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Abstract
Although comorbidity among complex diseases (e.g., drug dependence syndromes) is well
documented, genetic variants contributing to the comorbidity are still largely unknown. The
discovery of genetic variants and their interactions contributing to comorbidity will likely shed
light on underlying pathophysiological and etiological processes, and promote effective treatments
for comorbid conditions. For this reason, studies to discover genetic variants that foster the
development of comorbidity represent high-priority research projects, as manifested in the
behavioral genetics studies now underway. The yield from these studies can be enhanced by
adopting novel statistical approaches, with the capacity of considering multiple genetic variants
and possible interactions. For this purpose, we propose a bivariate Mann-Whitney (BMW)
approach to unravel genetic variants and interactions contributing to comorbidity, as well as those
unique to each comorbid condition. Through simulations, we found BMW outperformed two
commonly adopted approaches in a variety of underlying disease and comorbidity models. We
further applied BMW to datasets from the Study of Addiction: Genetics and Environment,
investigating the contribution of 184 known nicotine dependence (ND) and alcohol dependence
(AD) single nucleotide polymorphisms (SNPs) to the comorbidity of ND and AD. The analysis
revealed a candidate SNP from CHRNA5, rsl6969968, associated with both ND and AD, and
replicated the findings in an independent dataset with a P-value of 1.06 × 10−03.
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Introduction
Radical breakthroughs in biotechnologies have made it possible to rapidly and accurately
genotype millions of single nucleotide polymorphisms (SNPs) at an affordable cost.
Benefiting from these high-throughput technologies and the HapMap project [The
International HapMap Consortium, 2003], there has been significant progress in genome-
wide association studies focused on discovering novel genetic variants that contribute to
complex human diseases [Barrett et al., 2008; Baum et al., 2008; Bierut et al., 2004, 2010;
Caporaso et al., 2009; Ferreira et al., 2008; Moskvina et al., 2009; Schlaepfer et al., 2008b;
Sklar et al., 2008; Treutlein et al., 2009; Wang et al., 2011; Wellcome Trust Case Control
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Consortium, 2007]. With the increase in genetic findings, converging evidence has revealed
that the same genetic variants could be associated with multiple related-disease outcomes.
For example, recent studies have provided evidence that the neuronal nicotinic acetylcholine
receptor (nAChRs) subunit genes may play an important role in the common
pathophysiological pathway of nicotine dependence (ND) and alcohol dependence (AD)
[Clark et al., 2001; John et al., 2003; Riala et al., 2004]. Similarly, clinical and
epidemiological studies have suggested a high degree of comorbidity between bipolar
disorder and migraine, which could be partially explained by a shared genetic component
[Bowden et al., 2000; Dilsaver et al., 2009a, b; Oedegaard et al., 2010a, b]. Despite these
findings, the pathophysiology and etiology of disease comorbidity remain largely unknown
[Oedegaard et al., 2010a]. It is of great importance to identify genetic variants and
environmental determinants common to disease comorbidity, as well as those are unique to
each condition, as this helps elucidate the causes of comorbidity, and promotes new
diagnostic and therapeutic strategies for both diseases.

The concept of “comorbidity” was first introduced in the 1970s by Feinstein. It stands for
the scenario in which “a distinct clinical entity” occurred together with a specific disease
under study [de Groot et al., 2003; Feinstein, 1970; Maj, 2005]. Recently, multicomorbidity
has been introduced, referring to a scenario where multiple medical conditions occur in one
person without an emphasis on the presence of a specific disease [Bayliss et al., 2008;
Valderas et al., 2009]. Both comorbidity and multicomorbidity are used in the domains of
clinical care, epidemiology studies, and health service policies [Bayliss et al., 2008;
Campbell-Scherer, 2010; de Groot et al., 2003; Feinstein, 1970; Gijsen et al., 2001; Maj,
2005; Valderas et al., 2009]. In the rest of this paper, we use comorbidity to refer to both
comorbidity and multicomorbidity.

