
A Black-box Approach to Understanding

Concurrency in DaCapo

Tomas Kalibera Matthew Mole Richard Jones Jan Vitek

University of Kent, Canterbury Purdue University

Abstract

Increasing levels of hardware parallelism are one of the main

challenges for programmers and implementers of managed

runtimes. Any concurrency or scalability improvements

must be evaluated experimentally. However, application

benchmarks available today may not reflect the highly con-

current applications we anticipate in the future. They may

also behave in ways that VM developers do not expect. We

provide a set of platform independent concurrency-related

metrics and an in-depth observational study of current state

of the art benchmarks, discovering how concurrent they re-

ally are, how they scale the work and how they synchronise

and communicate via shared memory.

Categories and Subject Descriptors D.3.3 [Programming

Languages]: Language Constructs and Features — Concur-

rent Programming Structures

Keywords Benchmarks, DaCapo, concurrency, scalability

1. Introduction

In the face of technological and physical limitations prevent-

ing further clock speed increases, hardware designers have

turned to providing processors with increasing numbers of

cores — Intel has 48-core processors, Tilera 64-core pro-

cessors and Azul ships 54-core × 16 processor systems. All

these systems provide shared memory and varying degrees

of coherency. To keep delivering ever more powerful appli-

cations, programmers must turn their attention to making

good use of those cores. This means not only parallelising

their algorithms, but also avoiding timing accidents due to

non-local memory accesses or cache coherency traffic. Man-

aged language runtimes, or virtual machines (VM), lift some

of this burden. High-level concurrency libraries and runtime

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

OOPSLA’12 October 19–26, 2012, Tuscon, Arizona, USA.
Copyright c© 2012 ACM 978-1-4503-1561-6/12/10. . . $10.00

services, such as just-in-time compilation and garbage col-

lection (GC), make it much easier to write code that runs

efficiently on a variety of platforms. To achieve this, VMs

are becoming increasingly aware of architectural issues that

affect scalability. Garbage collectors may be NUMA-aware

when allocating memory, take advantage of multiple cores to

speed up memory reclamation and keep thread-local objects

together to reduce cache coherency traffic.

If researchers are to develop VMs that meet the chal-

lenges set by highly parallel hardware architectures, they

need to know what multi-threaded programs really do. VM

development is often motivated by the performance of a

given system on some suite of well known applications.

Such benchmarks influence development. They may “accel-

erate, retard or misdirect energy and innovation” [6]. The

questions for research on multi- and many-core hardware are

how new designs and implementations scale with increas-

ing numbers of cores. Modern architectures have complex

performance models. When these are coupled with dynamic

code generation and memory management techniques that

move data on the fly, it becomes very challenging to predict

how a particular program will perform and how it will scale.

We argue that a necessary starting point is for researchers to

understand how the benchmarks they use stress the various

components of a platform (e.g. shared memory access, cache

coherency, synchronisation, GC).

We aim to provide insights on the suitability of bench-

marks, particularly those written in Java, for scalability stud-

ies on parallel hardware. We distinguish the terms concur-

rency and parallelism. Concurrency is a software engineer-

ing tool to model real-world systems that has long been used

as a programming model, even on sequential hardware [23].

Concurrent programs can offer better responsiveness [7] by

leveraging the scheduler. Concurrency is also a mechanism

for achieving improved throughput on parallel hardware. We

are interested in the latter. In Java, threads typically commu-

nicate via shared memory. The impact on throughput and

scalability of communication through shared memory is im-

portant for both application programmers and VM designers.

Communication may lead to contention, both for software-

level constructs such as locks, and hardware artefacts such

as cache-lines. VM implementors work hard to reduce the

costs incurred by communication, but in order to design new

optimisations they need benchmark suites that provide rep-

resentative models of applications ‘in the wild’, and insights

into how these benchmarks use shared memory.

An underlying principle of this study is platform inde-

pendence: to explore how benchmarks may behave on any

hardware platform and any language runtime rather than

on just those currently at hand. We use a combination of

observational techniques based on program instrumenta-

tion and on measurements of platform independent metrics.

We measure, for instance, the frequency at which different

threads access a shared object (application behaviour) rather

than measuring hardware performance counters (the con-

sequences of an application’s behaviour given a particular

scheduling on a particular platform).

We focus on Java-level memory operations that are spec-

ified in the source code. These include reads and writes

to fields, monitor acquisitions/releases and object alloca-

tions. Memory operations may stress concurrency mecha-

nisms in two ways. First, objects may be accessed by multi-

ple threads. Second, these may access different objects that

happen to collide in the memory hierarchy, a property known

as false sharing. Both can be the source of non-local mem-

ory access and/or cache coherency traffic. False sharing may

have a significant impact on performance [18] but, since

we are interested in the platform independent behaviour of

applications, we do not focus on it. The stress induced by

shared access may be trivial unless an object is used by mul-

tiple threads repeatedly within some time window. The cost

of such regular accesses depends on the number of changes

of ownership of the object. This can happen through mod-

ifications, typically writes and monitor acquisitions. We in-

vestigate the extent to which more than one thread accesses

a shared object and patterns of these accesses.

Scalability is a core metric for evaluating the performance

of parallel systems. To measure scalability, one would run a

parallel benchmark several times, on a varying number of

cores. One expects a scalable benchmark to divide the work

equally between the available cores, giving a nearly linear

speed-up. We investigate whether benchmarks that are used

to study parallel systems are indeed scalable. We ask how

many threads in these benchmarks take part in concurrency-

stressing memory operations.

We offer a detailed observational study of the DaCapo

Java workloads [6, 20]. Our goal is to provide platform-

independent insights into (a) how concurrent these work-

loads really are, (b) how to characterize the patterns of

concurrent behaviour exhibited by the individual programs,

(c) the extent to which they can be used for testing the scala-

bility of VMs, and (d) the stress they put on memory and par-

ticularly shared memory. The source code of our implemen-

tations is at www.cs.kent.ac.uk/projects/gc/dacapo.

2. Related Work

Dufour et al. proposed a range of dynamic metrics to char-

acterise Java programs in terms of memory use, concur-

rency, and synchronisation [12]. They measured concur-

rency by thread density, the maximum number of threads

ever runnable at the same time, and by the amount of code

executed while a given number of threads are runnable. We

believe that code is not necessarily the most revealing ob-

servable of a concurrent system as, for example, a loop that

only operates over local variables does not really pose any

interesting challenges to a virtual machine and can be run in

parallel with pretty much anything. An arguably better met-

ric is to study memory operations on data that are actually

(or potentially) shared. Furthermore, we posit that only the

threads that do a substantial amount of memory access are

relevant. Consider the case of a benchmark with a large num-

ber of threads that poll on network connections. These are

always runnable but do nearly no actual work. A better way

to get an upper bound on contention might be to measure the

number of monitor hand-offs between threads.

Dufour et al. also argue that metrics should be robust (a

small change in behaviour leads to a small change in value),

discriminating (a large change leads to a large change) and

platform independent. We set out to follow their recommen-

dations, while noting that robustness and discrimination are

somewhat hard to define and some degree of platform de-

pendence is unavoidable (at least due to scheduling).

Gidra et al. measured the scalability of certain runtime

components, such as the various garbage collection algo-

rithms, in the HotSpot Java VM [14]. They found that the cu-

mulative stop-the-world pause times increase with the num-

ber of threads as does the total time spent in GC. They

claim that most object scanning and copying is done by a

GC thread running on a remote node. Although these results

suggest an alarming lack of scalability, they need to be con-

firmed with the NUMA-aware version of the HotSpot GC

which was not used in the study. Chen et al. [8] provide an

observational scalability analysis of HotSpot. They explain

some scalability issues by stalls at the hardware level (cache

misses, DTLB misses, pipeline misses and cache-to-cache

transfers) and measure the benefits of thread-local allocation

buffers and a HotSpot heuristic for determining a good size

of the young generation. They find the benefits to be appli-

cation dependent, but not very VM dependent.

In terms of program instrumentation, we followed in the

footsteps of Binder et al. [4]. Their approach differs in that

they statically instrument core classes that are loaded before

an agent can take control, which allows them to add fields to

these classes. We use an agent instead, both to re-instrument

classes already loaded and to instrument new classes as they

load.

Processors (Driver Threads)

1 4 8 16 32 64

0
.5

1
2

5
1
0

2
0

4
0

6
4

●

●

●

●
●

●

●

●

●

●

●

●

sunflow

tomcat

lusearch

xalan

tradesoap

tradebeans

h2

(a) 64-core 4-node AMD; HotSpot 1.7.

1 4 8 16 32 64

0
.5

1
2

5
1
0

2
0

4
0

6
4

●

●

●

●

●

●

●

●

●

●

●

●

sunflow

tomcat

lusearch

xalan

tradesoap

tradebeans

h2

(b) Azul Vega 3, 864 processors; Azul VM 1.6.

1 4 8 16 32 64 128 256 512 1024

0
.2

0
.5

1
2

5
1
0

2
0

4
0

1
0
2
4

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

sunflow

tomcat

lusearch

xalan

tradesoap

tradebeans

h2

(c) Azul Vega 3, 864 processors; Azul VM 1.6.

Figure 1: Speedup v. number of driver threads, Dacapo’09.

3. DaCapo

Blackburn et al. [6] introduced the DaCapo benchmarks in

2006 and provided performance measurements and work-

load characteristics, such as object size distributions, allo-

cation rates and live sizes. The original1 suite consists of the

following benchmarks: antlr6 generates a parser and lex-

ical analyzer, bloat6 performs a number of optimisations

and analyses on Java bytecode files, chart6 plots line graphs

and renders PDF, eclipse6 runs tests for the Eclipse IDE,

fop6 generates a PDF file, hsqldb6 executes a number of

transactions, jython6 interprets the pybench Python bench-

mark, luindex6 indexes a set of documents, lusearch6
searches for keywords, pmd6 analyzes a set of Java classes

and xalan6 transforms XML documents into HTML. The

DaCapo 2009 suite updated a few of the original bench-

marks, eclipse9, fop9, jython9, luindex9, lusearch9,

pmd9 and xalan9, as well as introducing new applications:

avrora9 is a simulation program, batik9 produces SVG

images, h29 executes a number of transactions, sunflow9
renders a set of images using ray tracing, tomcat9 runs a set

of queries against a web server, tradebeans9 and trade-

soap9 run the daytrader benchmark.

