
A Bit-Vector Differential Model
for the Modular Addition by a Constant

Seyyed Arash Azimi1?, Adrián Ranea2?, Mahmoud Salmasizadeh3, Javad
Mohajeri3, Mohammad Reza Aref1, and Vincent Rijmen2,4

1 Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran
arash azimi@ee.sharif.edu, aref@sharif.edu

2 imec-COSIC, KU Leuven, Belgium
{adrian.ranea,vincent.rijmen}@esat.kuleuven.be

3 Electronic Research Institute, Sharif University of Technology, Tehran, Iran
{salmasi,mohajer}@sharif.edu

4 Department of Informatics, UiB, Norway

Abstract. ARX algorithms are a class of symmetric-key algorithms con-
structed by Addition, Rotation, and XOR, which achieve the best software
performances in low-end microcontrollers. To evaluate the resistance of
an ARX cipher against differential cryptanalysis and its variants, the
recent automated methods employ constraint satisfaction solvers, such as
SMT solvers, to search for optimal characteristics. The main difficulty to
formulate this search as a constraint satisfaction problem is obtaining the
differential models of the non-linear operations, that is, the constraints
describing the differential probability of each non-linear operation of the
cipher. While an efficient bit-vector differential model was obtained for the
modular addition with two variable inputs, no differential model for the
modular addition by a constant has been proposed so far, preventing ARX
ciphers including this operation from being evaluated with automated
methods.

In this paper, we present the first bit-vector differential model for the n-
bit modular addition by a constant input. Our model contains O(log2(n))
basic bit-vector constraints and describes the binary logarithm of the dif-
ferential probability. We also represent an SMT-based automated method
to look for differential characteristics of ARX, including constant addi-
tions, and we provide an open-source tool ArxPy to find ARX differential
characteristics in a fully automated way. To provide some examples, we
have searched for related-key differential characteristics of TEA, XTEA,
HIGHT, and LEA, obtaining better results than previous works. Our
differential model and our automated tool allow cipher designers to select
the best constant inputs for modular additions and cryptanalysts to
evaluate the resistance of ARX ciphers against differential attacks.

Keywords: modular addition by a constant, differential probability, ARX, SMT,
automated search, bit-vector theory

? These authors contributed equally to this work.

©IACR 2020. This article is the final version submitted by the author(s) to the IACR

and to Springer-Verlag on 2020. The version published by Springer-Verlag is available

at *.

1 Introduction

Low-end devices such as RFID tags, sensor networks, and the Internet of Things
(IoT) are becoming ubiquitous. In 2018, Gartner, Inc. forecasted that there will be
more than 25 billion connected devices forming the IoT by 2021 [1]. Traditional
cryptographic algorithms are not suitable for these resource-constrained devices,
and several lightweight cryptographic algorithms have been recently proposed to
meet this growing demand. In this regard, the National Institute of Standards and
Technology (NIST) has started a process to evaluate and standardize lightweight
cryptographic algorithms [2].

ARX primitives, composed exclusively of modular Additions, cyclic Rotations,
and XORs, are a promising class of lightweight cryptographic algorithms with the
most efficient software implementations on low-end microcontrollers [3]. There
are many noteworthy ARX algorithms, such as the hash function BLAKE [4],
the stream cipher Salsa20 [5], the MAC algorithm Chaskey [6] and notable block
ciphers like HIGHT [7], LEA [8], SPECK [9] or SPARX [10]. Usually, ciphers
that are exclusively composed of ARX operations and other common bit-vector
operations (e.g., modular multiplication or logical shifts) are also considered in
the class of ARX ciphers, such as IDEA [11], TEA [12], or XTEA [13].

The security of ARX ciphers is evaluated by analysing their robustness against
various attacks. Some of the most successful attacks applied to ARX algorithms
are differential cryptanalysis and their variants, such as boomerang or related-key
differential attacks [8, 14]. These attacks exploit differences in the inputs that
propagate through the cipher with high probability. The standard approach
to show an ARX cipher is secure against differential attacks is by finding the
optimal characteristics (i.e., trails of differences with the highest probabilities)
that cover most of the rounds of the cipher and checking that their probabilities
are negligible [7, 8]. When the best attack in the design stage is a differential
attack, the number of rounds of the cipher is determined by the number of
rounds that optimal characteristics can cover with non-negligible probability.
Thus, searching for optimal characteristics is a crucial step in the design and
security analysis of a cipher.

Two main techniques have been applied to search for optimal characteristics
of ARX algorithms: branch-and-bound algorithms [15, 16] based on Matsui’s
algorithm [17], and the recent automated methods based on constraint satisfaction
problems, such as SMT (Satisfiability Modulo Theories) or MILP (Mixed Integer
Linear Programming) problems [18, 19]. Automated methods formulate the
characteristic search problem as a constraint satisfaction problem and delegate
the solving task to one of the powerful off-the-shelf constraint satisfaction solvers
available nowadays [20, 21]. The main difficulty to formulate the search problem
lies in the differential models of the non-linear operations, that is, the constraints
describing the differential probability of the non-linear operations of the cipher.

ARX ciphers can be efficiently described using the bit-vector theory of SMT,
and several bit-vector differential models have been proposed so far [22–24]. For
the modular addition with two n-bit operands, the foremost non-linear operation
in ARX primitives, Lipmaa and Moriai found a bit-vector algorithm for computing

2

the differential probability with complexity O(log2 n) [22]. This algorithm can be
straightforwardly translated to a bit-vector differential model, and it has been
used in several SMT-based methods to search for characteristics of ARX ciphers
[18, 24, 25].

However, no bit-vector differential model has been proposed for the modular
addition with a constant input, preventing from searching for characteristics of
ARX ciphers that contain constant additions. Lipmaa’s algorithm is restricted to
the modular addition with two operands, and it cannot be applied when one of
the inputs is fixed to a constant as we will discuss later. Machado proposed an
algorithm to compute the differential probability of the constant addition [26],
but it cannot be translated to an efficient bit-vector differential model due to its
recursive nature and the use of floating-point arithmetic.

Contributions. We propose an efficient bit-vector differential model for the
modular addition by an n-bit constant. Our model contains O(log2 n) basic
bit-vector constraints and it is composed of a bit-vector formula that determines
whether a differential over the constant addition has non-zero probability and
a bit-vector function that computes the binary logarithm of the differential
probability. Our bit-vector model exploits the properties of the carry chain of
the modular addition and relies on efficient well-known bit-vector functions, such
as the hamming weight or the bit-reversal, and new bit-vector functions that we
have developed for the binary logarithm.

Furthermore, we describe an SMT-based automated method to search for
characteristics of ARX ciphers including constant additions. Our method is
composed of an iterated search of optimal characteristics of round-reduced versions
of the cipher and an automated encoding technique which formulates the SMT
problems from the Single Static Assignment (SSA) form of the cipher. We have
implemented our method in an open-source tool ArxPy5, which fully automated
the search of ARX characteristics. ArxPy offers a simple interface to represent
any ARX cipher, different types of characteristics to search, and a complete
documentation. To provide some examples, we have applied our characteristic
search method to several ARX ciphers containing constant additions. In particular,
we have searched for different types of related-key characteristics of TEA, XTEA,
HIGHT and LEA. With our automated approach, we have revisited results
previously found with manual and ad-hoc techniques, and we have obtained
better characteristics in terms of probability and number of rounds.

With our bit-vector model for the constant addition, the SMT-based auto-
mated method, and our open-source tool ArxPy, we provide cipher designers with
the resources to design ARX ciphers including constant additions that are secure
against differential attacks. Thus, cipher designers can choose the best constants
for the modular additions and optimize the number of rounds to strike a balance
between security and efficiency.

Outline. The notation and preliminaries are introduced in Section 2, and the
bit-vector model for the modular addition by a constant is described in Section 3.

5 https://github.com/ranea/ArxPy

3

https://github.com/ranea/ArxPy

Section 4 illustrates the formulation of the characteristic search as a sequence of
SMT problems, SMT-based search method, and the encoding of bit-vector SMT
problems for ARX characteristics. Section 5 presents the characteristics found
for TEA, XTEA, HIGHT, and LEA using our automated approach and finally
Section 6 concludes the paper and addresses future works.

2 Preliminaries

2.1 Notations

Let x be an integer such that its n-bit vector representation when 0 ≤ x < 2n

is x = (x[n− 1], . . . , x[0]), where x[0] and x[n− 1] denote respectively the least
and the most significant bit. For ease of notation, we define x[i] = 0 when i < 0
and the symbol ∗ stands for an undetermined bit. The usual integer operations
are denoted by (+,−,×, /) and the basic bit-vector operations are gathered in
Table 1.

A mathematical expression only involving bit-vector variables and basic bit-
vector operations is called a bit-vector expression. A bit-vector formula is a
bit-vector expression returning True or False, such as Equals, whereas an n-bit
vector function is a bit-vector expression returning an n-bit vector. In order to
measure the complexity of the bit-vector differential model that we propose in
this paper, we define the bit-vector complexity of a bit-vector expression as the
number of basic bit-vector operations that the expression is composed of.

Table 1. Basic bit-vector operations for n-bit vectors.

x[i, j] the bit-vector (x[i], . . . , x[j]), n > i ≥ j ≥ 0
¬x bit-wise NOT of x
x ‖ y concatenation of x and y
x ∧ y bit-wise AND of x and y
x ∨ y bit-wise OR of x and y
x⊕ y bit-wise XOR of x and y
x� i (logical) left shift of x by i bits
x� i right shift of x by i bits
x≪ i left cyclic rotation of x by i bits
x≫ i right cyclic rotation of x by i bits
x� y modular addition of x and y
x� y modular subtraction of x and y
Equals(x, y) bit-vector equality of x and y, returning True

if x and y are the same, otherwise False

In the literature of the bit-vector theory, the set of basic bit-vector operations
usually includes the operations gathered in Table 1 and few additional operations,

4

such as modular multiplication or modular division [27]. However, modular multi-
plication and modular division are much more costly than the other operations in
practice, and we have excluded them from our set of basic bit-vector operations,
which resembles the unit-cost RAM model used in [22].

Apart from the basic bit-vector operations listed in Table 1, we will also
employ the following well-known bit-vector functions: Carry,Rev,RevCarry,HW
and LZ. The carry function c = Carry(x, y) returns the n-bit carry chain of
the n-bit modular addition x � y. It is defined iteratively as c[0] = 0 and
c[i+1] = (x[i]∧y[i])⊕ (x[i]∧ c[i])⊕ (y[i]∧ c[i]). Note that the carry has bit-vector
complexity O(1), since Carry(x, y) = x⊕ y ⊕ (x� y).

The bit-reversal function Rev(x) reverses the order of bits of x, i.e., Rev(x) =
(x[0], x[1], . . . , x[n − 1]). We will use this function to define the reverse carry,
RevCarry(x, y) = Rev(Carry(Rev(x),Rev(y))). The hamming weight HW(x) re-
turns an n-bit vector denoting the number of non-zero bits of the n-bit input
x. Lastly, the leading zeros function LZ(x) marks the leading zeros of an n-bit
input x, that is, for 0 ≤ i < n we have LZ(x)[i] = 1 ⇐⇒ x[n− 1, i] = 0. Note
that the functions Rev,RevCarry,HW and LZ can be computed using a divide
and conquer approach with bit-vector complexity O(log2 n) [28].

2.2 Differential Cryptanalysis

A block cipher is a family of permutations parameterized by a κ-bit key k,
mapping n-bit plaintexts p to n-bit ciphertexts c. Most block ciphers consist
of a key scheduling algorithm KS, which derives round keys k1, . . . , kr from the
master key k, and an encryption algorithm Ek, which processes the plaintext
by iterating a round function f and injecting a round key at each round, i.e.,
Ek = fkr ◦ · · · ◦ fk1 .

Block ciphers are shown to be secure by analysing their resistance against all
known attacks. One of the most powerful attacks, specially to ARX primitives,
is differential cryptanalysis [29]. Basically, it exploits non-random propagation of
differences in the input to recover the secret key.

