next ana-
lyze the multiplexer tree that feedseach of the registers or latches
and check if any input port is connected to the register/latch input
in the first cycle. The multiplexer tree configuration in any cycle is
obtained by looking at the values of the select signals of those mul-
tiplexers in the state table. We find thatIN-PORT1, IN-PORT2and
IN-PORT3are connected toREG5, REG6, andREG4, respectively,
in the first cycle. Hence, three variables are born in these three reg-
isters. We call themi1, i2 and i3, respectively. A variable is live
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Figure 4: The TCDF forTseng
until its register loads again. Thus, the variable-to-register binding
information is developed in each cycle and the variables bound to a
particular register noted. On the other hand, we find that in the first
cycle,REG1andREG3are connected to hardwired constants. We
name these constantsc1andc2 , respectively.

In cycle 2, we identify the operations that take place. For each
module in the circuit, we find out the operand selected at each of
its input ports by analyzing the multiplexer trees at its inputs. For
example, the left input of the adder,ADD1, is connected toREG3
and the right input toREG1. We check if both these registers have
some live items in them. In this case, they do and they arec2 and
c1, respectively. In addition, we check if any of the registers (there
may be many due to fanout) at the output of the module load at
the end of the second cycle, and if the multiplexer configuration at
the input of these registers is such that the output of the module is
selected. In case ofADD1, REG2indeed loads at the end of the
second cycle. Hence, we create a new variablev1, in REG2, and an
operation in the TCDF,c1 + c2 = v1. We also label this operation
as+1. Similarly, we analyze all other modules in order to obtain
the set of operations that execute in the second cycle, as shown in
Figure 3 (here the initial values of the constants are also shown in
brackets). By repeating this procedure for five cycles, we generate
the TCDF shown in Figure 4. In this figure, constantsc1 andc2
are the initial values of the loop outputs. This method is general
enough to handle operation chaining, multi-cycling, and structural
pipelining.

2.3 Test environment generation
We use the obtained TCDF to generatetest environmentsfor all the
RTL elements in the circuit. Before we can explain the test envi-
ronment generation procedure, we need to define a few terms. The
general controllabilityCg of a TCDF variable is the ability to con-
trol it to any arbitrary value from the system primary inputs. The
observabilityOv of a TCDF variable is the ability to observe any
arbitrary value at it at a system primary output. Similarly, we can
defineCq (controllability to some arbitrary constantq). C1 (con-
trollability to 1), C0 (controllability to 0), andCa1 (controllability
to the all-1s vector) are special cases ofCq. The verifiabilityV of
a TCDF variable is the ability to verify its value by either control-
ling or observing it. Controllability, observability and verifiability
are all Boolean parameters and only take the values of 1 or 0, de-
pending on whether the variable has the corresponding ability or
not [10]. Next, we add another field to these parameters, which
designates the cycle when the particular property of a variable is
desired. Hence,Cg(2) of a TCDF variable means that we need to
control that variable to an arbitrary value in cycle 2.

Let us take the example of operation+4. The test environment



of this operation will be used to test adderADD3 in the RTL cir-
cuit and is obtained as follows. For operation+4, we needCg(α)
of v3, Cg(α) of i2 andOv(α + 1) of v6. Ov(α + 1) of v6 is trivially
achieved sincev6 is mapped toREG1which is connected to pri-
mary outputOUT-PORT1. Cg(α) of i2 is transformed toCg(α�2)
of i2 which is trivially satisfied asi2 is a primary input variable.
Cg(α) of v3 is transformed through operation�1 toCg(α�1) of v1
andCq(α�1) of i1. Cg(α�1) of v1 is transformed through opera-
tion +1 to eitherCg(α�2) of c1andCq(α�2) of c2, orCg(α�2)
of c2 andCq(α� 2) of c1. Since either objective is unachievable
as bothc1andc2are constants, we backtrack and transformCg(α)
of v3 to Cq(α�1) of v1andCg(α�1) of i1 through operation�1.
Cg(α�1) of i1 is transformed toCg(α�2) of i1 which is trivially
satisfied asi1 is a primary input variable.Cq(α�1) of v1 is trans-
formed toCq(α�2) of c1 andCq(α�2) of c2. Both of these are
now satisfied and, hence, all objectives for testing+4 are fulfilled.
Next, we examine the test environment and assign a value of 1 to
the lowest symbolic cycle value, which is (α�2), and calculate all
the cycle values accordingly. Thus, if we controli1 andi2 in cycle
1 and observev6 in cycle 4, we have tested+4 with a test vector
applied at the primary inputs. From the BIST point of view, this
means that if we place a pair of pseudorandom vectors atPI-port1
andPI-port2 in cycle 1 derived from PRPGs, and analyze the out-
put atOUT-PORT1in cycle 4 with an MISR, we have tested adder
ADD3with a pseudorandom pattern.

