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Ozone and particulate matter, PM2.5, are co-pollutants that have long been
associated with increased public health risks. Information on concentration
levels for both pollutants comes from two sources: monitoring sites and out-
put from complex numerical models that produce concentration surfaces over
large spatial regions. In this paper, we offer a fully-model-based approach for
fusing these two sources of information for the pair of co-pollutants which is
computationally feasible over large spatial regions and long periods of time.
Due to the association between concentration levels of the two environmental
contaminants, it is expected that information regarding one will help to im-
prove prediction of the other. Misalignment is an obvious issue since the mon-
itoring networks for the two contaminants only partly intersect and because
the collection rate for PM2.5 is typically less frequent than that for ozone.

Extending previous work in Berrocal, Gelfand and Holland (2010), we
introduce a bivariate downscaler that provides a flexible class of bivariate
space–time assimilation models. We discuss computational issues for model
fitting and analyze a dataset for ozone and PM2.5 for the ozone season during
year 2002. We show a modest improvement in predictive performance, not
surprising in a setting where we can anticipate only a small gain.

1. Introduction. Ozone and particulate matter, PM2.5, have long been as-
sociated with increased public health risks, for example, of respiratory diseases
[Schwartz (1996); Dominici et al. (2000); Braga, Zanobetti and Schwartz (2001)],
cardiovascular diseases [Dominici et al. (2000); Braga, Zanobetti and Schwartz
(2001)], and mortality and morbidity in general [Dominici, Samet and Zeger
(2006); Smith et al. (2000)]. To set air quality standards the EPA utilizes infor-
mation from monitoring networks and from air quality computer models.

The two sources of information are valuable in different ways. The observa-
tions reported by monitoring networks, though sparsely collected and, sometimes,
affected by missingness, provide direct measurements of the true value up to mea-
surement error. The output from air quality models estimates pollutant concentra-
tions over large spatial domains at the grid cell level. The estimates are viewed
as averages over these cells and do not contain any missing data, but are uncal-
ibrated. It is desirable to combine both sources of information but to do so, it is
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necessary to solve the inherent “change of support” problem of the data [Cressie
(1993); Gotway and Young (2002); Banerjee, Carlin and Gelfand (2004)], that is,
the spatial misalignment between the observational data and the numerical model
output. Addressing the difference in spatial resolution between the two sources of
data will also allow to evaluate and calibrate the numerical model output.

We are not interested in calibration of the numerical model in the sense of
Kennedy and O’Hagan (2001). Rather our focus is on resolving the difference
in spatial scale between the numerical model output and the observational data,
while bias-correcting the predictions generated by a numerical model. In this re-
gard, several methods have been proposed to assess numerical models and address
the issue of “incommensurability” between grid model averages and point mea-
surements [Swall and Foley (2009)]. Such effort is also common in the context
of data assimilation within the atmospheric science literature, where the goal is to
combine observational data on the current state of the atmosphere with a short-
range forecast produced by a numerical weather prediction model to yield initial
conditions for a numerical atmospheric model. The approaches tend to be algo-
rithmic and ad hoc, only occasionally model-based, and do not necessarily address
downscaling. Fuller discussion can be found in Daley (1993) and Kalnay (2002).
In the context of air quality, Meiring, Guttorp and Sampson (1998) propose to
evaluate the hourly ozone predictions generated by a geophysical model on the
grid-cell scale by using the observations taken at monitoring sites, and predicting
hourly level of ozone at the model grid cells by averaging the predictions at M

regularly spaced sites taken within each grid cell [see, as well, Fuentes, Guttorp
and Challenor (2003)]. A different strategy has been proposed by Jun and Stein
(2004) who ignore the difference in spatial resolution between model output and
observations, rather suggesting to evaluate a numerical model by looking for dif-
ferences between the model output and the observations in terms of variograms
and correlograms.

Fuentes and Raftery (2005) develop a “fusion” model, expressing the numer-
ical model output as the integral over a grid cell (scaled by the area of the cell)
of a latent point-level process. Their main goal is to recover the true unobserved
process, but, as a by-product, they obtain estimates of the bias of the numerical
model output, thus allowing evaluation and calibration of the numerical model.
The work is an instance of Bayesian melding [Poole and Raftery (2000)], and
has gained considerable popularity [Smith and Cowles (2007); Foley and Fuentes
(2008)]. See also recent work in this spirit applied to sulfate aerosol [Swall and
Davis (2006)] and ammonium [Davis and Swall (2006)]. The Bayesian melding
approach of Fuentes and Raftery (2005), though popular, suffers from several limi-
tations, as pointed out by Liu, Le and Zidek (2007) and Berrocal, Gelfand and Hol-
land (2010a). Additionally, it is only computationally feasible as a spatial model.
A spatio-temporal extension, proposed by McMillan et al. (2010), specifies the la-
tent process at the grid-cell level, leading to comparison between the numerical
model output and the observational data at the grid-cell scale.
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Operating at the point level, Guillas et al. (2008) propose to correct the model
output by downscaling the predictions from grid cells to points and comparing
them with the observations. For each site, a two-step linear regression model that
relates the observed hourly ozone level at a site with the numerical model out-
put at the grid cell in which the site lies is proposed. Building upon the work of
Guillas et al. (2008), Liu, Le and Zidek (2008) suggest interpolating the intercept
and the coefficient of the numerical model output, estimated at each site, via krig-
ing, thus developing a “spatio-temporal” model that will allow corrected predic-
tion of ozone level also at unmonitored sites. However, this ad hoc approach does
not provide estimates of the uncertainties associated with the predictions. A for-
mal spatio-temporal model, that builds upon the downscaling idea of Guillas et al.
(2008), has been proposed as a univariate downscaler by Berrocal, Gelfand and
Holland (2010a) with a version implemented and described in Sahu, Gelfand and
Holland (2010) and in Gelfand and Sahu (2010).

The contribution of this paper is to extend the spatio-temporal downscaler from
the univariate setting to a bivariate setting in order to exploit the correlation both
in the observed concentration levels of ozone and PM2.5 and in the concentration
levels of ozone and PM2.5 provided by the numerical model. Working in a bivari-
ate setting will prove particularly advantageous for predicting particulate matter.
The sampling frequency of the PM2.5 monitors—most of the monitors measure
PM2.5 concentration every 3 days—yields challenging interpolation of the moni-
toring data to the entire spatial domain as well as difficult evaluation of the predic-
tions generated by the numerical model. Rather, in environmental health studies,
researchers always use monitoring data to characterize exposure to fine particu-
late matter, dealing with the PM2.5 sampling frequency issue by aggregating the
monitoring data over time and/or over space. Similarly, most of the research ef-
fort on PM2.5 has been devoted to developing spatial and spatio-temporal models
to predict PM2.5 based on monitoring data, meteorological covariates or observed
concentrations for another pollutant [Brown, Le and Zidek (1994); Le, Sun and
Zidek (1997); Kibria et al. (2002); Smith, Kolenikov and Cox (2003); Sahu and
Mardia (2005); Sahu, Gelfand and Holland (2006)]. A fusion model to combine
monitoring data for PM2.5 with satellite aerosol optical depth (AOD) data has been
proposed by Paciorek and Liu (2009); however, the analysis was conducted on
monthly average concentration rather than daily and it revealed that AOD provides
no improvement in predicting fine particulate matter.

In this paper, we present a general bivariate spatio-temporal downscaler de-
veloped for the numerical model outputs of an air quality model; we illustrate
the methodology with regard to prediction of concentration of ozone and fine
particulate matter. The model, which to our knowledge is the first bivariate fu-
sion/downscaler model, extends the univariate downscaler of Berrocal, Gelfand
and Holland (2010a), and, following Berrocal, Gelfand and Holland (2010a), re-
gresses the bivariate vector of observed ozone and PM2.5 concentration on the
numerical model outputs for both pollutants using spatially varying coefficients
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[Schmidt and Gelfand (2003); Gelfand et al. (2004)], modeled as a correlated six-
dimensional Gaussian process. The model specification is general and flexible,
while offering feasible computation for a fully model-based fusion across space
and time. We explore several different special cases, corresponding to different as-
sumptions on the correlation structure of the two pollutants. An important feature
of our model is that not only does it allow us to handle the spatial misalignment
between monitoring data and model output, but also it allows us to accommodate
the spatial and temporal misalignment between the ozone and PM2.5 monitoring
data. Finally, exploiting the correlation, not only between the model output and
the corresponding monitoring data for a pollutant, but also between pollutants, we
can jointly predict ozone and PM2.5 at any site in the spatial domain and provide
a measure of the uncertainties associated with such predictions. Additionally, at
sites where one pollutant is measured but the other is not, we can predict the level
of the latter.