Multi-threading is not widely used in DaCapo 2006,

with only three programs using more than one thread (lu-

search6, hsqldb6 and xalan6). DaCapo 2009 supports

scaling of seven benchmarks to an arbitrary number of driver

threads with identical copies of the code on subproblems. By

default, the suites use the number of logical processors in the

system. This does not mean, however, that the benchmarks

scale well. There are two ways to evaluate scalability —

vary either the number of physical cores available to the

whole system (operating systems allow this), or the number

of driver threads. The former has been used [8] but the lat-

ter is more convenient [14]. The implied assumption in both

cases is that the amount of work done remains the same.

When run on a 64-core AMD system, sunflow9 keeps

improving as cores are added. Figure 1(a) shows that only

sunflow9 and tomcat9 are able to get more than 10× speed

up. tradesoap9 barely gets more than a 3× improvement.

tradebeans9 and h29 actually report degraded throughput

with higher thread counts. For comparison, Figure 1(b) re-

ports the result on an Azul system. Here, scalability is not

as good. Only three benchmarks get a speedup better than

5× (sunflow9, xalan9, lusearch9). tomcat9 scales better

on the AMD. Absolute throughput numbers are also much

higher on AMD. Azul numbers for more than 64 threads

are shown in Figure 1(c). Other than sunflow9 which sees

small improvements up to 256 threads, performance is ei-

ther stable or decreases with more cores (h29 is striking). Of

the seven ’09 benchmarks that do not support driver-thread

scaling, avrora9, eclipse9, pmd9 and luindex9 are multi-

threaded.

1 We distinguish versions of DaCapo by a ‘6’ (2006) or ‘9’ (2009) subscript.

Metric Value

Periodic density / spot-shared 0 { }}{ }{

Density / spot-shared 1 { }

Periodic density / shared 1 { }}{ }{

2Density / shared { }

1Periodic density / any { }}{ }{

Density / any 3 { }

period

reset

Figure 2: Concurrency metrics. Each solid symbol in the timeline is an operation performed by a thread on some object.

Different symbols denote operations by different threads. We count the number of threads that perform operations (open

symbols) in some intervals. The value of a metric is the median of the cardinalities of these sets of operations performed.

4. Metrics for Concurrency

We devised new metrics to characterize how concurrent ap-

plications use shared memory. Communication patterns be-

tween threads are key to understanding concurrent multi-

threaded applications. In Java, this is typically achieved

through shared memory and synchronization.2 Thus our

measurements focus on memory locations that are shared

by multiple threads and on the choice of mechanisms for

synchronization between threads.

4.1 Characterising Concurrency

Occasional communication adds little overhead so we fo-

cus on those threads that contribute significantly to the work

done by a benchmark in some interval, e.g. the entire exe-

cution or, of more interest, some shorter interval. If we are

interested in which phases of execution threads are active,

the metric might be to count how many threads contribute

significantly (95% of the operations) in each 100ms period

and then compute the median. Objects may be shared only

transiently and otherwise accessed by only one thread at a

time. As widely spaced operations on an object by different

threads are unlikely to be interesting, we might rather con-

sider only operations by different threads in some small spot

interval. To capture this, a metric might reset the status of

‘spot-shared’ objects to ‘local’, or unshared, at regular inter-

vals (say, every 10ms), and then count only sharing within

these intervals.

We start with an example, computing some of our metrics

for the trace in Figure 2, which shows some operations, say

12 writes, performed on a single object by three threads (de-

noted by � , • and N). We motivate our choice of metrics

as follows.

2 Synchronization mechanisms include synchronized statements, bar-

riers with wait/notify, volatile variables, atomic classes from the

java.util.concurrent.atomic package and other high level abstrac-

tions such futures or concurrent queues.

• Density / any counts all the different threads that con-

tribute significantly to each operation on an object through-

out the execution. In Figure 2, three threads contribute.

However, as we discussed earlier, we want to exclude

operations that are not particularly interesting for con-

currency.

• Density / shared We are interested in the impact of com-

munication between threads. This metric also computes

thread density, but only for objects that have become

shared. In Figure 2, the object is not shared initially so

we count only the operations performed by the • and

N threads.

• Periodic density / any This metric captures how threads

may be active in different phases. For example, an initial-

isation phase may construct an object which is then used

in later phases. To capture this, we divide execution into

periods, compute the thread density in each one and re-

port the median. In the example, we see that 1, 1 and 2

threads act on the object in each period respectively; the

periodic density is 1.

• Periodic density / shared A single thread might only

initialise an object but then hand it on to another thread

for use. This pattern is unlikely to stress concurrency

mechanisms — indeed, the lifetimes of the two threads

may not even overlap. This metric tends to exclude such

behaviour by computing the periodic thread density for

objects that have become shared. In our example, there

are 0, 1 and 2 operations on shared objects in each period

respectively, so the median is 1.

• Density / spot-shared We are particularly interested in

the pressure placed upon concurrency mechanisms by ob-

jects whose ownership changes rapidly. Examples might

include contended locks, volatiles and other objects used

for synchronization. ‘Spot-sharing’ resets objects’ shared

status regularly. This metric measures the thread density

of recently (i.e. spot-shared) objects only. For example,

in Figure 2, only the• thread discovers a recently shared

object.

• Periodic density / spot-shared Finally, we are interested

in the concurrency pressure in different phases of the

program. Thus, this metric computes the period density

of spot-shared objects.

4.2 Traces

Some metrics require precise definition to understand what

behaviours we capture. In the definitions below, we assume

the presence of a full trace of the program, although our im-

plementation is mostly on-the-fly. Let a log L be a sequence

of time-stamped operations: allocations, reads, writes and

monitor enters.

L ≡ {aτto : thread τ allocated object o at time t}

∪ {rτto : thread τ read from object o at time t}

∪ {wτ
to : thread τ wrote to object o at time t}

∪ {eτto : thread τ entered monitor of object o at time t}

We assume that no two operations can happen at the same

time. We use the meta-variable α to range over operations.

Filter L↓T selects operations from a time interval T :

L↓T≡ {ατ
to ∈ L : t ∈ T}

To select only operations of specific type, e.g. reads, we

write L↓r. To select operations of more than one type from

L, say reads and writes, we write L↓rw. We write L∗ for a

set {L1, L2, . . . , Ln}. Filter on L∗ extends to its inner-sets:

L∗↓T= {L1↓T , L2↓T , . . . , Ln↓T }.

4.3 Operations

We can describe numbers of individual operations and their

ratios — interesting as metrics of workload intensity and of

the balance of operations — such as:

total number of reads |L↓r |

ratio of reads and writes |L↓r | / |L↓w |

We further split the counts into operations on arrays, object

instance fields and static fields. We also compute the rate of

the different operations. Operations are counted in instru-

mented benchmarks, where overheads are large, but rates

are computed by dividing them by the execution time of the

uninstrumented benchmark. Execution times obviously de-

pend on the clock speed of the hardware used. To minimise

this dependency, we normalise rates. That is, rather than re-

porting the absolute rate x of an operation in a benchmark,

we sometimes give the normalised rate (x − µ)/σ where

µ is the mean across all benchmarks and σ2 the variance.

This transforms the distribution to one with mean 0 and vari-

ance 1.

4.4 Aging

Object behaviour is well known to vary by age. We want to

understand the interaction between object age and concur-

rency related attributes such as sharing, the age at which an

object is accessed, and so on. We measure age in the number

of timer ticks (with a period of 10ms), which we adjust to an

approximate time in uninstrumented execution as follows:

approx .time = ticks × period ×
timeu

time i

where timeu and time i are the uninstrumented and instru-

mented execution times of the benchmark respectively.

4.5 Shared Memory Accesses

Shared memory accesses are one of the key observables for

this work. We describe them using the following functions.

A shared access is an operation for which the object accessed

was previously allocated, written to or synchronized on by

another thread.

ShrR(L) ≡{rτto ∈ L : ∃ ατ ′

t′o ∈ L↓[0,t) ∧ τ ′ 6= τ}

ShrW (L) ≡{wτ
to ∈ L : ∃ ατ ′

t′o ∈ L↓[0,t) ∧ τ ′ 6= τ}

ShrE (L) ≡{eτto ∈ L : ∃ ατ ′

t′o ∈ L↓[0,t) ∧ τ ′ 6= τ}

A write or monitor entry is said to be alternating if the

immediately preceding access (excluding reads) was by a

different thread.

AltW (L) ≡ {wτ
to ∈ L : ∃ ατ ′

t′o ∈ L↓[0,t),wea ∧

τ ′ 6= τ ∧ 6 ∃ ατ ′′

t′′o ∈ L↓(t′,t),wea}

AltE (L) ≡ {eτto ∈ L : ∃ ατ ′

t′o ∈ L↓[0,t)wea ∧

τ ′ 6= τ ∧ 6 ∃ ατ ′′

t′′o ∈ L↓(t′,t),wea}

We define additional functions to select shared operations

on objects that have been accessed by a different thread re-

cently. For this we use time windows of a constant length,

ǫ. In practice we use periods of 10ms of instrumented exe-

cution. As the instrumentation overhead is large, this corre-

sponds to a much shorter interval of uninstrumented execu-

tion.

SpotShrR(L) ≡ {rτto ∈ L : ∃ ατ ′

t′o ∈ L↓[ǫ⌊t/ǫ⌋,t] ∧τ
′ 6= τ}

SpotShrW (L) ≡ {wτ
to ∈ L : ∃ ατ ′

t′o ∈ L↓[ǫ⌊t/ǫ⌋,t] ∧τ
′ 6= τ}

SpotShrE (L) ≡ {wτ
to ∈ L : ∃ ατ ′

t′o ∈ L↓[ǫ⌊t/ǫ⌋,t] ∧τ
′ 6= τ}

We define spot-shared operations based on what has al-

ready happened in their time-window, L[ǫ⌊t/ǫ⌋, t], which

allows efficient implementation with periodic timer. A sys-

tem recording a full trace could define spot-sharing based

on what happened up to ǫ (seconds) before the operation of

interest, L↓[t−ǫ,t].

