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Abstract. We show how to transform any semantically secure encryption scheme into
a non-malleable one, with a black-box construction that achieves a quasi-linear blow-up
in the size of the ciphertext. This improves upon the previous non-black-box construction
of Pass, Shelat and Vaikuntanathan (Crypto ’06). Our construction also extends readily
to guarantee non-malleability under a bounded-CCA2 attack, thereby simultaneously
improving on both results in the work of Cramer et al. (Asiacrypt ’07). Our construction
departs from the oft-used paradigm of re-encrypting the same message with different
keys and then proving consistency of encryption. Instead, we encrypt an encoding of the
message; the encoding is based on an error-correcting code with certain properties of
reconstruction and secrecy from partial views, satisfied, e.g., by a Reed–Solomon code.
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1. Introduction

The most basic security requirement for public-key encryption (PKE) schemes, referred
to as semantic security, is that an eavesdropping adversary does not learn anything about
the plaintext underlying a communicated ciphertext; this security notion is proven to
be equivalent to indistinguishability under a chosen-plaintext attack (IND-CPA) which
requires that the adversary cannot distinguish an encryption of one plaintext from an-
other [22,42]1. In many applications, however, this indistinguishability guarantee is not
sufficient, and a PKE satisfying the stronger notion of non-malleability [16] is required.
Roughly, non-malleability requires that it is infeasible for an adversary to modify or
maul a ciphertext into one, or many, other ciphertexts of messages related to the original
plaintext. As one example for the importance of non-malleability, consider the use of
PKE in auctions. In order to achieve privacy of each buyer’s bid against other buyers,
buyers place their bids for an item to a seller, encrypted under the seller’s public key,
and the seller sells the item to the buyer with the highest bid. Although this auction
protocol seems to be secure enough, it turns that we must also rule out an adversary who
consistently bids exactly one dollar more than the previous bidders by simply mauling
the ciphertexts from the bidders. This motivates the following question.

Is it possible to immunize any semantically secure encryption scheme, trans-
forming it into a scheme that is non-malleable?

We focus on this question for a passive adversary, and when we refer to “non-malleable
encryption,”wemean, by default, non-malleability under a chosen-plaintext attack (NM-
CPA). Later, we will also discuss the implications of our results to the active case, where
the adversary can mount a limited chosen ciphertext attack.
Prior to our work, Pass, Shelat, and Vaikuntanathan [46] studied this question and

answered it affirmatively, providing a beautiful construction of a non-malleable encryp-
tion scheme from any semantically secure one (building on [16]). However, this PSV
construction – as with previous constructions achieving non-malleability from general
assumptions [16,38,53] – suffers from the curse of inefficiency arising from the use of
general NP-reductions. In this paper we overcome this problem and answer the above
question affirmatively using a black-box reduction. Before explaining our results, we
provide some background and motivation.

1.1. Black-Box Complexity of Cryptographic Primitives

Much of the modern work in foundations of cryptography rests on general cryptographic
assumptions like the existence of one-way functions and trapdoor permutations. General
assumptions provide an abstraction of the functionalities and hardness we exploit in
specific assumptions such as hardness of factoring and discrete log without referring to
any specific underlying algebraic structure. Constructions based on general assumptions
may use the primitive guaranteed by the assumption in one of two ways:

1In this work, we will use semantic security and IND-CPA security interchangeably, since the two notions
are equivalent.
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• Black-box usage A construction G is black box if it refers only to the input/output
behavior of the underlying primitive f ; we would typically also require the proof of
security to show an efficient reduction that converts any (even inefficient) adversary
A breaking the security of the construction G f into an efficient algorithm S A, f

breaking the underlying primitive with oracle access to the adversary A and the
primitive f (this is called a fully black-box reduction—see [1,52] and references
within for more details).

• Non-black-box usage In a non-black-box usage, a construction and/or its security
proof uses the code computing the functionality of the underlying primitive.

Motivated by the fact that the majority of constructions in cryptography are black box,
a rich and fruitful body of work initiated in [33] seeks to understand the power and
limitations of black-box constructions in cryptography, resulting in a fairly complete
picture of the relations among many cryptographic primitives with respect to black-box
constructions. Recent work (including this paper) has turned to tasks for which the only
constructions we have are non-black box, yet the existence of a black-box construction
is not ruled out. A notable example is general secure multi-party computation against
a dishonest majority, for which the recent works of [29,32] show a black-box con-
struction from the minimal primitive of semi-honest oblivious transfer. Other examples
include [21,28,54].
The question of whether we can securely realize a task via black-box access to a

general primitive is of theoretical interest, toward a better understanding of the com-
plexity and minimal assumptions necessary, as well as of practical significance, since
black-box (thus, modular) constructions are typically simpler andmore efficient. Indeed,
non-black-box constructions tend to be less efficient due to the typical use of general
NP reductions in order to prove statements in zero knowledge; this impacts both compu-
tational complexity as well as communication complexity (which we interpret broadly
to mean message lengths for protocols and key size and ciphertext size for encryption
schemes). Moreover, if resolved in the affirmative, the solution can provide new insights
and techniques for circumventing the use of NP reductions and zero knowledge in the
known constructions.

1.2. Our Contributions

1.2.1. Non-malleability Against Chosen-Plaintext Attacks

Asmentioned above, in this paper we provide a black-box construction of non-malleable
encryption from semantically secure encryption, where previous work achieved it only
through a non-black-box construction [46], or prior to that, only using additional as-
sumptions [16].

Main theorem (informal) There exists a (fully) black-box construction of a
non-malleable encryption scheme from any semantically secure one.

That is, we provide a “wrapper program” that given any subroutines for computing a
semantically secure encryption scheme, computes a non-malleable encryption scheme.
While this is interesting in and of itself, our construction also compares favorably with
previous work in several regards:
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• Improved parameters We improve on the computational complexity of previous
constructions based on general assumptions. In particular, we do not have to do
an NP-reduction in either encryption or decryption, although we do have to pay
the price of the running time of error-correcting code algorithms (e.g., Berlekamp–
Welch algorithm [6]). The running time incurs a multiplicative overhead that is
quasi-linear in the security parameter, over the running time of the underlying
IND-CPA secure scheme. Moreover, the sizes of public keys and ciphertext are
independent of the computational complexity of the underlying scheme.

• Conceptual simplicity/clarity Our scheme (and the analysis) is arguably much sim-
pler thanmanyof the previous constructions, and unlike [46], entirely self-contained
(apart from some basic tools from coding theory). We do not need to appeal to no-
tions of zero-knowledge [24,26], nor do we touch upon subtle technicalities like
adaptive vs non-adaptive NIZK. Our construction may be covered in an intro-
ductory graduate course on cryptography without requiring zero knowledge as a
pre-requisite.

• Ease of implementation Our scheme is easy to describe and can be easily imple-
mented in a modular fashion.

• RobustnessOur construction achieves non-malleability evenwhen instantiatedwith
an encryption schemewith negligible decryption error. This is in contrast to the [16]
and [46] constructions, which require that the underlying encryption scheme be first
“immunized” against decryption errors (c.f. [19]); these constructions are otherwise
susceptible to an attack described by Dwork et al. [19].

1.2.2. Our Techniques

At a high level, we follow the cut-and-choose approach for consistency checks from
[46], wherein the randomness used for cut-and-choose is specified in the secret key. A
crucial component of our construction is a message encoding scheme, which we will
explain later, with certain locally testable and self-correcting properties. We think this
technique may be useful in eliminating general NP-reductions in other constructions in
cryptography (outside of public-key encryption). Indeed, this has already proven true in
several subsequent works (see Section 1.5).