2.4 Test multiplexer insertion
Sometimes, it may not be possible to achieve a test environment
for an RTL element using the existing behavior of the circuit. In
the exampleTseng, ADD2 is symbolically untestable since opera-
tion +2 mapped toADD2 does not have a test environment. This
is because of the reconvergent fanout of constantc2. (Note that
c2 is a constant in the first iteration of the CDFG only, but it can
be controlled to an arbitrary value at the beginning of the second
iteration). c2 needs to be non-zero for providing general control-
lability to the left input of+2, but also needs to be zero for propa-
gating its outputv4 throughjj1. In such cases, we solve the prob-
lem by adding a test multiplexer, as shown in Figure 1. Thus, vari-
ablev4, which is mapped toREG4, is observable at the primary
outputOUT-PORT2. The procedure for adding test multiplexers
is given in [11]. It utilizes a badness count for TCDF variables
to identify testability bottlenecks in the TCDF, and thus the RTL
circuit to which the TCDF is mapped. It then inserts appropriate
test multiplexers at those points. This procedure tries to avoid the
critical path, whenever possible, while adding the test multiplexers.
Since a large number of solutions typically exist for overcoming a
testability bottleneck, avoiding the critical path is usually possible.
The select signals of these test multiplexers come from a BIST con-
troller which is described later.

Registers may be similarly targeted for test environment genera-
tion by generating a test environment for any one variable mapped
to it. Test environments can also be generated for multiplexers.
However, test multiplexers are added to overcome test environment
bottlenecks for modules only, since they become an overkill for
the other RTL elements. The fault coverage is not compromised
because of this, as will be evident from the experimental results.
From the above discussion, it is clear that the test environment of
an RTL element guarantees that a test path exists from the primary
input(s) to the input(s) of the element and from the output of the
element to a primary output. We will be utilizing this fact for the
BIST scheme.

2.5 Modifications for control-flow intensive circuits
We explain the modifications for control-flow intensive designs
with the help theBarcodeexample shown in Figure 5. This cir-
cuit is used as a preprocessor to read barcodes printed on objects.
The main problem in extending the approach outlined before lies
in the status signals fed by the data path to the controller. Now
the TCDF for an operation is usually input vector dependent as the
data and control flow of the data path change according to the input
vectors applied. Hence, in order to generate a fixed TCDF for an
operation during the test mode, the status inputs of the controller
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need to be controlled. The TCDF generated for the incrementer,
ADD1, is shown in Figure 6. In the figure, the (:=) operation de-
notes a register-to-register transfer. Here, since there is no direct
input possible from the primary input to the module input, the ex-
traction procedure does a shortest path analysis on the controller
state transition graph, and creates a test path by placing the test
multiplexertest mux1as shown in Figure 5 [9]. Then, the TCDF is
generated along with the controller input signals and the test mul-
tiplexer select signals required to generate such a TCDF. During
the BIST mode, these signals are fed to the controller from a BIST
controller. Thus, a TCDF forADD1 is guaranteed. After this, test
environment generation can proceed as explained in Section 2.3. A
single TCDF is usually not enough to test all data path elements in
a control-flow intensive RTL circuit.