The definitions allow metrics for numbers of shared op-

erations of each type and for their ratios. Examples include

(more in our results section):

total number of shared reads |ShrR(L)|

total number of spot-shared writes |SpotShrW (L)|

ratio of shared reads and writes |ShrR(L)|/|ShrW (L)|

Before attempting to optimise a system, it is often im-

portant to understand how contributions to a metric are dis-

tributed. Commonly, a few elements dominate. We define the

function covers that tests whether a set of threads Θ ‘covers’

a significant fraction ρ of operations in a given log L:

covers(Θ, L) ≡ |L↓Θ | ≥ ρ|L|

The covset function returns the smallest subset of threads

that cover a significant number of operations in L:

covset(L) ≡ min{θ ∈ 2Θ : covers(θ, L)}

This function gives us the most active threads in the set,

which is useful in understanding the program. For example,

we might report the smallest age for which ρ = 95% of

all accesses are to objects younger than that age. We define

the thread density of a set of operations as the size of the

covering set: density1(L) ≡ |covset(L)|. We further define

the density of multiple sets of operations, so that we can

cover each individual type of operation (i.e. reads, writes).

The generalized function is:

density(L∗) ≡

∣

∣

∣

∣

∣

⋃

L∈L∗

covset(L)

∣

∣

∣

∣

∣

Note that density is trivially not equivalent to the density of

the union of the operations density1(∪L
∗). This alternative

definition is possible, but our definition has the advantages

that it does not give preference to any kind of operation (any

element of L∗), and it is easier to implement. We base the

following concurrency metrics on density :

• thread density with any operations:

density({L↓r, L↓w, L↓e, L↓a})

• thread density with shared operations:

density({ShrR(L),ShrW (L),ShrE (L)})

• thread density with alternating modifications:

density({AltW (L),AltE (L)})

• thread density with spot-shared operations:

density({SpotShrR(L),SpotShrW (L),SpotShrE (L)})

Shared activity may be concentrated in only a short inter-

val of a program’s execution. The level of true concurrency

will be lower than the density if the activities of some of the

threads do not overlap. To better capture this, we consider

thread activity in each of a number of small intervals, or pe-

riods — we use periods of 100ms of instrumented execution.

Formally, we define periodic density to focus on time win-

dows of a constant length δ > 0. We summarise densities

using medians,

pdensity(L∗) ≡ median
k∈N

(

density(L∗↓[k·δ,(k+1)·δ))
)

Based on pdensity , we define the following metrics:

• periodic thread density with any operations:

pdensity({L↓r, L↓w, L↓e, L↓e})

• periodic thread density with shared operations:

pdensity({ShrR(L),ShrW (L),ShrE (L)})

• periodic thread density with alternating modifications:

pdensity({AltW (L),AltE (L)})

• periodic thread density with spot-shared operations:

pdensity({SpotShrR(L),SpotShrW (L),SpotShrE (L)})

Any value returned is an upper-bound on the true concur-

rency, because our window can always be so large that it

regards sequential activity as concurrent. δ and ǫ should be

as small as possible, but δ must be much larger than ǫ for

spot-metrics to be stable.

4.6 Concurrency Patterns of Shared Accesses

We explore a number of common concurrency patterns fur-

ther. One such pattern is CREW: concurrent read, exclusive

write. Another is unique ownership, where only one thread

owns an object at a time and a thread only accesses ob-

jects that it owns. A particular example might be that a pro-

ducer thread creates an object before passing it to consumer

threads. A special case is a stationary object, which is cre-

ated by one thread and then read by other threads but never

written again.

An object o is stationary in trace L at time t if it is never

written after being read, including if it has never been written

at all. An object o is single-writer in trace L at time t if it has

been written to by at most one thread before t:

readonly(o, t, L) ≡ |L↓[0,t],w | = 0

writeonly(o, t, L) ≡ |L↓[0,t],r | = 0

stationary(o, t, L) ≡ writeonly(o, t, L) ∨

max
t′

(

wτ ′

t′o ∈ L↓[0,t]

)

< min
t′

(

rτ
′

t′′o ∈ L↓[0,t]

)

singlewriter(o, t, L) ≡ |{τ ′ : ∃wτ ′

t′o ∈ L↓[0,t]}| ≤ 1

A thread τ is the owner of an object o at time t if no other

thread has accessed the object since τ ’s last access. Access

α to an object o by a thread τ is same-owner when τ owns

o:

owner(τ, o, t, L) ≡ ∃ατ
t′o ∈ L↓[0,t]:

t′ < t ∧
(

∀ατ ′

t′′o ∈ L↓[t′,t] : τ = τ ′
)

sameowner(ατ
to, L) ≡ owner(τ, o, t, L)

Based on these definitions, we say that a shared read is

‘read-only’ if it is to a read-only object, ‘stationary’ if it is

to a stationary object, ‘single-writer’ if it is to a single-writer

object and ‘same-owner’ if sameowner holds. Similar def-

initions apply to writes. We now define five disjoint shar-

ing patterns that cover all shared accesses, and we use these

to characterise individual benchmarks and individual access

types (all reads and writes, reads and writes separately, stat-

ics, arrays, etc):

•S1, shared read-only/write-only accesses:

read-only reads and write-only writes

•S2, additional shared stationary accesses:

stationary accesses that are not S1

•S3, other shared, single-writer accesses:

single-writer accesses that are not S1 or S2

•S4, other shared, same owner accesses:

same-owner accesses that are not S1, S2 or S3

•S5, all remaining shared accesses:

all shared accessed not S1-S4

Note that ‘read-only’ reads are also stationary. While not

a property of the definitions, in DaCapo stationary reads

are also single-writer. Hence, S1+S2 includes all stationary

reads and S1+S2+S3 includes all single-writer reads. S2 is

an empty set for writes because all stationary writes are also

‘write-only’ by definition. Hence S1+S2 includes all station-

ary accesses even for writes. Not all ‘write-only’ writes are

single-writer. For example, when an array is used to collect

results from multiple threads, the collection will be formed

by ‘write-only’ writes.

To obtain the disjoint groups S1-S5, in our implementa-

tion we count shared accesses that are read-only/write-only,

stationary, single-writer, both single-writer and stationary,

same-owner but neither stationary nor single-writer, and all

shared accesses (of any pattern).

4.7 Shared-Used and Shared-Reachable

It is often interesting for implementers to know which ob-

jects were actually accessed by multiple threads as well as

which objects could possibly have been accessed by multi-

ple threads. For this purpose we will define the notions of

shared-used for an object that is used by multiple threads

and shared-reachable for an object that could be accessed

by multiple threads based on reachability.

5. Measurement Methodology

We measure behaviour through instrumenting Java programs

and the VM with two independent infrastructures, one that

depends solely on bytecode instrumentation and the other

inside Jikes RVM.

5.1 Bytecode Instrumentation

Java’s dynamic instrumentation feature allows instrumenting

the bytecode of any class that the VM loads. The logic of

our probes is implemented in Java and runs in the same VM,

but we isolate its direct impacts from our measurements. We

customised btrace [2] for our needs.

Design. We insert probes at instructions of interest, such

as field accesses, calls or synchronisation points. A probe

might update an object-related metadata structure (e.g. to

mark the object as ‘shared’) stored in a hash table. A probe

might also increment a thread-related thread-local counter.

We designed our own hash table for the metadata as we

require fast look-up, safety in the presence of concurrent

access and realistic accounting. Each bucket (a collision set)

has a separate self-organising single-linked queue for each

thread. When looking for metadata of a given object, a probe

locates the correct bucket and then searches the queue of

the current thread. It will find an entry there for any thread-

local object and also for any shared object that the thread has

accessed before. Each entry contains a weak reference to the

object it represents and a regular reference to metadata for

that object. Periodically, entries of dead objects are detected,

processed and removed from the queues.

Whenever an entry is found in the local queue it is

moved to the front (self-organisation) for performance rea-

sons. If the entry is not found in the local queue, queues of

other threads are searched (again, the search order is self-

organising, first searching queues of threads where entries

had been found recently). Once found, the entry is copied

to the local queue for faster access next time. The only syn-

chronization needed is between a thread moving an entry to

the head of the local queue and a remote thread scanning the

queue. In the rare case of contention, remote threads spin

but local threads give up moving an entry to the front of

the queue. A dedicated timer thread samples thread-based

counter values and prints them to a file every 100ms (instru-

mented time). The timer thread is paused during the (stop-

the-world) GC, excluding it from our measurements.

Obstacles. To circumvent the 64KB Java method size

limit, we optimised btrace to generate fewer instructions.

We disabled instrumentation for static initialisers for a few

constant arrays in batik and fop. We disabled the byte-

code verifier in order to insert probes after the new bytecode

but before the constructor’s <init> method. We modified

btrace to instrument libraries before running the application

to increase precision of tracing, and so that its own activity

can be isolated. We also extended it to keep a cache of field

modifiers known at instrumentation time and to pass class

references to probes, so that our probes can always deter-

mine if an access is to a volatile field. Some applications

are sensitive to timeouts, so we increased the initialisation

deadlines in the DaCapo harness and patched some JDK 7

classes to ignore timeouts. We fixed bugs in tomcat9 and

btrace.

Platform and Benchmarks. We used DaCapo 2006-10-

MR2 [6] and 9.12-bach with their largest inputs. Trace

data is collected on one iteration of the benchmark ex-

cluding start-up. Timings are recorded on uninstrumented

runs where we strived to get at least 5 repetitions and 10

iterations; unless specified otherwise timings are the mean

of these runs. We ran HotSpot 1.7.0 01 for Linux/x86 64,

btrace [2] 1.2.1 and ASM [1] 3.3 on a 4.8GHz Intel Core i7,

with 4 hardware threads (hyper-threading disabled) and

16GB of RAM. For instrumented runs, we allowed the VM

to use 14GB of RAM. Some experiments were run on an

Azul Vega 3 with 864 processors with the Azul VM 1.6.

Limitations. Our instrumentation may prevent some opti-

misations. Some sampling error is inevitable, but sampling is

unlikely to be very regular, so errors should be random and

easy to spot when we look at multiple results. Our instru-

mentation may influence thread interleaving and hence some

of the sharing and concurrency characteristics we measure.

5.2 Virtual Machine Instrumentation

Although our bytecode instrumentation can measure which

objects are accessed by more than one thread, it cannot de-

tect the number of objects reachable from a thread. However,

components of the GC do precisely this. The extensible de-

sign of Jikes RVM [3] makes it ideal for such experiments.