The relation between comorbid conditions is complex and presents in various forms. To
describe the underlying mechanisms leading to disease comorbidity, Neale and Kendler
have proposed 13 theoretical comorbidity models [Neale and Kendler, 1995; Rhee et al.,
2004]. The simplest scenario is that comorbid conditions are independent of each other and
occur together simply by chance or due to a third distinct disease [Neale and Kendler, 1995].
Comorbidity can also be the cause or consequence of one of the comorbid conditions, with
possible reciprocal causality [de Groot et al., 2003; Neale and Kendler, 1995; Simonoff,
2000]. Another common scenario is that comorbid conditions share the same or correlated
risk factors, which makes the comorbid conditions more likely to occur together [Lind et al.,
2010; Neale and Kendler, 1995; Youngstrom et al., 2010]. In certain circumstances,
comorbidity may also be due to the fact that the comorbid conditions are alternate
manifestations of a single liability [Neale and Kendler, 1995].

A common approach for studying comorbidity is the composite phenotype (COM) approach,
in which the “cases” are defined as individuals with all comorbid conditions, while the
“controls” are defined as individuals with none of the comorbid conditions [Bierut et al.,
2004; Lind et al., 2010; Oedegaard et al., 2010a]. Though easy to implement, such an
approach does not take individuals with only one of the comorbid conditions into account.
As a consequence of the reduced sample size, it may lack the power to catch
pathophysiological pathways underlying the disease. In addition, COM is designed to
identify common genetic variants leading to comorbidity, but not unique genetic variants for
each disease outcome. Another approach to study comorbidity is the EITHER approach,
which defines cases as individuals with at least one of the comorbid conditions and the
controls as individuals without the comorbid conditions. However, similar to COM,
EITHER cannot differentiate common genetic variants from unique genetic variants.
Moreover, EITHER is subject to reduced power if the genetic etiologies of the two comorbid
conditions are independent of each other. To address these limitations, we propose a
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bivariate Mann-Whitney (BMW) approach for comorbidity study. The proposed approach
utilizes the entire sample and is capable of capturing shared genetic variants and their
possible interactions contributing to disease comorbidity, as well as unique genetic variants
for each disease outcome. In the following sections, we first lay out the details of the BMW
approach, and then evaluate the performance of the proposed approach with simulations.
Finally, we apply the new approach to a large-scale dataset from the Study of Addiction:
Genetics and Environment (SAGE) to study the comorbidity between AD and ND.

Method
Consider a comorbidity study of N unrelated individuals and G genetic markers, where we
are interested in identifying shared and unique disease susceptibility markers contributing to
comorbid conditions. Let Yk (k = 1, 2) be the response measurement of kth condition and Z
= {Z1, Z2, …, ZG} be the measurement of G markers, where Yk = 1 and Yk = 0 for
individuals with and without the kth condition, respectively. Comorbidity stands for the
scenario where two conditions occur in the same person (i.e.,Y1 = Y2 = 1). The BMW
approach first applies a Mann-Whitney based forward selection algorithm [Lu et al., 2012]
to search for genetic variants and interactions predisposing to each of the two conditions.
The algorithm starts with a null model without any genetic markers and then gradually
selects disease-susceptibility markers into the model. In step one, it searches all G genetic
markers for the marker most strongly associated with the given condition. In step two, it
searches for the second marker that is most related to the condition, considering its possible
interaction with the marker selected at step one. The whole process continues until it reaches
a full model. K-fold cross-validation is then used to choose the most parsimonious model.

By applying Mann-Whitney based forward selection to each of two conditions, we identify
two sets of disease-susceptibility markers, X1 = {Zp1, Zp2, …, ZpM}, M ≤ G and X2 = {Zq1,
Zq2, ……, Zqs}, S ≤ G, for conditions 1 and 2, respectively. Let XC = X1 ∩ X2 be the

common set of markers shared by both diseases,  be the subset of markers

unique to disease 1, and  be the subset of markers unique to disease 2. We
use Xi,C to denote the measurements of shared loci for subject i, and useXi,U1 and Xi,U2 to
denote the measurements of loci unique to disease 1 and loci unique to disease 2 for subject
i, respectively. The likelihood ratio (LR) of individual i for the shared markers, measuring

the risk of shared makers with the disease, can be defined as ,

where  and XC ≠ Ø. Similarly, we define the LR of individual i for

the unique markers as , where XC ≠ Ø, XUk ≠ Ø and k =
1, 2. In the cases where a null set occurs (i.e., no marker has been selected), we define

Given the LRs for shared and unique markers, a joint LR for individual i can be defined as,
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(1)

Based on the joint LR, we derived a BMW statistic to assess the joint association of disease-
susceptibility markers, allowing for gene-gene interactions,

(2)

where NY≠0 and NY=0 are the number of individuals with at least one of two diseases, and
the number of individuals without either of the diseases, respectively. The kernel function ψ

equals 1 if  is greater than , 0.5 if equal, and 0 if less. Hypothesis testing can then
be conducted to assess the significance of the joint association,

(3)

where  and

, derived based on the result of Lu et al.
[DeLong et al., 1988; Lu et al., 2012]. Under the null, Z asymptotically follows a standard
normal distribution.