1.2.3. Implications for Chosen Ciphertext Attacks

While the notion of (passive) non-malleability is important and interesting in its own
right, it is also interesting as an intermediate notion between semantic security and fully
active chosen ciphertext attacks, where the adversary is allowed to query the decryption
oracle as well. Recall that in CCA1 attacks, the adversary may access the decryption
oracle only before seeing the challenge, while in the stronger CCA2, adaptive decryption
queries (after seeing the challenge) are also allowed, except for the challenge itself (cf.,
[16,27,45,50]). Finally, of particular relevance to us is the notion of bounded CCA2
attack, introduced by Cramer et al. [10], which is a relaxation of the CCA2 attack
(and incomparable to CCA1). Here, the adversary is only allowed to make an a priori
bounded number of queries q to the decryption oracle, where q is fixed prior to choosing
the parameters of the encryption scheme.
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IND-CPA NM-CPA

IND-q-CCA NM-q-CCA

IND-CCA2 = NM-CCA2

Fig. 1. Summary of our positive results.

It is known that although indistinguishability and non-malleability are equivalent
security notions under a CCA2 attack [16], non-malleability under a bounded CCA2
attack (NM-q-CCA2) is a strictly stronger security notion than indistinguishability under
a bounded CCA2 attack (IND-q-CCA1); that is, every NM-q-CCA2 secure encryption
is also IND-q-CCA2 secure, but the converse is not necessarily true [10].

Cramer et. al. [10] obtained two constructions, starting from any semantically secure
(IND-CPA) encryption:

• An encryption scheme that achieves indistinguishability under a bounded-CCA2
attack via a black-box construction, wherein the size of the public key and ciphertext
are quadratic in q; and

• An encryption scheme that is non-malleable under a bounded-CCA2 attack via a
non-black-box construction, wherein the size of the public key and ciphertext are
linear in q. Interestingly, the scheme is just the construction of [46], only except
that the NIZK proof used is with stronger soundness (i.e., the soundness holds even
if the adversary can query the verifier on at most q proofs and learn the validity of
each proof).

Combining their approach for the latter construction with our main result (i.e., by using
our NM-CPA construction but with a stronger parameter for the cut-and-choose check),
we obtain a result that simultaneously improves over both the above.

Corollary (informal) There exists a (fully) black-box construction of an en-
cryption scheme that is non-malleable under a boundedCCA2 attack (NM-q-
CCA2) from any semantically secure (IND-CPA) encryption scheme. More-
over, for this construction, the size of the public key and ciphertext are linear
in the number of queries q.

Our positive results are summarized in Fig. 1.
We also use our construction to obtain a negative (separation) result between non-

malleability and CCA security. Our main construction has the additional property that
the decryption algorithm does not query the encryption functionality of the underly-
ing scheme. Gertner et al. [23] referred to such constructions as “shielding,” and they
showed that there is no shielding black-box construction of IND-CCA1 secure encryp-
tion schemes from semantically secure ones. Combined with the fact that any shielding
construction when composed with our construction is again shielding, this yields the
following:
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(poly-to-1) TDF

IND-q-CCA

    CCA2

IND-CCA1

NM-q-CCA
eTDP

IND-CPA

lossy TDF

NM-CPA

Fig. 2. Known relations among generic encryption primitives and our results. Solid lines indicate black-box
constructions, and dotted lines indicate non-black-box constructions (c.f. [5,10,16,46,47]). Arrows with the
‘|’ symbol (resp., the ‘∼’ symbol) in the middle indicate the separations with respect to black-box reductions
(resp., black-box shielding reductions, c.f. [23,25]). Our contributions are indicated with the thick arrows.

Corollary (informal) There exists no shielding black-box construction of a
IND-CCA1, NM-CCA1, or CCA2 encryption scheme from non-malleable
(NM-CPA) encryption.

This corollary for IND-CCA1 follows from combining [23] with our result and imme-
diately implies the same separation for NM-CCA1 and CCA2, as both these notions
trivially imply IND-CCA1 security. Our results, as well as other known relationships
between relevant primitives, are summarized in Fig. 2.

1.3. Overview of Our Construction

In order to prove that an encryption scheme satisfies NM-CPA, we must show that the
decryptions of ciphertexts produced by any efficient adversary, A, upon receiving a
challenge ciphertext encrypting either m0 or m1 are computationally indistinguishable.
The high-level proof structure is to consider a sequence of hybrid distributions, where
the first hybrid distribution corresponds to the decryptions of ciphertexts produced by the
adversary, A, upon receiving an encryption ofm0, the last hybrid distribution corresponds
to decryptions of ciphertexts produced by the adversary, A, upon receiving an encryption
of m1, and any two consecutive hybrid distributions are proven to be computationally
indistinguishable. Thus, the difficulty in proving NM-CPA security is that in order to
produce the correct distributions, one must implement a (modified) decryption oracle
in each hybrid, which performs a single parallel decryption on all ciphertexts produced
by the adversary. Recall that when proving indistinguishability of consecutive hybrids,
we reduce a distinguisher between the hybrids to some underlying assumption and
therefore that reductionmust internally simulate the (modified) decryption oracle in each
pair of consecutive hybrids. However, this produces something of a paradox, because
when building NM-CPA encryption from IND-CPA encryption, it must be the case that
indistinguishability of (at least) one pair of consecutive hybrids reduces to the security
of the underlying IND-CPA encryption scheme. But this means that the reduction must
be able to simulate the (modified) decryption oracle in this pair of consecutive hybrids,
without knowing the underlying secret key. Evenmore puzzling, the reduction should not
know the plaintext underlying the challenge ciphertext submitted to the adversary (so that
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a distinguishing adversary is useful), but should be able to decrypt any other ciphertext
produced by the adversary, even after the adversary sees the challenge ciphertext!
The approach for solving this problem prior to our work (used by DDN [16] and later

PSV [46]) was the following: To encrypt a message m under the NM-CPA encryption
scheme, a set of k public keys of the underlying encryption scheme is chosen (where k
is security parameter) and the same message m is encrypted k times, once under each
public key in the set. The set of public keys under which to encrypt is chosen cleverly so
that the following property is guaranteed: For the challenge ciphertext the reduction does
not know any of the corresponding secret keys and so cannot decrypt it, while for any
valid ciphertext produced by the adversary, the reduction must know at least one of the
corresponding secret keys. In addition, for any ciphertext, there is away to checkwhether
the ciphertext is valid without decrypting and without learning the underlying plaintext.
Given the above, the reduction implements the decryption oracle by first checking for
validity and if the check passes, outputting the decryption corresponding to (one of) the
secret key(s) that it knows. If the ciphertext is invalid, both the reduction and the real
decryption oracle output ⊥. On the other hand, if the ciphertext is valid (i.e., the same
message m is encrypted under each of the k underlying public keys), again both the
reduction and the real decryption oracle output the same message, regardless of which
underlying secret key is used for decryption.
In more detail, recall the DDN [16] and PSV [46] constructions: A public key consists

of k pairs of IND-CPA secure public keys pk =
{
(pk0i , pk

1
i ) | i ∈ [k]

}
. To encrypt a

message, one (a) generates a (sksig,vksig) pair using a one-time signature scheme,
(b) generates k encryptions of the same message under independent keys, where the
i-th encryption is done under public key pkvksigi

i , where vksigi denotes the i-th bit of
the verification key, (c) gives a non-interactive zero-knowledge proof that all resulting
ciphertexts are encryptions of the same message, and (d) signs the entire bundle with
sksig. Note that due to unforgeability of the one-time signature scheme, the vksig
corresponding to a valid ciphertext produced by the adversary must be different from the
vksig used in the challenge ciphertext (otherwise, the signature on the entire bundle will
fail to verify). This, in turn, means that the set of public keys corresponding to any valid
ciphertext produced by the adversary differs from the set of public keys corresponding
to the challenge ciphertext. This property allows us to build a reduction which does
not know any of the secret keys corresponding to the challenge ciphertext, while for
any valid ciphertext produced by the adversary, the reduction knows at least one of
the corresponding secret keys (as described above). Moreover, the publicly verifiable
signature and non-interactive zero-knowledge proof allow to check for ciphertext validity
without decrypting or knowing the underlying plaintext (as described above). Note that it
is in step (c) that a generalNP-reduction is used, which in return makes the construction
non-black box.
How dowe guarantee that a tuple of k ciphertexts are encryptions of the same plaintext

without using a zero-knowledge proof and without revealing any information about the
underlying plaintext? Naively, one would like to use a cut-and-choose approach (as was
previously used in [39] to eliminate zero-knowledge proofs in the context of secure two-
party computation), namely decrypt and verify that some random, constant fraction,
say k/2 of the ciphertexts are indeed consistent. This would mean that the reduction
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need only know k/2 of the corresponding secret keys in order to check for validity of
ciphertexts and the other k/2 public keys can potentially be used for the reduction to
IND-CPA security. Unfortunately, there are two issues with this approach:

• First, if only a constant number of ciphertexts are inconsistent, then we are un-
likely to detect the inconsistency. To circumvent this problem, we could decrypt by
outputting the majority of the remaining k/2 ciphertexts.