Let F be an n-bit to n-bit function and (∆p, ∆c) be the XOR of a pair
of inputs (p, p′) and their corresponding outputs (c, c′), i.e., ∆p = p ⊕ p′ and
∆c = c⊕c′. The pair (∆p, ∆c) is called a differential and its probability is defined
as

Pr[∆p
F−→ ∆c] =

#{p : F (p)⊕ F (p⊕∆p) = ∆c}
2n

.

A differential is valid if it has non-zero probability. In this case, its weight is
defined as

weightF (∆p, ∆c) = − log2(Pr[∆p
F−→ ∆c]) .

The differential 0
F−→ 0 has probability 1 for any function F , and a differential

with non-zero input difference over a random n-bit permutation has probability
2−n. Differential cryptanalysis [29] exploits a differential over the n-bit block
cipher with probability p > 2−n to recover the secret key with roughly O(p−1)
encryption calls.

5

Related-key differential cryptanalysis [30] extends differential cryptanalysis
by considering key differences. A related-key differential is given by a pair of
differentials over the key schedule and the encryption function respectively,

(∆k
KS−−→ (∆k1 , . . . ,∆kr)), (∆p

E−→ ∆c) ,

where the ciphertext difference is computed using the related round-key pairs,

∆c = (fkr ◦ · · · ◦ fk1)(p)⊕ (fkr⊕∆kr ◦ · · · ◦ fk1⊕∆k1)(p⊕∆p) .

The probability of a related-key differential is the product of the probability of
key schedule differential pKS and the probability of encryption differential pE .

A related-key attack exploits a related-key differential with pKS > 2−κ and
pE > 2−n to recover the secret key with complexity O((pKS × pE)−1). The
attacker takes about p−1KS key pairs to find one key, on average, that satisfies
the key schedule differential. Next and for each key pair, the attacker runs a
differential attack over the encryption using O(p−1E) encryption calls.

Related-key differential cryptanalysis requires a very powerful attacker that
can query the encryption function Ek⊕∆k for many keys k ⊕ ∆k. In fact, if
an adversary can query Ek⊕∆k for 2m key differences ∆k, any block cipher is
vulnerable to a related-key attack with complexity O(2m + 2n−m) [31]. Thus,
we distinguish between weak related-key differentials (i.e., pKS < 1) and strong
related-key differentials (i.e., pKS = 1), which can be exploited in practice with a
single related-key pair. Furthermore, we call equivalent keys as pairs of related
keys (k, k⊕∆k) such that ∀p, Ek(p) = Ek⊕∆k(p⊕∆p)⊕∆c, for some (∆p, ∆c).
Note that a related-key differential with pE = 1 leads to 2κpKS pairs of equivalent
keys.

Searching for differentials. The most difficult step to launch a differential
attack is finding a differential with high probability. The main approach is to
analyse how differences propagate through the round function and search for a
characteristic, that is, a trail of differences

Ω = (∆p = ∆x0

fk1−−→ ∆x1 → · · · → ∆xr−1

fkr−−→ ∆xr = ∆c) .

Similar to differentials, a characteristic Ω is valid if it has non-zero probability
and its weight is defined as − log2(Pr[Ω]). Furthermore, we denote a related-
key characteristic by a pair of characteristics (ΩKS, ΩE), where ΩKS is the key
schedule characteristic containing the trail of differences from the master key to
the round keys and ΩE is the encryption characteristic containing the trail of
differences through the encryption.

Obtaining the exact probability of a characteristic is computationally in-
feasible. Thus, two assumptions are commonly made. First, it is assumed that
the differential probabilities over each round are independent, which allows to
compute the weight of a characteristic by summing the round weights, i.e.,

weight(Ω) =

r∑
i=0

weight(∆xi → ∆xi+1) .

6

Second, it is assumed that the probability of a characteristic does not strongly
depend on the choice of the secret key, also known as the hypothesis of stochastic
equivalence [32], which allows to compute the weight of a characteristic by
averaging over all keys.

On top of that, designers also assume that the probability of a differential
(∆p, ∆c) is close to the probability of the best characteristic (∆p → · · · → ∆c),
and they prove a cipher is secure against differential cryptanalysis by showing
that characteristics with high probability cannot cover most rounds of the cipher.
While these assumptions do not always hold, currently this is the best systematic
approach to argue security against differential cryptanalysis, and this heuristic
approach is widely used for ARX ciphers in practice [18, 19, 23, 25, 33, 34].

SMT solvers. A recent approach to search for characteristics of ARX ciphers
is by formulating the search problem as an SMT problem in the bit-vector theory
[18, 23–25, 35]. Satisfiability Modulo Theories (SMT) refers to the problem of
determining whether a first order formula is satisfiable with respect to some logical
theory. SMT problems are a generalization of SAT problems; while the latter
problems are expressed in propositional logic, SMT formulas can be expressed in
richer logics, such as the theory of bit-vectors or the theory of integers.

SMT has grown in recent years into a very active research field and several
off-the-shelf SMT solvers are available nowadays [20]. Most SMT solvers can not
only determine the satisfiability of a problem but also obtain an assignment of
the variables that satisfies the problem. This feature allows SMT solvers to be
applied in search problems.

An SMT problem in the bit-vector theory is given by a set of bit-vector
variables and a set of bit-vector formulas or constraints. The constraints can
be defined with the usual logical operations (e.g., Equals,NotEquals, Implies, etc.)
and with the usual bit-vector operations (e.g., ⊕,�,≪, etc.).

2.3 Differential Models

To represent a characteristic in a constraint satisfaction problem, it is necessary
to find a differential model of the round function f . For an SMT problem in
the bit-vector theory, a differential model of a function y = f(x) is given by
a bit-vector formula validf (∆x, ∆y) and a bit-vector function weightf (∆x, ∆y).
The formula validf (∆x, ∆y) is True if and only if the differential (∆x → ∆y)
over f is valid, and the function weightf (∆x, ∆y) returns the weight of a valid
differential (∆x → ∆y).

Characteristics over ARX ciphers are usually defined by considering the
difference after each ARX operation. The differential models of the XOR and
the cyclic rotations are very simple since these operations propagate differences
deterministically, that is,

∆x1
, ∆x2

f(x1,x2)=x1⊕x2−−−−−−−−−−−→ ∆x1
⊕∆x2

,

∆x
fa(x)=x≪a−−−−−−−−−−→ ∆x≪ a ,

∆x
fa(x)=x⊕a−−−−−−−−→ ∆x ,

∆x
fa(x)=x≫a−−−−−−−−→ ∆x≫ a .

7

For the modular addition with two n-bit inputs, y = f(x1, x2) = x1 � x2, the
algorithm by Lipmaa et al. [22] can be translated into the following differential
model with bit-vector complexity O(log2 n).

Theorem 1. Let ((∆x1
, ∆x2

), ∆y) be a differential over the modular addition
y = x1 � x2 and denote ←−x = x� 1 and eq(a, b, c) = (¬a⊕ b) ∧ (¬a⊕ c). Then,
the differential is valid if and only if the bit-vector formula

valid�((∆x1
, ∆x2

), ∆y) = Equals(0, eq(
←−−
∆x1

,
←−−
∆x2

,
←−
∆y)∧ (∆x1

⊕∆x2
⊕∆y ⊕

←−−
∆x2

))

is True. In this case, the differential weight is given by the bit-vector function

weight�((∆x1
, ∆x2

), ∆y) = HW(¬eq(∆x1
, ∆x2

, ∆y)� 1) .

For the modular addition with a constant input �a(x) = x � a, Machado
obtained the following algorithm to compute the differential probability [26].

Theorem 2. Let (u, v) be a differential over the n-bit constant addition �a.
Then, the differential probability is given by

Pr[u
�a−−→ v] = ϕ0 × · · · × ϕn−1 ,

where ϕi depends on the δi−1 and Si, each one defined for 0 ≤ i < n by

Si = (u[i− 1], v[i− 1], u[i]⊕ v[i]) ,

δi =

(a[i− 1] + δi−1)/2, Si = 000

0, Si = 001

a[i− 1], Si ∈ {010, 100, 110}
δi−1, Si ∈ {011, 101}
1/2, Si = 111

ϕi =

1, Si = 000

0, Si = 001

1/2, Si ∈ {010, 011, 100, 101}
1− (a[i− 1] + δi−1 − 2a[i− 1]δi−1), Si = 110

(a[i− 1] + δi−1 − 2a[i− 1]δi−1), Si = 111,

For i = −1, Si and δi are defined by S−1 = ⊥ and δ−1 = 0.

Unfortunately, the algorithm illustrated in Theorem 2 is not suitable for constraint
satisfaction problems due to its recursive nature and the use of floating-point
arithmetic.

Some authors [36, Corollary 2] [37] have adapted the differential model of the
2-input addition (i.e., the modular addition with two independent inputs) for the
constant addition by setting the difference of the second operand to zero, that is,

valid�a(∆x, ∆y)← valid�((∆x, 0), ∆y) ,

weight�a(∆x, ∆y)← weight�((∆x, 0), ∆y) .
(1)

8

The approximation given by Equation (1) models the differential (∆x
�a−−→ ∆y)

by averaging over all a. While this approach can be used to model the constant
addition by a round key, since the characteristic probability is also computed by
averaging over all keys, for a fixed constant this approach is rather inaccurate.

Surprisingly, the differential properties of the 2-input addition and the constant
addition are very different. The 2-input addition was shown to be CCZ-equivalent
to a quadratic function [38], that is, the differential properties of the 2-input
addition are the same of some quadratic function. In particular, the set of inputs
(x1, x2) satisfying a differential ((∆x1

, ∆x2
) → ∆y) over the 2-input addition

forms a subspace of Fn2 , which allows to describe its differential model using few
basic operations.

On the other hand, the constant addition is not CCZ-equivalent to a quadratic
function, since the set of inputs (x1, x2) satisfying a differential (∆x, ∆y) over
�a does not form a subspace for many a. In other words, the probability of a
differential over the constant addition is not necessarily of the form 2−α for a
positive integer α, and finding a differential model for the constant input addition
is a much harder problem.

We checked experimentally how accurate was the approximation given by
Equation (1) for 8-bit constants a. For most values of a, validity formulas differ
roughly in 213 out of all 216 differentials, and for those differentials where they did
not differ, the difference between their weights was significantly high in average.

Consequently, no differential model of the constant addition suitable for
constraint satisfaction problems has been proposed so far. In the next section we
present the first differential model of the constant addition for SMT problems in
the bit-vector theory.

3 Bit-Vector Differential Model of the Constant Addition

We present a bit-vector differential model of the constant addition, composed
of a bit-vector formula to determine whether a given differential is valid and a
bit-vector function that computes the weight of the valid differential. Our model
takes benefit from Theorem 2 [26]; however, we avoid bit iterations, floating-
point arithmetic, multiplications and look-up tables, in order to obtain efficient
bit-vector constraints to be used in bit-vector SMT problems.

Before we illustrate our model, we remark an essential property of Theorem 2.
When the state Si is not 110 or 111, the probability of the step i, ϕi, depends
exclusively on Si; otherwise, ϕi depends on Si and δi−1. When Si = 11*, Si−1 ∈
{010, 100, 110, 000} and for the first three cases, δi−1 is equal to a[i−2]. However,
considering the forth case, i.e., Si−1 = 000, δi−1 depends on δi−2 and this
dependency will proceed until we obtain a state Si−`i 6= 000 for some positive
integer `i. Thus, δi−1 has the following expression when Si = 11*,

δi−1 =
a[i− `i − 1]

2`i−1
+

`i∑
j=2

a[i− j]
2j−1

. (2)

9

Therefore, when Si = 11*, ϕi also depends on the previous states Si−1 · · · , Si−`i ,
which motivates the following definition.

Definition 1. Let Si = 11*. The chain Γi is defined as the smallest set of
previous states {Si−1, Si−2, · · · , Si−`i} that completely determine ϕi, and the
positive integer `i is called the length of Γi.

Given a chain Γi = {Si−1, Si−2, · · · , Si−`i}, note that Si−`i 6= 000 and the
remaining states in the chain (if any) are all equal to 000.