The paper is organized as follows. In Section 2, we present the monitoring data
and the numerical model output; in Section 3, we describe the bivariate downscaler
model, by first introducing the downscaler in the univariate setting, and then ex-
tending the model to the bivariate case, first in a purely spatial setting and then in
a spatio-temporal setting. Details on how to handle the spatio-temporal misalign-
ment in the monitoring data are also discussed in Section 3. Section 4 presents
details on the model fitting, while Section 5 displays results of our analysis. Fi-
nally, we conclude in Section 6 with a discussion and evaluation of our method
and with indications for future work.

2. Data. Particulate matter (PM2.5) and ozone are two of the “criteria pollu-
tants” that the Environmental Protection Agency (EPA) is required to monitor by
the Clean Air Act. The first is a mixture of solid and liquid particles, emitted in the
atmosphere either directly from a source or as result of complicated reactions of
chemicals, while the second is a gas made of three atoms of oxygen that is created
by a chemical reaction between oxides of nitrogen and volatile organic compounds
in the presence of sunlight.

The EPA tracks both criteria pollutants using both measurements taken at mon-
itoring sites and estimates of air pollutant concentrations produced by the Models-
3/Community Mesoscale Air Quality (CMAQ) model [Byun and Schere (2006)
(epa.gov/asmdnerl/CMAQ)]. The latter is a deterministic numerical model that
predicts concentrations for various pollutants by integrating three major compo-
nents: an atmospheric component accounting for the atmosphere and its states and
motions, an emission component accounting for the emissions injected in the at-
mosphere, and a chemical component accounting for the reactions between the
different gases present in the atmosphere. By simulating various chemical and
physical processes, such as horizontal and vertical advection, emission injection,
deposition, plume chemistry effects, etc., CMAQ produces estimates of pollutants

http://epa.gov/asmdnerl/CMAQ/
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FIG. 1. Sites reporting concentration of ozone and PM2.5 used in our case study. Sites measuring

only ozone are represented with dots, sites reporting only PM2.5 concentrations are represented with

triangles, while sites measuring concentrations for both pollutants are represented with squares.
Black symbols are used to display sites used to fit the model, while gray symbols indicate validation

sites.

concentration at predetermined spatial scales, for example, 36-km, 12-km and,
most recently, at 4-km grid cells.

We consider daily estimates and measurements of ozone and PM2.5 concentra-
tion for the region in the South Eastern part of the United States shown in Figure 1
during the period June 1–September 30, 2002, the summer season when solar ra-
diation and temperature are high. In turn this encourages not only high concentra-
tions of ozone but also of particulate SO4, the dominant component of PM2.5 in the
eastern US as well as particulate ammonium nitrate. Relatively strong association
between ozone and PM2.5 concentrations is expected and, in fact, observed. Fol-
lowing the air quality standards (NAAQS; http://www.epa.gov/air/criteria.html) set
by EPA for ozone and PM2.5, daily ozone concentration is measured as the daily
maximum 8-hour average concentration, while daily PM2.5 concentration is given
by the 24-hour average concentration of particulate matter.

The monitoring data used in our case study come from 226 sites sparsely lo-
cated in the region, and they have been obtained from the EPA Air Quality System
(AQS) repository database. Of these 226 sites, not all measure both pollutants:
71 report only ozone measurements, 50 report only PM2.5 and 105 measure both,
pinpointing the spatial misalignment in the monitoring data. In order to validate
the model with out-of-sample predictions, we randomly split the sites into two
sets: a training set used to fit the model, and a validation set used to assess the
performance of the model. In the training set, 52 sites measured only ozone con-
centration, 39 reported only PM2.5 concentration and 70 reported both. In total,
the dataset used to fit the model comprised 14,630 daily measurements of ozone
concentration and 4790 measurements of PM2.5 concentration. The smaller num-
ber of observations for particulate matter is due to the sampling scheme for PM2.5:

http://www.epa.gov/air/criteria.html
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of the 109 PM2.5 monitoring sites, only 11 (10.1%) measure concentration of par-
ticulate matter every day, while 90 (82.5%) report measurements every three days
and 8 (7.3%) measure PM2.5 every six days.

The difference in sampling frequency between ozone and PM2.5 suggests that,
in addition to spatial misalignment, there is also temporal misalignment in the
monitoring data: even sites that measure both pollutants do not sample the two
pollutants with the same temporal frequency. However, when concentration mea-
surements for both pollutants are available, they display considerable correlation,
equal to 0.69. Spatial and temporal misalignment is also present among the vali-
dation sites: 54 measured only ozone, 46 only PM2.5, while 35 reported concen-
trations for both pollutants. In total, the validation dataset contained 6530 daily
observations of ozone concentration and 2559 daily observations of concentration
of particulate matter. The location of the sites used to fit and validate the model is
shown in Figure 1.

An exploratory analysis of the observed daily concentration data for ozone
and PM2.5 revealed the need for a transformation. We modeled the daily ozone
concentration data on the square root scale to stabilize the variance, while we
log-transformed the PM2.5 concentration data to achieve normality. Both trans-
formations have been previously used; see, for example, Sahu, Gelfand and Hol-
land (2007), Sahu, Gelfand and Holland (2006), Carroll et al. (1997), Haslett and
Raftery (1989). A normal Q–Q plot of the square root of the observed daily con-
centration of ozone at sites used to fit the model is shown in Figure 2(a), while
Figure 2(b) presents a normal Q–Q plot of the logarithm of daily average concen-
tration of PM2.5 at the 109 monitoring sites in the training set measuring particu-
late matter. Both plots seem to suggest a slight deviation from normality; however,
the deviation is minimal and we are comfortable using a normal model, in agree-
ment with the literature. Neverthless, in Section 6 we address distributional issues
more at length and suggest an extension of our downscaling approach for non-
Gaussian variables. The overall mean and standard deviation for the square root
of ozone concentration and for the log of PM2.5 concentration at the training sites
were, respectively, 7.41 and 1.31

√
ppb (ppb: parts per billion), and 2.72 and 0.56

log(µg/m3).
Estimates of the daily average and standard deviation for ozone and PM2.5 are

presented in Figure 3. Both panels in Figure 3 indicate daily variability in the
concentration level for the pollutants, with Figure 3(a) revealing the seasonality of
ozone during the study period (June 1–September 20, 2002). In terms of variability,
both ozone and PM2.5 present the largest standard deviation on June 25, 2002. For
this day, plots of the observed ozone and PM2.5 concentration are shown, on the
original scales, respectively, in Figures 4(a) and 5(a). (These plots are developed
in conjunction with the data analysis of Section 5.)

The numerical model output data consist of estimates of ozone and PM2.5 con-
centration level generated by the CMAQ numerical model run at 12-km grid cell
resolution. An example of the type of concentration surfaces yielded by CMAQ
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FIG. 2. Normal Q–Q plots of: (a) square root of observed ozone; (b) log of observed PM2.5.
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FIG. 3. Time series of: (a) daily mean (open circles) and daily standard deviation (black dots) of

square root of observed ozone; (b) daily mean (open circles) and daily standard deviation (black

dots) of log of observed PM2.5.

can be observed, respectively, Figures 4(b) and 5(b). CMAQ produces estimates
of a pollutant concentration in terms of average over a grid cell (in this case, over
10,504 12-km grid cells), while observations are taken at points. Therefore, there
is a spatial misalignment between observational and numerical model data. We
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FIG. 4. (a) Observed ozone on June 25, 2002; (b) predicted ozone as obtained from CMAQ on

June 25, 2002; (c) predicted ozone as obtained via kriging for June 25, 2002; (d) predicted ozone as

obtained from the bivariate downscaler model for June 25, 2002.

solve this difference in spatial resolution between the monitoring and the numer-
ical model data by associating to each site s in the spatial domain S , the CMAQ
grid cell B in which s lies. This allows a comparison between the model output
and the monitoring data.

To reveal the need for calibration in the numerical model output, we have pro-
duced pairwise scatterplots of the square root of the observed ozone concentration
versus the square root of the CMAQ predicted concentration level of ozone dur-
ing the period June 1–September 30, 2002, of the square root of the observed
ozone concentration versus the log of the CMAQ predicted PM2.5 concentration,
and analogous plots for the log of the observed concentration of particulate mat-
ter. We see that the predictions by the numerical model are biased and need to be
calibrated; however, they do contain useful information to improve prediction for
both pollutants. Additionally, the positive and substantial correlation between the
CMAQ model output for PM2.5 and the observed ozone concentration (r = 0.62),
and, similarly, between the CMAQ model output for ozone and the observed PM2.5
concentration (r = 0.69), indicate that the CMAQ output for PM2.5 might be useful
to predict ozone and conversely.
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FIG. 5. (a) Observed PM2.5 on June 25, 2002; (b) predicted PM2.5 as obtained from CMAQ on

June 25, 2002; (c) predicted PM2.5 as obtained via kriging for June 25, 2002; (d) predicted PM2.5
as obtained from the bivariate downscaler model for June 25, 2002.