Design. We customise the compiler to insert probes after

memory relevant operations. We ensure that probes are nei-

ther instrumented nor call any instrumented code. We apply

the probes only to application and not to VM code. We add

metadata pertaining to threads to the VM, and that pertaining

to objects into their header. We map memory operations into

reads and writes and count them per object. For each object

we keep two bitmaps, one of all threads that ever accessed

it and one of all threads from which it was ever reachable.

To identify reachable objects, we run mock per-thread traces

through the heap, recording the set of objects each thread

can reach at that time.

Obstacles. We extended Jikes RVM to instrument accesses

to primitive fields. Probes for static fields require special

care: they need class-based metadata which we keep in the

VM’s internal representation of the classes, but this is only

available when the containing class is loaded. Filtering out

VM-specific activity is complicated by the VM allocating

its objects in the same heap. We adopt the methodology of

Jones & Ryder [16] and use Jikes RVM’s baseline compiler.

We count only operations by application threads, including

the finaliser and reference handler threads; we exclude all

other VM threads. We force a special GC at shut down to

count any remaining live objects.

Platform and Benchmarks. We modified a development

version of Jikes RVM (21/7/11), and ran all the benchmarks

that Jikes RVM could run on a dual quad-core 2.27GHz Intel

Xeon machine with 12GB RAM. We let the benchmarks

scale the workload to use all available processors.

6. Characterising the DaCapo Workload

The DaCapo suites’ use of concurrency is complex. In some

cases, it is used primarily as a design tool; in other cases,

the goal is performance on parallel hardware. The DaCapo

harness allows setting the number of threads that drives

the workload, but this does not fully determine how many

threads do a substantial amount of work concurrently. Work-

loads often spawn threads of their own, either directly or in-

directly through libraries. Some threads live for the entire

execution of the benchmark, some only for one iteration and

some only for short-term tasks within iterations. Some are

active throughout whole execution of the benchmark, some

only throughout one iteration (e.g. avrora9) or some phase

of it (e.g. h29), and sometimes tens or hundreds of threads

are created each for a single short-term task (e.g. eclipse9).

Moreover, the number of threads spawned may depend on

the hardware — tomcat9 spawns poller threads that service

network connections depending on the number of logical

processors available. On the other hand, even benchmarks

that do not spawn any new threads can generate work for

the VM’s reference handler and finaliser threads. Our goal

is provide a black-box view of these applications and thus

give developers an understanding of the benchmarks’ use of

concurrency.

6.1 Operations

We summarise the operations performed by the DaCapo

benchmarks in Figure 3. The figure compares statistically

normalised rates across benchmarks (higher means that a

benchmark performed relatively more operations of that par-

ticular kind than other benchmarks). For instance, the graph

shows that the lusearch9 benchmark allocates fewer but

larger objects than average; it acquires fewer monitors but

makes more memory accesses. xalan9 enters by far the

most locks per second of any benchmark (and nearly 4 stan-

dard deviations more than the mean over all benchmarks).

We examine memory operations known to be of interest

to GC design. Some of the benchmarks in the suite are quite

memory intensive. lusearch9 has by far the largest alloca-

tion rate (4GB/s),3 followed by xalan6 (1.7GB/s) and sun-

flow9 (1.4GB/s). The median allocation rate is 424MB/s.

The highest rate of memory accesses (reads+writes) is for

sunflow9 (5.9G/s), followed by bloat6 (3.3G/s) and xal-

3 1KB of memory is 1024 bytes, but 1K objects is 1000 objects.

a
n

tl
r6

a
v
ro

ra
9

b
a

ti
k
9

b
lo

a
t6

c
h

a
rt

6

e
c
lip

s
e

6

e
c
lip

s
e

9

fo
p

6

fo
p

9

h
2

9

h
s
q

ld
b

6

jy
th

o
n

6

jy
th

o
n

9

lu
in

d
e
x
6

lu
in

d
e
x
9

lu
s
e

a
rc

h
6

lu
s
e

a
rc

h
9

p
m

d
6

p
m

d
9

s
u

n
fl
o
w

9

to
m

c
a

t9

tr
a

d
e

b
e

a
n

s
9

tr
a

d
e

s
o

a
p

9

x
a

la
n

6

x
a

la
n

9

Reads and Writes

Bytes Allocated

Objects Allocated

Monitors Entered

−1

0

1

2

3

4

Figure 3: Operations per second normalised to have zero mean and unit variance. Intuitively, this shows how each benchmark

differs from the DaCapo average in a way consistent across different measures such as bytes allocated or monitors entered. For

example, we see that lusearch9 allocates more space than average but enters fewer monitors.

an6 (3.1G/s). The lowest access read+write rate is by fop6
(95M/s) and the median is 806M/s.

All benchmarks do more reads than writes. The geomean

read/write ratio is 3, highest with sunflow9 (11×), h29
(11×) and hsqldb6 (8×), and lowest with jython6 (2×).

The distribution is right-skewed (to higher values). Signif-

icantly more reads than writes is a well known property of

most programs, e.g. exploited by replicating and genera-

tional GCs. The read/write ratio is higher for scalars than

for arrays. The ratio of scalar/array memory accesses dif-

fers greatly across benchmarks. It is highest with avrora9
(13×), followed by sunflow9 (7×) and bloat6 (6×). There

are more array accesses than scalar ones for only three

benchmarks, batik9 (scalar/array ratio 0.65×), jython6
(0.78×) and tomcat9 (0.94×). Most accesses are non-static.

The non-static/static ratio ranges from 7× (jython9) to as

much as 480× (sunflow9), with geomean 40× and median

38×. Statics also have a very large read/write ratio (3.7K×
geomean, 20× minimum and 436K maximum).

All metric distributions were heavily right-skewed to-

wards higher values. This has a serious consequence for per-

formance evaluation. Summaries over these benchmarks are

unlikely to be robust and omitting a benchmark for any rea-

son, good or bad, might influence results. Furthermore, re-

sults are very sensitive to errors when measuring the ‘out-

lying’ benchmarks. They are also sensitive to errors in these

benchmarks (e.g. the very large allocation rate in lusearch9
is due to a bug in the lucene library [24]).

It is therefore essential to interpret benchmark perfor-

mance results individually. A good strategy for optimisation

might be to pick one benchmark with a high overhead to

attack and then look at ways to make it faster without dras-

tically slowing others, e.g. by optimising reads and writes in

sunflow9, locking in xalan6 or GC in lusearch9.

6.2 Age

Recall that our metric is the smallest age for which 95%

of all accesses are to younger objects. For all but 2 of the

benchmarks, this age for reads is equal to or larger than that

for writes. The geomean age over all benchmarks is about

8× larger for reads than for writes. Thus writes clearly hap-

pen early in an object’s life: this agrees with other work [5].

We express this by saying that “reads are older than writes”.

Young accesses do not dominate. In many benchmarks, even

very old (several seconds) objects are often accessed. In par-

ticular the age of reads is often proportional to execution

time.

A
ny

O
ps

A
lt
. M

od
if

s

S
po

t-
sh

ar
ed

S
ha

re
d

A
ny

O
ps

A
lt
. M

od
if

s

S
po

t-
sh

ar
ed

S
ha

re
d

#
of

T
hr

ea
ds

Density Periodic density

avrora9 25 22 25 25 22 22 22 22 30

xalan6 8 8 8 8 8 8 8 8 12

tomcat9 9 15 12 14 9 8 7 8 26

tradesoap9 13 44 32 28 7 13 12 11 267

h29 5 4 4 5 4 4 4 4 9

tradebeans9 4 4 4 4 4 4 4 4 221

xalan9 4 4 4 4 4 4 4 4 8

pmd9 5 5 5 5 4 4 3 3 8

hsqldb6 201 385 382 393 1 34 15 15 405

lusearch6 63 59 66 64 44 0 57 59 68

lusearch9 4 5 5 5 4 0 4 4 8

sunflow9 9 9 9 9 4 0 4 4 13

antlr6 1 1 1 2 1 0 0 1 4

batik9 3 3 5 6 1 0 0 1 11

bloat6 1 1 1 2 1 0 0 0 4

chart6 1 2 1 3 1 0 0 0 6

eclipse6 2 6 5 5 1 0 0 1 53

eclipse9 28 197 191 72 1 1 0 1 341

fop6 1 1 1 2 1 0 0 0 4

fop9 1 1 1 2 1 0 0 1 4

jython6 1 1 1 2 1 0 0 0 4

jython9 1 1 2 2 1 0 0 1 4

luindex6 1 2 2 2 1 0 0 1 4

luindex9 2 3 3 3 1 0 0 1 5

pmd6 1 1 1 2 1 0 0 1 4

Table 1: Levels of concurrency. Numbers of threads that contribute significantly over all execution or periodically (within any

100ms interval). Work is any read, write or monitor enter (Any, Spot-shared, Shared), or alternating writes and monitor enters

(Alt.Modifs).

h29

2 3 4

0
.6

0
.8

1
1
.2

1
.5

2

●
●

●
●

lusearch9

2 3 4

0
.6

0
.8

1
1
.2

1
.5

2

●
●

●
●

sunflow9

2 3 4

0
.6

0
.8

1
1
.2

1
.5

2

● ●

● ●

tomcat9

2 3 4

0
.6

0
.8

1
1
.2

1
.5

2

● ●
●

●

tradebeans9

2 3 4

0
.6

0
.8

1
1
.2

1
.5

2

●
●

● ●

tradesoap9

2 3 4

0
.6

0
.8

1
1
.2

1
.5

2

● ●

●

●

xalan9

2 3 4

0
.6

0
.8

1
1
.2

1
.5

2

● ●

●

●

●

●

Shared Reads

Shared Writes

Shared Entries

Spot−shared Reads

Spot−shared Writes

Spot−shared Entries

Alternating Writes

Alternating Entries

Figure 4: Increase in shared operations as driver threads are increased from 2 to 4.