• The second issue is more fundamental: decrypting any of the ciphertexts will imme-
diately reveal the underlying message, whereas—as discussed above—it is crucial
for the proof that we can enforce consistency while learning nothing about the
underlying plaintext.

We circumvent both issues by using a more sophisticated encoding of the message
m based on reconstructable probabilistic encoding (RPE) schemes2 that we introduce,
instead of merelymaking k copies of themessage as in the above schemes. RPE schemes
are, informally, error-correcting codes with additional secrecy and reconstruction prop-
erties. The secrecy property guarantees that the symbols at any not-too-large subset of
positions in the codeword are distributed uniformly and independently of the encoded
message. The reconstruction property says that furthermore, any assignment of symbols
to such a subset of positions can be completed to a (correctly distributed) codeword for
any given message. The parameter regime we will be interested in is the standard one,
where the error correction is with respect to a constant fraction of errors, and the secrecy
and reconstruction are also with respect to a (smaller) constant fraction of positions.
Specifically, let E be the encoding algorithm of the RPE scheme with output of length

� = O(k) (over the alphabet of the scheme). We first obtain an encoding w of m (i.e.,
w ← E(m)) and then generate k encryptions of the same w. Thus, we construct a k × �

matrix such that entry (i, j) holds w j (i.e., the j th element of w). To verify consistency,
we will decrypt a random subset of k columns and check that all the entries in each
of these columns are the same; the random subset will be chosen in key generation
and embedded into the private key. The first issue above—that it is difficult to detect
a tiny number of inconsistent ciphertexts—is now handled using the error-correcting
properties of the encoding scheme, which loosely speaking, guarantees that a small
number of inconsistent ciphertexts will not affect the value of the decrypted message.
The second issue is addressed since, due to the secrecy properties of the encoding scheme,
learning a random subset of k columns in a valid encoding reveals nothing about the
underlying message m. We note that encoding m using a secret-sharing scheme appears
in the earlier work of Cramer et al. [10], but they do not consider redundancy or error
correction.
As before, we encrypt all the entries of the matrix using independent keys and then

sign the entire bundle with a one-time signature. It is important that the encoding also
provides a robustness guarantee similar to that of repeating the message k times: we
are able to recover the message for a valid encryption if we can decrypt any row in the
matrix. Indeed, this is essentially our entire scheme with two technical caveats:

2The original work [7] used an encoding scheme based on the Reed–Solomon code, and we introduce
RPE as a generalization of the encoding.
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• Aswith previous schemes, we will associate one pair of public/secret key pairs with
each entry of the matrix, and we will select the public key for encryption based on
the verification key of the one-time signature scheme.

• To enforce consistency, we will need a codeword check (checking if the first row
has only a small number of errors) in addition to the column check outlined above.
The reason for this is fairly subtle and we will highlight the issue in the formal
exposition of our construction.

1.3.1. Decreasing Ciphertext Size

To encrypt an n-bit message with security parameter k, our construction yields O(k2)
encryptions of n-bit messages in the underlying scheme. It is easy to see that this may be
reduced to O(k log2 k) encryptions while maintaining security against ppt adversaries,
by reducing the number � of columns to O(log2 k).

1.4. Toward Full CCA2 Security?

One of the biggest open problems remaining in the area is the construction of CCA2-
secure encryption via black-box access to a low-level general primitive (e.g., enhanced
trapdoor permutations), or the construction (whether black-box or not) of CCA2-secure
encryption from semantically secure encryption. Below we describe the perspective on
achieving full CCA2 security, both pre- and post-publication of our original work, [7],
at TCC 2008.
[7] and prior works Early works pertaining to this open problem were limited to non-
black-box constructions of CCA2-secure encryption from enhanced trapdoor permu-
tations [16,38,53]. A different line of work focused on (very) efficient constructions
of CCA2-secure encryptions under specific number-theoretic assumptions (c.f. [11,13,
14]). Apart from the construction based on identity-based encryption [11], all these
constructions can be described under the following framework (c.f. [3,20,45,50]). Start
with some cryptographic hardness assumption that allows us to build a semantically
secure encryption scheme, and then prove/verify that several ciphertexts satisfy certain
relations in one of two ways:

• exploiting algebraic relations from the underlying assumption to deduce additional
structure in the encryption scheme (e.g., homomorphic, reusing randomness) [13,
14];

• apply a general NP reduction to prove in non-interactive zero knowledge (NIZK)
statements that relate to the primitive [16,38,53].

These previous approaches do not yield black-box constructions under general assump-
tions and, indeed, our work does not use the above framework.
Peikert and Waters [47] (who also do not use the above framework) made substantial

progress toward the open problem. They constructed CCA2-secure encryption schemes
via black-box access to a new primitive they introduced called lossy trapdoor func-
tions and, in addition, gave constructions of this primitive from number-theoretic and
worst-case lattice assumptions. Unfortunately, their work does not provide a black-box
construction of CCA2-secure encryption from enhanced trapdoor permutations.
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Our work may be viewed as a step toward solving this gap (and a small step in the
more general research agenda of understanding the power of black-box constructions).
Specifically, the security guarantee provided by non-malleability lies between semantic
security and CCA2 security, and we show how to derive non-malleability in a black-box
manner from the minimal assumption possible, i.e., semantic security. In the process, we
show how to enforce consistency of ciphertexts in a black-box manner. This issue arises
in black-box constructions of both CCA2-secure and non-malleable encryptions. How-
ever, our consistency checks only satisfy a weaker notion of non-adaptive soundness,
which is sufficient for non-malleability but not for CCA2-security (c.f. [46]). Indeed,
the main obstacle toward achieving full CCA2 security from either semantically secure
encryptions or enhanced trapdoor permutations using our approach (and also the [46]
approach) lies in guaranteeing soundness of the consistency checks against an adver-
sary that can adaptively determine its queries depending on the outcome of previous
consistency checks. It seems conceivable that using a non-shielding construction (as
in [31,43]) that uses re-encryption may help overcome this obstacle.

1.4.1. Subsequent Works

Recently there has been significant, renewed effort on constructing CCA2-secure en-
cryption from new assumptions. Notably, all of these subsequent works deviate from the
classic encrypt-and-prove paradigm discussed above. We next discuss several of these
recent works. Rosen and Segev [51] introduced a new assumption of trapdoor functions
secure under correlated products, showed that this assumption is weaker than the as-
sumption of lossy trapdoor functions, and presented a simple, black-box construction
of CCA2-secure encryption under this assumption. Kiltz et al. [35] formalized an even
weaker assumption called adaptive trapdoor functions and showed that it is sufficient for
black-box constructions of CCA2-secure encryption. Hofheinz and Kiltz [30] presented
the first construction of CCA2-secure encryption from hardness of factoring. Wee [55]
abstracted their construction and introduced a new primitive, extractable hash proofs,
which is sufficient for CCA2-secure encryption. Moreover, [55] showed a construction
of extractable hash proofs from the CDH assumption, which yields the first construc-
tion of CCA2-secure encryption from CDH. Other works such as [8,12,31,43] showed
how to obtain multi-bit CCA2-secure encryption from single-bit CCA2-secure encryp-
tion. Another line of research (c.f. [15,41,44]) focused on black-box constructions of
CCA2-secure encryption from various non-falsifiable assumptions.