The type of calibration implied by the pairwise scatterplots mentioned above is
constant across the entire spatial domain S in consideration. Empirical evidence
suggests instead that the error and the bias of the numerical model output might
not be constant in space; rather, they vary from site to site. Figure 6 presents spatial
maps of the estimates of the intercept and of the regression coefficients of CMAQ
ozone and CMAQ PM2.5 at each of the sites used to fit our bivariate downscaler
model. These estimates have been obtained by regressing at each site s, respec-
tively, the normalized square root of the observed ozone and the normalized log of
the observed PM2:5 concentration at s across time on the corresponing normalized
log of the observed PM2.5 concentration at s across time on the corresponding nor-
malized CMAQ model output for ozone and PM2.5, both taken on the appropriate
scale (square root for ozone, log for PM2.5). As the plots indicate, there is spatial
variability in the estimates of these coefficients with differential variability across
the estimates. In particular, we see less spatial variability in the estimates obtained
for the observed log PM2.5 concentration. Also, there is a difference between the
two pollutants in the significance of the estimates of the coefficients: while for
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FIG. 6. Spatial maps of the estimates of the coefficients of the linear regressions of the square root

of observed concentration of ozone [panels (a), (c) and (e)] and of the logarithm of the observed

concentration of PM2.5 [panels (b), (d) and (f)] on the square root of the CMAQ predicted concen-

tration of ozone and on the log of the CMAQ predicted concentration of PM2.5: (a)–(b) intercept

term; (c)–(d) coefficient of the CMAQ model output for ozone; (e)–(f) coefficient of the CMAQ model

output for PM2.5. In all panels, the linear regression has been carried out between the normalized

response and the normalized covariates.

ozone, the estimates of the coefficient of CMAQ ozone are all significant, and
about 60% of the estimates of the intercept are significant, in the regression for
PM2.5, only 21% of the intercepts are significantly different from zero, and about
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88% of the estimates of the coefficient of CMAQ PM2.5 are significantly different
from zero.

3. Modeling. Here we present the model underlying our downscaling tech-
nique. We first briefly review the univariate downscaler, presented in Berrocal,
Gelfand and Holland (2010a), then we extend it to the bivariate setting. In doing
so, we first present the general bivariate downscaler in a purely spatial setting, then
we examine extensions to accommodate data collected over time.

3.1. Univariate downscaler. Let Y(s) be the observed data at s and let x(B)

be the numerical model output at grid cell B . Then, x(B) is interpreted as the
average level of the variable under consideration over B . The spatial downscaler
addresses the difference in spatial resolution between the observational data and
the numerical model output, that is, the “change of support” problem [Cressie
(1993); Banerjee, Carlin and Gelfand (2004)], by associating to each point s the
grid cell B in which s lies. Then, it relates the observational data and the numerical
model output as follows:

Y(s) = β̃0(s) + β̃1(s)x(B) + ε(s), ε(s)
i.i.d.∼ N(0, τ 2),(1)

where

β̃0(s) = β0 + β0(s),
(2)

β̃1(s) = β1 + β1(s).

In (2), β0 and β1 denote, respectively, the overall additive and multiplicative bias
of the numerical model, and β0(s) and β1(s) are local adjustments to the overall
bias terms. Finally, ε(s) is a white noise process with nugget variance τ 2. Ev-
idently, a constant-mean downscaler is a special case of (2) obtained when the
local adjustments, β0(s) and β1(s), are set to zero.

Anticipating association between intercept and slope, at the second hierarchi-
cal level of the model, we set the two spatially varying coefficients β0(s) and
β1(s) to be a bivariate correlated mean-zero Gaussian process. Using the method
of coregionalization [Wackernagel (2003); Schmidt and Gelfand (2003); Gelfand
et al. (2004)], we assume that there exist two latent mean-zero, unit-variance in-
dependent Gaussian processes w0(s) and w1(s) such that Cov(wj (s),wj (s

′)) =
exp(−φj‖s − s′‖), where, for j = 0,1, φj is the spatial decay parameter of the
Gaussian process wj (s), ‖s− s′‖ is the great-circle distance between s and s′,1 and

(
β0(s)

β1(s)

)
= A

(
w0(s)

w1(s)

)
.(3)

1When considering large spatial domains, it is preferable to use three-dimensional Euclidean dis-
tance as an argument for the exponential covariance function rather than great-circle distance, which
might yield a covariance matrix which is not positive definite. For the domain we study, the two
metrics almost coincide and yield very similar results.
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The coregionalization matrix A in (3) determines the correlation between the
two spatially varying coefficients β0(s) and β1(s) and can be assumed, without
loss of generality, to be lower-triangular. Note that T = AA′ is the constant local
covariance matrix. The specification of the model is then completed with the priors
for: the overall bias terms β0 and β1, the nugget variance τ 2, the three nonnull
elements of the coregionalization matrix A, and the decay parameters φ0 and φ1.
Other choices for obtaining dependent Gaussian processes could be entertained,
including moving averages [VerHoef and Barry (1998)], convolution of covariance
functions [Majumdar and Gelfand (2007)], and particular parametric choices. In
the last case, some possibilities include the cross-covariance functions introduced
by Apanasovich and Genton (2010) and Gneiting, Kleiber and Schlather (2009).

3.2. The bivariate downscaler: Static version. Turning to the bivariate case,
we describe the model in terms of square root ozone and log PM2.5 concentra-
tions, recognizing that the model could be applied to any suitable pair of point
referenced variables. Let Y1(s) and Y2(s) denote, respectively, the square root and
the logarithm of the observed ozone and PM2.5 concentration at s, and let x1(B)

and x2(B) indicate, respectively, the square root and the logarithm of the numeri-
cal model output for ozone and PM2.5 at grid cell B . Then, Y(s) = (Y1(s), Y2(s)) is
the bivariate random vector with the observed concentrations for the two pollutants
at s, while x(B) = (x1(B), x2(B)) is the bivariate vector with the two numerical
model outputs.

Building upon (1), our bivariate downscaler model relates the monitoring data
at s and the numerical model outputs at grid cell B , with s lying in B , as follows:

Y1(s) = β̃10(s) + β̃11(s)x1(B) + β̃12(s)x2(B) + ε1(s),
(4)

Y2(s) = β̃20(s) + β̃21(s)x1(B) + β̃22(s)x2(B) + ε2(s),

where ε1(s) and ε2(s) are two independent white noise processes with nugget vari-
ances, respectively, τ 2

1 and τ 2
2 .

As in the univariate case, we adopt a random effect notation, decomposing each
of the βij (s), i = 1,2, j = 0,1,2, into the sum of an overall term and a local
adjustment. That is,

β̃ij (s) = βij + βij (s).(5)

The six-dimensional process (βij (s))i=1,2;j=0,1,2 is in turn modeled as a six-
dimensional mean-zero correlated Gaussian process, again using the method of
coregionalization. Therefore, we express each of the spatially varying coeffi-
cients βij (s) as a linear combination of mean-zero unit-variance latent indepen-
dent Gaussian processes, each equipped with an exponential covariance structure.
More specifically, assuming, without loss of generality, that the coregionalization
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matrix A is lower triangular, we have that
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

β10(s)

β11(s)

β12(s)

β20(s)

β21(s)

β22(s)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= A

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

w1(s)

w2(s)

w3(s)

w4(s)

w5(s)

w6(s)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,(6)

where, for each k = 1, . . . ,6, Cov(wk(s),wk(s
′)) = exp(−φk‖s − s′‖), with φk de-

cay parameter for wk(s). As in the univariate case, the coregionalization matrix A

determines, through T = AA′, the correlation between the six spatially varying
coefficients βij (s). Additionally, as a consequence of (4), A induces a correlation
structure on the bivariate random vector Y(s), that is,

�Y (s),Y (s′) = [I2 ⊗ (1x1(B)x2(B))′] · A�wA′ · [I2 ⊗ (1x1(B
′)x2(B

′))],(7)

where B and B ′ are grid cells containing, respectively, s and s′, I2 is the identity
matrix of order 2, and �w is a 6×6 diagonal matrix with ith element exp(−φi‖s−
s′‖), i = 1, . . . ,6.

Our bivariate downscaler model, though simple, is general and flexible. The
specification of the bias of the numerical model by means of spatially varying
coefficients recognizes that calibration under the numerical model should be site-
specific. Again, as in the univariate case, a constant-mean bivariate downscaler can
be obtained as a special case. Moreover, permutation of the entries in the β(s) vec-
tor does not affect the prior. The joint model still presents a 6 × 6 local covariance
matrix modeled through its Cholesky decomposition.