3.1 Validity

Let (u, v) be a differential over �a, the modular addition by n-bit constant a.
According to Theorem 2, the differential probability of (u, v) can be expressed as
ϕ0× · · · ×ϕn−1. Thus, (u, v) is a valid differential, i.e., with non-zero probability,
if and only if all ϕi are non-zero. If ϕi = 0, note that Si must be 001, 110 or
111. While Si = 001 always implies ϕi = 0, the other two cases require an extra
condition to result in ϕi = 0, as shown in the next lemma.

Lemma 1. Let the state Si be 11b, for b ∈ {0, 1}. Then, ϕi is equal to 0 if and
only if ¬b⊕ a[i− 1] = a[i− 2] = · · · = a[i− `i − 1] .

Proof. Having Si = 11b, ϕi = 0 if and only if ¬b = δi−1 ⊕ a[i − 1]. Let `i be
the chain length of Si. The case for `i = 1 is trivial, since δi−1 = a[i − 2]. To
achieve δi−1 = a[i− 1]⊕ ¬b when `i > 1, the non-negative rational number δi−1
must be equal to 0 or 1. Since δi−1 is a monotonically increasing function of
(a[i − 2], . . . , a[i − `i − 1]) regarding Equation (2), δi−1 reaches its extrema in
(0, . . . , 0) and (1, . . . , 1), that is,

δi−1 = c ⇐⇒ a[i− 2] = a[i− 3] = · · · = a[i− `i − 1] = c , ∀c ∈ {0, 1} ,

Thus, δi−1 = a[i− 1]⊕ ¬b ⇐⇒ δi−1 = a[i− 2] = · · · = a[i− `i]. ut

The next lemma provides a bit-vector expression to check Lemma 1 by
exploiting the fact that the carry chain allows a bit to affect the bits to its left.

Lemma 2. Consider the following n-bit values,

s00* = ¬(u� 1) ∧ ¬(v � 1), s**1 = u⊕ v, a′ = (a⊕ (a� 1))� 1,

c = Carry
(
s00* ∧ ¬a′,¬(s00* � 1)

)
, g = (s**1 ⊕ a′) ∧ (c ∨ ¬(s00* � 1)) .

Then, for all states Si = 11*, we have ϕi = 0 if and only if g[i] = 1.

Proof. Let Si = 11b with chain length `i. Note that a′[i] = a[i− 1]⊕ a[i− 2] and
that s00*[i] = 1 (resp. s**1[i] = 1) if and only if Si = 00* (resp. Si = **1).

The first operand of g[i], i.e., (s**1 ⊕ a′)[i], is equal to one if and only if
b = ¬(a[i− 1]⊕ a[i− 2]). For `i = 1 it is easy to see that Si−1 6= 00*; therefore,
the second operand of g[i] is 1, and by Lemma 1 g[i] = 1 if and only if ϕi = 0.

10

When `i > 1, Si−1 = 000 and the second major operand of g[i] reduces to c.
In particular, the two major operands of the Carry function of c are given by

(s00* ∧ ¬a′)[i, i− `i] = (¬(a[i− 1]⊕ a[i− 2]), . . . ,¬(a[i− `i]⊕ a[i− `i − 1]), 0) ,

¬(s00* � 1)[i, i− `i] = (0, . . . , 0, 1, ∗) .

Thus, c[i] = c[i− 1]∧¬a′[i− 1] and c[i− `i + 1] = c[i− `i]∧¬s00*[i− `i − 1] = 0;
otherwise, for 0 ≤ j ≤ i − `i − 1 we will obtain s00*[j] = 0 which does not
conform to S0 = 00*. By unrolling the recursive definition of c[i], we see that
c[i] = ¬a′[i − 1] ∧ · · · ∧ ¬a′[i − `i + 1]. In other words, c[i] = 1 if and only if
a[i− 2] = · · · = a[i− `i − 1]. Together with the condition for (s**1 ⊕ a′)[i] = 1,
we have that g[i] = 1 exactly when ϕi = 0, regarding Lemma 1. ut

Lemma 2 provides a bit-vector variable g that detects the states Si = 11*

leading to invalidity. The next theorem presents the final bit-vector formula for
the validity by taking into account the states Si = 001 as well.

Theorem 3. Let (u, v) be a differential over the n-bit constant addition �a.
Consider the n-bit value g defined in Lemma 2 and the following n-bit values

s001 = ¬(u� 1) ∧ ¬(v � 1) ∧ (u⊕ v) , s11* = (u� 1) ∧ (v � 1) .

Then, the bit-vector formula valid�a(u, v) = Equals(s001 ∨ (s11* ∧ g), 0) is True if
and only if the differential (u, v) is valid.

Proof. By the definition of s001 and s11*, s001[i] = 1 (respectively s11*[i] = 1) if
and only if Si = 001 (respectively Si = 11*). Moreover, ϕi = 0 exactly when
Si = 001, or when Si = 11∗ and g[i] = 1 (Lemma 2). Thus, ϕi = 0 if and only if
s001 ∨ (s11* ∧ g)[i] = 1. ut

Since the number of basic bit-vector operations of our bit-vector validity
formula is independent of the bit-size of the inputs, the bit-vector complexity of
valid�a is O(1).

3.2 Weight of a Valid Differential

In this section, we propose a bit-vector function that computes the weight of a
valid differential over the constant addition. Working with differential weights
has the advantage that multiple differential weights can be combined by adding
them up, while probabilities need to be multiplied, a very costly operation in a
bit-vector SMT problem.

The weight of a valid differential over the constant addition is an irrational
value in general, and it cannot be represented as a fixed-sized bit-vector. Thus,
our bit-vector function computes a close approximation of the weight, and we
provide almost tight bounds for the approximation error.

Through the rest of the section, let (u, v) be a valid differential over the n-bit
constant addition �a. According to Theorem 2, the weight can be obtained by

weight�a(u, v) = − log2

(
n−1∏
i=0

ϕi

)
= −

n−1∑
i=0

log2(ϕi) . (3)

11

Let I denote the set of indices corresponding to the states 11* with chain
length bigger than one, i.e., I = {1 ≤ i ≤ n− 1 | Si = 11*, `i > 1}. For i /∈ I,
the probability ϕi only depends on the current state Si and ϕi is either 1 or 1/2.
Since ϕi = 1/2 when Si ∈ {01∗, 10∗}, it is easy to see that

−
∑
i/∈I

log2(ϕi) = HW((u⊕ v)� 1) . (4)

Equation (4) describes the sum of log2(ϕi) when i 6∈ I as a bit-vector expression
with complexity O(log2 n). To describe the logarithmic summation when i ∈ I
as a bit-vector, we will first show how to split ϕi as the quotient of two integers.

Lemma 3. Let i ∈ I and let pi be the positive integer defined by

pi =

{
a[i− 2, i− `i] + a[i− `i − 1], u[i]⊕ v[i]⊕ a[i− 1] = 1

2`i−1 − (a[i− 2, i− `i] + a[i− `i − 1]), u[i]⊕ v[i]⊕ a[i− 1] = 0

where `i > 1 is the chain length of the state Si = 11*. Then, ϕi =
pi

2`i−1
.

Proof. Considering the definition of ϕi when Si = 11*,

ϕi =

{
δi−1, u[i]⊕ v[i]⊕ a[i− 1] = 1

1− δi−1, u[i]⊕ v[i]⊕ a[i− 1] = 0

and following the definition of δi−1 given by Equation (2),

2`i−1δi =

`i−2∑
j=0

2ja[i− `i + j] + a[i− `i − 1] = a[i− 2, i− `i] + a[i− `i − 1] ,

we obtain that ϕi = pi/2
`i−1. Moreover, having 0 < ϕi ≤ 1 and `i > 1 results in

0 < pi ≤ 2`i−1. Thus, pi is always a positive integer. ut

Due to Lemma 3, we can decompose the logarithmic summation over I as∑
i∈I

log2(ϕi) =
∑
i∈I

log2(pi) −
∑
i∈I

(`i − 1) .

The next lemma shows how to describe the summation involving the chain lengths
with basic bit-vector operations.

Lemma 4. Consider the n-bit vector s000 = ¬(u� 1) ∧ ¬(v � 1). Then,∑
i∈I

(`i − 1) = HW
(
s000 ∧ ¬ LZ(¬s000)

)
.

Proof. Recall that there are exactly (`i − 1) states in each chain Γi such that

Si−1 = Si−2 = · · · = Si−(`i−1) = 000.

12

Therefore, we have
∑
i∈I(`i − 1) = #{Sj |Sj = 000 and ∃i ∈ I s.t. Sj ∈ Γi} .

When Sj = 000, the next state Sj+1 will be a member of the set {000, 11*}. As
a result, it is easy to see that for an arbitrary j, if Sj is equal to 000, then either
Sj is included in some chain Γi, i ∈ I, or Sj belongs to the set Γ ′ defined by

Γ ′ = {Sn−1 = 000, · · · , Sn−k = 000} ,

for some k > 0, where Sn−k−1 6= 000. Concerning Definition 1, one can observe
that Γ ′ is not a chain. Therefore,

∑
i∈I(`i − 1) = #{Sj |Sj = 000 and Sj 6∈ Γ ′}.

Since we are assuming that the differential is valid, there are no states
Sj = 001, and s000[j] = 1 if and only if Sj = 000. On the other hand, the
function LZ can be used to detect the states from the set Γ ′. In particular,
LZ(¬s000)[i] is equal to 1 if and only if Si ∈ Γ ′. Therefore, we obtain∑

i∈I
(`i − 1) = HW

(
s000 ∧ (¬ LZ(¬s000))

)
. ut

Representing the sum of log2(pi) by a bit-vector expression is the most
complex and challenging part of our differential model. Thus, we will proceed in
several steps. First, we will show how to obtain a bit-vector w that contains all
the pi as some sub-vectors.

Lemma 5. Consider the following n-bit values,

s000 = ¬(u� 1) ∧ ¬(v � 1) , s′000 = s000 ∧ ¬ LZ(¬s000) ,
t = ¬s′000 ∧ (s′000 � 1) , t′ = s′000 ∧ (¬(s′000 � 1)) ,

s = ((a� 1) ∧ t)� (a ∧ (s′000 � 1)) , q =
(
(¬((a� 1)⊕ u⊕ v))� 1

)
∧ t′ ,

d = RevCarry(s′000, q) ∨ q , w = (q � (s ∧ d)) ∨ (s ∧ ¬d) .

Then, for all states Si = 11* with i ∈ I, w[i− 1, i− `i] = pi.

Proof. For each i ∈ I and 0 ≤ j < n, note that s′000[j] = 1 exactly when
Sj = 000 and Sj ∈ Γi, and t[j] = 1 (resp. t′[j] = 1) if and only if Sj = Si−`i (resp.
Sj = Si−1). Denoting s = s1�s2, where s1 = (a� 1)∧ t and s2 = a∧ (s′000 � 1),
when i ∈ I the sub-vectors

s1[i− 1, i− `i − 1] = (0, 0, . . . , 0, a[i− `i − 1], 0) ,
s2[i− 1, i− `i − 1] = (0, a[i− 2], . . . , a[i− `i + 1], a[i− `i], 0) ,

result in s[i−1, i−`i] = a[i−2, i−`i]+a[i−`i−1]. In particular, s[i−1, i−`i] ≤ 2`i−1

and the equality holds when s[i− 1, i− `i] = 10...0.
It is easy to see that q[i − 1] = ¬(a[i − 2] ⊕ u[i − 1] ⊕ v[i − 1]) when i ∈ I

and q is zero elsewhere. Then, the sub-vectors d[i − 1, i − `i] are composed of
repeated copies of q[i− 1] when i ∈ I, as shown by the following sub-vectors

s′000[i, i− `i − 1] = (0, 1, 1, . . . , 1, 0, ∗) ,
q[i, i− `i − 1] = (0, q[i− 1], 0, . . . , 0, 0, ∗) ,

RevCarry(s′000, q)[i, i− `i − 1] = (∗, 0, q[i− 1], . . . , q[i− 1], q[i− 1], 0) ,
d[i, i− `i − 1] = (∗, q[i− 1], q[i− 1], . . . , q[i− 1], q[i− 1], ∗) .

13

The only exception for the above equations is when i− `i = −1, where the two
least significant bits of the above sub-vectors will be equal to zero.