6.3 Levels of Concurrency

Table 1 gives the number of threads that contribute signifi-

cantly to DaCapo workloads on a 4-core machine.4 It tells us

how parallel and multi-threaded the benchmarks really are,

not simply the number of threads that they spawn.5

DaCapo’09 “was designed to expose richer behaviour

and concurrency on large working sets” [13]. However, our

measurements show that only 9 of 14 DaCapo’09 bench-

marks (and 2 of 11 DaCapo’06) are meaningfully parallel,

i.e. have a periodic density/any ops greater than 1. Only these

benchmarks can be expected to scale. Note a large value for

periodic density/any ops is an indication of parallel slack-

ness [22].

eclipse9 and hsqldb6 are heavily multi-threaded (large

density/any ops) but not parallel. Multi-threaded non-parallel

benchmarks, as expected, do not pose a significant challenge

to shared memory (periodic density with alt modifs, spot-

shared, and shared ops is 1 or 0), and hence are not suitable

for evaluating concurrency-related performance optimisa-

tions. Indeed, the lack of any challenge to shared memory

is good for scalability of parallel benchmarks. sunflow9
and lusearch9 have scarcely any alternating modifications;

sunflow9 scales best and lusearch9 second/third best of

the DaCapo’09 benchmarks). Note that few alternating mod-

ifications implies few contended monitor enters.

The number of threads created (last column in Table 1,

which includes the finaliser and the reference handler threads)

is a poor approximation of concurrency — the number of

threads doing a meaningful amount of work (density/any

ops) is much smaller, and even smaller is the number of

threads doing so concurrently (periodic density/any ops).

6.4 Scaling Workloads

We explore how the DaCapo’09 benchmarks with significant

levels of concurrency (h29, lusearch9, sunflow9, tom-

cat9, tradebeans9, tradesoap9, xalan9) behave as we

drive them with 1, 2, 3 or 4 threads. If developers are to use

a benchmark for scalability experiments, they need some in-

tuition for the impact of adding cores/threads. For instance,

they may expect a scalable benchmark either to divide the

same amount of work among more threads (better perfor-

mance) or to continue to give the same quantum of work to

each thread (more work done). Above all, they need a bench-

mark to behave predictably.

Unshared operations behave as expected: their numbers

are preserved as the number of driver threads increases. Un-

fortunately, none of the benchmarks scales its shared opera-

tions in a predictable and consistent way. lusearch9, xal-

an9 and tradesoap9 seem to perform the same number of

‘shared’ operations for 2, 3 and 4 threads, but fewer for 1

thread. This suggests that the degree of sharing in these pro-

4 Note that the metrics allow density to be greater with ‘alt. modifs’ than

‘any ops’.
5 Threading in DaCapo 9-12, dacapobench.org

grams is determined directly or indirectly by the number of

driver threads. On the other hand, the level of sharing in the

remaining benchmarks (h29, sunflow9, tomcat9, trade-

beans9) seems to be fixed.

Figure 4 compares the change in numbers of operations

with 2, 3 and 4 driver threads. The figure shows ‘shared’

and ‘spot-shared’ reads, writes and monitor enters, as well as

‘alternating’ writes and monitor enters. None of the bench-

marks scale the numbers of either ‘spot-sharing’ operations

or ‘alternating modifications’ in a predictable fashion: often,

as the number of one operation increases the number of an-

other decreases. As the number of driver threads increases

from 2 to 4, the number of alternating reads in xalan9 in-

creases by over 1.5×. xalan9 is memory intensive so this

suggests that memory is likely to become bottleneck. The

‘shared’ operations stay about the same with all benchmarks,

which tallies with the intuition that worker threads make the

same number of accesses if the problem size remains con-

stant. tomcat9 is the best scaling benchmark. Observe that

its ‘spot-shared’ and ‘alternating’ operations do not increase

with the number of driver threads: both of these kinds of

operation are inhibitors to scalability. In contrast, the num-

ber of ‘alternating writes’ increases in h29, the worst scaling

benchmark. Alternating entries also appear to increase with

workers in sunflow9, but do not hinder scaling because they

are so infrequent (Table 3).

These results show that one cannot easily evaluate how

the benefit of a VM optimisation changes with the number

of processors, at least not without checking the changes in

concurrency stress.

6.5 Shared Memory Accesses

Most DaCapo’06 benchmarks have a single user thread, so it

is no surprise that in 10 out of 25 benchmarks less than 0.5%

of reads and writes are ‘shared’. In each of the remaining 15

benchmarks, the fraction of shared reads tends to be much

higher than the fraction of shared writes (Table 2). Shared

accesses are therefore even more heavily dominated by reads

(28× by geomean) than are thread-local accesses (3×). Ar-

ray accesses are more shared than scalar accesses in most

of these benchmarks (10 out of the remaining 15). Statics

are particularly highly shared: in 12 of these benchmarks, at

least 95% of their accesses are shared.6 Sharing is also bi-

ased towards statics: although only a geomean of about 2%

of all accesses are static, 22% of all shared accesses are to

statics.

Counting only ‘spot-sharing’ (repeated, recent sharing)

reduces the fraction of shared accesses by varying degrees.

It falls by the most in avrora9 (from 89% to only 6%), fol-

lowed by h29 (49% to 6%) and tradesoap9 (36% to 15%).

Only 4 benchmarks have more than 10% of accesses spot-

shared: sunflow9 (49%), tradebeans9 (35%), trade-

6 We count sharing of statics at class granularity, so two threads accessing

different static fields of the same class would count as sharing.

R
ea

d
s

an
d

W
ri

te
s

R
ea

d
s

W
ri

te
s

A
rr

ay
s

S
ca

la
rs

S
ta

ti
cs

R
ea

d
s

an
d

W
ri

te
s

R
ea

d
s

W
ri

te
s

A
rr

ay
s

S
ca

la
rs

S
ta

ti
cs

Shared / All Spot-Shared / All

avrora9 89 90 83 95 88 99 6 7 1 6 5 97

sunflow9 53 58 0 75 50 100 49 53 0 74 45 97

h29 49 53 5 54 42 99 6 7 1 5 4 27

tradebeans9 48 57 6 37 45 100 35 41 4 26 29 94

tradesoap9 36 45 8 19 43 100 15 20 2 10 14 81

tomcat9 20 23 13 17 18 100 8 11 3 5 8 78

xalan6 19 21 6 19 12 100 14 16 3 11 8 89

eclipse9 17 20 6 15 14 68 1 1 0 1 1 1

eclipse6 13 17 0 18 2 97 0 0 0 0 0 0

hsqldb6 13 14 13 9 13 70 6 7 1 6 4 61

xalan9 13 14 6 12 10 100 7 8 2 6 5 78

lusearch6 8 10 5 11 6 100 2 3 0 3 0 97

pmd9 6 8 0 6 4 99 2 3 0 2 1 50

jython9 3 4 0 0 0 20 0 0 0 0 0 0

lusearch9 3 4 0 2 0 100 3 3 0 2 0 96

Table 2: Percentage of accesses that were shared or spot-shared, across different access types, scalars and arrays and statics. The

figure shows only scalable benchmarks that have at least 0.5% reads and writes shared or spot-shared, using 4 driver threads.

soap9 (15%) and xalan6 (14%); with ‘any sharing’ only

4 had less than 10%. Reads continue to be more likely than

writes to be ‘spot-shared’, and 20% of all spot-shared ac-

cesses are still to statics.

The fractions of ‘alternating modifications’ are very low,

the highest being tradebeans9 (1.2% of all writes), fol-

lowed by h29 (0.7%) and hsqldb6 (0.6%). Only 7 bench-

marks have over 0.2% (tradebeans9, h29, hsqldb6, tom-

cat9, tradesoap9, xalan9 and xalan6). In contrast to

the measures above, scalars are more shared than arrays in

nearly all benchmarks. Static alternating writes vary substan-

tially between benchmarks, from 73% for tradebeans9 to

0.2% for h29. They account for 5% of all alternating writes,

despite the rarity of static writes.

In Figure 5 we further discriminate shared accesses by

sharing pattern, for every benchmark with at least 0.5%

of reads and writes shared. The topmost graph shows all

reads and writes, with the bold black line indicating the

percentage of shared reads and writes. Sharing may take

several forms, each presenting different stress to the VM.

The coloured bars summarise these patterns by increasing

level of challenge. The lowest bar (S1) shows the percentage

of shared accesses to objects that were only read or only

written; the second bar (S2) adds ‘stationary’ objects (to

which there may have been a sequence of writes, then a

read but no further writes7); and the third bar (S3) adds

any objects written by only one thread yet not included in

the previous bars. The fourth bar (S4) adds any accesses

7 Hence, no stationary write appears in the figures.

to objects that were last accessed by the same thread, so

ownership8 does not change. The last bar (S5) accounts

for the remaining, and most challenging, shared accesses;

most intriguingly there are scarcely any. From the other

graphs in the same figure, we see that this kind of write

sharing is present in some benchmarks (chiefly tomcat9 and

pmd9, and for statics tradebeans9), but becomes negligible

when reads are included. We can also see that almost all

shared accesses by sunflow9, the best scaling benchmark

from Figure 1, fall into the first three categories. Nearly all

its shared reads are single-writer; its shared writes are to

write-only arrays but account for little sharing.

Arrays and statics are very likely to be stationary. Many

instance field reads are single-writer, if not stationary, but

writes to single-writer objects are less common for scalars

than arrays. The incidence of read-only statics is at first sur-

prising. However, the VM and DaCapo harness load and ini-

tialise several hundred classes before our Java agent can in-

strument them. Many of these statics will be used as con-

stants and thus appear as ‘read-only’ (S1) whereas a better

classification might be ‘stationary’ (S2). Apart from trade-

beans9 statics and lusearch9 instance field reads, sharing

that changes ownership but is neither stationary nor single

writer (S5) is largely concentrated on arrays.

In summary, we see that the workloads include a rela-

tively small number of shared memory accesses, and only to

memory shared through simple patterns.