Simplified versions of the general bivariate downscaler can be obtained by set-
ting entries in the coregionalization matrix A equal to zero.2 For example, if the set
of nonnull entries in the A matrix is given by {A11,A21,A22,A44,A64,A66} and
we assume that β12 ≡ 0 and β21 ≡ 0, then our bivariate downscaler reduces to two
independent univariate downscalers on ozone and PM2.5, respectively. This form
of A implies that the spatially varying coefficients are correlated within pollutants
but not across pollutants.

A simpler version of the bivariate downscaler that requires only three nonnull
entries in the coregionalization matrix A but still induces a correlation among
the two components Y1(s) and Y2(s) of Y(s) is the model that assumes that
only the local intercept adjustments, β10(s) and β20(s), are nonnull and corre-
lated. In this case, the coregionalization matrix A has only three nonnull entries,
{A11,A41,A44}, and the covariance between the square root of the observed ozone

2In principle, we could include all 21 Aij ’s in the model and let the data suggest which are signifi-
cant. Instead, we have chosen to do model comparison between several models, each having plausible
interpretations.
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concentration at s and the logarithm of the observed PM2.5 concentration at s′ re-
duces simply to

Cov(Y1(s), Y2(s
′)) = A11 · A41 exp(−φ1‖s − s′‖).(8)

A simple extension to this model can be achieved by maintaining the same cor-
relation structure for the bivariate random vector Y(s), that is, by assuming again
that A41 is the only nonnull off-diagonal element of the coregionalization ma-
trix A, but by postulating that the local adjustments to the coefficients of the two
numerical model outputs, β11(s), β12(s), β21(s) and β22(s), are nonnull indepen-
dent Gaussian processes with variances equal, respectively, to A2

22, A2
33, A2

55 and
A2

66. Then, the coregionalization matrix A corresponding to this model has seven
nonnull entries: A11, A22, A33, A41, A44, A55 and A66.

An extension of this last model that still involves fewer parameters than the
general formulation for the bivariate downscaler (13 versus 21) is the model which
assumes that only local adjustments of the form β1j (s) and β2j (s), for j = 0,1,2,
are correlated across pollutants, while all the βij (s)’s specific to the same pollutant
are correlated. Such a model specification corresponds to the following coregion-
alization matrix:

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

A11 0 0 0 0 0
A21 A22 0 0 0 0
A31 0 A33 0 0 0
A41 0 0 A44 0 0

0 A52 0 A54 A55 0
0 0 A63 A64 0 A66

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.(9)

Other simplifications of the bivariate downscaler general model can be envisioned.
The specification of our Bayesian hierarchical bivariate downscaler model is

completed with priors on the parameters. We adopt an inverse gamma with large
variance for the nugget variances, τ 2

1 and τ 2
2 ; independent vague normals for the

overall regression coefficients βij , i = 1,2, j = 0,1,2; lognormals with vague
standard deviations for the diagonal entries of the coregionalization matrix A; and
vague normals for the off-diagonal elements of A. Details on handling the decay
parameters φk , k = 1, . . . ,6, are provided in Section 4.1.

3.3. Space–time bivariate downscaler. We now extend our general bivari-
ate downscaler to accommodate data that have been collected over time. Let
t = 1, . . . , T denote the times at which we have observations and numerical model
outputs, and let Y1(s, t) and Y2(s, t) denote, respectively, the square root and the
logarithm of the observed ozone and PM2.5 concentration at site s on day t . In an
analogous way, let x1(B, t) and x2(B, t) indicate, respectively, the square root and
the logarithm of the CMAQ output for ozone and PM2.5 on day t over the 12-km
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grid cell B . Then, if s lies in grid cell B , the model for our bivariate downscaler
becomes

Y1(s, t) = β̃10(s, t) + β̃11(s, t)x1(B, t) + β̃12(s, t)x2(B, t) + ε1(s, t),
(10)

Y2(s, t) = β̃20(s, t) + β̃21(s, t)x1(B, t) + β̃22(s, t)x2(B, t) + ε2(s, t),

where ε1(s, t) and ε2(s, t) are two white noise processes that follow independently
a N(0, τ 2

1 ) and a N(0, τ 2
2 ) distribution.

As in the spatial setting, for each i = 1,2 and j = 0,1,2, we write

β̃ij (s, t) = βij,t + βij (s, t),(11)

where, for each t = 1, . . . , T , βij (s, t) are correlated Gaussian processes.
Following Berrocal, Gelfand and Holland (2010a), we can model the tem-

poral dependence in the components of (11) in several ways. For example, for
the βij,t ’s, we can assume that they are either independent across time, that is,

βij,t
ind∼ N(μij , σ

2
ij ), or, alternatively, that they evolve dynamically in time [West

and Harrison (1999)], that is,

βij,t = ρijβij,t−1 + ηij,t , ηij,t
ind∼ N(0, ξ2

ij ), i = 1,2; j = 0,1,2,(12)

and βij,0 ∼ N(μij,0, σ
2
ij,0).

Similar time-dependence can be imposed on the Gaussian processes βij (s, t).
We can assume that the correlated Gaussian processes βij (s, t) are of the form

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

β10(s, t)

β11(s, t)

β12(s, t)

β20(s, t)

β21(s, t)

β22(s, t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= A

⎛
⎜⎜⎜⎜⎜⎜⎝

w1(s, t)

w2(s, t)

w3(s, t)

w4(s, t)

w5(s, t)

w6(s, t)

⎞
⎟⎟⎟⎟⎟⎟⎠

(13)

with A still a coregionalization matrix and with the underlying Gaussian processes,
wk(s, t), nested within time. Then, at each t = 1, . . . , T , the wk(s, t) are indepen-
dent replicates of mean-zero unit-variance Gaussian processes with exponential
correlation and decay parameters φk,t that can be taken to be either constant in
time or independent across time.

In the second case, we can model the local adjustments, βij (s, t), to evolve
dynamically in time. As in Gelfand, Banerjee and Gamerman (2005), for each
i = 1,2 and j = 0,1,2, we assume that

βij (s, t) = γijβij (s, t − 1) + νij (s, t),(14)

where the innovations νij (s, t) are correlated Gaussian processes. In other words,
in this second case, the coregionalization (13) is specified on the νij (s, t), rather
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than on the βij (s, t), but it still employs the underlying Gaussian processes
wk(s, t), which are defined as above. This dynamic model for the βij (s, t) is
completed by specifying as initial conditions that βij (s,0) = 0 for i = 1,2 and
j = 0,1,2. In both cases we can be more general and assume that the coregion-
alization matrix in (13) is indexed by time, with entries independent across time.
Furthermore, if t is on a continuous domain, then the wk(s, t) can be independent
space–time processes.

The two different time-dependence structures for the overall regression coeffi-
cients, βij,t , and for their local adjustments, βij (s, t), can be combined together
in four ways, yielding four models that correspond to different assumptions on
the way the overall and local performance and calibration of the numerical model
changes over time.

3.4. The general multivariate downscaler. Extension to a multivariate down-
scaler given observational data and numerical model outputs for p random vari-
ables is evident. As in the bivariate case, we start with the static formulation of the
model and then we extend it to the spatio-temporal setting.

Let Yi(s), i = 1, . . . , p, be the observed data for the ith variable at a site s in the
spatial domain S and let xi(B), i = 1, . . . , p, be the numerical model output for
the ith variable over grid cell B . Then, again we associate to each site s the grid
cell B in which s lies and we relate the observational data and the numerical model
output as follows:

Yi(s) = β̃i0(s) +
p∑

j=1

β̃ij (s)xj (B) + εi(s), εi(s)
i.i.d.∼ N(0, τ 2

i ),(15)

for i = 1, . . . , p.
We decompose each of the p · (p + 1) terms β̃ij (s), i = 1, . . . , p, j =

0,1, . . . , p, in the sum of an overall term and a local adjustment: β̃ij (s) = βij +
βij (s), and we model the βij (s)’s as correlated mean-zero Gaussian processes with
exponential covariance structures using again the method of coregionalization. In
the general p-dimensional multivariate downscaler, the coregionalization matrix A

is a p(p + 1) × p(p + 1) matrix. Specifications of (15) similar to the above can
be considered by simply setting to zero entries of the A matrix, thus inducing
simplifications on both the correlation structure of the multivariate random vector
Y = {(Yi(s))i=1,...,p : s ∈ S} and on the covariance structure of the single Yi(s),
i = 1, . . . , p.