Let w = w1 ∧ w2, where w1 = q � (s ∧ d) and w2 = s ∧ ¬d. Regarding the
acquired patterns for q and d, we prove the following inequalities for i ∈ I

(s ∧ d)[i− 1, i− `i] ≤ q[i− 1, i− `i] ,
(s ∧ d)[i− `i − 1, 0] ≤ q[i− `i − 1, 0] ,

which imply the identity w1[i− 1, i− `i] = q[i− 1, i− `i]� (s ∧ d)[i− 1, i− `i].
The first inequality can be derived from the fact that s[i− 1, i− `i] ≤ 10...0.

For the second inequality, consider the index set J = {j|∀i ∈ I, Sj /∈ Γi}. Then,
the second inequality holds since for j ∈ J and c ∈ {0, 1} we can see that

s′000[j + 1− c] = 0 =⇒ s1[j − c] = s2[j − c] = 0 .

We are now ready to evaluate w[i − 1, i − `i] when i ∈ I. If q[i − 1] = 0, then
d[i− 1, i− `i] = (0, . . . , 0), w1[i− 1, i− `i] reduces to 0, and

w[i− 1, i− `i] = w2[i− 1, i− `i] = a[i− 2, i− `i] + a[i− `i − 1] .

If q[i− 1] = 1, then d[i− 1, i− `i] = (1, . . . , 1), w2[i− 1, i− `i] reduces to 0, and

w[i− 1, i− `i] = w1[i− 1, i− `i] = (1, 0, . . . , 0)� s[i− 1, i− `i]
= 2`i−1 − (a[i− 2, i− `i] + a[i− `i − 1]) .

Hence, for q[i−1] = ¬(a[i−1]⊕u[i]⊕v[i]) and regarding Lemma 3, we obtain
that w[i− 1, i− `i] = pi. ut

Recall that both LZ and RevCarry have bit-vector complexity O(log2 n). There-
fore, w can be described with O(log2 n) basic bit-vector operations.

Since pi is not always a power of two, log2(pi) cannot be represented by
a fixed-sized bit-vector. Thus, we will use the following approximation for the
binary logarithm of a positive integer x,

apxlog2(x) , m+
Truncate(x[m− 1, 0])

24
, (5)

where m = blog2(x)c and Truncate(z) for an m-bit vector z is defined by

Truncate(z) =

z[m− 1,m− 4], m ≥ 4

z[m− 1, 0] ‖ (

4−m︷ ︸︸ ︷
0, . . . , 0), m < 4

In other words, apxlog2 includes the integer part of the logarithm and takes the
four bits right after the most significant one as the “fraction” bits. While Truncate
can be generalized to consider more fraction bits, we will show later that four
fraction bits are enough to minimize the bounds of our approximation error.

14

To describe
∑
i∈I apxlog2(pi) with basic bit-vector operations, we will in-

troduce in the next proposition two new bit-vector functions ParallelLog and
ParallelTrunc. Given a bit-vector x with sub-vectors delimited by a bit-vector y,
ParallelLog(x, y) computes the sum of the integer part of the logarithm of the
delimited sub-vectors, whereas ParallelTrunc(x, y) calculates the sum of the four
most significant bits of the delimited sub-vectors.

Proposition 1. Let x and y be n-bit vectors such that y has r sub-vectors

y[it, jt] = (1, 1, . . . , 1, 0), t = 1, . . . , r

where i1 > j1 > i2 > j2 > · · · > ir > jr ≥ 0, and y is equal to zero elsewhere.
We define the bit-vector functions ParallelLog and ParallelTrunc by

ParallelLog(x, y) = HW(RevCarry(x ∧ y, y))

ParallelTrunc(x, y) = (HW(z0)� 3)� (HW(z1)� 2)� (HW(z2)� 1)� HW(z3)

where zλ = x ∧ (y � 0) ∧ · · · ∧ (y � λ) ∧ ¬(y � (λ+ 1)).

a) If x[it, jt] > 0 for t = 1, . . . , r, then

r∑
t=1

blog2(x[it, jt])c = ParallelLog(x, y) .

b) If at least blog2(n)c+ 4 bits are dedicated to ParallelTrunc(x, y), then

r∑
t=1

Truncate(x[it, jt + 1]) = ParallelTrunc(x, y) .

Proof. Case a) Let m = blog2(x[i1, j1])c and c = RevCarry(x ∧ y, y). Note that
c[n− 1, i1] = 0, since y[n− 1, i1 + 1] = 0. For m ≥ 1, we obtain the sub-vectors

i1, . . . , j1+m+ 1, j1+m, j1+m− 1, . . . , j1+ 1, j1, j1− 1
y[i1, j1− 1] = (1, . . . , 1, 1, 1, . . . , 1, 0, ∗) ,

(x ∧ y)[i1, j1− 1] = (0, . . . , 0, 1, ∗, . . . , ∗, 0, ∗) ,
c[i1, j1− 1] = (0, . . . , 0, 0, 1, . . . , 1, 1, 0) .

In particular, c[i1, j1] has m bits set to one. If m = 0, x[i1, j1 + 1] = 0 and
y[j1] = 0, which implies that there is no carry chain, i.e., c[i1, j1] = 0. Therefore,
in both cases HW(c)[i1, j1]) = m = blog2(x[i1, j1])c.

Note that the reversed carry chain stops at j1, and c[j1 − 1, i2] = 0 · · · 0.
Therefore, the same argument can be applied for t = 2, . . . , r, obtaining

HW(c[it, jt]) = blog2(x[it, jt])c , c[jt − 1, it+1] = 0 .

Finally, it is easy to see that c[jr − 1, 0] = 0, concluding the proof for this case.

15

Case b) First note that for λ = 0, . . . , 3 and t = 1, . . . , r, the variable zλ is

zλ[i] =

{
x[i], if i = it − λ > jt

0, otherwise

Therefore, the hamming weight of zλ computes the following summation:

HW(zλ) =
∑
t

it−λ>jt

x[it − λ] .

While we define HW as a bit vector function returning an n-bit output given
an n-bit input, blog2(n)c+ 1 bits are sufficient to represent the output of HW.
Therefore, by representing each HW(zλ)� (3−λ) in a (blog2(n)c+4)-bit variable
hλ, the bit-vector expression h0 � h1 � h2 � h3 does not overflow, and we obtain

r∑
t=1

Truncate(x[it, jt + 1]) =

r∑
t=1

3∑
λ=0

it−λ>jt

x[it − λ]× 23−λ = h0 � h1 � h2 � h3 ,

which concludes the proof. ut

Since both HW and Rev have O(log2 n) bit-vector complexities, so do the
functions ParallelLog and ParallelTrunc. The next lemma applies ParallelLog and
ParallelTrunc to provide a bit-vector expression of the sum of apxlog2(pi).

Lemma 6. Let r and f be the bit-vectors given by

r = ParallelLog((w ∧ s′000)� 1, s′000 � 1) ,

f = ParallelTrunc(w � 1,RevCarry((w ∧ s′000)� 1, s′000 � 1)) .

If at least blog2(n)c+ 5 bits are dedicated to r and f , then

24
∑
i∈I

apxlog2(pi) = (r � 4)� f .

Proof. Regarding Lemma 5, w[i− 1, i− `i] represents the `i-bit vector of pi and
s′000[i− 1, i− `i] conforms to the pattern (1, · · · , 1, 0) for any i ∈ I. Therefore,∑

i∈I
blog2(pi)c = HW

(
RevCarry((w ∧ s′000)� 1, s′000 � 1)

)
,

following Proposition 1. For the second case, let c be the n-bit vector given by
c = RevCarry((w∧s′000)� 1, s′000 � 1). Denoting by j = i−li and m = blog2(pi)c
for a given i ∈ I, note that pi[m] is the most significant active bit of pi and

i+1, . . . , j+m+2, j+m+1, j+m, . . . , j+2, j+1, j
(w � 1)[i+1, j] = (0, . . . , 0 pi[m], pi[m−1], . . . , pi[1], pi[0] 0) ,

c[i+1, j] = (0, . . . , 0 0, 1, . . . , 1, 1 0) .

16

Thus c[j +m, j] conforms to the pattern (1, · · · , 1, 0) and Proposition 1 leads to∑
i∈I

m=blog2(pi)c

Truncate(pi[m− 1, 0]) = ParallelTrunc(w � 1, c) .

For any n-bit variables x and y, it is easy to see that ParallelLog(x, y) < n.
Thus, blog2(n)c+ 4 bits are sufficient to represent (r � 4), and f can also be
represented with the same number of bits following Proposition 1. Therefore,
by representing (r � 4) and f in (blog2(n)c + 5)-bit variables, the bit-vector
expression (r � 4)� f does not overflow. ut

Recall that the differential weight of constant addition can be decomposed as

weight�a(u, v) = −
∑
i/∈I

log2(ϕi)−
∑
i∈I

log2

(
1

2`i−1

)
−
∑
i∈I

log2(pi) .

If the binary logarithm of pi is replaced by our approximation of the binary
logarithm apxlog2(pi), we obtain the following approximation of the weight,

apxweight�a(u, v) , −
∑
i/∈I

log2(ϕi)−
∑
i∈I

log2

(
1

2`i−1

)
−
∑
i∈I

apxlog2(pi) . (6)

Our weight approximation can be computed with the bit-vector function BvWeight
described in Algorithm 1, as shown in the lemma.

Algorithm 1 Bit-vector function BvWeight(u, v, a).

Input: (u, v, a)
Output: BvWeight(u, v, a)
s000 ← ¬(u� 1) ∧ ¬(v � 1)
s′000 ← s000 ∧ ¬ LZ(¬s000)
t← ¬s′000 ∧ (s′000 � 1)
t′ ← s′000 ∧ (¬(s′000 � 1))
s← ((a� 1) ∧ t)� (a ∧ (s′000 � 1))
q ←

(
(¬((a� 1)⊕ u⊕ v))� 1

)
∧ t′

d← RevCarry(s′000, q) ∨ q
w ← (q � (s ∧ d)) ∨ (s ∧ ¬d)
int← HW((u⊕ v)� 1)� HW(s′000)� ParallelLog((w ∧ s′000)� 1, s′000 � 1)
frac← ParallelTrunc(w � 1,RevCarry((w ∧ s′000)� 1, s′000 � 1))
return (int� 4)� frac

Lemma 7. If at least blog2(n)c+ 5 bits are dedicated to BvWeight(u, v, a), then

24 apxweight�a(u, v) = BvWeight(u, v, a) .

17

Proof. Regarding Equation (4) and Lemmas 4 and 6 we respectively obtain

−
∑
i/∈I

log2(ϕi) = HW((u⊕ v)� 1) , −
∑
i∈I

log2

(
1

2`i−1

)
= HW(s′000) ,

24
∑
i∈I

apxlog2(pi) = (ParallelLog((w ∧ s′000)� 1, s′000 � 1)� 4)� frac .

All in all, we get the following identities,

24 apxweight�a(u, v) = 24((int� 4)� frac) = BvWeight(u, v, a) . ut

Note that the four least significant bits of BvWeight(u, v, a) correspond to
the fraction bits of the approximate weight. In other words, the output of
BvWeight(u, v, a) represents the rational value

blog2(n)c+4∑
i=0

2i−4 BvWeight(u, v, a)[i] .

The bit-vector complexity of BvWeight is dominated by the complexity of
LZ,Rev,HW,ParallelLog and ParallelTrunc. Since these operations can be com-
puted with O(log2 n) basic bit-vector operations, so does BvWeight.

Theorem 4 shows that BvWeight leads to a close approximation of the differ-
ential weight and provides explicit bounds for the approximation error.

Theorem 4. Let (u, v) be a valid differential over the n-bit constant addition
�a, let weight�a(u, v) be the differential weight of (u, v), and let BvWeight be the
bit-vector function defined by Algorithm 1. Then, the approximation error,

E = weight�a(u, v)− apxweight�a(u, v) = weight�a(u, v)− 2−4 BvWeight(u, v, a)

is bounded by −0.029 · n ≤ E ≤ 0 .

The next subsection is devoted to the proof of Theorem 4, where we will also
analyse the error caused by our approximated binary logarithm.