1.5. Other Subsequent Works

Since the publication of this work at TCC 2008, the encoding scheme introduced here
has been used in a number of follow-up works. There have been black-box constructions
of non-malleable commitments [48], set intersection protocols from homomorphic en-
cryptions [18], and a CCA2-secure encryption scheme for strings starting from one for
bits [43]. The works of [34,36,40,54] used our encoding in the context of black-box,
round-efficient secure computation. The works of [21,28] generalized our approach to
proving relations beyond equality using verifiable secret sharing (VSS) and the paradigm
ofMPC-in-the-head. Thework of [2] achieved a non-malleable code using our approach.
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Coretti et al. [8] revisited the work of [7] and investigated the question of how efficient
the black-box transformation can be. The measure of efficiency they consider is the rate
of the resulting NM-CPA encryption scheme (i.e., c(n)/n, where c(n) is the ciphertext
length, and n is the plaintext length) and gave an improved transformation by replacing
the error-correcting code (based on Reed–Solomon code) used in [7] with one having
a better rate. In particular, they independently observed that the construction given in
[7] can be generalized to work for more general linear error-correcting secret sharing
schemes (LECSS), beyond just Reed–Solomon codes, and they were able to replace the
Reed–Solomon code with an encoding scheme [9] with a better rate for long enough
messages.We note that LECSS is similar to the RPE abstraction introduced in this paper.
We will compare the two when we formally define RPE.

2. Preliminaries and Definitions

2.1. Notation

We use [n] to denote {1, 2, . . . , n}. If A is a probabilistic polynomial-time (hereafter,
ppt) algorithm that runs on input x , A(x) denotes the random variable according to the
distribution of the output of A on input x . We denote by A(x; r) the output of A on input
x and random coins r . Computational indistinguishability between two ensembles A and

B is denoted by A
c≈ B, and statistical indistinguishability between two distributions

A and B is denoted by A
s≈ B. Given two strings v,w of length � over an alphabet

�, we say that v and w are δ-far if they disagree in greater than δ · � positions, where
0 ≤ δ ≤ 1; we say that v and w are δ-close if they agree in greater than δ · � positions.

2.2. Semantically Secure Encryption

Definition 1. (Encryption scheme)A triple (Gen,Enc,Dec) is anencryption scheme,
ifGen andEnc are ppt algorithms andDec is a deterministic polynomial-time algorithm
which satisfies the following property:

Correctness. There exists a negligible function μ(·) such that for all suffi-
ciently large k, we have that with probability 1 − μ(k) over (pk, sk) ←
Gen(1k): for all m, Pr[Decsk(Encpk(m)) = m] = 1.

We give the definition of indistinguishability under a chosen-plaintext attack (IND-
CPA) for public-key encryption schemes. Roughly speaking, the definition requires that
the adversary should not be able to distinguish the ciphertexts of any two messages that
it chooses; to put it another way, no matter which encryption the adversary receives, its
output will be indistinguishable.

Definition 2. (IND-CPA security) LetΠ = (Gen,Enc,Dec) be an encryption scheme
and let the random variable INDb(Π, A, k), where b ∈ {0, 1}, A = (A1, A2) are ppt
algorithms and k ∈ N, denote the result of the following probabilistic experiment:
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INDb(Π, A, k) :
(pk, sk) ← Gen(1k)

(m0, m1, stateA) ← A1(pk) s.t. |m0| = |m1|
y ← Encpk(mb)

D ← A2(y, stateA)

Output D

(Gen,Enc,Dec) is indistinguishable under a chosen-plaintext attack, or seman-
tically secure, if for any ppt algorithms A = (A1, A2), the following two ensembles
are computationally indistinguishable:

{
IND0(Π, A, k)

}
k∈N

c≈
{
IND1(Π, A, k)

}
k∈N

It follows from a straightforward hybrid argument that semantic security implies
indistinguishability of multiple encryptions under independently chosen keys:

Proposition 1. Let Π = (Gen,Enc,Dec) be a semantically secure encryption scheme
and let the random variable mINDb(Π, A, k, �), where b ∈ {0, 1}, A = (A1, A2) are
ppt algorithms and k ∈ N, denote the result of the following probabilistic experiment:

mINDb(Π, A, k, �) :
For i = 1, . . . , �: (pki , ski ) ← Gen(1k)

(〈m0
1, . . . , m0

�〉, 〈m1
1, . . . , m1

�〉, stateA) ← A1(〈pk1, . . . , pk�〉)
s.t. |m0

1| = |m1
1| = · · · = |m0

�| = |m1
�|

For i = 1, . . . , �: yi ← Encpki (m
b
i )

D ← A2(y1, . . . , y�, stateA)

Output D

then for any ppt algorithms A = (A1, A2) and for any polynomial p(k), the following
two ensembles are computationally indistinguishable:

{
mIND0(Π, A, k, p(k))

}
k∈N

c≈
{
mIND1(Π, A, k, p(k))

}
k∈N

2.3. Non-malleable Encryption

We give the definition of non-malleability under a chosen-plaintext attack (NM-CPA)
for public-key encryption schemes, following [46]. Roughly speaking, the definition
requires that no matter which encryption the adversary receives, the decryption of the
adversary’s output ciphertexts should be indistinguishable.Recall that IND-CPArequires
the adversary’s outputs be indistinguishable. By requiring even the decryption of its
output ciphertexts be indistinguishable, the definition captures the property that the
adversary cannot modify the challenge ciphertext into other ciphertexts related to the
original plaintext underlying the challenge ciphertext.

Definition 3. (Non-malleable encryption [46]) Let Π = (Gen,Enc,Dec) be an en-
cryption scheme and let the random variable NMEb(Π, A, k, �) where b ∈ {0, 1},
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A = (A1, A2) are ppt algorithms and k, � ∈ N denote the result of the following
probabilistic experiment:

NMEb(Π, A, k, �) :
(pk, sk) ← Gen(1k)

(m0, m1, stateA) ← A1(pk) s.t. |m0| = |m1|
y ← Encpk(mb)

(ψ1, . . . , ψ�) ← A2(y, stateA)

Output (d1, . . . , d�) where di =
{

⊥ if ψi = y

Decsk(ψi ) otherwise

(Gen,Enc,Dec) is non-malleable under a chosen-plaintext attack if for any ppt
algorithms A = (A1, A2) and for any polynomial p(k), the following two ensembles
are computationally indistinguishable:

{
NME0(Π, A, k, p(k))

}
k∈N

c≈
{
NME1(Π, A, k, p(k))

}
k∈N

It was shown in [46] that an encryption that is non-malleable (under Definition 3)
remains non-malleable even if the adversary A2 receives several encryptions under
many different public keys (the formal experiment is the analogue of mIND for non-
malleability).

2.4. Bounded-CCA2 Non-malleability

The definition of Bounded-CCA2 Non-Malleability is almost identical to the definition
of Non-Malleability except here, we allow the adversary to queryDec at most q times in
the non-malleability experiment (but it must not queryDec on the challenge ciphertext).