2.6 Synthesizing a BIST controller
The BIST controller is instrumental in guaranteeing the existence
of test environments for all the RTL elements in the test mode. Let
us take the example ofBarcode. The external inputs of the con-
troller, the status signals and the test multiplexer select signals re-
quired to test moduleADD1are shown in Figure 7(a). The signals
required to test moduleADD2are shown in Figure 7(b). The BIST
controller can be implemented as a finite-state machine (FSM) that
just generates all these input signal sequences one after another.
Hence, a trivial way of synthesizing the BIST controller would be
to just append the input signal sequences required for the test en-
vironments of all the RTL elements, and derive an FSM for those
many cycles, as shown in Figure 7(c). In the test mode, each
RTL element is tested with pseudorandom vectors from the PRPGs
placed at the primary inputs, and the MISRs at the primary outputs,
in a sequential fashion. When the BIST controller steps through
all its states, it resets to the first state and each RTL element con-
tinues getting its pseudorandom vectors, and so on. However, this
trivial approach can lead to large overheads. To reduce the BIST
controller overheads, we try to merge the input signal sequences
for various test environments. For example, the input sequences of
ADD1 andADD2 can be merged to test both the modules simulta-
neously with the same pseudorandom vector at the primary inputs,
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as shown in Figure 7(d). This reduces the number of states in the
BIST controller, and consequently the overhead.

The compaction technique that we use here is similar to the ones
used in test vector compaction for automatic test pattern genera-
tion. First, a test environment and the corresponding controller and
test multiplexer input sequence for an untested RTL element are
generated. Such a sequence typically has many don’t-care values
for unspecified signals, as shown in Figure 7. Using this initial se-
quence as a constraint, static test compaction techniques are used
to merge other input sequences with it to come up with compact se-
quences. During compaction, we use existing test set compaction
techniques [15], [16].

During test environment generation for a module, we also check
if other RTL elements like registers and multiplexers get tested in
the process. For example, while testing moduleADD1 in Barcode,
we see that registersREG1andREG4also get tested with the same
test environment. This is because in the test environment, there ex-
ists at least one variable mapped to each of these registers which
is controlled from a primary input and observed at a primary out-
put. In such cases, separate test environments are not generated for
testing these registers. This is useful in bringing down the BIST
controller overhead further.

3 Imposing a BIST Architecture
Once the BIST controller is synthesized, the test hardware is in-
tegrated with the original RTL circuit to facilitate its testing during
BIST mode by imposing a BIST architecture on it. A low-overhead
solution to this problem is shown in Figure 8. In this figure, the
added test hardware is shaded grey. (We assume one extra pin to
provide theTestmode signal.) The controller outputs are multi-
plexed with a data path primary output port to facilitate testing of
the controller [10]. This multiplexer does not result in a delay over-
head, as the delay of a multiplexer or even a multiplexer tree at the
output of a primary output register is usually much less than the
clock period.

The status signals are made directly observable by multiplexing
the status signal lines from the data path with an output port, and
made controllable during BIST mode by feeding the status inputs
of the controller from the BIST controller. The BIST controller is
activated during test mode by theTestpin. Its resetsignal is con-
nected to the controllerreset. The BIST controller feeds: (i) the
selectsignals of the test multiplexers that are added to the circuit,
(ii) two bits S0 andS1 that control the select signals of multiplexer
M and the output multiplexer, respectively. In the normal mode,
the test-multiplexer select lines, theTestsignal, and signalsS0 and
S1 should be 0.

The data path and the controller are tested separately. In the test
mode, theTestpin is set. While testing the data path, the BIST
controller gives a suitable control flow which is achieved by con-
trolling the controller input signals to a desired sequence. Signals
S1 andS0 are both set to 0 for testing the data path elements other
than the ones that produce the status signals for the controller. At
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specified cycles, we need to reconfigure the data path using the test
multiplexers. The BIST controller also provides these select sig-
nals. While testing the data path elements that produce the status
signals, such as comparators, we need to observe the status signals
coming out of the data path to get full observability of the element
outputs. In this case, the BIST controller makes signalsS1 andS0,
1 and 0 respectively. At each cycle, pseudorandom vectors are fed
into the primary input ports from PRPGs and the outputs captured
at the primary output ports with MISRs. While testing the con-
troller, we can directly control the controller inputs using the PRPG
at the primary input port and directly analyze controller outputs by
the MISR at the primary output port. The BIST makesS1=S0=1 to
obtain this particular configuration. In some rare cases, it might so
happen that the sum of the number of controller output bits and the
status output bits (n+m) exceeds the number of output bits of the
data path (d). In that case, the MISR width at the output port has to
be increased to capture these extra bits.