Simulations
Scenario I

In the first set of simulations, we compared the performance of BMW with COM and
EITHER under a variety of comorbidity correlation models. We simply simulated two
comorbid diseases and considered a series of comorbidity models: a model where two
diseases were unrelated; a model where two diseases shared one SNP; a model where two
diseases shared a two-locus interaction; and a model where two diseases were associated
with the exact same disease susceptibility loci. Each comorbid disease was associated with a
two-locus interaction and an independent SNP, where we assumed the two-locus interaction
followed a multiplicative-interaction model or a threshold-interaction model [Marchini et
al., 2005], and the independent SNP was additive. In the multiplicative-interaction model,
the odds increases multiplicatively with the number of disease-susceptibility alleles given
both loci have at least one disease-susceptibility allele. In the threshold model-interaction,
we can group two-locus genotypes into two risk groups: (1) a single high-risk group for all
individuals having at least one of the disease-susceptibility alleles at each of the two loci,
and (2) a common low-risk group for all other individuals [Marchini et al., 2005]. For the
multiplicative-interaction model, we assume the odds ratios of the interaction loci and the
independent loci to be 1.45. For the threshold-interaction model, the odds ratios for two
interaction loci and two independent loci were assumed to be 1.7, 1.7, 1.7, and 1.65,
respectively. The details of model settings were summarized in the Supporting Information
(Table S1). All genetic variants were simulated under the Hardy-Weinberg Equilibrium
assumption with minor allele frequencies ranging from 0.3 to 0.4. In addition to disease-
susceptibility loci, we also introduced five nondisease SNPs for each disease, and randomly
assigned their minor allele frequencies from a uniform distribution ranging from 0.1 to 0.5.
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For each underlying correlation model, 1,000 replicates were simulated, each comprised of
1,000 control individuals and 1,000 affected individuals with at least one of the comorbid
conditions. We analyzed each replicate by using the proposed BMW approach, the COM
approach, and the EITHER approach. To be consistent with BMW, the same Mann-Whitney
based forward selection algorithm was used in COM and EITHER to search for genetic
variants and interactions predisposing to the comorbidity of diseases. However, unlike
BMW, COM, and EITHER consider the disease outcome as a univariate variable, and thus
use a different test statistic for association test [Lu et al., 2012]. The difference between
COM and EITHER is how they define cases and controls. COM considers individuals with
both comorbid conditions as cases, while EITHER treats individuals with at least one of the
comorbid conditions as cases. In a study where the disease-associated genetic variants and
interactions to be tested are predetermined (e.g., in a replication study), asymptotic test can
be used to assess the significance of the association. However, in a study where the disease
model is unknown (e.g., in an initial study), selecting the model and performing the
asymptotic test on the same dataset could affect the null distribution, leading to an inflated
Type 1 error. Therefore, a permutation process, where the phenotype was randomly
permuted, was implemented in the simulation to generate the empirical null distribution. In
the permutation process, we performed 1,000 permutation to form the empirical distribution,
and obtained the empirical P-value by comparing the observed statistic to the empirical null
distribution.