Definition 4. (Bounded-CCA2 non-malleable encryption [10]) Let Π = (Gen,Enc,
Dec) be an encryption scheme and let the random variable NME-q-CCAb(Π, A, k, �)

where b ∈ {0, 1}, A = (A1, A2) are ppt algorithms and k, � ∈ N denote the result of the
following probabilistic experiment:

NME-q-CCAb(Π, A, k, �) :
(pk, sk) ← Gen(1k)

(m0, m1, stateA) ← AO1
1 (pk) s.t. |m0| = |m1|

y ← Encpk(mb)

(ψ1, . . . , ψ�) ← AO2
2 (y, stateA)

Output (d1, . . . , d�) where di =
{

⊥ if ψi = y

Decsk(ψi ) otherwise

(Gen,Enc,Dec) is non-malleable under a bounded-CCA2 attack for a function
q(k) : N → N if ∀ ppt algorithms A = (A1, A2) which make q(k) total queries to the
oracles and for any polynomial p(k), the following two ensembles are computationally
indistinguishable:

{
NME-q-CCA0(Π, A, k, p(k))

}
k∈N

c≈
{
NME-q-CCA1(Π, A, k, p(k))

}
k∈N
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The oracle O1 = Decsk(·) is the decryption oracle. O2 = Decy
sk(·) is the decryption

oracle except that O2 returns ⊥ when queried on y.

2.5. (Strong) One-Time Signature Schemes

Adigital signature scheme consists of a triple of ppt algorithms (GenSig,Sign,VerSig)

such that:

• GenSig takes the security parameter 1k as input and generates a pair of keys: a
public verification key vksig, and a secret signing key sksig.

• Sign takes as input a secret key sksig and a message m and generates a signature
σ . We write this as σ ← Signsksig(m).

• VerSig takes as input a verification key vksig, a message m, and a (purported)
signature σ and outputs a single bit indicating acceptance or not.

For correctness, we require that for all (vksig, sksig) output by GenSig(1k), for all
messages m, and for all σ ← Signsksig(m), we have VerSigvksig(m, σ ) = 1.

2.5.1. Strong One-Time Signature Schemes

Informally, a strong one-time signature scheme is an existentially unforgeable digital
signature scheme, with the restriction that the signer signs at most one message with any
key. This means that an efficient adversary, upon seeing a single signature on a message
m of his choice, cannot generate a valid signature on a different message, or a different
valid signature on the same message m.

Definition 5. (Security of strong one-time signature schemes.)LetS = (GenSig,Sign,

VerSig) be a digital signature scheme and let the random variableForge(S, A, k)where
A = (A1, A2) are ppt algorithms and k ∈ N denote the result of the following proba-
bilistic experiment:

Forge(S, A, k) :
(vksig, sksig) ← GenSig(1k)

(m, state) ← A1(vksig)

σ ← Signsksig(m)

(m∗, σ ∗) ← A2(σ, state)
If VerSigvksig(m

∗, σ ∗) and (m, σ ) 
= (m∗, σ ∗), output 1
Otherwise, output 0.

A digital signature scheme S is strongly existentially unforgeable under a one-time chosen

message attack if there exists a negligible function μ(·) such that for all sufficiently large
k, and for any ppt algorithm A, it holds

Pr[Forge(S, A, k) = 1] ≤ μ(k).

Such schemes can be constructed in a black-boxway from one-way functions [37,49],
and thus fromany semantically secure encryption scheme (Gen,Enc,Dec) using black-
box access only to Gen.
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2.6. Reconstructable Probabilistic Encoding Scheme

Informally, reconstructable probabilistic encoding (RPE) schemes can correct a constant
fraction of errors, and they have a secrecy property which allows some number of
positions in the output codeword to be revealed, without leaking any information about
the encoded message. In addition, given a message and a partial codeword for it, the
schemes allow the reconstruction of the whole codeword consistent with them.

Definition 6. (Reconstructable probabilistic encoding) We say a triple (E,D,R) is
a reconstructable probabilistic encoding scheme with parameters (n, �, δ, t, �),
where n, �, t ∈ N, 0 < δ < 1, t < �, and � is an alphabet.

• The encoding algorithm E is an efficient probabilistic procedure, which takes a
message m ∈ {0, 1}n as input and outputs a codeword w over ��. We let the code
W be the support of E.

• The decoding algorithm D is an efficient procedure that takes a string w′ ∈ �� as
input and outputs a codeword w and a message m (or (⊥,⊥) if it fails).

• The reconstruction algorithm R is an efficient procedure that takes input a set
S ⊂ [�] of size t , a partial codeword (α1, . . . , αt ) ∈ �t , and a messagem ∈ {0, 1}n ,
and outputs a complete codewordw ∈ W consistentwith the given partial codeword
(α1, . . . , αt ) and message m.

The three algorithms should satisfy the following requirements:

(1) Error correction: Any two strings inW are δ-far. For any stringw′ that is (1−δ/2)-
close to some codewordw inW , it holds that D(w′)outputsw alongwith amessage
m consistent with w.

(2) Secrecy of partial views: For all m ∈ {0, 1}n and all sets S ⊂ [�] of size t , the
projection of E(m) onto the coordinates in S, as denoted by E(m)|S , is identically
distributed to the uniform distribution over �t .

(3) Reconstruction frompartial views: For any set S ⊂ [�]of size t , any (α1, . . . , αt ) ∈
�t , and any m ∈ {0, 1}n , it holds that R(S, (α1, . . . , αt ), m) is identically dis-
tributed to E(m) with the constraint E(m)|S = (α1, . . . , αt ).

2.6.1. RPE vs. LECSS

RPE schemes are related to the standard notion of linear error-correcting secrete sharing
scheme (LECSS). In fact, LCESS’s are just RPE schemes without property (3) above
(and additionally with linearity). Concurrently with and independently from this work,
Coretti et al. [8] observed that the original work of [7] can be extended to work also for
LECSS’s satisfying property (3).

2.6.2. RPE Construction Based on a Reed–Solomon Code

We can construct an RPE scheme with a Reed–Solomon code. We note the construction
is implicit in [4].

Lemma 1. For any n, t ∈ N and any constant δ such that 0 < δ < 1, there is an RPE
scheme with parameters (n, � t

1−δ
�, δ, t,GF(2n)).
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Proof. We will implicitly identify {0, 1}n with the field GF(2n); an integer i with
0 ≤ i < 2n will also be implicitly encoded into a field element in GF(2n). Set � = � t

1−δ
�

and � = GF(2n). We construct an RPE scheme (E,D,R) as follows:

• E(m): Choose a random degree-t polynomial q over GF(2n) such that q(0) = m
and output w = (q(1), q(2), . . . , q(�)).

• D(w′): Decodew′ using the Berlekamp–Welch algorithm and output (w, m), where
w is the corrected codeword, and m is the original message.

• R(S, (α1, . . . , αt ), m): Let S = {i1, . . . , it }. Determine the degree-t polynomial q
such thatq(0) = m,q(i1) = α1,q(i2) = α2,…,q(it ) = αt .Output (q(1), . . . , q(�)).

Property (1) holds since we simply use the Reed–Solomon code W in encoding and
decoding, where

W = { (q(1), . . . , q(�)) | q is a degree t polynomial.

Note that W is a code over the alphabet GF(2n) with minimum relative distance δ,
which means we may efficiently correct up to δ/2 fraction errors. Properties (2) and
(3) hold since the codeword (q(1), . . . , q(�)) is a (t + 1)-out-of-� secret sharing of m
using Shamir’s secret-sharing scheme, and (m, α1, . . . , αt ) allows the reconstruction of
the (one and only) degree-t polynomial. �

3. Construction

Given an encryption scheme E = (Gen,Enc,Dec), we construct a new encryption
scheme Π = (NMGenGen,NMEncGen,Enc,NMDecGen,Dec), summarized in Fig. 3,
and described as follows.