3.3 Error Analysis - Proof of Theorem 4

In this subsection, we will prove Theorem 4 by gradually analysing the error
produced by our approximation of the binary logarithm. As we can see from
Equations (3) and (6), the gap between weight�a(u, v) and apxweight�a(u, v) is

weight�a(u, v)− apxweight�a(u, v) = −
∑
i∈I

(
log2(pi)− apxlog2(pi)

)
.

Note that the integer part of apxlog2 is equal to the integer part of log2

and the error is caused by the fraction part of the logarithm. While apxlog2(x)
considers four bits of the input x for the fraction part, we generalize the definition

18

of apxlog2(x) to include variable number of bits of x. Given a positive integer x
and the corresponding m = blog2(x)c, we define apxlogκ2 as

apxlogκ2 (x) =

{
m+ x[m− 1, 0]/2m, m ≤ κ
m+ x[m− 1, x− κ]/2κ, m > κ

The non-negative integer κ is called the precision of the fraction part, and for
κ = 4 we have apxlog42(x) = apxlog2(x), which is defined in Equation (5).

The following lemma bounds the approximation error of apxlog2 when κ ≥
blog2(x)c, with a similar proof as [39] for the sake of completeness. The main idea
is that after extracting integer part of the logarithm in base 2, one can estimate
log2(1 + γ) by γ when 0 ≤ γ < 1.

Lemma 8. Consider a positive integer x and the binary logarithm approximation
log2(x) ≈ m+ x[m− 1, 0]/2m , where m = blog2(x)c. Then, the approximation
error e = log2(x) − (m + x[m − 1, 0]/2m) is bounded by 0 ≤ e ≤ B, where
B = 1−

(
1 + ln(ln(2))

)
/ ln(2) ≈ 0.086.

Proof. Let x = 2m + b, where b is a non-negative integer such that 0 ≤ b < 2m.
Therefore, x[m− 1, 0] = x− 2m = b and the error is given by

e = log2(x)−(m+
x[m− 1, 0]

2m
) = log2(2m+b)−(m+

b

2m
) = log2(1+

b

2m
)− b

2m
.

For γ = b/2m, we obtain 0 ≤ γ < 1 and e = log2(1 + γ) − γ. Note that e is a
concave function of γ where e ≥ 0 if and only if 0 ≤ γ ≤ 1. By deriving e = e(γ),
one can see that max(e) = B = 1−

(
1 + ln(ln(2))

)
/ ln(2) ≈ 0.086 is reached when

γ = 1/ ln(2)− 1 ≈ 0.44. ut

The bound B is an almost tight bound, e.g., when x = 3, the obtained error
is log2(3)− (1 + 1

2) u 0.085. Similar to apxlogκ2 , we generalize apxweight�a as

apxweightκ�a(u, v) = −
(∑
i∈I

apxlogκ2 (pi) +
∑
i∈I

log2(
1

2`i−1
) +

∑
i/∈I

log2(ϕi)
)
,

where apxweight4�a(u, v) = apxweight�a(u, v) is defined by Equation (6).
Finally, we prove Theorem 4 by generalizing the definition of approximated

weight error Eκ = weight�a(u, v) − apxweightκ�a(u, v) and showing that if we
dedicate at least 4 bits to the fraction precision κ, the approximation error is
always bounded by −0.086 · (n/3) ≤ Eκ ≤ 0.

Proof (Theorem 4). First, we mention that log2(ϕi) is an integer number when
Si 6= 11* or for Si = 11* we see `i < 3. For these cases, log2(ϕi) = blog2(ϕi)c
and the approximation error is equal to zero.

Next, for each i ∈ I when `i ≥ 3, let pi = 2mi + bi such that mi and bi are
two non-negative integers, mi ≤ `i − 2 and 0 ≤ bi < 2mi . If `i ≤ κ+ 2, we obtain
mi ≤ κ and apxlogκ2 (pi) = mi + bi · 2−mi . Thus, the resulting error

ei = log2(pi)− apxlogκ2 (pi) = log2(pi)− (mi + bi · 2−mi)

19

is exactly the same as the error defined in Lemma 8, and 0 ≤ ei ≤ B ≈ 0.086.

On the other hand, for mi > κ, i.e., `i ≥ κ+ 3, let pi = 2mi + ti · 2mi−κ + ζi,
where ti and ζi are two non-negative integers such that 0 ≤ ti < 2κ as well as
0 ≤ ζi < 2mi−κ. In this case, the approximated binary logarithm is apxlogκ2 (pi) =
mi + ti · 2−κ. We now define a new error e′i as

e′i = log2(pi)− apxlogκ2 (pi) = log2(1 + ti · 2−κ + ζi · 2−mi)− ti · 2−κ .

Due to the fact that ζi ≥ 0, we can see that

e′i = log2(pi)− (mi + ti · 2−κ) ≥ log2(pi)− (mi + ti · 2−κ + ζi · 2−mi) = ei ≥ 0 .

Since ζi < 2mi−κ and by reforming the error, we obtain the upper bound of e′i

e′i ≤ log2(1 + ti · 2−κ + 2−κ)− ti · 2−κ = (log2(1 + γ′i)− γ′i) + 2−κ ,

where γ′i = (ti + 1) · 2−κ and 2−κ ≤ γ′i < 1. Regarding Lemma 8, the new error
e′i is bounded by 0 ≤ e′i ≤ B + 2−κ. Finally, by defining the conditional index set
Iβα = {i ∈ I | α ≤ `i ≤ β} we obtain

Eκ = weight�a(u, v)− apxweightκ�a(u, v)

= −
∑
i∈I

(log2(pi)− apxlogκ2 (pi)) = −
(∑
i∈Iκ+2

3

ei +
∑

i∈Inκ+3

e′i
)

≥ −
(
B
∑

i∈Iκ+2
3

1 + (B + 2−κ)
∑

i∈Inκ+3

1
)
≥ −

(B
3

∑
i∈Iκ+2

3

`i + (
B + 2−κ

κ+ 3
)
∑

i∈Inκ+3

`i
)
.

For κ ≥ 4, we can see that
B + 2−κ

κ+ 3
≤ B

3
, resulting in

0 ≥ Eκ ≥ −
(B

3

∑
i∈In3

`i
)
≥ −(

B

3
n) ≈ −0.029n .

Since for κ = 4, we have E4 = E = weight�a(u, v)− apxweight�a(u, v), the above
inequalities hold for the approximation error E as well. ut

While dedicating κ = 4 bits as the fraction precision is enough to obtain the
same error bounds as κ > 4, considering κ < 4 creates a trade-off between the
lower bound of the error and the complexity of Algorithm 1. As an example,
choosing κ = 3 removes one HW call in Algorithm 1. However, by following the
proof of Theorem 4 for κ = 3, the error will be lower bounded by −0.035n, which
potentially is an acceptable trade-off.

The differential model of the constant addition as well as the approximation
error will be used in the automated method that we will present in the next
section to search for characteristics of ARX ciphers.

20

4 SMT-based Search of Characteristics

In this section, we describe how to formulate the search of an optimal characteristic
as a sequence of SMT problems, which can be solved by an off-the-shelf SMT
solver such as Boolector [40] or STP [41]. This approach was originally used by
Mouha and Preneel to search for single-key characteristics of Salsa20 [18].

To search for characteristics up to probability 2−n, the probability space is
decomposed into n intervals Iw =

(
2−w−1, 2−w

]
, where w = 0, 1, . . . , n− 1, and

for each interval, the decision problem of whether there exists a characteristic
with probability p ∈ Iw is encoded as an SMT problem. Note that a characteristic
Ω has probability p ∈ Iw if and only if its integer weight bweight(Ω)c is equal to
w. Section 4.1 describes the encoding process for an ARX cipher.

The SMT problems are provided to the SMT solver, which checks their satisfi-
ability in increasing weight order. When the SMT solver finds the first satisfiable
problem, an assignment of the variables that makes the problem satisfiable is
obtained, and the search finishes. The assignment contains a characteristic with
integer weight ŵ, and it is optimal in the sense that there are no characteristics
with integer weight strictly smaller than ŵ. If the n SMT problems are found to
be unsatisfiable, then it is proved there are no characteristics with probability
higher than 2−n.

To speed up the search, we perform the search iteratively on round-reduced
versions of the cipher. First, we search for an optimal characteristic for a small
number of rounds r; let ŵ denote its integer weight. Then, we search for an
optimal (r+ 1)-round characteristic, but skipping the SMT problems with weight
strictly less than ŵ. Since these SMT problems were found to be unsatisfiable
for r rounds, they will also be unsatisfiable for r + 1 rounds. This procedure is
repeated until the total number of rounds is reached. Our strategy prioritises SMT
problems with low weight and small number of rounds, which are faster to solve.
In addition, our search also finds optimal characteristics of round-reduced versions,
which can be used in other differential-based attacks, such as the rectangle or
rebound attacks [42, 43].

This automated method can be used to search for either single-key or related-
key characteristics. Furthermore, additional SMT constraints can be added to the
SMT problems in order to search for different types of characteristics. For related-
key characteristics, this method search by default characteristics minimizing
the total weight weight(Ω) = weight(ΩKS) + weight(ΩE). Strong related-key
characteristics can be searched by adding the constraint weight(ΩKS) = 0 in the
SMT problems. Similarly, equivalent keys can be found by adding the constraint
weight(ΩE) = 0.

In some cases, the integer weight computed by the SMT solver is not the
exact integer weight of the characteristic, but a bound of the error ε is known. For
example, for an ARX cipher with constant additions, the weight of the constant
additions is computed in the SMT problems using Theorem 4, which introduces
an error that can be bounded (Theorem 4). Nonetheless, this method can find
the optimal characteristic in this case by finding all the characteristics with

21

integer weights {ŵ, ŵ + 1, . . . , ŵ + bεc}, where ŵ is the integer weight of the first
characteristic found by the SMT solver.

This method only ensures optimality if the differential probabilities over each
round are independent and the characteristic probability does not strongly depend
on the choice of the secret key. When these assumptions do not hold for a cipher,
we empirically compute the weight of each characteristic found by sampling
many input pairs satisfying the input difference and counting those satisfying
the difference trail. In this case, this method provides a practical heuristic to
find characteristics with high probability, and it is one of the best systematic
approaches for some families of ciphers, such as ARX.

4.1 Encoding the SMT problems

In this section, we explain how to formulate the decision problem of determining
whether there exists a characteristic Ω with integer weight W of an ARX cipher
as an SMT problem in the bit-vector theory.

First, the ARX cipher is represented in Static Single Assignment (SSA) form,
that is, as an ordered list of instructions y ← f(x) such that each variable is
assigned exactly once and each instruction is a modular addition, a rotation or
an XOR.

For each variable x in the SSA representation, a bit-vector variable ∆x

denoting the difference of x is defined in the SMT problem. Then, for every
instruction y ← f(x), the weight and the differential model of f are added to the
SMT problem as a bit-vector variable w and bit-vector constraints validfi(∆x, ∆y)
and Equals(w,weightfi(∆x, ∆y)), following Table 2.

Table 2. Bit-vector differential models of ARX operations.

y = fa(x) Validity Weight

y = x1 ⊕ x2 Equals(∆y, ∆x1
⊕∆x2

) 0
y = x⊕ a Equals(∆y, ∆x) 0
y = x≪ a Equals(∆y, ∆x≪ a) 0
y = x≫ a Equals(∆y, ∆x≫ a) 0
y = x1 � x2 Theorem 1 Theorem 1
y = x� a, a constant Theorem 3 Theorem 4

Finally, the following bit-vector constraints are added to the SMT problem,

NotEquals(∆p, 0) , Equals(W,w1 � · · ·� wr) ,

where ∆p denotes the input difference and (w1, . . . , wr) denote the weight of each
operation. The first constraint excludes the trivial characteristic with zero input
difference, while the second constraint fixes the weight of the characteristic to the
target weight. Note that the bit-size of the weights might need to be increased to
prevent an overflow in the modular addition of the last constraint.

22

4.2 Implementation

We have developed an open-source6 tool to find characteristics of ARX ciphers
implementing the method described in the previous sections. ArxPy provides
high-level functions that automate the search of optimal characteristics, a simple
interface to represent ARX ciphers, and a complete documentation in HTML
format, among other features.