The Type I error and power for each comorbidity model were summarized in Table 1. The
results showed that the Type I errors from all three approaches were well controlled at the
level of 0.05. We also observed that the power of COM increased with the increase of
shared genetic components. In an extreme case, when the two comorbid conditions shared
the same genetic loci, the power of COM attained its highest value, which can be largely
explained by the increasing number of individuals with both comorbid conditions.
Nevertheless, when the two comorbid conditions were independent and the simultaneous
manifestation of both diseases occurred only by chance, the power of COM was
significantly reduced. The performance of EITHER also highly depended on the underlying
disease models. EITHER attained high power if two diseases shared the same or similar
disease mechanisms, and had low power if two diseases were independent of each other.
Compared with COM and EITHER, BMW attained higher, or at least equivalent, power
under all models. The performance of BMW was also less affected by the relationship
between comorbid conditions, remaining almost the same across all models. While we
expect that COM has no power under the model where two diseases are independent with no
shared loci, the results showed that COM obtained power of 0.530 and 0.561 under the
multiplicative-interaction model and the threshold-interaction model, respectively. As we
demonstrated in a later simulation (Scenario III), the power of COM can also be partially
explained by loci unique to each condition (i.e., if a locus is strongly associated with one of
the comorbid conditions, it could also have an effect on a subset of individuals with two
conditions). However, the drawback of both COM and EITHER is that, unlike BMW, they
cannot distinguish the shared and unique disease-susceptibility loci.

Scenario II
In this set of simulations, we varied both underlying disease models and relations between
two comorbid conditions, and evaluated their impact on the three approaches. We started
with a simple model with a two-locus interaction and two independent loci, and then
considered a more complex model involving a high-order interaction (i.e., a three-locus
interaction) and a model involving more than one interaction (i.e., two two-locus
interactions). The common disease-susceptibility loci contributing to both diseases were
assumed to be (1) the interacting loci, (2) the interacting loci and one independent locus, and
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(3) two independent loci. Two types of interaction models, a multiplicative-interaction
model and a threshold-interaction model [Marchini et al., 2005], were considered in the
simulation. The odds ratios for the multiplicative-interaction model were set within the
range of 1.3 to 1.4, while the odds ratios for the threshold-interaction model were set
between 1.3 and 1.6. The details of the simulation settings were summarized in the
Supporting Information (Table S2).

The Type I errors were well controlled at the level of 0.05 for all three approaches (Table 2).
Similar to the result from simulation I, the performance of COM and EITHER was highly
dependent on underlying disease models. Compared with COM and EITHER, BMW was
robust to a variety of relations between two comorbid conditions, and attained higher power
under all of simulated disease models, regardless of the complexity of the disease models
and the different types of interaction models.

Scenario III
One of the unique features of BMW is that it can distinguish unique loci predisposing each
comorbid condition from common loci contributing to comorbidity. To demonstrate this
feature, a simple disease model was simulated where each of the two comorbid diseases was
associated with a common two-locus interaction and a unique locus. We varied the ratio of
the effect size of the two-locus interaction to that of the independent loci, and calculated the
probability of misclassifying a unique locus as a shared locus. In addition, for BMW
approach, we also calculated the probability of misclassifying a shared locus as a unique
locus. Both multiplicative-interaction and threshold-interaction models were considered in
the simulation. As EITHER is unable to identify common loci contributing to comorbidity,
we only compared the performance between COM and BMW in the simulation. The details
of the model settings and the results were summarized in Table 3.

As shown in Table 3, when the effect size of risk loci unique to each disease increases, the
COM approach is more likely to misclassify them as common risk loci. COM considers all
of the selected loci as common loci without differentiating between unique and shared loci.
In contrast to COM, BMW only considers loci selected for both conditions as shared loci,
while treats the remaining loci as unique loci. Thus, it has the capacity to differentiate
unique and shared loci. As seen in Table 3, BMW remains a low and stable misclassification
rate, regardless of the effect size of the unique loci. In addition, we also calculated the rates
of misclassifying common loci as unique loci by BMW, and on average the rates were
11.2% and 12.9% for multiplicative-interaction model and threshold-interaction model,
respectively.