It is frequently possible to convert existing input registers (reg-
isters connected to primary input ports) to PRPGs and output regis-
ters (registers connected to primary output ports) to MISRs, instead
of adding extra PRPGs and MISRs. This reduces the overhead even
further. However, this can only be done if the occurrence of a cir-
cular path can be avoided in the BIST mode. In other words, the
input and output registers should not be involved in any test envi-
ronment in a circular path [17]. For example, in the RTL circuit of
Tseng, input registersREG5andREG6can be converted to PRPGs,
whereas in the RTL circuit ofBarcode, output registersREG4and
REG5can be converted to MISRs.

4 The RTL BIST Scheme
In this section, we formalize our RTL BIST scheme. The complete
scheme is summarized in Figure 9. First, we extract a controller
state table from the controller logic netlist. This can bedone by a
state machine extraction program starting from the reset state of the
controller. Then we select an untested RTL data path element. We
extract a TCDF that can be used to test this element along with the
controller input sequence required to generate it. This is done with
the help of the procedure given in [9] using the RTL data path and
the controller state table. Next, we perform a symbolic testability
analysis (STA) of the TCDF and try to obtain test environments of
as many untested data path elements as possible. This is done using
the symbolic justification and propagation techniques presented in
[10] and [11]. This procedure may add additional test multiplexers
to the data path to increase the controllability and observability of
the circuit at certain points where there are testability bottlenecks.
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Figure 9: The RTL BIST Scheme

Table 1: Circuit size and DFT hardware statistics

Circuit Bit-width # lits. # FFs # test CPU time
muxs (sec.)

Tseng 16 5246 100 1 27.5
Paulin 16 6826 116 1 3.5
GCD 16 1329 50 0 0.0
Barcode 16 1518 84 2 1.3
Amvabs 12 1456 40 1 0.8
Amvdual 12 2056 46 1 0.9

The input sequence at the select signals of these test multiplexers
needed for the particular test environment is noted. The controller
input sequence and the test multiplexer select signal sequence are
stored. If possible, they are merged with existing sequences gen-
erated for testing other data path elements. The above process is
repeated until all data path elements are tested. Then a BIST con-
troller is synthesized from the stored input sequences. Test envi-
ronments are analyzed to detect the occurrence of circular paths.
Input and output registers, for which circular paths are not a prob-
lem, are converted to PRPGs and MISRs, respectively. Otherwise,
extra PRPGs and MISRs are added along with test multiplexers at
the primary input ports and primary output ports of the circuit only.
Finally, the circuit is integrated with the BIST components using
the BIST architecture described in the previous section.

5 Experimental Results
In this section, we present experimental results obtained by apply-
ing our BIST scheme to six example circuits. Among these,Tseng
andPaulinare data-flow intensive circuits literature [13].GCDand
Barcodeare control-flow intensive circuits taken from [18].Amv-
absandAmvdualare two subcircuits of an MPEG decoder that was
designed in the industry. The area and delay results were obtained
after technology mapping the gate-level implementation of the RTL
circuits using thestdcell22.genlibcell library in the SIS [14] logic
synthesis system.

Table 1 shows the characteristics and specifications of these cir-
cuits. The BIST overheads are reported in Table 2 and the testabil-
ity results are shown in Figure 10. In Table 1, Column 2 shows the
bit-width of the circuit data paths. In Columns 3 and 4, the literal-
counts of the original technology-mapped circuit and the number of
flip-flops are given, respectively. The number of test multiplexers
added to the data path by the DFT procedure is given in Column 5.
Note that this number just shows the number of extra multiplexers
in the data path and does not include the multiplexers in the BIST
architecture which are added by default to all circuits, and which
have been taken into account while calculating the overheads in Ta-
ble 2. In Column 6, the CPU time required for symbolic testability
analysis is given in seconds. This is on a SparcStation 20 with 256
MB DRAM. Since the analysis is symbolic, it is independent of
the bit-width of the data path. Hence, the testability analysis time

Table 2: DFT hardware placement overheads

Area Delay
Circuit Orig. Mod. Ovhd. Orig. Mod. Ovhd.