ArxPy workflow is represented in Figure 1. The user first defines the ARX
cipher using the interface provided by ArxPy and chooses the parameters of the
search (e.g., the type of the characteristic to search, the SMT solver to use, etc.).
Then, ArxPy automatically translates the python implementation of the ARX
cipher into SSA form, encodes the SMT problems associated to the type of search
selected by the user, and solves the SMT problems by querying the SMT solver.
For each satisfiable SMT problem found, ArxPy reconstructs the characteristic
from the assignment of the variables that satisfies the problem and empirically
verifies the weight of the characteristic. Finally, ArxPy returns the results of the
search to the user.

SMT solver

Translation to SSA form

SMT encoding

Solving SMT problems

Verification

arx
cipher

PY

ArxPy

results
TXT

search
parameters

Fig. 1. Workflow of ArxPy

Internally, ArxPy is implemented in Python 3 and uses the libraries SymPy

[44] to obtain the SSA representation through symbolic execution and PySMT

[45] for the communication with the SMT solvers. Thus, all the SMT solvers
supported by PySMT can be directly used for ArxPy.

5 Experiments

We have applied our method for finding characteristics to some ARX ciphers
that include constant additions. In particular, we have searched for related-key
characteristics of TEA, XTEA, HIGHT and LEA.

6 https://github.com/ranea/ArxPy

23

https://github.com/ranea/ArxPy

Due to the difficulty of searching for characteristics of ciphers with constant
additions this far, cipher designers have avoided constant additions in the en-
cryption functions so that they can search for single-key characteristics, the most
threatening ones. Only a few ciphers include constant additions in the encryption
function, and their ad-hoc structures makes them more suitable to be analysed
with other types of differences, such as additive differences in the case of TEA
[15]. As a result, we have focused on searching related-key characteristics of some
well-known ciphers.

However, the usual assumptions (i.e., round independence and the hypothesis
of stochastic equivalence) do not always hold for related-key characteristics, as
in this case. Thus, we empirically verify each characteristic and stopped each
round-reduced search after the first valid characteristic is found.

To verify a related-key characteristic Ω, we split Ω in smaller characteristics
Ωi = (∆xi → · · · → ∆yi) with weight wi lower than 20, and empirically compute
the probability of each differential (∆xi , ∆yi) by sampling a small multiple of
2wi input pairs for 210 related-key pairs. After combining the probability of each
differential, we obtain 210 characteristic probabilities, one for each related-key
pair. If the characteristic probability is non-zero for several key pairs, we consider
the characteristic valid and we define its empirical probability (resp. weight) as
the arithmetic mean of the 210 characteristic probabilities (resp. weights), but
excluding those key pairs with zero probability.

Thus, for each characteristic that we have found, we provide: (1) the theoretical
key schedule and encryption integer weights (wKS, wE), computed by summing
the weight of each ARX operation; (2) the empirical key schedule and encryption
integer weights (wKS, wE), computed by sampling input pairs as explained before;
and (3) the percentage of key pairs that lead to non-zero probability in the weight
verification. In the extended version, we provide the round weights and round
differences for the characteristics covering the most rounds.

For the experiments, we have used ArxPy equipped with the SMT solver
Boolector [40], winner of the SMT competition SMT-COMP 2019 in the bit-
vector track [46]. We run the search for one week on a single core of an Intel
Xeon 6244 at 3.60GHz. Table 3 lists the characteristics we have found and
compares them with the previous longest-known characteristics. Note that better
characteristics could be found if the round-reduced searches are not stopped after
the first valid characteristic or if more time is employed.

TEA. Designed by Wheeler and Needham, TEA [12] is a block cipher with 64-bit
block size and 128-bit key size. It iterates 64 times an ARX round function
including constant additions and logical shifts. Since the logical shifts propagate
XOR differences deterministically, the encoding method presented in Section 4.1
can be easily extended to include these operations.

The best related-key characteristics were obtained by Kelsey, Schneier, and
Wagner in [51]. They found a 2-round iterative strong related-key characteristic
Ω with weight (wk, we) = (0, 1), which they extended to a 60-round characteristic
with weight (0, 30). They also discovered in [30] that each TEA key has 3 other
equivalent keys.

24

Table 3. Best related-key characteristics of XTEA, HIGHT and LEA.

Cipher Ch. Type Rounds (wKS, wKS) (wE , wE) % valid keys Reference

XTEA

Strong
related-key

16 0 32 - [47]
16 (0,0) (37, 32) 46% This paper
18 (0,0) (57, 49) 48% This paper

Weak
related-key

18 17 19 - [47, 48]
18 (4, 3) (16, 14) 100% This paper
27 (6, 5) (40, 39) 7% This paper

HIGHT

Strong
related-key

10 0 12 - [49]
10 (0, 0) (12, 9) 34% This paper
15 (0, 0) (45, 42) 8% This paper

Weak
related-key

12 2 19 - [50]
12 (2, 3) (19, 17) 40% This paper
14 (13, 9) (14, 11) 17% This paper

LEA
Weak

related-key

11 - - - [8]
6 (1, 1) (24, 22) 100% This paper
7 (2, 4) (36, 34) 100% This paper

Using ArxPy, we revisited the results by Kelsey et al., but in a fully automated
way. We found three related-key characteristic with weight zero over the full cipher,
confirming that each key is equivalent to exactly three other keys. Excluding these
three characteristics, we also obtained a 60-round strong related-key characteristic
with weight (0, 30), and all the 60-round SMT problems with smaller weights
were found to be unsatisfiable. Since a 60-round related-key characteristic is
sufficient to mount the related-key differential cryptanalysis on full-round TEA
[51], there is no need to search for characteristics containing more rounds of TEA
and we stop at 60 rounds.

XTEA. To fix the weakness of TEA against related-key attacks, the same
designers propose XTEA [13]. This block cipher has a 64-bit block size and a
128-bit key size. The ARX round function includes logical shifts, but the key
schedule is composed exclusively of constant additions.

The longest related-key characteristics found so far are the 16-round strong
related-key differential with weight 32, manually found by Lu in [47], and the
18-round weak related-key characteristic with weights (wKS, wE) = (19, 19),
manually found by Lee et al. [48] but later improved to (17, 19) by Lu [47].

The results of our automated search are listed in Table 3. In the strong related-
key search we found an 18-round characteristic with weight 57; all the SMT
problems for 19 rounds were found to be unsatisfiable. In the weak related-key
search, we found characteristics up to 27 rounds, where the 27-round characteristic
has total weight 6 + 40 = 46. No equivalent keys were found for XTEA.

25

HIGHT. Adopted as an international standard by ISO/IEC [52], HIGHT [7] is
a lightweight cipher with block size of 64 bits and a key size of 128 bits. The
encryption function performs an initial and final key-whitening transformations,
and iterates 32 times a round function including XORs, 2-input additions and
rotations; the constant additions are performed in the key schedule.

The longest related-key characteristics found for HIGHT are a 10-round
strong characteristic with weight 12 found by Lu [49], and a 12-round weak
characteristic with weights (wKS, wE) = (2, 19) found by Koo et al. [50].

In our automated search, we found related-key characteristic up to 15 rounds,
listed in Table 3. The longest strong related-key characteristic we found covered
15 rounds with weights (0, 45), whereas the longest weak related-key characteristic
covered 14 rounds with total weight 13 + 14 = 27.

LEA. Among the family of ARX ciphers LEA [8], we have analysed LEA-128, the
version with 128-bit block size, 24 rounds and 128-bit key size. The encryption
round function of LEA performs 2-input additions, rotations and XORs, whereas
the key schedule contains constant additions and rotations.

The designers of LEA found related-key characteristics up to 11 rounds, but
only specifying that the 11-round characteristics are valid for a small part of the
key space and without providing the weights of such characteristics. [8]. Excluding
these characteristics, there are no others examples of related-key characteristics
of LEA. In our automated search, we found weak related-key characteristic up to
7 rounds valid for the full key space, listed in Table 3. Strong characteristics with
weight smaller than 128 were found up to 4 rounds, and all the strong related-key
SMT problems for 5 rounds were found unsatisfiable. No equivalent keys were
found for LEA.

6 Conclusion

In this paper we proposed the first bit-vector differential model of the n-bit
modular addition with a constant. We described a bit-vector formula, with bit-
vector complexity O(1), that determines whether a differential is valid and a bit-
vector function, with complexity O(log2 n), that provides a close approximation
of the differential weight. In this regard, we carefully studied our approximation
error and obtained almost tight bounds.

Moreover, we described an SMT-based automated method to search for char-
acteristics of ARX ciphers including constant additions. Our method formulates
the search problem as a sequence of SMT problems in the bit-vector theory,
which are encoded from the SSA representation of the cipher and the bit-vector
differential models of each operation. We have implemented our method in ArxPy,
an open-source tool to find characteristic of ARX ciphers in a fully automated
way. To show some examples, we have applied our automated method to search
for equivalent keys and related-key characteristics of TEA, XTEA, HIGHT, and
LEA. For TEA, we revisited previous results obtained in a manual approach,
whereas for XTEA, HIGHT and LEA we improved the previous best-known
related-key characteristics in both the strong-key and weak-key settings.

26

Our differential model relies on a bit-vector friendly approximation on the
binary logarithm. Thus, future works could explore other approximations im-
proving the bit-vector complexity or the approximation error, which could also
be applied to other SMT problems involving the binary logarithm. While we
have focused on the modular addition by a constant, there are other simple
operations for which no differential model have been proposed so far, such as
the modular multiplication. Obtaining differential models for more operations
will allow designing ciphers with more flexibility, leading to new designs that
potentially are more efficient.

Acknowledgements. Adrián Ranea is supported by a PhD Fellowship from
the Research Foundation – Flanders (FWO). The authors would like to thank
the anonymous reviewers for their comments and suggestions.

References

1. Omale, G.: Gartner Identifies Top 10 Strategic IoT Technologies and Trends,
(2018). https://www.gartner.com/en/newsroom/press-releases/2018-11-07-
gartner-identifies-top-10-strategic-iot-technologies-and-trends

2. National Institute of Standards and Technology: Lightweight Cryptography Project,
https://csrc.nist.gov/Projects/Lightweight-Cryptography

3. Dinu, D., Corre, Y.L., Khovratovich, D., Perrin, L., Großschädl, J., and Biryukov,
A.: Triathlon of lightweight block ciphers for the Internet of things. J. Cryptographic
Engineering 9(3), 283–302 (2019)

4. Aumasson, J.-P., Henzen, L., Meier, W., and Phan, R.C.-W.: SHA-3 proposal
BLAKE. Submission to NIST (round 3) 92 (2008)

5. Bernstein, D.J.: The Salsa20 family of stream ciphers. In: New stream cipher designs,
pp. 84–97. Springer(2008)

6. Mouha, N., Mennink, B., Van Herrewege, A., Watanabe, D., Preneel, B., and
Verbauwhede, I.: Chaskey: an efficient MAC algorithm for 32-bit microcontrollers.
In: International Conference on Selected Areas in Cryptography, pp. 306–323 (2014)

7. Hong, D., Sung, J., Hong, S., Lim, J., Lee, S., Koo, B., Lee, C., Chang, D., Lee, J.,
Jeong, K., Kim, H., Kim, J., and Chee, S.: HIGHT: A New Block Cipher Suitable
for Low-Resource Device. In: Cryptographic Hardware and Embedded Systems -
CHES 2006, 8th International Workshop, Yokohama, Japan, October 10-13, 2006,
Proceedings, pp. 46–59 (2006)

8. Hong, D., Lee, J., Kim, D., Kwon, D., Ryu, K.H., and Lee, D.: LEA: A 128-Bit
Block Cipher for Fast Encryption on Common Processors. In: Information Security
Applications - 14th International Workshop, WISA 2013, Jeju Island, Korea, August
19-21, 2013, Revised Selected Papers, pp. 3–27 (2013)

9. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., and Wingers, L.:
The SIMON and SPECK Families of Lightweight Block Ciphers. IACR Cryptology
ePrint Archive 2013, 404 (2013)

10. Dinu, D., Perrin, L., Udovenko, A., Velichkov, V., Großschädl, J., and Biryukov, A.:
Design Strategies for ARX with Provable Bounds: Sparx and LAX. In: ASIACRYPT
(1). LNCS, vol. 10031, pp. 484–513. Springer, Heidelberg (2016)