To complete the specification of the model, we place standard priors on the
model parameters: thus, we specify p(p + 1) vague normals for the overall regres-
sion coefficients βij ; p inverse gammas with large variances for the nugget vari-
ances τ 2

i , i = 1, . . . , p; lognormals with large variances for the diagonal entries
Akk , k = 1, . . . , p(p + 1), of the coregionalization matrix A; and vague normals
for the off-diagonal entries of A.
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If the data on the p random variables have been collected not only over space,
but also over time, then the general multivariate downscaler would be extended
to a spatio-temporal setting in an obvious way. Let Yi(s, t), i = 1, . . . , p, be the
observed data for the ith random variable at site s at time t , t = 1, . . . , T , and let
xi(B, t) be the model output for the ith variable over grid cell B at time t . Then,
for i = 1, . . . , p, we postulate the following relationship between observational
data and numerical model output:

Yi(s, t) = β̃i0(s, t) +
p∑

j=1

β̃ij (s, t)xj (B, t)

(16)
+ εi(s, t), εi(s, t)

i.i.d.∼ N(0, τ 2
i ),

where s lies in grid cell B .
For each i = 1, . . . , p and j = 0,1, . . . , p, we write: β̃ij (s, t) = βij,t +βij (s, t),

and we model the temporal structure in the βij,t and in the βij (s, t), following what
we have presented in Section 3.3 for the bivariate downscaler. Thus, we assume
that the βij,t ’s are either nested within time or dynamic in time, and, similarly,
we postulate that the βij (s, t) are either independent replicates over time or are
dynamic in time.

4. Model fitting.

4.1. Priors. We have already mentioned briefly in Sections 3.2 and 3.4 the
form of the prior distributions for the parameters of the bivariate and multivariate
downscaler both in their static and spatio-temporal formulations. Here, we turn to
the spatial decay parameters φk of the latent Gaussian processes wk(s) used in the
coregionalization. Discrete uniform priors facilitate model fitting. Previous experi-
ence with such priors has always resulted in posterior distributions placing highest
probability on a value which is, essentially, the Restricted Maximum Likelihood
[REML; Patterson and Thompson (1971); Harville (1977)] estimate. Hence, in
what follows, we propose to keep the spatial decay parameters fixed and equal to
values that are determined by a sensitivity analysis.

More specifically, consider the simplified bivariate downscaler that uses only
the two latent Gaussian processes w1(s) and w4(s) and is obtained when the core-
gionalization matrix A has only three nonnull entries, A11,A41 and A44. The decay
parameters φ1 and φ4 determine the way the spatial correlation decays with dis-
tance in w1(s) and w4(s), respectively, and, by consequence, in Y1(s) and Y2(s).
In fact, the covariance structure of Y2(s) induced by such simplified version of the
bivariate downscaler is given by the sum of two exponential covariance functions
with decay parameters, respectively, equal to φ1 and φ4, and a diagonal matrix
with entries all equal to the nugget variance τ 2

2 .
To obtain a rough estimate of the magnitude of the decay parameters φ1 and φ4,

we have proceeded as follows. We have considered the monitoring data for the
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square root of ozone and the logarithm of PM2.5 for a given day t . We have
modeled the monitoring data for both variables as Gaussian processes with an
unknown mean, respectively, μY1,t

and μY2,t
, and with an exponential covariance

function plus nugget effect, with decay parameters φY1,t
and φY2,t

, and nugget vari-
ance, τ 2

Y1,t
and τ 2

Y2,t
. We have estimated the parameters via Restricted Maximum

Likelihood [REML; Patterson and Thompson (1971); Harville (1977)] as imple-
mented in the geoR package of R. We have repeated this operation for each day in
the period June 1–September 30, 2002 and have obtained daily estimates of φY1,t

and φY2,t
. Since histograms of those daily estimates exhibited long right tails, we

have summarized those distributions by taking the median of the daily estimates,
which yielded, respectively, 0.0016 and 0.00125, corresponding to ranges of, re-
spectively, 1875 and 2400 km. We have then performed a sensitivity analysis to de-
termine how the predictive performance of a downscaler model is affected by the
magnitude of the decay parameter. Therefore, keeping the decay parameters φ1

and φ4 fixed and equal to the estimated medians of φY1,t
and φY2,t

, we have fit
the spatio-temporal version of the bivariate downscaler that models the overall
terms βij,t , i = 1,2, j = 0,1,2, and the local adjustments to the overall inter-
cepts, βi0(s, t), i = 1,2, as independent in time (see the Supplemental material
[Berrocal, Gelfand and Holland (2010b)]). For each day, we have predicted lev-
els of ozone and PM2.5 concentration at the validation sites s0 by sampling from
the posterior predictive distributions, f (Y(s0)|{Y(s)}, {x(B)}) and subsequently
backtransforming the prediction to the original scale. We have then compared the
predictions with the observations by computing the predictive mean square error
(PMSE), predictive mean absolute error (PMAE), empirical coverage of the 95%
predictive interval and width of the 95% predictive interval. More specifically, de-
noting with Y ⋆(s, t) the backtransformed data (recall we used the square root and
the logarithm transform on ozone and PM2.5, respectively), we have computed the
PMSE as follows:

PMSE =
1

nv

T∑

t=1

V∑

r=1

(
Ŷ ⋆(sr , t) − Y ⋆(sr , t)

)2 · I(Y ⋆(sr , t)),(17)

where nv denotes the total number of observations in the validation dataset (6530
for ozone or 2559 for PM2.5 as noted in Section 2), sr is the r th site in the vali-
dation set containing a total of V sites, Ŷ ⋆(sr , t) denotes the posterior mean of the
predictive distribution at site sr at time t on the original scale, and I(Y ⋆(sr , t)) is
equal to 1 if Y ⋆(sr , t) is observed and 0 otherwise. An analogous definition holds
for the PMAE, with Ŷ ⋆(sr , t) now referring to the posterior median of the predic-
tive distributions, again on the original scale. We have generated predictions and
computed the summary statistics mentioned above five times, each time keeping
the decay parameters fixed and setting them equal, respectively, to the estimated
medians of φY1,t

and φY2,t
, multiplied by 10 and 100, and divided by 10 and 100.
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To compare the performance of the bivariate downscaler to that of a univariate
downscaler, we have performed the same sensitivity analysis also for the univari-
ate downscaler. Thus, keeping the decay parameters for ozone and PM2.5 fixed
and equal to the values considered for the bivariate downscaler, we have fit two
spatio-temporal univariate independent downscalers for ozone and particulate mat-
ter, where the only nonnull local adjustment term was the adjustment to the overall
intercept, and where both the overall regression terms and the spatially varying
coefficients were nested within time. Then, as in the bivariate downscaler case, we
have predicted ozone and PM2.5 concentration at the validation sites and we have
assessed the performance of the predictions using the same summary statistics
mentioned above.

We have carried out a similar sensitivity analysis also for ordinary kriging
[Cressie (1993); Chilès and Delfiner (1999)]. Therefore, for both ozone and PM2.5,
for each day, using the same range of values for the decay parameters used in the
experiments with the univariate and bivariate downscalers, we have kriged the ob-
served data, on the transformed scale, to the validation sites, and we have sub-
sequently backtransformed the predictions. Finally, we have compared the pre-
dictions with the observations using the same summary statistics that we have
employed for both downscalers.

Tables 1 and 2 report, respectively, the Predictive Mean Square Error (PMSE),
Predictive Mean Absolute Error (PMAE), the empirical coverage and the width of
the nominal 95% predictive interval for ozone and PM2.5 for the two space–time
downscalers and for ordinary kriging. In both tables, the results corresponding to

TABLE 1
Predictive Mean Square Error, Predictive Mean Absolute Error, empirical coverage and width of the

95% predictive interval for O3 for different values of the decay parameter under different models

Decay parameter

Model Summary statistic 0.16e–4 0.16e–3 0.16e–2 0.16e–1 0.16

PMSE 55.54 55.94 55.92 58.13 95.17
Independent PMAE 5.54 5.56 5.56 5.68 7.39
downscaler Emp. cov. 93.2% 92.0% 92.9% 91.7% 92.9%

Width 27.33 26.30 27.34 27.19 35.78

PMSE 53.21 51.64 52.78 55.24 91.42
Bivariate PMAE 5.45 5.36 5.40 5.54 7.27
downscaler Emp. cov. 92.6% 92.3% 93.0% 92.7% 93.1%

Width 26.67 26.25 26.79 27.77 34.67

PMSE 144.58 83.28 57.16 77.19 218.03
Ordinary PMAE 9.31 6.89 5.62 6.51 11.52
kriging Emp. cov. 59.5% 76.6% 88.2% 92.8% 78.0%

Width 19.10 19.73 22.26 30.26 34.69
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TABLE 2
Predictive Mean Square Error, Predictive Mean Absolute Error, empirical coverage and width of the

95% predictive interval for PM2.5 for different values of the decay parameter under different models