3.1. Encryption

Let k be the security parameter and let {0, 1}n be the message space of Π. In addition,
let δ be a real number with 0 < δ < 1, and t be an integer such that

t ≥ log2 k.

Let (E,D,R) be an RPE scheme with parameters (n, �, δ, t, �). The public key for Π

comprises 2k� public keys from Gen indexed by a triplet (i, j, b) ∈ [k] × [�] × {0, 1};
there are two keys corresponding to each entry of a k × � matrix. To encrypt a message
m ∈ {0, 1}n , we (a) compute (s1, . . . , s�) ← E(m), (b) generate (sksig,vksig) for a
one-time signature (let (v1, . . . , vk) be the binary representation of vksig), (c) compute
a k × � matrix �c = (ci, j ) of ciphertexts where ci, j = Encpkvi

i, j
(s j ) and (d) sign �c using

sksig. The ciphertext matrix �c is shown below:
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Fig. 3. The Non-Malleable Encryption Scheme Π.

�c =

⎛
⎜⎜⎜⎜⎝

Encpkv1
1,1

(s1) Encpkv1
1,2

(s2) · · · Encpkv1
1,�

(s�)

Encpkv2
2,1

(s1) Encpkv2
2,2

(s2) · · · Encpkv2
2,�

(s�)

...
...

. . .
...

Encpkvk
k,1

(s1) Encpkvk
k,2

(s2) · · · Encpkvk
k,�

(s�)

⎞
⎟⎟⎟⎟⎠

3.2. Consistency Checks

A valid ciphertext in Π satisfies two properties: (1) the first row is an encryption of a
codeword inW and (2) every column comprises k encryptions of the same plaintext. We
want to design consistency checks that reject ciphertexts that are “far” from being valid
ciphertexts under Π. For simplicity, we will describe the consistency checks as applied
to the underlying matrix of plaintexts. The checks depend on a random subset S of t
columns chosen during key generation.

Decoding Check (decoding-check): We find a codeword w that is (1 −
δ/4)-close to the first row of the matrix; the check fails if no
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such w exists. Recall that the underlying RPE has parameters
(n, �, δ, t, �), so it can correct up to δ

2 fraction errors.
Column Check (column-check): We check that each of the columns in S

comprises entirely of the same value.
Codeword Check(codeword-check): We check that the first row of the ma-

trix agrees with w at the positions indexed by S.

The codeword check reassures that with high probability, the first row of the matrix
is (1 − o(1))-close to w. We explain its significance after describing the alternative
decryption algorithm in the analysis.

3.3. Decryption

To decrypt, we (a) verify the signature and run both consistency checks, and (b) if all
the checks accept, decode the codeword w and output the result, otherwise output ⊥.
Note that to decrypt we only need the 2� secret keys corresponding to the first row of
the matrix and 2t · (k − 1) additional secret keys corresponding to columns in S.
Note that the decryption algorithm may be stream-lined, for instance, by running the

codeword check only if the column check succeeds. We choose to present the algorithm
as is in order to keep the analysis simple; in particular, we will run both consistency
checks independent of the outcome of the other.

4. Analysis

Having presented our construction, we now formally state and prove our main result:

Theorem 1. (Main Theorem, restated.) Let E = (Gen,Enc,Dec) be an IND-CPA
public-key encryption scheme. Then, Π = (NMGenGen,NMEncGen,Enc,

NMDecGen,Dec) from Fig. 3, instantiated with t ≥ log2 k, is an NM-CPA public-key
encryption scheme.

We establish the theorem via a series of hybrid arguments and deduce indistinguisha-
bility of the intermediate hybrid experiments from the semantic security of the underly-
ing encryption scheme under some set of public keys �. In particular, we consider the
following hybrids for b = 0, 1:

• Experiment NMEb(Π, A, k, p(k)): It is the original non-malleability experiment
defined in Section 2.3.

• Experiment NME(1)
b (Π, A, k, p(k)): This experiment proceeds exactly like

NMEb(Π, A, k, p(k)), except we replace sig-check in NMDec with an alter-
native sig-check∗. In particular, let vksig∗ denote the verification key in the
challenge ciphertext given to the adversary, and sig-check∗ rejects the input ci-
phertext toNMDec if it contains a verification key vksig such that vksig = vksig∗.
It is easy to see that the unforgeability of the signature implies the indistinguisha-
bility between NMEb and NME(1)

b .
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Due to this indistinguishability, the mauled ciphertexts from the adversary should
have a verification key vksig different from vksig∗, and therefore, in some row of
each mauled ciphertext, the adversary should use a fresh set of public keys that the
challenge ciphertext does not use.

• ExperimentNME(2)
b (Π, A, k, p(k)): The experiment proceeds exactly likeNME(1)

b
(Π, A, k, p(k)) except we replaceNMDecwith an alternative decryption algorithm
NMDec∗. As we will see, the algorithm NMDec∗ will be able to simulate the de-
cryption algorithm NMDec satisfying the two conflicting requirements:

– NMDec∗ works without having to know the secret keys corresponding to the
public keys in �.
–NMDec∗ andNMDecmust agree on essentially all inputs, including possibly
malformed ciphertexts;

Of course, designingNMDec∗ is difficult precisely becauseNMDec uses the secret
keys corresponding to the public keys in �. Intuitively, however, we can still design
such algorithm NMDec∗, since the consistency check inspects only the partial set
of the columns. Recall that there exists a row in which the adversary must use a
fresh set of public keys that the challenge ciphertext does not use. This implies that
the adversary should fill up this row from scratch, since the challenge ciphertext
uses a different set of public keys for that row. Therefore, because of this row, it is
infeasible for the adversary to create amauled ciphertext that passes the consistency
check such that the other rows are derived from the challenge ciphertext, even if
the check inspects only a partial set of columns hidden to the adversary.

• Experiment mINDb(E, B, k, k(� − t)): It is the semantic security experiment for
multiple messages defined in Section 2.3. Since NMDec∗ in NME(2)

b never uses

the public keys in �, one can reduce the security of NME(2)
b to semantic security

of the underlying encryption scheme.

In summary, we will show that for every ppt adversary A, there is a ppt adversary B
such that for b ∈ {0, 1},

{
NMEb(Π, A, k, p(k))

} c≈
{
NME(1)

b (Π, A, k, p(k))
}

s≈
{
NME(2)

b (Π, A, k, p(k))
}

≡
{
mINDb(E, B, k, k(� − t)).

}

By Proposition 1,
{
mIND0(E, B, k, k(� − t))

} c≈
{
mIND1(E, B, k, k(� − t))

}
, which

concludes the proof.

4.1. Indistinguishability Between NMEb and NME(1)
b

The experiment NME(1)
b proceeds exactly like NMEb, except we replace sig-check

in NMDec with an alternative sig-check∗ defined as follows:

NMDecsk([�c,vksig, σ ]):
1. (sig-check∗)
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(a) If vksig = vksig∗, then output ⊥ .
(b) Verify the signature with VerSigvksig(�c, σ ).

2. ...

It is straightforward to show the two experiments are computationally indistinguishable.

Claim 1. For b ∈ {0, 1}, we have
{
NMEb(Π, A, k, p(k))

} c≈
{
NME(1)

b (Π, A, k, p(k))
}

Proof. This follows readily from the unforgeability of the signature scheme. �

4.2. Indistinguishability Between NME(1)
b and NME(2)

b

In this section, we show that NME(1)
b and NME(2)

b are statistically indistinguishable:

Claim 2. For b ∈ {0, 1}, we have
{
NME(1)

b (Π, A, k, p(k))
} s≈

{
NME(2)

b

(Π, A, k, p(k)).
}

4.2.1. The Public Keys �

Recall that � is the set of public keys whose secret keys are not available to NMDec∗.
Let vksig∗ = (v∗

1 , . . . , v
∗
k ) denote the verification key in the challenge ciphertext given

to the adversary. For each row i , NMDec∗ is restricted to be able to decrypt only one of
the two sub-rows according to the bit v∗

i ; that is, � is defined as follows:

� = {pkv∗
i

i, j | i ∈ [k], j ∈ [�] \ S}.