8 We treat any access as possession of ownership.

All Reads and Writes

0

20

40

60

80

100

S1: Shared Read/Write Only

S2: Additional Shared Stationary

S3: Other Shared, Single−Writer

S4: Other Shared, Same Owner

S5: All Remaining Shared

a
v
ro

ra
9

s
u

n
fl
o
w

9

tr
a

d
e

b
e

a
n

s
9

h
2

9

tr
a

d
e

s
o

a
p

9

to
m

c
a

t9

x
a

la
n

6

e
c
lip

s
e

9

h
s
q

ld
b

6

e
c
lip

s
e

6

x
a

la
n

9

lu
s
e

a
rc

h
6

p
m

d
9

lu
s
e

a
rc

h
9

jy
th

o
n

9

All Reads

0

20

40

60

80

100

a
v
ro

ra
9

s
u

n
fl
o
w

9

tr
a

d
e

b
e

a
n

s
9

h
2

9

tr
a

d
e

s
o

a
p

9

to
m

c
a

t9

x
a

la
n

6

e
c
lip

s
e

9

h
s
q

ld
b

6

e
c
lip

s
e

6

x
a

la
n

9

lu
s
e

a
rc

h
6

p
m

d
9

lu
s
e

a
rc

h
9

jy
th

o
n

9

All Writes

0

20

40

60

80

100

Instance Field Reads

0

20

40

60

80

100
Instance Field Writes

0

20

40

60

80

100

Array Reads

0

20

40

60

80

100
Array Writes

0

20

40

60

80

100

a
v
ro

ra
9

s
u

n
fl
o
w

9

tr
a

d
e

b
e

a
n

s
9

h
2

9

tr
a

d
e

s
o

a
p

9

to
m

c
a

t9

x
a

la
n

6

e
c
lip

s
e

9

h
s
q

ld
b

6

e
c
lip

s
e

6

x
a

la
n

9

lu
s
e

a
rc

h
6

p
m

d
9

lu
s
e

a
rc

h
9

jy
th

o
n

9

Static Reads

0

20

40

60

80

100

a
v
ro

ra
9

s
u

n
fl
o
w

9

tr
a

d
e

b
e

a
n

s
9

h
2

9

tr
a

d
e

s
o

a
p

9

to
m

c
a

t9

x
a

la
n

6

e
c
lip

s
e

9

h
s
q

ld
b

6

e
c
lip

s
e

6

x
a

la
n

9

lu
s
e

a
rc

h
6

p
m

d
9

lu
s
e

a
rc

h
9

jy
th

o
n

9

Static Writes

0

20

40

60

80

100

Figure 5: Sharing patterns for different kinds of accesses. The black line denotes accesses of each kind shared in any pattern

(numbers from Table 2). The coloured bars show the percentage of shared access that conform to a particular pattern, such as

‘read-only or write-only’ (S1), ‘stationary but not read-only’ (S2), ‘single-writer but not stationary’ (S3) and so on.

Object Age (seconds of uninstrumented execution)

P
e
rc

e
n
ta

g
e
 o

f
S

H
A

R
E

D
 a

c
c
e
s
s
e
s
 [
%

]

0 5 10 15

0
2
0

4
0

6
0

8
0

H
G

F E

D

C
B

A

Object Age (seconds of uninstrumented execution)

P
e
rc

e
n
ta

g
e
 o

f
S

P
O

T
−

S
H

A
R

E
D

 a
c
c
e
s
s
e
s
 [
%

]

0 5 10 15

0
2
0

4
0

6
0

8
0

G
A

H E

F D

C

B

B

C

D

F

E

H

A

G

sunflow9

tradebeans9

tradesoap9

xalan6

tomcat9

xalan9

avrora9

hsqldb6

Figure 6: The percentage of accesses up to a given age to objects that are shared or spot-shared. Only benchmarks with at

least 5% of accesses spot-shared are shown. Benchmarks are ordered in the keys by spot-sharing. Unusually, many objects in

avrora9 are shared at an early age but spot-sharing soon decreases.

6.6 Shared Accesses By Age

It is interesting for GC design to ask whether sharing is re-

lated to age. We record the age and locality of accesses, for

both ‘any’ and ‘spot’ sharing. Figure 6 shows the results for

benchmarks with at least 5% of accesses spot-shared. We

observe that the older an object accessed, the higher is the

chance that it is shared. Young accesses are likely to be to

local objects. This is somewhat intuitive, as we would expect

that objects need some time to become shared, but this trend

continues even for very old objects. This trend is exhibited

by all these benchmarks except for avrora9, where the rate

of increase in the fraction of accesses to spot-shared objects

drops sharply after about 10ms, although the ‘any sharing’

rate keeps increasing rapidly. This suggests that in avrora9
single threads often make access to objects that were earlier

shared. However, for the most part, young objects are very

unlikely to be shared, suggesting opportunities for discrimi-

nating their handling.

6.7 Lock Operations

Synchronization operations are detailed in Table 3. The first

column shows the rate of monitor enters (acquisitions of

a monitor). Some single-threaded benchmarks have high

rates (e.g. jython6 13M/s), whereas the best-scaling multi-

threaded benchmark (sunflow9) makes only 1K enters per

second. The next three columns show the percentage of lock

enters on objects that are shared, spot-shared or prone to al-

ternating modifications (which includes locking by alternat-

ing threads). Single-threaded benchmarks may show shared

enters because of threads used by the VM or libraries, such

as the finalizer, reference handler, AWT and Java2D threads.

The next three columns (5-7) show the maximum age of

most objects locked, i.e. where 95% of locks were to objects

of that age or younger. The age is given in seconds of unin-

strumented execution (shown in the last column). In many

but not all benchmarks, this age is large or even close to the

total execution time, suggesting that long-lived objects are

subject to locking throughout their lifetime. Unsurprisingly,

the number of locks acquired on spot-shared objects seems

to have a substantial effect on scalability. The benchmarks

that scale best on AMD, sunflow9 and tomcat9, use fewer

monitor enters, especially fewer spot-shared enters, than the

worst scaling ones, h29 and tradebeans9 (Figure 1(a)).

6.8 Volatile Accesses

Volatile fields serve as a means of communication among

threads, but the benchmarks make comparatively few ac-

cesses to volatiles (5% in jython9; 1% in antlr6, tom-

cat9, hsqldb6, fop9, and jython9; less in others). How-

ever, the rates of volatile accesses are still reasonably high

(Figure 7). The highest rate is with jython9 (26M/s), the

median is 664K/s and the lowest rate is with sunflow9, the

most scalable benchmark (4.6K/s only).

Many static writes are volatile: in 12 of the 25 bench-

marks, more than half are to volatile fields. Less than a few

percent of other types of accesses (static reads, non-static

reads, non-static writes) are to volatiles. Because static fields

are (potentially) accessible to all threads, synchronisation

is necessary and volatile provides a convenient mecha-

M
on

. E
nt

er
s

S
ha

re
d

S
po

t-
sh

ar
ed

A
lt
er

na
ti
ng

A
ll

E
nt

er
s

S
ha

re
d

S
po

t-
sh

ar
ed

N
at

iv
e

E
xe

c.

Rate [K/s] % of Enters Max Age of Most [s] Time [s]

antlr6 8912 0 0 0 0.0 1.7 1.7 1.8

avrora9 972 66 65 57 6.9 7.1 7.0 7.4

batik9 538 1 0 0 0.2 2.8 1.2 3.4

bloat6 7699 0 0 0 0.0 0.7 0.9 11.0

chart6 6986 0 0 0 0.0 4.0 4.2 4.8

eclipse6 5918 3 0 0 0.0 11.6 11.7 26.1

eclipse9 1517 27 4 1 22.7 28.6 15.6 39.8

fop6 782 1 0 0 0.2 0.6 0.6 1.0

fop9 1534 0 0 0 0.9 0.9 0.8 1.4

h29 4991 92 19 1 7.2 7.2 7.3 20.4

hsqldb6 2498 12 7 3 0.8 1.6 1.5 3.2

jython6 12680 0 0 0 11.6 0.9 1.3 13.9

jython9 6575 14 0 0 12.4 16.3 1.5 16.9

luindex6 923 1 0 0 1.6 2.3 2.2 2.3

luindex9 264 3 1 0 0.8 1.1 1.1 1.2

lusearch6 4759 37 0 0 2.3 2.5 0.1 3.0

lusearch9 2514 0 0 0 0.1 2.3 2.1 2.5

pmd6 23813 0 0 0 0.0 4.5 4.8 5.5

pmd9 599 62 27 7 2.1 2.1 2.2 3.3

sunflow9 1 46 15 16 3.4 4.1 4.0 4.7

tomcat9 2635 16 6 3 7.1 9.9 9.5 10.9

tradebeans9 7941 99 44 6 8.5 8.5 8.4 8.9

tradesoap9 11006 23 9 3 11.4 15.2 15.0 17.5

xalan6 59421 22 15 3 5.1 6.3 6.2 6.8

xalan9 31954 11 5 2 3.4 6.1 6.0 6.6

Table 3: Monitor enter operations (locks). The table shows the rate of enters, what percentage of these were shared, spot-shared

and alternating, and the maximum ages of most (minimum age for which 95% of locks were to objects of that age or younger).

E.g. sunflow9 only acquires about 1,000 monitors per second, 46% of which protected shared objects; its shared objects tend

to be older than its unshared ones. Although pmd6 is multi-threaded and has a high rate of entries, nearly all are to local objects.

nism, often used for e.g. lazy initialisation by a single thread.

Static fields are commonly used for constants. The evidence

from the statistics for static reads and writes supports this

hypothesis (Figure 5): we see that the overwhelming ma-

jority of static reads are to (at worst) single-writer objects

and scarcely any static writes change ownership (except for

tradebeans9).

As volatiles are used for similar tasks to locks, we com-

pare the number of volatile accesses and monitor enters. Dif-

ferent benchmarks favour different mechanisms. Although

on (geometric) average, enter is used 6× (median 4×) more

frequently than volatile access, some benchmarks use more

volatile accesses than enters — jython9 (4×), sunflow9
(4×), hsqldb6 (1.2×) — and some use about the same

(pmd9, tomcat9, fop9). Volatile access seems as important

as locking for optimisation.

We investigated which volatile fields are accessed most

often, i.e. account for 95% of volatile accesses in a bench-

mark. Typically, there were few and these were used by only

a few call sites. Over all the DaCapo benchmarks, just 102

fields from 59 classes and 35 packages cover 95% of the

volatile accesses of each benchmark. Most of these classes

are from the Java I/O, references, reflection, concurrent (in-

cluding atomics), and collection class libraries (Table 4).

Some are from benchmark-specific libraries.

10 out of 25 benchmarks have larger read/write ratios

for volatiles than for non-volatiles (the extreme is hsqldb6:

339× vs. 10×).

6.9 Wait and Notify

Interestingly, the wait and notify methods are rarely used.

Of all the benchmarks, 15 make fewer than 100 of these calls

(less than 13 per second) — rates are shown in Figure 7. Six

benchmarks issue fewer than 100 calls per second (trade-

soap9, eclipse6, hsqldb6, lusearch6, xalan6 and h29).