11. Lai, X., and Massey, J.L.: A Proposal for a New Block Encryption Standard. In:
EUROCRYPT. LNCS, vol. 473, pp. 389–404. Springer, Heidelberg (1990)

27

https://www.gartner.com/en/newsroom/press-releases/2018-11-07-gartner-identifies-top-10-strategic-iot-technologies-and-trends
https://www.gartner.com/en/newsroom/press-releases/2018-11-07-gartner-identifies-top-10-strategic-iot-technologies-and-trends
https://csrc.nist.gov/Projects/Lightweight-Cryptography

12. Wheeler, D.J., and Needham, R.M.: TEA, a Tiny Encryption Algorithm. In: FSE.
LNCS, vol. 1008, pp. 363–366. Springer, Heidelberg (1994)

13. Needham, R., and Wheeler, D.: Tea extensions. Tech. rep., Computer Laboratory,
University of Cambridge (1997)

14. Koo, B., Roh, D., Kim, H., Jung, Y., Lee, D., and Kwon, D.: CHAM: A Family
of Lightweight Block Ciphers for Resource-Constrained Devices. In: Information
Security and Cryptology - ICISC 2017 - 20th International Conference, Seoul, South
Korea, November 29 - December 1, 2017, Revised Selected Papers, pp. 3–25 (2017)

15. Biryukov, A., and Velichkov, V.: Automatic search for differential trails in ARX
ciphers. In: Cryptographers’ Track at the RSA Conference, pp. 227–250 (2014)

16. Biryukov, A., Velichkov, V., and Le Corre, Y.: Automatic search for the best trails
in ARX: application to block cipher speck. In: International Conference on Fast
Software Encryption, pp. 289–310 (2016)

17. Matsui, M.: On correlation between the order of S-boxes and the strength of DES.
In: Workshop on the Theory and Application of of Cryptographic Techniques,
pp. 366–375 (1994)

18. Mouha, N., and Preneel, B.: Towards Finding Optimal Differential Characteristics
for ARX: Application to Salsa20. IACR Cryptology ePrint Archive 2013, 328 (2013)

19. Fu, K., Wang, M., Guo, Y., Sun, S., and Hu, L.: MILP-Based Automatic Search
Algorithms for Differential and Linear Trails for Speck. In: Fast Software Encryption
- 23rd International Conference, FSE 2016, Bochum, Germany, March 20-23, 2016,
Revised Selected Papers, pp. 268–288 (2016)

20. Barrett, C., and Tinelli, C.: Satisfiability Modulo Theories. In: Handbook of Model
Checking. Pp. 305–343. (2018)

21. Lodi, A.: Mixed Integer Programming Computation. In: 50 Years of Integer Pro-
gramming, pp. 619–645. Springer(2010)

22. Lipmaa, H., and Moriai, S.: Efficient Algorithms for Computing Differential Prop-
erties of Addition. In: Fast Software Encryption, 8th International Workshop, FSE
2001 Yokohama, Japan, April 2-4, 2001, Revised Papers, pp. 336–350 (2001)

23. Kölbl, S., Leander, G., and Tiessen, T.: Observations on the SIMON Block Cipher
Family. In: Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryptology
Conference, Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part I,
pp. 161–185 (2015)

24. Liu, Y., Witte, G.D., Ranea, A., and Ashur, T.: Rotational-XOR Cryptanalysis of
Reduced-round SPECK. IACR Trans. Symmetric Cryptol. 2017(3), 24–36 (2017)

25. Song, L., Huang, Z., and Yang, Q.: Automatic Differential Analysis of ARX Block
Ciphers with Application to SPECK and LEA. In: Information Security and Privacy
- 21st Australasian Conference, ACISP 2016, Melbourne, VIC, Australia, July 4-6,
2016, Proceedings, Part II, pp. 379–394 (2016)

26. Machado, A.W.: Differential Probability of Modular Addition with a Constant
Operand. IACR Cryptology ePrint Archive 2001, 52 (2001)

27. Kovásznai, G., Fröhlich, A., and Biere, A.: Complexity of Fixed-Size Bit-Vector
Logics. Theory Comput. Syst. 59(2), 323–376 (2016)

28. Henry S. Warren, J.: Hacker’s delight. Addison-Wesley (2003)
29. Biham, E., and Shamir, A.: Differential Cryptanalysis of DES-like Cryptosystems.

J. Cryptology 4(1), 3–72 (1991)
30. Kelsey, J., Schneier, B., and Wagner, D.A.: Key-Schedule Cryptanalysis of IDEA,

G-DES, GOST, SAFER, and Triple-DES. In: CRYPTO. LNCS, vol. 1109, pp. 237–
251. Springer, Heidelberg (1996)

28

31. Winternitz, R.S., and Hellman, M.E.: Chosen-Key Attacks on a Block Cipher.
Cryptologia 11(1), 16–20 (1987)

32. Lai, X., Massey, J.L., and Murphy, S.: Markov Ciphers and Differential Cryptanalysis.
In: EUROCRYPT. LNCS, vol. 547, pp. 17–38. Springer, Heidelberg (1991)

33. Sun, S., Hu, L., Wang, P., Qiao, K., Ma, X., and Song, L.: Automatic Security
Evaluation and (Related-key) Differential Characteristic Search: Application to
SIMON, PRESENT, LBlock, DES(L) and Other Bit-Oriented Block Ciphers. In:
Advances in Cryptology - ASIACRYPT 2014 - 20th International Conference on
the Theory and Application of Cryptology and Information Security, Kaoshiung,
Taiwan, R.O.C., December 7-11, 2014. Proceedings, Part I, pp. 158–178 (2014)

34. Sun, S., Gerault, D., Lafourcade, P., Yang, Q., Todo, Y., Qiao, K., and Hu, L.:
Analysis of AES, SKINNY, and Others with Constraint Programming. IACR Trans.
Symmetric Cryptol. 2017(1), 281–306 (2017)

35. Aumasson, J., Jovanovic, P., and Neves, S.: Analysis of NORX: Investigating
Differential and Rotational Properties. In: Progress in Cryptology - LATINCRYPT
2014 - Third International Conference on Cryptology and Information Security
in Latin America, Florianópolis, Brazil, September 17-19, 2014, Revised Selected
Papers, pp. 306–324 (2014)

36. Lipmaa, H.: On Differential Properties of Pseudo-Hadamard Transform and Re-
lated Mappings. In: Menezes, A., and Sarkar, P. (eds.) Progress in Cryptology -
INDOCRYPT 2002, Third International Conference on Cryptology in India, Hyder-
abad, India, December 16-18, 2002. LNCS, vol. 2551, pp. 48–61. Springer, Heidelberg
(2002)

37. Bagherzadeh, E., and Ahmadian, Z.: MILP-Based Automatic Differential Searches
for LEA and HIGHT. IACR Cryptology ePrint Archive 2018, 948 (2018)

38. Schulte-Geers, E.: On CCZ-equivalence of addition mod 2n. Des. Codes Cryptogr.
66(1-3), 111–127 (2013)

39. Mitchell, J.N.: Computer multiplication and division using binary logarithms. IRE
Transactions on Electronic Computers (1962)

40. Niemetz, A., Preiner, M., and Biere, A.: Boolector 2.0 system description. Journal
on Satisfiability, Boolean Modeling and Computation 9, 53–58 (2015)

41. Ganesh, V., and Dill, D.L.: A Decision Procedure for Bit-Vectors and Arrays. In:
CAV. LNCS, vol. 4590, pp. 519–531. Springer, Heidelberg (2007)

42. Wagner, D.A.: The Boomerang Attack. In: Fast Software Encryption, 6th Interna-
tional Workshop, FSE ’99, Rome, Italy, March 24-26, 1999, Proceedings, pp. 156–
170 (1999)

43. Biham, E., Dunkelman, O., and Keller, N.: The Rectangle Attack - Rectangling the
Serpent. In: Advances in Cryptology - EUROCRYPT 2001, International Conference
on the Theory and Application of Cryptographic Techniques, Innsbruck, Austria,
May 6-10, 2001, Proceeding, pp. 340–357 (2001)

44. Meurer, A., Smith, C.P., Paprocki, M., Čert́ık, O., Kirpichev, S.B., Rocklin, M.,
Kumar, A., Ivanov, S., Moore, J.K., Singh, S., Rathnayake, T., Vig, S., Granger,
B.E., Muller, R.P., Bonazzi, F., Gupta, H., Vats, S., Johansson, F., Pedregosa, F.,
Curry, M.J., Terrel, A.R., Roučka, Š., Saboo, A., Fernando, I., Kulal, S., Cimrman,
R., and Scopatz, A.: SymPy: symbolic computing in Python. PeerJ Computer
Science 3, e103 (2017)

45. Gario, M., and Micheli, A.: PySMT: a solver-agnostic library for fast prototyping
of SMT-based algorithms. In: SMT Workshop 2015 (2015)

29

46. Hadarean, L., Hyvarinen, A., Niemetz, A., and Reger, G.: 14th International Satis-
fiability Modulo Theories Competition (SMT-COMP 2019): Rules and Procedures.
(2019)

47. Lu, J.: Related-key rectangle attack on 36 rounds of the XTEA block cipher. Int. J.
Inf. Sec. 8(1), 1–11 (2009)

48. Lee, E., Hong, D., Chang, D., Hong, S., and Lim, J.: A Weak Key Class of XTEA for
a Related-Key Rectangle Attack. In: VIETCRYPT. LNCS, vol. 4341, pp. 286–297.
Springer, Heidelberg (2006)

49. Lu, J.: Cryptanalysis of Reduced Versions of the HIGHT Block Cipher from CHES
2006. In: Information Security and Cryptology - ICISC 2007, 10th International
Conference, Seoul, Korea, November 29-30, 2007, Proceedings, pp. 11–26 (2007)

50. Koo, B., Hong, D., and Kwon, D.: Related-Key Attack on the Full HIGHT. In:
Information Security and Cryptology - ICISC 2010 - 13th International Conference,
Seoul, Korea, December 1-3, 2010, Revised Selected Papers, pp. 49–67 (2010)

51. Kelsey, J., Schneier, B., and Wagner, D.A.: Related-key cryptanalysis of 3-WAY,
Biham-DES, CAST, DES-X, NewDES, RC2, and TEA. In: ICICS. LNCS, vol. 1334,
pp. 233–246. Springer, Heidelberg (1997)

52. Information technology – Security techniques – Encryption algorithms – Part 3:
Block ciphers. Standard, International Organization for Standardization (2010)

30

A Characteristics

We describe the characteristics covering most rounds that we have obtained. For
each characteristic, we provide the difference of the master key words ∆mk, the
difference of the plaintext words ∆p and the difference of the ciphertext words
∆c. For each round i of the cipher, we provide the difference of the i-th round
key words, the output difference of the i-th round function ∆xi , the (cumulative)
weight of the operations that compute the i-th round key words wki and the
weight of the i-th round function wxi . Differences are given in hexadecimal values.

Table 4. The three full-round related-key characteristics with total weight 0 of TEA.