The reason that � does not contain columns in S is to allowNMDec∗ to always perform
the codeword check and the column check successfully.

4.2.2. The Alternative Decryption Algorithm

We describe the alternative decryption algorithm NMDec∗ below, highlighting the dif-
ference from the algorithm NMDec in NME(1)

b with boxes. Let vksig = (v1, . . . , vk)

denote the verification key in the input ciphertext to NMDec∗. Instead of always choos-
ing the first row to decrypt, NMDec∗ chooses a row that it can decrypt without using
the secret keys corresponding to the keys in �. In particular, NMDec∗ chooses the x th
row such that vx 
= v∗

x . The existence of such row is guaranteed since vksig 
= vksig∗.
NMDec∗

sk([�c,vksig, σ ]):
1. (sig-check∗)

(a) If vksig = vksig∗, then output ⊥.
(b) Verify the signature with VerSigvksig(�c, σ ).

2. (decoding-check∗)
(a) Let �c = (ci, j ) and vksig = (v1, . . . , vk).
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(b) Let x be the smallest value s.t. vx 
= v∗
x .Compute s j = Decskvx

x, j
(cx, j ), j = 1, . . . , � .

(c) Compute ((w1, . . . , w�), m) ← D(s1, . . . , s�). If the decoding fails

or (w1, . . . , w�) is δ
2 -far from (s1, . . . , s�), then output ⊥.

3. (column-check) For all j ∈ S, check thatDecskv1
1, j

(c1, j ) = Decskv2
2, j

(c2, j ) =
· · · = Decskvk

k, j
(ck, j ).

4. (codeword-check) For all j ∈ S, check that s j = w j .
5. If all the checks accept, output the message m corresponding to the code-

word w; else, output ⊥.
To implement the modified decryption algorithm, we need the � + t secret keys for

each row of the matrix, that is, � keys for the decryption of the entire sub-rows indexed
by vksig∗ and t keys for the decryption of the columns of S in the sub-rows indexed by
vksig∗.

4.2.3. Remark on the Codeword Check and the Gap of Error Fraction

At first, the codeword check may seem superfluous, but it turns out to play a critical role
in achieving indistinguishability between NMDec and NMDec∗.

To convey our point, we illustrate a problem that will arise when the codeword check
is omitted. Suppose that the decryption algorithm in our scheme does not have the
codeword check. Consider a ciphertext encrypting a matrix of plaintexts where the first
row is (1− δ

4 )-close to a valid codewordw but the x th row is exactly the same as the first
row except having exactly one more error entry and thereby not (1− δ

4 )-close to w any
more. In this case, the column check will pass with non-negligible probability since the
two rows have only one different entry. The problem is that this ciphertext will pass the
decoding check in NMDec but not in NMDec∗, and the indistinguishability argument
will break down.
To address this problem, we first relax the allowable error fraction to δ/2 in the

decoding check of NMDec∗ to embrace the above case. Of course, this measure alone
introduces a new problem. For example, consider a malformed ciphertextψ forΠwhere
in the underlying matrix of plaintexts, each row is the same corrupted codeword that
is δ

3 -far from but (1 − δ
2 )-close to a valid codeword. This time, the ciphertext will

pass the decoding check in NMDec∗ but not in NMDec, and the indistinguishability
argument will break down again. To fix the problem, we introduce the codeword check
comparing the decrypted raw with the actual valid codeword w. As we will see below,
with the codeword check, the output of NMDec and NMDec∗ will be consistent with
overwhelming probability.

4.2.4. Promise Problem

In order to prove the claim, wewould like to have the following guarantees fromNMDec
and NMDec∗:

• On input a ciphertext that is an encryption of a message m under Π, both NMDec
and NMDec∗ will output m with probability 1.
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• On input a ciphertext that is “close” to an encryption of a message m under Π,
both NMDec and NMDec∗ will output m with the same probability (the exact
probability is immaterial) and ⊥ otherwise.

• On input a ciphertext that is “far” from any encryption, then both NMDec and
NMDec∗ output ⊥ with high probability.

Toquantify and establish these guarantees,we consider the followingpromise problem
(ΠY ,ΠN ) that again refers to the underlying matrix of plaintexts. An instance is a matrix
�M of k by � each entry of which lies in � ∪ {⊥}.
ΠY (yes instances)—for some w ∈ W , every row equals w.
ΠN (no instances)—either there exist two rows that are δ

4 -far, or the first row is δ
4 -far

from every codeword inW .

Valid encryptions correspond to the yes instances, while no instances will correspond
to “far” ciphertexts. To analyze the success probability of an adversary, we examine
each ciphertext ψ with respect to the underlying k × � matrix �M of plaintexts that ψ

encrypts; �M may be in ΠY or in ΠN or neither. In particular, we show that both NMDec
and NMDec∗ agree on ψ with high probability. To facilitate the analysis, we consider
two cases:

• If �M ∈ ΠN , then it fails the column/codeword checks in both decryption algo-
rithms with high probability, in which case both decryption algorithms output ⊥.
Specifically, if there are two rows that are δ

4 -far, then column check rejects �M with
probability 1 − (1 − δ

4 )
t . On the other hand, if the first row is δ

4 -far from every
codeword, then the decoding check inNMDec rejects �M with probability 1 and the
codeword check in NMDec∗ rejects �M with probability at least 1 − (1 − δ

4 )
t ; that

is, with probability at least 1 − 2 · (1 − δ
4 )

t , both consistency checks in NMDec
and NMDec∗ reject �M .

• If �M /∈ ΠN , then both decryption algorithms always output the same answer for
all choices of the set S, provided there is no forgery. Fix �M /∈ ΠN and a set S. The
first row is (1 − δ

4 )-close to codeword w ∈ W and we know in addition that every
other row is (1 − δ

4 )-close to the first row and thus (1 − δ
2 )-close to w. Since the

underlying RPE has parameters (n, �, δ, t, �) and thereby corrects up to δ
2 fraction

errors, we will recover the same codeword w and message m whether we decode
the first row within distance δ

4 , or any other row within distance δ
2 . This means that

the codeword checks in both decryption algorithms compare the first row with the
same codeword w. As such, both decryption algorithms output ⊥ (possible from
the column check or the codeword check) with exactly the same probability, and
whenever they do not output ⊥, they output the same message m.

Proof of Claim 2. We will show that both distributions are statistically close for all
possible coin tosses in both experiments (specifically, those ofNMGen, A andNMEnc)
except for the choice of S inNMGen. Oncewefix all the coin tosses apart from the choice
of S, the output (ψ1, . . . , ψp(k)) of A2 is completely determined and identical in both
experiments. Having t ≥ log2 k, we claim that with probability 1− 2 · p(k) · (1− δ

4 )
t =

1 − negl(k) over the choice of S, the decryptions of (ψ1, . . . , ψp(k)) agree in both
experiments. This follows from the above analysis of the promise problem. �
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4.3. Reducing NME(2)
b (Π, A, k, p(k)) to Semantic Security

In this section we show the following:

Claim 3. For every ppt machine A, there exists a ppt machine B such that for b ∈
{0, 1},

{
NME(2)

b (Π, A, k, p(k))
}

≡
{
mINDb(E, B, k, k(� − t)).

}

We now give the proof. The machine B is constructed as follows: B participates in
the experimentmINDb (the “outside”) while internally simulating A = (A1, A2) in the
experiment NME(2)

b .

1. Recall that according to the definition ofmINDb, the adversary B1 first receives the
set of public keys. Let 〈pk1, . . . , pkk·(�−t)〉 be the keys B1 received from mINDb.
Given these public keys, B simulates the key-generation procedure of NME(2).