The remaining ones are lusearch9 (158/s), xalan9 (361/s),

eclipse9 (17K/s) and avrora9 (61K/s). wait is invoked

on only 29 classes in the whole suite. The hottest class is

Package (# of classes) Comment, Selected Classes

java.io (6) *Stream, RandomAccessFile

java.lang (6) Class, reflect.Constructor, reflect.Method, ref.ReferenceQueue, System, Thread

java.math (1) BigDecimal

java.net (1) URI

java.nio (2) I/O, locale

java.util.concurrent.atomic (4) Atomic Boolean, Integer, Long, Reference

java.util.concurrent.locks (2) AbstractQueueSynchronizer

java.util.concurrent (4) Concurrent HashMap, LinkedQueue

java.util.zip (3) ZipFile, *InputStream

java.util (7) HashMap, HashTable, AbstractMap, logging.Logger, regex.Pattern, locale . . .

sun (7) Streams, sockets, fonts, . . .

org.apache (6) Benchmark libraries (batik, catalina, fop, lucene, tomcat). I/O, properties, . . .

org.eclipse.core.internal (3) OrderedLock, ResourceInfo, ElementTree

org.h2 (3) Database, Session, MemoryUtils

org.hsqldb (2) jdbcStatement, Session

org.osgi (1) ServiceTracker

org.python.core (1) PyUnicode

Table 4: Classes with volatile fields accessed most in the DaCapo benchmarks. Standard Java libraries are in the upper part,

benchmark libraries in the lower part.

RippleSynchronizer in avrora9, which is the target of

about 6M calls; it implements global simulation time for a

parallel discrete event simulator. Simulator threads use it to

wait for data from other threads that are not keeping up (and

notify the synchroniser of their progress). The next hottest

class is ReadManager in eclipse9 (about 33K calls), which

synchronises worker threads that read files in parallel. Apart

from avrora9 and eclipse9, the number of these calls is

small enough that performance should not be an issue.

6.10 Concurrent APIs

The java.util.concurrent APIs are widely used in

jython9 (over 175M total or 7.4M/s); five other bench-

marks have between 100–349K calls/s (h29, tradebeans9,

hsqldb6, tomcat9); another five do 10–16K/s (luindex6,

antlr6, eclipse9, pmd9, xalan6). The rates are shown in

Figure 7. The remaining benchmarks issue fewer than 10K

calls per second. avrora9 and sunflow9 have the lowest

number of calls (less than 200) of all benchmarks. Only

jython9, pmd9, tomcat9, tradebeans9 and tradesoap9
call the concurrency APIs directly; other benchmarks do so

only through other Java libraries. Overall, the suites used

atomics (integer, boolean, long, reference, reference field

updater), concurrent hash maps and linked queues, copy-on-

write sets and array lists, linked blocking queues, re-entrant

read-write locks, semaphores, thread pools and future tasks.

In summary, what can we learn from DaCapo’s usage

of different concurrency mechanisms, such as monitor en-

ters, volatile accesses, concurrent API and wait/notify calls?

Several benchmarks are significant outliers. jython9 makes

heavy use of all these mechanisms except wait/notify (par-

ticularly concurrent hash maps, which in turn use volatiles),

even though it is essentially single-threaded (Table 1). The

behaviour of some benchmarks has changed significantly be-

tween releases. xalan9 has by far the highest monitor enter

rate of all benchmarks and also has a very high volatile ac-

cess rate; xalan6 also has very high rates but lower than

xalan9. pmd6 uses locks heavily but does not use volatiles

that much. jython6 behaves very differently to jython9,

with a much lower rate of concurrent calls and volatiles, but

more monitor enters. avrora9 makes much use of wait/no-

tify calls (and hence monitors), but has a very low rate of

concurrent calls and quite a low rate of volatile accesses.

sunflow9 stands out in that it has the lowest enters rate

and makes limited use of the other mechanisms compared

to other benchmarks; it is the most scalable benchmark (Fig-

ure 1(a)) in the suite.

6.11 Shared-Used and Shared-Reachable Objects

VMs have an interest in which objects are, or could poten-

tially be, accessed by more than one thread. There are a num-

ber of advantages to segregating objects into thread-local

heaplets that can be collected in isolation, without stopping

other threads. This approach accords well with transactional

workloads where there is almost no trace left after a transac-

tion commits. It makes it easier to keep thread-local objects

on the local node in a NUMA system, helping to address the

problems of the ‘allocation wall’ [26] or the ‘memory wall’.9

It can also reduce coherency traffic due to false sharing.

Static or dynamic analyses (or a combination of both)

can be used to identify ‘shared’ objects, trading precision for

cost of analysis and object management. The benefits depend

on precision. An escape analysis may determine an object

to be ‘shared’ if it is potentially accessible by more than

9 www.azulsystems.com/presentations/

qconsf-state-of-the-art-in-java-gc

a
n

tl
r6

a
v
ro

ra
9

b
a

ti
k
9

b
lo

a
t6

c
h

a
rt

6

e
c
lip

s
e

6

e
c
lip

s
e

9

fo
p

6

fo
p

9

h
2

9

h
s
q

ld
b

6

jy
th

o
n

6

jy
th

o
n

9

lu
in

d
e
x
6

lu
in

d
e
x
9

lu
s
e

a
rc

h
6

lu
s
e

a
rc

h
9

p
m

d
6

p
m

d
9

s
u

n
fl
o
w

9

to
m

c
a

t9

tr
a

d
e

b
e

a
n

s
9

tr
a

d
e

s
o

a
p

9

x
a

la
n

6

x
a

la
n

9

Monitor Entries Volatile Accesses Concurrent API Calls Wait/Notify Calls

1e+00

1e+02

1e+04

1e+06

Figure 7: Rates of monitor entries, volatile accesses, concurrent API calls and wait+notify calls (operations per second).

one thread [21]. Alternatively, in languages like ML, only

objects annotated as mutable need be considered ‘shared’

as immutable objects can be freely copied [9, 10]. Static

analyses overestimate the number of objects actually shared.

Most are conservative in the face of (or ignore) dynamic

class loading; Jones & King [15] use an optimistic, and

hence more precise, analysis that falls back at run-time to

more conservative assumptions should a dynamically loaded

class invalidate parts of a prior analysis.

Runtime analysis delivers more precise results but re-

quires read or write barriers to detect escape [17]. The most

conservative approach is to have a write barrier mark as

‘shared’ the entire transitive closure of an object at the point

it becomes reachable from another ‘shared’ object [11] —

we call these objects shared-reachable. Precise techniques

identify as shared-used only those objects that are actually

accessed by more than one thread, but permit references

from shared to local objects. Here, a read barrier is needed to

detect sharing. Whilst read barriers are generally considered

expensive [25], Haskell combines the barrier cheaply with

its closure entry mechanism [19].

We compared the incidence of shared-used and shared-

reachable objects in Jikes RVM. Note that even benchmarks

with a single user thread also employ a finaliser thread and

so will report a non-zero number of objects that are shared-

reachable, e.g. from statics. Shared-use was detected by our

probes on the fly. To compute shared-reachability, we ran a

GC after every 10MB of allocation to give a lower bound of

the set of shared-reachable objects.

We measured the proportion of all objects allocated by

a benchmark that became shared-used or shared-reachable

(Figure 8), by number and by volume. Reachability is an

even poorer approximation than we expected of how many

objects will be accessed by more than one thread. Although

only a negligible fraction of space is actually shared in these

benchmarks (7% in avrora9, but below 1% in others, and

we know that in avrora9 about 70% of shared accesses are

made without ownership changes, see Figure 5), the shared-

reachable volume is large: over 10% in 7 of 14 benchmarks,

over 20% in 4 and as much as 61% in hsqldb6. In 11 of

the 14 benchmarks, the fraction of shared-reachable objects

is larger by volume than by number, so we can speculate

that shared-reachable objects tend to be the bigger ones.

Surprisingly, this is not true for shared-used objects: 5 of the

14 benchmarks have a higher fraction of shared-used objects

by number than by volume.

We also compared the fraction of reads and writes to ob-

jects that were shared-used or shared-reachable (Figure 9).

There are many more shared-reachable objects than are ac-

tually shared; the difference is highest with xalan9 (19 per-

centage points for reads and 17 for writes). We tracked which

objects were reachable from static fields at every GC. hsql-

a
n
tl
r6

a
v
ro

ra
9

b
lo

a
t6

e
c
lip

s
e
6

fo
p
6

h
s
q
ld

b
6

jy
th

o
n
6

lu
in

d
e
x
6

lu
in

d
e
x
9

lu
s
e
a
rc

h
6

lu
s
e
a
rc

h
9

p
m

d
6

x
a
la

n
6

x
a
la

n
9

% Shared−Used (Number)

% Shared−Reachable (Number)

% Shared−Used in (Size)

% Shared−Reachable (Size)

O
b

je
c
ts

 U
s
e

d
 a

n
d

 R
e

a
c
h

a
b
le

 b
y
 M

u
lt
ip

le
 T

h
re

a
d

s
 [

%
]

0

10

20

30

40

50

60

Figure 8: Percentage of all objects ever used by (shared-used) or reachable from multiple threads (shared-reachable).

a
n
tl
r6

a
v
ro

ra
9

b
lo

a
t6

e
c
lip

s
e
6

fo
p
6

h
s
q
ld

b
6

jy
th

o
n
6

lu
in

d
e
x
6

lu
in

d
e
x
9

lu
s
e
a
rc

h
6

lu
s
e
a
rc

h
9

p
m

d
6

x
a
la

n
6

x
a
la

n
9

% Shared−Used Reads

% Shared−Reachable Reads

% Shared−Used Writes

% Shared−Reachable Writes

A
c
c
e

s
s
e

s
 t

o
 S

h
a

re
d

 O
b

je
c
ts

 [
%

]

0

5

10

15

20

25

30

Figure 9: Percentage of reads from and writes to objects that were ever used by multiple threads (shared-used) or objects that

were ever potentially reachable from multiple threads (shared-reachable).

db6 has the largest number and volume of shared-reachable

objects. It turns out that 97% of objects that were shared-

reachable were also reachable from at least one static field

at some point. Only five types accounted for a significant

fraction (more than 95%) of these objects.