Results
Application to ND and AD

We applied the proposed approach to datasets from SAGE, investigating genetic variants
and interactions contributing to comorbidity between AD and ND (dbGaP study accession
phs000092.v1.p1). SAGE is one of the largest and most comprehensive genetic datasets for
addiction genetic epidemiology research [Bierut et al., 2010]. The participants of the SAGE
were unrelated individuals selected from three independent studies: the Collaborative Study
on the Genetics of Alcoholism (COGA), the Family Study of Cocaine Dependence (FSCD),
and the Collaborative Genetic Study of Nicotine Dependence (COGEND). The SAGE
included standardized diagnostic assessments of DSM-IV ND and AD, for which an ample
number of ND cases (n = 1,848), AD cases (n = 1,938), and controls (n = 1,590) exist (Table
S3). SAGE genotyping is based on the Illumina Human 1M DNA Analysis BeadChip.
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Based on the existing literature, we identified 152 SNPs and 32 SNPs that had been reported
for potential association with ND and AD, respectively. The SNPs included in the study
were those having prior association evidence with ND and AD, or those allocated in the
region where significant haplotype blocks have been reported. The detailed information of
these SNPs was listed in the Supporting Information (Table S4). Among these SNPs,
genotypes for 127 SNPs were available in the SAGE dataset, and the remaining SNPs were
imputed using IMPUTE2 software (IMPUTE2 version 2.2.2) [Howie et al., 2009, 2011].
Depending on whether a SNP can be imputed using HapMap reference panels, the founders
of CEU and YRI from HapMap phase III or from the 1000 Genome Project, were used as
the reference panels to impute genotypes of the Caucasian and African American subjects,
respectively.

We initiated a bivariate analysis of comorbid conditions among 184 known AD and ND
SNPs by applying BMW to each of the African American and the Caucasian samples in the
COGA dataset. The initial findings identified from COGA were then validated in the FSCD
and COGEND datasets. In the Caucasian sample, rs16969968 (CHRNA5) was identified to
be associated with both AD and ND, with P-values of 8.23 × 10−3 and 1.06 × 10−03 in
COGA and FSCD, respectively. However, the findings cannot be replicated in the Caucasian
sample from the COGEND dataset (P-value = 0.409). The lack of association between the
identified SNP and the comorbidity in COGEND may partially due to the fact that
nondependent smoking individuals were recruited as controls in COGEND. The effects of
the genetic variants leading to comorbidity may thus be attenuated compared with the
studies where nonsmoking individuals serve as controls. The lack of replication could also
be due to the complexity of the trait. For instance, the ND cases were defined by DSM-IV,
which was an arguably poor diagnosis criterion compared with the Fagerstrom dependence
criteria. Further analysis using logistic regression was conducted to explore the association
between rsl6969968 and the two comorbid conditions in the Caucasian samples. Based on
the logistic regression analysis, we found Caucasian individuals carrying GG genotype of
rs16969968 had increased risk of having both AD and ND in COGA and FSCD, whereas the
risk associated with three genotypes remained the same for the Caucasian sample in
COGEND (Table 5).

In the African American sample, BMW identified a three-locus joint association model,
reached an uncorrected P-valueof3.51 × 10−07 in COGA (Table 4). However, the finding
was not replicated in the remaining two datasets (i.e., P-values in FSCD and COGEND were
0.443 and 0.821, respectively). The lack of association of the identified model in the African
American subjects may partially due to the relatively small number of the African American
in the dataset (Table S3). With a moderate number of candidate SNPs and a small sample
size, the model identified in the African American sample could be just a chance finding.

Similar to the analyses using BMW, we conducted stratified analyses by applying COM and
EITHER to each of the Caucasian and the African American samples. In the Caucasian
samples, both COM and EITHER identified the same risk SNP, rs16969968, as the one
selected by BWM. In Caucasian samples from COGA, the selected model reached P-values
of 0.012 and 8.23 × 10−03 for COM and EITHER, respectively. Similar to the findings of
BMW, the association was replicated in FSCD with P-values of 8.66 × 10−03 and 1.056 ×
10−3 for COM and EITEHR, respectively. In the African American sample, the COM
approach identified only one risk SNP, rs2964911, which is among the shared loci identified
by BMW. The SNPs identified by the EITHER approach were the same as those selected by
BMW. The P-values of the models selected by COM and EITHER in the COGA African
American sample attained 9.26 × 10−3 and 3.28 × 10−04, respectively. However, similar to
BMW, the models cannot be replicated in the other datasets.
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Discussion
Comorbidity among complex human diseases is believed to be caused by interplay between
multiple genetic variants and environmental determinants. Identifying genetic and
environmental risk predictors contributing to comorbidity will promote a better
understanding of disease etiology, and may eventually lead to new diagnostic and
therapeutic strategies [de Groot et al., 2003; Feinstein, 1970; Maj 2005]. The yield from the
discovery process can be enhanced by adopting novel statistical approaches. A multivariate
joint association approach allowing for gene-gene interactions can facilitate the detection of
genetic variants and gene-gene interactions contributing to comorbid conditions. For this
purpose, we developed a BMW approach for the identification of genetic variants
contributing to comorbid conditions, with the consideration of high-order interactions.
Similar to other Mann-Whitney based methods [Lu et al., 2012], it is a nonparametric
approach, which does not assume a model of inheritance, and is free of the issues of an
increasing number of parameters. BMW adopts a forward selection algorithm, which
substantially reduces the searching space of interaction combinations and allows for high-
order interactions. These features make BMW more appealing for a comorbidity study of
complex diseases with the consideration of possible interactions. Though the approach is
illustrated with two disease outcomes, it can also be easily extended to multiple disease
outcomes.