Decay parameter

Model Summary statistic 0.125e–4 0.125e–3 0.125e–2 0.125e–1 0.125

PMSE 13.46 13.27 12.95 16.58 36.43
Independent PMAE 2.43 2.42 2.41 2.65 3.83
downscaler Emp. cov. 93.0% 91.8% 92.7% 91.6% 92.7%

Width 15.01 14.29 14.79 15.05 20.17

PMSE 11.98 11.78 11.69 14.43 32.55
Bivariate PMAE 2.33 2.31 2.29 2.49 3.55
downscaler Emp. cov. 92.7% 93.6% 94.0% 93.2% 93.5%

Width 14.02 14.33 14.53 14.87 18.63

PMSE 43.89 21.99 16.19 25.65 64.17
PMAE 4.37 3.06 2.54 3.11 5.37

Kriging Emp. cov. 52.2% 72.5% 89.7% 94.8% 89.9%
Width 7.32 8.89 14.06 22.61 25.73

predictions obtained when the models have been fitted using values of the decay
parameters equal to the medians of the daily estimates of φY1,t

and φY2,t
are re-

ported in the middle column. From both tables, it is clear that when the decay
parameter is one and, especially, two orders of magnitude larger, the quality of
the predictions obtained using both downscalers deteriorates noticeably in terms
of PMSE and PMAE. Also, the predictive intervals are wider in this case, an in-
dication that there is increased variability in the predictions. Misspecifying the
magnitude of the decay parameters on the small side affects the quality of the pre-
dictions less noticeably. So, altogether, the sensitivity analysis has shown that both
the univariate and the bivariate downscaler and ordinary kriging yield predictions
that have overall best validation statistics when the decay parameters are equal to
the median of the daily estimates of φY1,t

and φY2,t
and so, in the sequel, we fix

them at these values.

4.2. Handling misalignment. As noted in Section 2, not all sites reporting
ozone concentration measure PM2.5 and vice versa. This creates a spatial mis-
alignment in the data that we handle through the latent Gaussian processes wk(s)

involved in the coregionalization, after having appropriately permuted and parti-
tioned the data vector. Here, we illustrate how to handle the spatial misalignment
in the static setting. Extension to the spatio-temporal case is straightforward.

Let St be the set of nt sites reporting measurements of ozone and/or PM2.5
concentration on day t . We can decompose St as the union of three disjoint sets,
SBoth,t , SO,t and SPM,t :

St = SBoth,t ∪ SO,t ∪ SPM,t ,(18)
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where the first set includes all sites s ∈ S in which both ozone and PM2.5 have
been measured on day t , the second contains all the sites in which only ozone was
measured on day t , and the last includes all sites s where only PM2.5 has been
measured on day t .

Following the decomposition in (18), we reorder and partition the ran-
dom vectors Y = (Y1(s), Y2(s))s∈St and wk = (wk(s))s∈St in the following
way: Y = (YBoth,YO,YPM) and wk = (wk,Both,wk,O,wk,PM) where YBoth =
(Y1(s), Y2(s))s∈SBoth,t

and analogous definitions hold for YO, YPM, wk,Both, wk,O
and wk,PM.

Then it is clear that both components Y1,Both = (Y1(s))s∈SBoth,t
and Y2,Both =

(Y2(s))s∈SBoth,t
have nonmissing values and both contribute to the log-likelihood,

while for s ∈ SO,t and s ∈ SPM,t only one component, respectively, Y1,O and
Y2,PM, has nonmissing values and contributes to the log-likelihood.

The latent Gaussian processes wk(s) are defined on the entire spatial do-
main S . To obtain samples from the posterior distribution of wk(s), within each
MCMC iteration, we draw samples from the full conditionals by proceeding in
the following way. If  denotes the collection of all model parameters [thus,
 = (τ 2

1 , τ 2
2 , {Akl}k,l=1,...,6;l≤k, {βij }i=1,2;j=0,1,2)], for each k = 1, . . . ,6, we:

(i) sample wk,Both from the full conditional π(wk,Both|wk,O,wk,PM,YBoth,);
(ii) sample wk,O from the full conditional π(wk,O|wk,Both,wk,PM,Y1,O,);

(iii) sample wk,PM from the full conditional π(wk,PM|wk,Both,wk,O,Y2,PM,);
(iv) for each s ∈ S \ St , sample wk(s) from the conditional distribution π(wk(s)|

wk,Both,wk,O,wk,PM,).

By repeating steps (i)–(iv) within each MCMC iteration, we obtain samples
from the posterior distribution of wk(s) for s ∈ S , thus solving the problem of
spatial misalignment between ozone and PM2.5.

4.3. Model selection. Using results from an analysis on the predictive per-
formance of the univariate spatio-temporal downscaler for ozone concentration
[Berrocal, Gelfand and Holland (2010a)], we consider only the spatio-temporal
versions of the bivariate downscaler with time-varying parameters independent
across time. More specifically, we have fitted the spatio-temporal versions of the
four bivariate downscalers that we have presented in Section 3.2, that is:

(i) the bivariate downscaler equivalent to two independent univariate down-
scalers, obtained when the coregionalization matrix A has as nonnull entries
only {A11,A21,A22,A44,A64,A66};

(ii) the bivariate downscaler with only {A11,A41,A44} as nonnull entries in the
coregionalization matrix A;

(iii) the bivariate downscaler with {A11,A22,A33,A41,A44,A55,A66} as nonnull
entries in the coregionalization matrix A; and

(iv) the bivariate downscaler with coregionalization matrix A given by (9).
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For each of these models, we have examined their out-of-sample predictive per-
formance, by predicting daily concentrations of ozone and PM2.5 at the 65 vali-
dation sites described in Section 2 and shown in Figure 1. These predictions are
compared with the observed ozone and PM2.5 levels at the validation sites dur-
ing the period June 1–September 30, 2002. Note that, for each day, predictions
of ozone and PM2.5 at a validation site s0 are obtained by sampling from the
posterior predictive distribution f (Y(s0, t)|{Y(s, t)}, {x(B, t)}) and then by sub-
sequently transforming them back to the original scale.

To quantify the predictive performance of each bivariate downscaler we have
utilized the same validation statistics used in our sensitivity analysis presented in
Section 4.1. We also employ two proper scoring rules: (i) the Continuous Ranked
Probability Score [CRPS; Gneiting and Raftery (2007)] defined as

CRPS(F, y) =
∫ (

F(z) − 1{z≥y}
)2

dz,

where F is the cumulative predictive distribution function, y is the observation
that materializes, 1 is the Heaviside function, that is equal to 1 if z is greater than y

and 0 otherwise, and (ii) the Interval Score [Gneiting and Raftery (2007)], defined
for a (1 − α) · 100% predictive interval with lower bound l and upper bound u as

IS(l;u;y) =
[
(u − l) +

2

α
(l − y)1{y<l} +

2

α
(u − y)1{u<y}

]
,

where y denotes again the observed value.
So, for each model, we have computed the Predictive Mean Square Error

(PMSE), Predictive Mean Absolute Error (PMAE), the empirical coverage of the
95% predictive interval and the width of the 95% predictive interval to obtain an
indication not only of the average bias and errors in the predictions, but also of
the level of uncertainty in the predictions. Additionally, the CRPS, being a strictly
proper scoring rule, provides a simultaneous assessment of the calibration and
sharpness of the posterior predictive distribution whereas the Interval Score re-
wards predictive distributions with narrower predictive intervals while imposing a
penalty for observations lying outside the predictive interval.

Finally, to determine the improvement in the predictions of ozone and PM2.5
obtained from using our downscaling approach with respect to nonmodel-based
techniques, we have compared the downscaler with ordinary kriging and cokrig-
ing [Cressie (1993); Chilès and Delfiner (1999)]. For kriging, using as decay para-
meters for ozone and PM2.5 concentration, respectively, 0.0016 and 0.00125, for
each day, we have kriged, separately, the observed daily concentrations of ozone
and PM2.5 at the training sites to the validation sites, working on the transformed
scale and then backtransforming the predictions. For cokriging, we have exploited
the information contained in the copollutant and, for each day, we have cokriged
the observed daily concentrations of ozone, first, and PM2.5, afterward, to the val-
idation sites. Note that in performing cokriging, we had to define, not only a co-
variance function for both ozone and PM2.5, but also a cross-covariance function.
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For both pollutants, as covariance function we used again the exponential covari-
ance function with decay parameters, respectively, equal to 0.0016 and 0.00125.
For cross-covariance function, instead, we used the cross-covariance function in-
duced by the second version of the bivariate downscaler listed above, explicitly
given in (8). The parameters for such cross-covariance function were set to be
equal to the posterior means of A11,A41 and A44 obtained from fitting the bi-
variate downscaler model in (ii). Finally, predictive intervals and uncertainty for
kriging and cokriging are based on usual formulas for the kriging and cokriging
variance [Chilès and Delfiner (1999)].