6.12 Unused Objects

A noticeable number of ‘write-only’ objects are initialised

by the benchmarks but never read nor synchronised, some

read-only objects are never initialised nor synchronised,

some ‘locked-only’ objects are used only for synchronisa-

tion — a common metaphor — and some objects are nei-

ther read, written nor synchronised. Our tool only captures

accesses from Java, but we manually verified selected allo-

cation sites in the benchmarks and found that surprisingly

many of the objects are not used by native code, either.

Figure 10 shows a particularly large proportion of write-

only objects in jython6, jython9 and chart6. In jython,

write-only objects are mostly backing arrays of string buffers

allocated eagerly by the lexical analyser but not used later.

These buffers are created from a single-character string, but

the class libraries pre-allocate a 17-char backing array for

each. In chart6, the vast majority of write-only objects are

backing arrays for lines of text input: string comparisons on

two lines ignore the arrays if their lengths differ. chart6 also

creates a significant number of notification objects, but fre-

quently there are no listeners to be notified so these objects

are never read. pmd6 pre-initialises many objects to repre-

a
n
tl
r6

a
v
ro

ra
9

b
a
ti
k
9

b
lo

a
t6

c
h
a
rt

6

e
c
lip

s
e
6

e
c
lip

s
e
9

fo
p
6

fo
p
9

h
2
9

h
s
q
ld

b
6

jy
th

o
n
6

jy
th

o
n
9

lu
in

d
e
x
6

lu
in

d
e
x
9

lu
s
e
a
rc

h
6

lu
s
e
a
rc

h
9

p
m

d
6

p
m

d
9

s
u
n
fl
o
w

9

to
m

c
a
t9

tr
a
d
e
b
e
a
n
s
9

tr
a
d
e
s
o
a
p
9

x
a
la

n
6

x
a
la

n
9

Unused Objects

Write−only Objects

Read−only Objects

Locked−only Objects

0

10

20

30

40

50

60

Figure 10: Volume of objects that are only read, only written, only synchronized or unused by Java. While some of these objects

are read or written by native code, it turns out that many, particularly write-only, objects are not read by native code either. In

chart6 write-only objects are mostly strings representing lines of input that are skipped during processing. In jython6 they

are mostly compiler objects eagerly allocated and initialised but not needed later.

sent the contexts of XPath predicates, but these are often not

needed and hence write-only. In general, write-only objects

arise through eager allocation and/or preparation of data that

is not always needed for later computation.

Objects are often read-only because only their default

value is needed. chart6 also creates string prefixes as part

of a decimal number formatter but often no characters are

added so the prefix’s backing array is never written. Eager

allocation also leads to objects not being used subsequently.

For example, the python compiler in jython pre-allocates

hashmaps for metadata that are not always needed. Many big

integers representing zero produce unused single-element

int arrays. In jython, the DaCapo results-validation reads

a long text file, which includes many empty lines leading to

the creation of many zero-length byte arrays.

We also found instances of objects that were read-only

or unused in Java, but were written or read from the native

code. For instance, I/O buffers used when reading a file ap-

peared ‘read-only’. Buffers used for class loading appeared

‘unused’ as they were only read by the VM’s native code.

7. Conclusion

We provide a number of platform independent metrics of

concurrency, shared memory use and scalability of Java ap-

plications. Based on tracing, these metrics allow black-box

studies of large applications, giving the developers an under-

standing of what applications really do. Our approach takes

into account application libraries and standard Java libraries,

but abstracts from any hardware platform or VM implemen-

tation. We believe that it will help application developers

gain insights into their programs by understanding scalabil-

ity bottlenecks independent of the platform used. Similarly

VM developers need confidence that the benchmarks they

use to measure new optimisations do stress the optimisation

they are trying to test. For this they need not only good ap-

plication benchmarks but also to understand their behaviour.

For example, to test locking optimisations, they need appli-

cations which use locks in a non-trivial manner. We provide

metrics to examine how the programs use locking and other

concurrency mechanisms such as volatile accesses, synchro-

nisation through atomic memory operations, or frequent ac-

cesses to shared memory by different threads.

We implement our metrics in two tools, one which uses

bytecode instrumentation and one which modifies a Java

VM. We provide an observational study of what the Da-

Capo’09 and DaCapo’06 benchmarks really do in terms of

concurrency and shared memory use. We believe our results

will help developers to choose the right benchmarks for their

purposes. We measure how many threads in these bench-

marks actually contribute significantly to the work of the

benchmark. While many benchmarks are multi-threaded, we

find that their threads do not communicate much or commu-

nicate only in limited ways. Moreover, communication often

does not change predictably as we vary the number of cores

deployed. Although limited synchronisation is good for scal-

ability, these limitations have to be kept in mind when bench-

marks are used as test applications by VM implementors at-

tempting to optimise the concurrency support they provide.

We hope that our findings for large Java applications

will inform VM development, particularly memory manage-

ment and concurrent GCs for many-core systems with shared

memory. The DaCapo benchmarks do not scale beyond 20 or

so cores on the platforms we have looked at and some even

degrade. There are more reads than writes, and many more

static reads than static writes. Reads tend to be to older ob-

jects than writes. Young objects do not dominate memory

accesses. Shared accesses are dominated by reads. Array ac-

cesses tend to be more shared than scalar ones, but scalars

tend to have more frequent changes of ownership. Static ac-

cesses are massively shared. Volatile accesses are quite rare

compared to all accesses, but only somewhat less frequent

than locks. Nearly half of all static accesses tend however

to be volatile. The chance that an access is shared increases

with age. There are many accesses to objects reachable from

multiple threads, but few are accessed by multiple threads:

reachability is a gross over-estimate of sharing. A non-trivial

volume of memory is reachable from statics, which imme-

diately contributes to this over-estimate in nearly single-

threaded workloads. Furthermore, a non-trivial volume of

memory is never used.

Finally, we thank Doug Lea, Eliot Moss, Andreas Sewe,

Pavel Parizek, Thomas Shilling and the anonymous re-

viewers for their thoughtful comments and suggestions. We

are grateful for the support of the EPSRC through grant

EP/H026975/1 and NSF 1048398, 1019518, 1019607.

References

[1] ASM project. http://asm.ow2.org, 2011.

[2] BTrace. http://kenai.com/projects/btrace, 2011.

[3] B. Alpern, C.R. Attanasio et al. Implementing Jalapeño in

Java. In Object-Oriented Programming, Systems, Languages

and Applications (OOPSLA), 1999.

[4] W. Binder, J. Hulaas and P. Moret. Reengineering standard

Java runtime systems through dynamic bytecode instrumen-

tation. In Source Code Analysis and Manipulation (SCAM),

2007.

[5] S.M. Blackburn and K.S. McKinley. Ulterior reference count-

ing: Fast garbage collection without a long wait. In Object-

Oriented Programming, Systems, Languages and Applica-

tions (OOPSLA), 2003.

[6] S.M. Blackburn, R. Garner et al. The DaCapo benchmarks:

Java benchmarking development and analysis. In Object-

Oriented Programming, Systems, Languages and Applica-

tions (OOPSLA), 2006.

[7] A. Burns and A.J. WellingS. Real-Time Systems and Pro-

gramming Languages: ADA 95, Real-Time Java and Real-

Time POSIX. Addison-Wesley, 3rd edition, 2001.

[8] K.-Y. Chen, J.M. Chang, and T.-W. Hou. Multithreading in

Java: Performance and scalability on multicore systems. IEEE

Transactions on Computers, 60(11), 2011.

[9] D. Doligez and G. Gonthier. Portable, unobtrusive garbage

collection for multiprocessor systems. In Symposium on Prin-

ciples of Programming Languages (POPL), 1994.

[10] D. Doligez and X. Leroy. A concurrent generational garbage

collector for a multi-threaded implementation of ML. In Sym-

posium on Principles of Programming Languages (POPL),

1993.

[11] T. Domani, E.K. Kolodner et al. Thread-local heaps for

Java. In International Symposium on Memory Management

(ISMM), 2002.

[12] B. Dufour, K. Driesen et al. Dynamic metrics for Java. In

Object-Oriented Programming, Systems, Languages and Ap-

plications (OOPSLA), 2003.

[13] H. Esmaeilzadeh, T. Cao et al. Looking back on the language

and hardware revolutions: Measured power, performance and

scaling. In Architectural Support for Programming Languages

and Operating Systems (ASPLOS), 2011.

[14] L. Gidra, G. Thomas et al. Assessing the scalability of garbage

collectors on many cores. In Programming Languages and

Operating Systems (PLOS), 2011.

[15] R.E. Jones and A.C. King. A fast analysis for thread-local

garbage collection with dynamic class loading. In Source

Code Analysis and Manipulation (SCAM), 2005.

[16] R.E. Jones and C. Ryder. A study of Java object demograph-

ics. In International Symposium on Memory Management

(ISMM), 2008.

[17] R.E. Jones, A.L. Hosking, and J.E.B. Moss. The Garbage

Collection Handbook: The Art of Automatic Memory Manage-

ment. Chapman & Hall, 2011.

[18] T. Liu and E.D. Berger. Sheriff: precise detection and auto-

matic mitigation of false sharing. In Object Oriented Pro-

gramming Systems, Languages and Applications (OOPSLA),

2011.

[19] S. Marlow and S.L. Peyton Jones. Multicore garbage collec-

tion with local heaps. In International Symposium on Memory

Management (ISMM), 2011.

[20] K. Shiv, K. Chow et al. SPEC jvm2008 performance charac-

terization. In SPEC Benchmark Workshop on Computer Per-

formance Evaluation and Benchmarking, 2009.

[21] B. Steensgaard. Thread-specific heaps for multi-threaded pro-

grams. In International Symposium on Memory Management

(ISMM), 2000.

[22] L. Valiant. A bridging model for parallel computation. CACM,

33(8):103–111, 1990.

[23] P.H. Welch and J.B. Pedersen. Santa Claus: Formal analysis

of a process-oriented solution. ACM Trans. Comput. Syst., 32

(4), 2010.

[24] X. Yang, S.M. Blackburn et al. Why nothing matters: the

impact of zeroing. In Object Oriented Programming Systems

Languages and applications (OOPSLA), 2011.

[25] X. Yang, S.M. Blackburn et al. Barriers reconsidered,

friendlier still! In International Symposium on Memory Man-

agement (ISMM), 2012.

[26] Y. Zhao, J. Shi et al. Allocation wall: A limiting factor

of Java applications on emerging multi-core platforms. In

Object-Oriented Programming, Systems, Languages and Ap-

plications (OOPSLA), 2009.