Through simulations, we have shown that BMW attained higher power than both COM and
EITHER under a variety of disease models, and was more robust under different correlation
models between comorbid conditions. We consider this important, as our knowledge of
disease comorbidity is limited, and the underlying correlation among comorbid diseases
could vary from case to case. While the COM only identifies risk variants predisposing to
both diseases and the EITHER cannot differentiate the shared loci from the unique loci,
BMW allows for the identification of genetic risk variants common to comorbid conditions,
as well as those unique to each comorbid condition. Compared with COM, BMW makes use
of the entire sample, which potentially increases the power to identify genetic variants
associated with comorbid conditions, especially when the comorbidity rate is low or when
there are few comorbidity individuals in the data. In an extreme case, where each dataset is
designed to study one of the comorbid conditions and the information regarding the other
disease statuses is not measured, COM is not applicable, as there is no affect individual
according to its definition. Nevertheless, we can still use BMW in such case, as it selects
risk loci for each disease and then builds an overall test to assess the association.

Twin studies have suggested a substantial genetic correlation between ND and AD [True et
al., 1999]. Although the comorbidity of ND and AD is well documented, genetic variants
and gene-gene interactions contributing to the comorbidity are still largely
unknown[Schlaepfer et al., 2008b]. In our analysis, we identified a CHRNA5 SNP
associated with both AD and ND in the Caucasians sample of the COGA dataset, and then
confirmed the finding in the FSCD dataset. Further analysis suggested Caucasian individuals
carrying GG genotype of rs16969968 had increased risk of having both AD and ND. The
identified SNP, rs16969968, which has been reported to be associated with ND [Berrettini et
al., 2008; Saccone et al., 2007; Stevens et al., 2008; Thorgeirsson et al., 2008], is located
within CHRNA5, a subunit gene of nAChRs [Berrettini et al., 2008; Bierut et al., 2007;
Caporaso et al., 2009; Ehringer et al., 2007; Grucza et al., 2008; Schuckit et al., 2008; Spitz
et al., 2008; Stevens et al., 2008; Thorgeirsson et al., 2008; Zeiger et al., 2008]. Although
rsl6969968 (CHRNA5) itself has not been reported to be associated with AD, the SNP
rs1051730, which is in high-linkage disequilibrium with rs16969968 (CHRNA5; European:
r2 = 0.902, Japanese/Chinese: r2 = 1.000) [Ware et al., 2011], had been reported to be
associated with AD [Wang et al., 2009]. Previous evidence from pharmacological,
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epidemiological, and neurochemical studies have suggested that sub units of nAChRs may
be a common action site for AD and ND [Aistrup et al., 1999; Butt et al., 2004; Hoft et al.,
2009; Larsson and Engel, 2004; Schlaepfer et al., 2008a; Wang et al., 2009]. This finding
further confirmed the important role of nAChRs in the common biology pathway of ND and
AD. Although the association rsl6969968 (CHRNA5) reached a statistically significant level
and can be replicated in another independent dataset, follow-up studies would be needed to
further replicate and study the role of CHRNA5 in the comorbidity of ND and AD.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Table 5

Odds ratio for rs 16969968 associated with comorbidity in the Caucasian samples

Odds ratios

COGA FSCD COGEND

Alcohol dependencea 0.676

(0.511, 0.894)b
0.560

(0.398, 0.788)
1.148

(0.873, 1.508)

Nicotine dependencea 0.697
(0.518, 0.938)

0.623
(0.438, 0.885)

1.122
(0.880, 1.430)

Comorbiditya 0.678
(0.501, 0.919)

0.610
(0.421, 0.883)

1.202
(0.891, 1.621)

a
GG is the reference group.

b
95% confidence interval.
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