∆mk ∆p ∆c

(0x80000000, 0x80000000, 0x80000000, 0x80000000) (0x00000000, 0x00000000) (0x00000000, 0x00000000)
(0x00000000, 0x00000000, 0x80000000, 0x80000000) (0x00000000, 0x00000000) (0x00000000, 0x00000000)
(0x80000000, 0x80000000, 0x00000000, 0x00000000) (0x00000000, 0x00000000) (0x00000000, 0x00000000)

31

Table 5. The 60-round strong related-key characteristic of TEA.

i-th round ∆xi wxi

1 (0x00000000, 0x80000000) 0
2 (0x80000000, 0x00000000) 1
3 (0x00000000, 0x80000000) 0
4 (0x80000000, 0x00000000) 1
5 (0x00000000, 0x80000000) 0
6 (0x80000000, 0x00000000) 1
7 (0x00000000, 0x80000000) 0
8 (0x80000000, 0x00000000) 1
9 (0x00000000, 0x80000000) 0
10 (0x80000000, 0x00000000) 1
11 (0x00000000, 0x80000000) 0
12 (0x80000000, 0x00000000) 1
13 (0x00000000, 0x80000000) 0
14 (0x80000000, 0x00000000) 1
15 (0x00000000, 0x80000000) 0
16 (0x80000000, 0x00000000) 1
17 (0x00000000, 0x80000000) 0
18 (0x80000000, 0x00000000) 1
19 (0x00000000, 0x80000000) 0
20 (0x80000000, 0x00000000) 1
21 (0x00000000, 0x80000000) 0
22 (0x80000000, 0x00000000) 1
23 (0x00000000, 0x80000000) 0
24 (0x80000000, 0x00000000) 1
25 (0x00000000, 0x80000000) 0
26 (0x80000000, 0x00000000) 1
27 (0x00000000, 0x80000000) 0
28 (0x80000000, 0x00000000) 1
29 (0x00000000, 0x80000000) 0
30 (0x80000000, 0x00000000) 1
31 (0x00000000, 0x80000000) 0
32 (0x80000000, 0x00000000) 1
33 (0x00000000, 0x80000000) 0
34 (0x80000000, 0x00000000) 1
35 (0x00000000, 0x80000000) 0
36 (0x80000000, 0x00000000) 1
37 (0x00000000, 0x80000000) 0
38 (0x80000000, 0x00000000) 1
39 (0x00000000, 0x80000000) 0
40 (0x80000000, 0x00000000) 1
41 (0x00000000, 0x80000000) 0
42 (0x80000000, 0x00000000) 1
43 (0x00000000, 0x80000000) 0
44 (0x80000000, 0x00000000) 1
45 (0x00000000, 0x80000000) 0
46 (0x80000000, 0x00000000) 1
47 (0x00000000, 0x80000000) 0
48 (0x80000000, 0x00000000) 1
49 (0x00000000, 0x80000000) 0
50 (0x80000000, 0x00000000) 1
51 (0x00000000, 0x80000000) 0
52 (0x80000000, 0x00000000) 1
53 (0x00000000, 0x80000000) 0
54 (0x80000000, 0x00000000) 1
55 (0x00000000, 0x80000000) 0
56 (0x80000000, 0x00000000) 1
57 (0x00000000, 0x80000000) 0
58 (0x80000000, 0x00000000) 1
59 (0x00000000, 0x80000000) 0
60 (0x80000000, 0x00000000) 1

Total 30

∆p (0x80000000, 0x00000000)
∆c (0x80000000, 0x00000000)
∆mk (0x00000000, 0x00000000, 0x00000000, 0x84000000)

32

Table 6. The 18-round strong related-key characteristic of XTEA.

i-th round ∆ki wki ∆xi wxi

1 0x00000000 0 (0x00010000, 0x44200000) 9
2 0x00000000 0 (0x44200000, 0x04000000) 6
3 0x00000000 0 (0x04000000, 0x80000000) 6
4 0x80000000 0 (0x80000000, 0x00000000) 2
5 0x80000000 0 (0x00000000, 0x00000000) 0
6 0x00000000 0 (0x00000000, 0x00000000) 0
7 0x00000000 0 (0x00000000, 0x00000000) 0
8 0x00000000 0 (0x00000000, 0x00000000) 0
9 0x00000000 0 (0x00000000, 0x00000000) 0
10 0x00000000 0 (0x00000000, 0x00000000) 0
11 0x00000000 0 (0x00000000, 0x00000000) 0
12 0x00000000 0 (0x00000000, 0x00000000) 0
13 0x80000000 0 (0x00000000, 0x80000000) 0
14 0x80000000 0 (0x80000000, 0x04000000) 2
15 0x00000000 0 (0x04000000, 0x44200000) 6
16 0x00000000 0 (0x44200000, 0x00010000) 6
17 0x00000000 0 (0x00010000, 0xc4310800) 9
18 0x00000000 0 (0xc4310800, 0x01010040) 11

Total 0 57

∆p (0xc4310800, 0x00010000)
∆c (0xc4310800, 0x01010040)
∆mk (0x00000000, 0x00000000, 0x80000000, 0x00000000)

Table 7. The 27-round weak related-key characteristic of XTEA.

i-th round ∆ki wki ∆xi wxi

1 0x00000000 0 (0x00000000, 0x00000000) 0
2 0x80000000 0 (0x00000000, 0x80000000) 0
3 0x80000000 0 (0x80000000, 0x04000000) 2
4 0x40200000 1.179 (0x04000000, 0x04000000) 4
5 0x40200000 0 (0x04000000, 0x80000000) 4
6 0x80000000 0 (0x80000000, 0x00000000) 2
7 0x80000000 0 (0x00000000, 0x00000000) 0
8 0x00000000 0 (0x00000000, 0x00000000) 0
9 0x00000000 0 (0x00000000, 0x00000000) 0
10 0x00000000 0 (0x00000000, 0x00000000) 0
11 0x80000000 0 (0x00000000, 0x80000000) 0
12 0x80000000 0 (0x80000000, 0x04000000) 2
13 0x40200000 1.006 (0x04000000, 0x04000000) 4
14 0x40200000 0.734 (0x04000000, 0x80000000) 4
15 0x80000000 0 (0x80000000, 0x00000000) 2
16 0x80000000 0 (0x00000000, 0x00000000) 0
17 0x00000000 0 (0x00000000, 0x00000000) 0
18 0x00000000 0 (0x00000000, 0x00000000) 0
19 0x80000000 0 (0x00000000, 0x80000000) 0
20 0x00000000 0 (0x80000000, 0x84000000) 2
21 0x40600000 2.067 (0x84000000, 0x80000000) 4
22 0x80000000 0 (0x80000000, 0x80000000) 2
23 0x80000000 0 (0x80000000, 0x84000000) 2
24 0xc0600000 1.907 (0x84000000, 0x80000000) 4
25 0x00000000 0 (0x80000000, 0x00000000) 2
26 0x80000000 0 (0x00000000, 0x00000000) 0
27 0x80000000 0 (0x00000000, 0x80000000) 0

Total 6.893 40

∆p (0x00000000, 0x00000000)
∆c (0x80000000, 0x00000000)
∆mk (0x00000000, 0x80000000, 0xc0200000, 0x80000000)

33

Table 8. The 15-round strong related-key characteristic of HIGHT. The round 0
corresponds to the initial key whitening.

i-th round ∆ki wki ∆xi wxi

0 (0x00, 0x00, 0x00, 0x00) 0 (0x00, 0x00, 0x09, 0x20, 0xb8, 0xe9, 0x80, 0x00) 1
1 (0x00, 0x00, 0x80, 0x00) 0 (0x00, 0x00, 0x20, 0xb8, 0xe9, 0x80, 0x00, 0x00) 3
2 (0x00, 0x00, 0x00, 0x00) 0 (0x00, 0x00, 0xb8, 0x2c, 0x80, 0x00, 0x00, 0x00) 6
3 (0x00, 0x00, 0x00, 0x00) 0 (0x00, 0x00, 0x2c, 0x80, 0x00, 0x00, 0x00, 0x00) 3
4 (0x00, 0x00, 0x00, 0x00) 0 (0x00, 0x00, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00) 3
5 (0x00, 0x80, 0x00, 0x00) 0 (0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00) 0
6 (0x00, 0x00, 0x00, 0x00) 0 (0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00) 0
7 (0x00, 0x00, 0x00, 0x00) 0 (0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00) 0
8 (0x00, 0x00, 0x00, 0x00) 0 (0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00) 0
9 (0x80, 0x00, 0x00, 0x00) 0 (0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80) 0
10 (0x00, 0x00, 0x00, 0x00) 0 (0x00, 0x00, 0x00, 0x00, 0x00, 0xd4, 0x80, 0x00) 5
11 (0x00, 0x00, 0x00, 0x00) 0 (0x00, 0x00, 0x00, 0x90, 0xd4, 0x80, 0x00, 0x00) 1
12 (0x00, 0x00, 0x00, 0x00) 0 (0x00, 0xe9, 0x90, 0x95, 0x80, 0x00, 0x00, 0x00) 7
13 (0x00, 0x00, 0x00, 0x00) 0 (0xe9, 0x00, 0x95, 0x80, 0x00, 0x00, 0x00, 0x80) 1
14 (0x00, 0x00, 0x00, 0x80) 0 (0x00, 0xe9, 0x80, 0x00, 0x00, 0xa4, 0x80, 0xe9) 9
15 (0x00, 0x00, 0x00, 0x00) 0 (0x80, 0xe9, 0x80, 0x00, 0x89, 0xa4, 0x2b, 0xe9) 6

Total 0 45

∆p (0x00, 0x00, 0x09, 0x20, 0xb8, 0xe9, 0x80, 0x00)
∆c (0x80, 0xe9, 0x80, 0x00, 0x89, 0xa4, 0x2b, 0xe9)
∆mk (0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80, 0x00)

Table 9. The 14-round weak related-key characteristic of HIGHT. The round 0 corre-
sponds to the initial key whitening.

i-th round ∆ki wki ∆xi wxi

0 (0x00, 0x00, 0x00, 0x40) 0 (0x62, 0xc0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00) 1
1 (0x40, 0x00, 0x00, 0x00) 0.791 (0xc0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00) 2
2 (0x00, 0x00, 0x00, 0x00) 0 (0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xc0) 0
3 (0x00, 0x00, 0x00, 0x3a) 1.0 (0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xc0, 0x00) 0
4 (0x00, 0x00, 0x00, 0x40) 0.752 (0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00) 1
5 (0x00, 0x00, 0x00, 0x00) 0 (0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00) 0
6 (0x00, 0x00, 0x00, 0x40) 0.791 (0x00, 0x00, 0x00, 0x00, 0x00, 0xc0, 0x00, 0x00) 1
7 (0x00, 0x00, 0x2e, 0x00) 4.0 (0x00, 0x00, 0x00, 0x00, 0xc0, 0x00, 0x00, 0x00) 5
8 (0x00, 0x00, 0x40, 0x00) 1.093 (0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00) 1
9 (0x00, 0x00, 0x00, 0x00) 0 (0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00) 0
10 (0x00, 0x00, 0xc0, 0x00) 0.046 (0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00, 0x00) 1
11 (0x00, 0x16, 0x00, 0x00) 4.0 (0x00, 0x00, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00) 0
12 (0x00, 0x40, 0x00, 0x00) 0.142 (0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00) 1
13 (0x00, 0x00, 0x00, 0x00) 0 (0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00) 0
14 (0x00, 0x00, 0xc0, 0x00) 0.476 (0x00, 0x00, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00) 1

Total 13.091 14

∆p (0x62, 0xc0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x40)
∆c (0x00, 0x00, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00)
∆mk (0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00, 0x7a, 0x00, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00)

34

Table 10. The 7-round weak related-key characteristic of LEA.

i-th round ∆ki wki ∆xi wxi

1 (0x20000000, 0x00000000, 0x00000000, 0x00000000) 0.408 (0x80000000, 0x40000000, 0xc0000010, 0x4000000c) 14
2 (0x40000000, 0x00000000, 0x00000000, 0x00000000) 0.462 (0x00000000, 0x80000000, 0x80000000, 0x80000000) 7
3 (0x80000000, 0x00000000, 0x00000000, 0x00000000) 0.695 (0x00000000, 0x00000000, 0x00000000, 0x00000000) 0
4 (0x00000001, 0x00000000, 0x00000000, 0x00000000) 0 (0x00000200, 0x00000000, 0x00000000, 0x00000000) 1
5 (0x00000002, 0x00000000, 0x00000000, 0x00000000) 0 (0x00040400, 0x00000000, 0x00000000, 0x00000200) 2
6 (0x00000004, 0x00000000, 0x00000000, 0x00000000) 0 (0x08080800, 0x00000000, 0x00000040, 0x00040400) 4
7 (0x00000008, 0x00000000, 0x00000000, 0x00000000) 1.0 (0x10101010, 0x00000002, 0x00008088, 0x08080800) 8

Total 2.565 36

∆p (0x4000000c, 0x2040000c, 0x20400004, 0x20400082)
∆c (0x00, 0x00, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00)
∆mk (0x10101010, 0x00000002, 0x00008088, 0x08080800)

35

	A Bit-Vector Differential Modelfor the Modular Addition by a Constant