5. Data analysis. We first present validation results for the different models.
Since we did not find a significant improvement in the predictions of ozone and
PM2.5 obtained from versions (iii) and (iv) of the bivariate downscaler, we show
only results for versions (i) and (ii). To distinguish between the two, we will refer
to the first as the independent downscaler, while the second will be called the
bivariate downscaler. Comparing the performance of the two models allows us
to establish the gain in predictive performance that can be ascribed to explicitly
accounting for the correlation between the two pollutants.

From Section 4.3, for each of the models considered, we have computed the pre-
dictive mean square error, the predictive mean absolute error, the empirical cover-
age, the width of the 95% predictive intervals, the Continuous Ranked Probability
Score and the Interval Score, averaging across sites and days. In order to determine
whether distance from the closest monitoring sites has an effect on the quality of
the predictions, we have divided the validation sites into two groups: those that
have a distance from the closest monitoring training site of less than or equal to
40 km, and those that are more than 40 km away from the closest monitoring train-
ing site. For each of the two groups, consisting, respectively, of 13 and 52 sites, we
have computed the same validation statistics mentioned above.

Tables 3, 4 and 5 report all these summary statistics, respectively, for all the
validation sites, for the validation sites that are less than or equal to 40 km distant
from the closest monitoring training site, and for the validation sites that are more
than 40 km away from the closest monitoring training site.

From all tables, it is clear that the bivariate downscaler yields predictions of both
ozone and PM2.5 concentrations that are less biased than those obtained using the
univariate downscaler. Additionally, the bivariate downscaler has a lower average
CRPS score, indicating that its predictive distribution is sharper and better cali-
brated than the one corresponding to the univariate downscaler. In terms of width
and empirical coverage of the 95% predictive intervals, both downscalers perform
similarly and both have empirical coverage close to nominal. However, the com-
bined assessment of both properties, which is provided by the interval score, favors
again the bivariate downscaler over the univariate downscaler. A similar trend in
predictive performance can be observed for kriging and cokriging: exploiting the
correlation between ozone and particulate matter yields predictions that are less
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TABLE 3
Predictive Mean Square Error, Predictive Mean Absolute Error, empirical coverage and width of the

95% predictive interval, Continuous Ranked Probability Score and Interval Score for both

pollutants for the different models, kriging and cokriging at all the 65 validation sites

Independent Bivariate

Pollutant CMAQ downscaler downscaler Kriging Cokriging

PMSE 122.1 55.9 52.8 57.2 53.4
PMAE 8.5 5.6 5.4 5.6 5.4

Ozone Emp. cov. — 92.9% 93.0% 88.2% 94.3%
Width — 27.3 26.8 22.3 27.9
CRPS 8.5 4.0 3.9 4.1 5.2

Interval
score — 40.0 38.9 43.0 37.1

PMSE 63.8 13.0 11.7 16.2 13.9
PMAE 5.1 2.4 2.3 2.5 2.4

PM2.5 Emp. cov. — 92.7% 94.0% 89.7% 92.6%
Width — 14.8 14.6 14.1 12.8
CRPS 5.1 1.8 1.7 1.9 2.3

Interval
score — 19.2 17.8 21.1 19.6

TABLE 4
Predictive Mean Square Error, Predictive Mean Absolute Error, empirical coverage and width of the

95% predictive interval, Continuous Ranked Probability Score and Interval Score for both

pollutants for the different models, kriging and cokriging at the 13 validation sites that are at no

more than 40 km of distance from the closest monitoring training site

Independent Bivariate

Pollutant CMAQ downscaler downscaler Kriging Cokriging

PMSE 124.4 57.4 54.1 57.9 54.2
PMAE 8.5 5.6 5.4 5.6 5.5

Ozone Emp. cov. — 92.7% 92.7% 88.4% 94.3%
Width — 27.3 26.7 22.2 27.9
CRPS 8.5 4.1 4.0 4.1 5.2

Interval
score — 41.0 39.9 43.4 37.7

PMSE 67.9 13.3 12.1 16.9 14.5
PMAE 5.2 2.4 2.3 2.6 2.4

PM2.5 Emp. cov. — 92.8% 94.4% 89.9% 92.9%
Width — 13.8 13.4 12.1 12.9
CRPS 5.2 1.8 1.7 1.9 2.3

Interval
score — 19.9 18.3 22.0 18.8
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TABLE 5
Predictive Mean Square Error, Predictive Mean Absolute Error, empirical coverage and width of the

95% predictive interval, Continuous Ranked Probability Score and Interval Score for both

pollutants for the different models, kriging and cokriging at the 52 validation sites that are at more

than 40 km of distance from the closest monitoring training site

Independent Bivariate

Pollutant CMAQ downscaler downscaler Kriging Cokriging

PMSE 113.1 50.1 47.4 54.4 50.1
PMAE 8.2 5.3 5.2 5.6 5.3

Ozone Emp. cov. — 93.7% 94.3% 87.5% 94.5%
Width — 27.1 26.5 22.2 27.8
CRPS 8.2 3.9 3.8 4.1 5.1

Interval
score — 36.1 34.7 41.4 35.0

PMSE 48.5 11.6 10.0 13.5 11.4
PMAE 4.6 2.4 2.2 2.4 2.3

PM2.5 Emp. cov. — 92.3% 92.9% 88.8% 91.4%
Width — 13.1 12.8 11.6 12.3
CRPS 4.6 1.7 1.6 1.8 2.2

Interval
score — 16.6 15.7 17.6 15.6

biased than those obtained by not accounting for it. Additionally, kriging always
underestimates uncertainty in the predictions, producing predictive intervals that
are too narrow and, thus, do not have the nominal coverage. This is also reflected
in the CRPS and the Interval Score: kriging always has a lower CRPS score than
cokriging probably due to the smaller widths of the predictive intervals; in turn,
failure to achieve the nominal coverage is penalized in terms of Interval Score.

Comparing the bivariate downscaler with cokriging, we can see that the two
methods perform equally well in terms of Interval Score; however, the former
outperforms the latter in terms of PMSE, PMAE and CRPS for both ozone and
PM2.5. This follows from the fact that the bivariate downscaler not only models
the correlation between ozone and PM2.5 but also uses the information contained
in the numerical model output, while cokriging does not take advantage of this
additional information when predicting levels of ozone and PM at the validation
sites. In addition, the bivariate downscaler predicts levels of PM2.5 better than cok-
riging, likely because of the sampling frequency of PM2.5 which renders it rather
difficult to interpolate to the entire spatial domain, especially when the number
of sites with observations is fairly low. Note that validation of the out-of-sample
predictive performance of both downscalers and kriging/cokriging for PM2.5 oc-
curs mostly every three days due to the sampling frequency of PM2.5. In days with
fewer observations from monitoring sites, this can diminish predictive gain associ-
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ated with both downscalers relative to spatial interpolation techniques based solely
on monitoring data.

The separation of validation sites into two groups based on their distance to the
closest monitoring training site does not reveal a difference in terms of the predic-
tive performance of the various models. The bivariate downscaler still outperforms
all the other models. However, when considering sites that are less than 40 km from
the closest monitoring training site, the bivariate downscaler and cokriging predict
ozone concentration equally well. This is not true for particulate matter, nor it is
true when we consider validation sites that are more than 40 km away from the
closest monitoring training site. For this group of sites, for both ozone and PM2.5,
the predictions obtained using the bivariate downscaler are superior to the pre-
dictions obtained using any other method. Counterintuitively, for all methods, the
quality of the predictions is better at validation sites that are farther from the clos-
est monitoring training site than at validation sites that are closer to the monitoring
training site.

Our bivariate downscaler model, as well as the univariate version, can also be
used to generate predictive surfaces for both ozone and PM2.5 concentration. Fig-
ures 4 and 5 display, in panels (d), predictive surfaces of ozone and PM2.5 con-
centration for June 25, 2002 obtained using our bivariate downscaler model. Each
panel displays the posterior predictive mean of ozone and PM2.5 concentration ob-
tained by sampling from the posterior predictive distribution at each site s0 on the
CMAQ grid covering the study region. As a comparison, Figures 4 and 5 present
also, in panel (c), the predictive surfaces obtained by simply kriging the observed
concentrations of ozone and PM2.5 to the 10,504 CMAQ grid cells covering the
region. Finally, panels (a) and (b) show, respectively, the observed and the CMAQ
predicted concentrations for both pollutants.

As both figures show, the predictive surfaces obtained using kriging are very
smooth for both pollutants, while the surfaces obtained using our bivariate down-
scaler show more texture which is expected to provide improved prediction. In
particular, our bivariate downscaler method generates predictive surfaces that cor-
rect the CMAQ predictions for local bias, and display a gradient that reproduces
some of the features of the CMAQ surfaces while accounting for the spatial gra-
dient in the observations. For example, Figure 4(d) predicts lower level of ozone
than CMAQ in the South-Eastern corner of the map, while Figure 5(d) pushes up
the level of PM2.5 predicted by CMAQ in the same region.