(%) (ns) (ns) (%)
Tseng 58654 60531 3.2 70.2 71.8 2.3
Paulin 72345 74443 2.9 74.3 75.7 1.9
GCD 16734 18893 12.9 55.3 56.9 2.9
Barcode 20516 23573 14.9 34.2 35.9 5.0
Amvabs 19564 21168 8.2 29.7 30.2 1.7
Amvdual 28765 31728 10.3 32.3 32.9 1.9

would remain the same even for 32-bit wide data paths. This is a
major advantage over many previous testability analysis schemes
[5] where the CPU time for analysis explodes with an increase in
the data path bit-width.

In Column 2 of Table 2, the original area of the circuits after
technology mapping is given. This is a relative figure obtained
from the layouts of the standard cells used, and hence has no units.
Column 3 shows the area after the circuits have been modified by
the BIST architecture and test hardware. The area overhead is
mainly due to the extra PRPGs and MISRs, the BIST controller,
the Testpin, the extra logic for making the comparators random-
pattern testable, and test multiplexers in the data path and BIST ar-
chitecture. The percentage overheads are given in Column 4. In
Columns 5, 6 and 7, the corresponding figures for delay are pro-
vided. The delay represents the clock period innanoseconds. The
average area and delay overheads are 6.4% and 2.5%, respectively
(the average is calculated based on total area/delay of all the exam-
ples for the original and modified cases). The area and delay over-
heads are much smaller than conventional BIST techniques due to
the utilization of functional information and existing data and con-
trol flows of the circuit in the test mode.

In Figure 10, the testability results for the original circuits (with-
out any testability hardware) and the circuits augmented by our
BIST scheme are shown. The fault coverage numbers are obtained
by fault simulating the pseudorandom patterns obtained from the
PRPGs (linear feedback shift registers were used as PRPGs) on the
circuits using PROOFS [19]. The fault coverage numbers obtained
by our method are above 99% for all the examples (with a min-
imum of 99.1% at 4,500 cycles forAmvdualand a maximum of
99.7% forPaulin), and the number of test cycles required to get
over 99% fault coverage is never more than 4,000.

To check if most of the untested faults in the original circuits
were random-pattern resistant, we increased the number of clock
cycles to 40,000. By doing so, the increase in the fault coverage
(compared to the fault coverage at 4,500 clock cycles) for the origi-
nal circuits ofTseng, Paulin, GCD, Barcode,AmvabsandAmvdual
was only 2.1%, 0.3%, 3.2%, 4.0%, 3.2%, and 5.5%, respectively.
This points to the need of employing a BIST scheme, such as the
one presented in this paper.

In order to see how different parameters vary with a change in
bit-width, we evaluated the BIST architecture for 8, 16 and 32 bit
wide data paths of the exampleTseng. Figure 11 shows how area
overhead (AO), delay overhead (DO), and number of cycles re-
quired to attain 99% fault coverage (#cyclesfor 99% fc) vary with
bit-width. Similar results were obtained for other examples as well.
The AO and DO curves are predictable since the testability hard-
ware does not scale as fast as the data path size. The almost linear
increase in #cyclesfor 99% fc is also very encouraging.

6 Conclusions
In this paper, we presented a new BIST scheme for testing RTL
controller/data path circuits. The scheme uses functional informa-
tion of modules and symbolic testability analysis techniques to ob-
tain test environments of all the RTL elements in the circuit. The
test environment of an element guarantees that the element can be
fed by pseudorandom vectors provided at the primary inputs and
its test response observed at a primary output. If it is not possible
to generate the test environment of a module, then test multiplexers
are added to the circuit at suitable points to increase the control-
lability and observability of the circuit. Then a BIST controller is
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Figure 10: Fault coverage curves for the six example circuits
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Figure 11: Effect of bit-width on the BIST parameters
synthesized to produce the necessary values of the status inputs of
the controller in the test mode and the test multiplexer select signal
values. Finally, PRPGs and MISRs are added at the primary inputs
and primary outputs of the circuit respectively, and a BIST archi-
tecture imposed on the whole RTL circuit. The advantages of the
scheme are: (i) comparatively low area and delay overheads, (ii)
very high fault coverage, and (iii) low test application times.
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