In order to visually quantify the local biases of the CMAQ predicted concen-
trations of ozone and PM2.5 for June 25, 2002, Figure 7 displays spatial maps
of the posterior predictive means of β10(s) and β20(s). Since the bivariate down-
scaler model has been developed on the transformed scale, immediate conversion
of these maps into calibration for the numerical model is not possible. However,
they do display the spatial variability in the additive bias of the numerical model
output as well as identify areas where the numerical model either underpredicts or
overpredicts a pollutant concentration.
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FIG. 7. Posterior predictive mean of: (a) β10(s, t) for June 25, 2002; (b) β20(s, t) for June 25, 2002
as obtained from the bivariate downscaler model.

An additional feature of our downscalers is the possibility to upscale and pre-
dict the variable of interest at any spatial scale. To illustrate such capability for our
bivariate downscaler, we have divided our study region into three subregions: the
Mid-Atlantic (Virginia, West Virginia, Maryland, Delaware and Pennsylvania), the
Midwest (Kentucky, Ohio, Illinois, Indiana and Missouri), and the South (all the
remaining states contained in the study region). For each of these regions, we have
predicted the average ozone and PM2.5 concentration on June 25, 2002, by pre-
dicting on a grid of points using the posterior predictive distribution induced by
our bivariate downscaler model and by averaging the predictions over each of the
three regions. Those predictions were then used to consider contrasts that might be
of interest. Hence, Figure 8 presents plots of the posterior predictive distribution of
the contrast in average ozone and PM2.5 concentration, respectively, between the
Mid-Atlantic and the Midwest, Mid-Atlantic and the South and the Midwest and
the South for June 25, 2002. As Figure 8 shows, both the average ozone and PM2.5
concentrations are higher in the Mid-Atlantic region than in the Midwest and the
South on June 25, 2002, with the South having, on average, the lowest average
concentrations for both pollutants on the selected day. We could further push such
comparisons to look at averages or contrasts over time.

6. Summary. We have proposed a bivariate downscaler model that allows us
to scale down the outputs of a numerical model from grid level to point level. The
model is rather general and flexible and can easily be extended to a multivariate
downscaler model for p numerical model outputs. For the bivariate case, we have
examined several simplifications of the general bivariate downscaler model, each
inducing a different type of correlation structure among the two components of the
bivariate random vector. We have also shown how the model can be extended to
accommodate data collected over both space and time. Also, as a process model,
by suitable block averaging, inference can be scaled up to provide average expo-
sure over arbitrary regions. In addition, we have demonstrated the computational
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FIG. 8. Posterior predictive distribution for the difference in average ozone and PM2.5 concentra-

tion between Mid-Atlantic and Midwest, Mid-Atlantic and South and Midwest and South on June 25,
2002, as obtained using the bivariate downscaler.

advantages of scaling down, due to the relative sparsity of monitoring data com-
pared with model output data, and the computational feasibility for our models
with large space–time datasets. We acknowledge that the small decay parameters
(equivalently, large range parameters) relative to the size of our region suggest that
a linear variogram associated with a valid covariance function over a bounded re-
gion might be an alternative modeling path. In turn, this suggests the possibility of
an approach based entirely on contrasts, though, given that our interest is in spa-
tially varying regressions on the model output, it remains unclear how to proceed
if such a modeling choice was undertaken.

In our case study, we have applied the bivariate downscaler to downscale and
predict ozone and PM2.5 concentration during the summer months of year 2002;
however, it is clear that our model can be used for any pair of pollutants. For
example, it would be interesting to apply the bivariate downscaler model to predict
wet and dry sulfate deposition, embedding the bivariate downscaling approach in
the modeling context proposed by Sahu, Gelfand and Holland (2010). Another
potentially interesting analysis would be to work with O3 and CO.

There are two extensions we are currently exploring. First, in both the univariate
and the bivariate downscaler model, the numerical model output has been taken
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as data and we have not accounted for uncertainty in the predictions given by
the numerical model. Here, potential issues involve too much smoothing of the
CMAQ output, potential displacement of CMAQ grid cells, and errors in inputs
that drive CMAQ. Within our downscaling approach it is possible to characterize
the uncertainty in the numerical model output by adding another hierarchical level
to our framework. That is, we return to the issue in the Introduction where we now
require a stochastic model for the CMAQ output.

Second, we seek extension beyond Gaussian specifications. For instance, if we
were to study extreme fields for two pollutants from both monitoring data and
CMAQ, we would not use Gaussian models. Similarly, if we recorded two binary
variables at each location, resulting in a 2×2 table for the location, again, Gaussian
processes are not appropriate.

APPENDIX

A.1. Covariance and cross-covariance. Here we present explicit formulas
for the covariance and cross-covariance between Y1(s) and Y2(s) for the different
versions of the bivariate downscaler considered in Section 3.2.

For the bivariate downscaler with coregionalization matrix A with nonnull en-
tries, A11, A41, A44, the covariance between the square root of the observed ozone
concentration, Y1(s), and the logarithm of the observed PM2.5 concentration at s′

is given by (8). Furthermore, for this model:

Cov(Y1(s), Y1(s
′)) = A2

11 exp(−φ1‖s − s′‖) + τ 2
1 δs,s′,

Cov(Y2(s), Y2(s
′)) = A2

41 exp(−φ1‖s − s′‖) + A2
44 exp(−φ4‖s − s′‖) + τ 2

2 δs,s′,

where δs,s′ is equal to 1 if s ≡ s′ and equal to 0 otherwise.
For the bivariate downscaler with coregionalization matrix A with nonnull en-

tries, {A11,A22,A33,A41,A44,A55,A66}, the cross-covariance between Y1(s) and
Y2(s

′) is given by (8), while the expressions for the within pollutant covariances
are, respectively:

Cov(Y1(s), Y1(s
′))

= A2
11 exp(−φ1‖s − s′‖)

+
3∑

k=2

[
A2

kk · xk−1(B)xk−1(B
′) · exp(−φk‖s − s′‖)

]
+ τ 2

1 δs,s′,

Cov(Y2(s), Y2(s
′))

= A2
41 exp(−φ1‖s − s′‖) + A2

44 exp(−φ4‖s − s′‖)

+
6∑

k=5

[
A2

kk · x(k−4)(B)x(k−4)(B
′) · exp(−φk‖s − s′‖)

]
+ τ 2

2 δs,s′,
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with B and B ′ grid cell containing, respectively, s and s′.
Finally, for the bivariate downscaler model with coregionalization matrix A

given by (9), the covariance between the two components Y1(s) and Y2(s
′) of the

bivariate random vector Y(s) is given by

Cov(Y1(s), Y2(s
′))

= A11A41 · exp(−φ1‖s − s′‖)(19)

+
3∑

k=2

[
AkkA(k+3)k · xk−1(B)xk−1(B

′) · exp(−φk‖s − s′‖)
]
,

while the expressions for the inter-pollutant covariances are given, respectively, by

Cov(Y1(s), Y1(s
′))

= A11 exp(−φ1‖s − s′‖) ·
[
A11 + A21

(
x1(B) + x1(B

′)
)

+ A31
(
x2(B) + x2(B

′)
)]

+
3∑

k=2

[A2
kk · xk−1(B)xk−1(B

′) · exp(−φk‖s − s′‖)] + τ 2
1 δs,s′

and

Cov(Y2(s), Y2(s
′))

= A2
41 exp(−φ1‖s − s′‖)

+
3∑

k=2

[
A2

(k+3)kxk−1(B)xk−1(B
′) · exp(−φk‖s − s′‖)

]

+ A44 · exp(−φ4‖s − s′‖) ·
[
A44 + A54

(
x1(B) + x1(B

′)
)

+ A64
(
x2(B) + x2(B

′)
)]

+
6∑

k=5

A2
kk · xk−4(B)xk−4(B

′) · exp(−φk‖s − s′‖) + τ 2
2 δs,s′ .

Disclaimer. The US Environmental Protection Agency through its Office of
Research and Development collaborated in part in the research described here.
Although it has been reviewed by the Agency and approved for publication, this
research does not necessarily reflect the Agency’s policies or views.

SUPPLEMENTARY MATERIAL

Fitting details (DOI: 10.1214/10-AOAS351SUPP; .pdf). This section provides
details for fitting the bivariate downscaler model. In the section we will first illus-
trate how to fit the general bivariate downscaler model in its static version, and then

http://dx.doi.org/10.1214/10-AOAS351SUPP
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we will discuss how to adapt the fitting model procedures from the static setting to
the space-time setting.
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