• (simulating key generation of NME(2)
b ) Pick a random subset S of [�] of size t .

Run GenSig(1k) to generate (sksig∗,vksig∗) and set (v∗
1 , . . . , v

∗
k ) = vksig∗.

Let φ be a bijection identifying {(i, j) | i ∈ [k], j ∈ [�] \ S} with [k · (� − t)].
For all i ∈ [k], j ∈ [�], β ∈ {0, 1},

(p̃kβ
i, j , s̃k

β
i, j ) =

{
(pkφ(i, j),⊥) if β = v∗

i and j /∈ S

Gen(1k) otherwise

2. B1 chooses a message pair to send tomINDb as follows:

• (simulating message selection of NME(2)
b ) A1 will choose a message pair and

send it to B1. Let (m̃0, m̃1) be the pair of messages A1 returns.

Upon receiving the message pair, B1 chooses (α1, . . . , αt ) uniformly at random
from �t and then computes

(w0
1, . . . , w

0
� ) ← R(S, (α1, . . . , αt ), m̃0), (w1

1, . . . , w
1
�) ← R(S, (α1, . . . , αt ), m̃1).

Recall that R is the reconstruction algorithm of the underlying RPE scheme. Note
for j ∈ S, we have w0

j = w1
j coming from {α1, . . . , αt }. For j ∈ S; let γ j = w0

j =
w1

j .

For i ∈ [k], j ∈ [�] \ S, and β ∈ {0, 1}, the adversary B sets mβ

φ(i, j) = w
β
j , and

sends the following message pair tomINDb:

(〈m0
1, . . . , m0

k(�−t)〉, 〈m1
1, . . . , m1

k(�−t)〉)

3. B2 receives challenge ciphertexts 〈y1, . . . , yk(�−t)〉 from mIND, according to the
distributionEncpk1(m

b
1), . . . ,Encpkk(�−t) (m

b
k(�−t)). Based on these ciphertexts, B2

creates a challenge ciphertext to send to A2 as follows:
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• (simulating ciphertext generation of NME(2)
b ) B2 first creates a k × � matrix of

ciphertexts (ci, j ) as follows:

ci, j =
⎧⎨
⎩

yφ(i, j) if j /∈ S

Enc
p̃k

v∗
i

i, j

(γ j ) otherwise

B2 then computes the signature σ ← Signsksig∗(�c). Finally, B2 sends the ci-
phertext [�c,vksig∗, σ ] to A2.

It is straightforward to verify that [�c,vksig∗, σ ] is a random encryption of m̃b

under Π.
4. Finally, B2 outputs a guess using A2’s output. In particular, upon receiving a

sequence of ciphertexts (ψ1, . . . , ψp(k)) from A2, B2 decrypts these ciphertexts

usingNMDec∗ as inNME(2)
b and then output the decryptions. Note that to simulate

NMDec∗, it suffices for B2 to possess the secret keys {skβ
i, j | β = 1−v∗

i or j ∈ S},
which B generated by itself. �

5. Achieving Bounded-CCA2 Non-malleability

Recall that an encryption scheme is non-malleable against a q-bounded CCA2 attack if
the adversary is allowed to queryDec atmostq(k) times in the non-malleable experiment
(but it must not queryDec on the challenge ciphertext). In our original scheme against a
CPA attack, the soundness of consistency check is achieved, since the set S of checked
columns are randomly chosen and hidden from the adversary. However, in a q-bounded
CCA2 attack, the adversary may learn about S using q decryption queries and break the
security of the scheme.
We modify our scheme to achieve non-malleability under a bounded-CCA2 attack.

The modification is the straightforward analogue of the [10] modification of the [46]
scheme. In other words, we increase the size of S sufficiently so that the soundness of
the consistency check still holds even after q decryption queries. In particular, let η be
some constant (depending on δ) such that

(
1 − δ

4

)η ≤ 1
2 . We change the parameter of

the underlying RPE scheme in Fig. 3 such that

t ≥ η · (log2 k + q(k)).

We analyze security of the encryption scheme using the hybrid argument. We define
the following hybrid experiments as before.

• ExperimentNME-q-CCA(1)
b :NME(1)

b proceeds exactly likeNME-q-CCAb, except
we replace sig-check in NMDec with sig-check∗.

• Experiment NME-q-CCA(2)
b : NME(2)

b proceeds exactly like NME-q-CCA(1)
b ex-

cept we replace NMDec with NMDec∗.

We note that
{
NME-q-CCAb(Π, A, k, p(k))

}
and

{
NME-q-CCA(1)

b (Π, A, k, p(k))
}

are computationally indistinguishable for each b ∈ {0, 1}, which can be argued based
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on security of the signature scheme as in Claim 1. Moreover,
{
NME-q-CCA(2)

b (Π, A,

k, p(k))
}
and

{
mINDb(E, B, k, k(�−t))

}
are identically distributed for each b ∈ {0, 1},

which can be shown using the reduction in the proof of Claim 3. Therefore, we are only
left to show the following claim to conclude the analysis.

Claim 4. For b ∈ {0, 1}, we have

{
NME-q-CCA(1)

b (Π, A, k, p(k))
} s≈

{
NME-q-CCA(2)

b (Π, A, k, p(k))
}

Proof. Let q = q(k) and for a ciphertext c, let �Mc denote the underlying plaintext
matrix of c.
As before, we will show that both distributions are statistically close for all possible

coin tosses in both experiments (specifically, those of NMGen, A and NMEnc) except
for the choice of S in NMGen. Recall that the value p(k) in the various NME-q-CCA
experiments corresponds to the number of (mauled) ciphertexts that the adversary would
come up with, after given the challenge ciphertext. Fix all the coin tosses apart from the
choice of S. Here, however, unlike the case of chosen-plaintext attacks, we cannot im-
mediately deduce that the outputs of A2 in both experiments are completely determined
and identical, since they depend on the adaptively chosen queries to NMDec, and the
answers depend on S. Still, the choice of S only affects whether the consistency checks
accept or not; therefore, for each query, the number of possible responses ofNMDec is at
most two (since we fixed all the coin tosses except S). Moreover, if a query c is such that
�Mc ∈ ΠN , NMDec will give only one response of ⊥ with overwhelming probability,
according to the analysis in Section 4.2.

This leads us to consider a binary tree of depth q that corresponds informally to “un-
rolling” theq adaptive queries that Amakes toNMDec in the experimentNME-q-CCA(1)

b .
The root node of the tree corresponds to the first query A makes to NMDec, and each
edge from a node to its child is labeled with the answer of NMDec to the node’s query.
In particular, the tree is inductively built as follows:

• When A makes a query c with �Mc ∈ ΠN , we only consider the computation path
corresponding to NMDec responding with ⊥.

• When A makes a query c with �Mc 
∈ ΠN , we consider two computation paths, that
is, one case ofNMDec responding with a valid decryption (in which case the value
returned is independent of S) and the other case of NMDec responding with ⊥.

• The query at an internal node (except the root) corresponds to the query that Amakes
when following the computation path from the root to the node while NMDec’s
answers correspond to the labels of the edges in the path. Each leaf node contains
p(k) ciphertexts output by A at the end of the experiment.

Observe that the construction of the computation tree is completely deterministic and
independent of the choice of S. Moreover, since A makes at most q adaptive queries
to NMDec, the total number of ciphertexts in the tree is at most 2q+1 p(k). The claim
follows from combining the following two observations:
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• Let good(S) be an event in which given the choice S, for every ciphertext c in the
tree such that �Mc ∈ ΠN , both NMDec and NMDec∗ output ⊥. We have

Pr
S
[good(S)] ≥ 1 − 2 · (2q+1 · p(k)) ·

(
1 − δ

4

)t

≥ 1 − 2q+2 · p(k) ·
(
1

2

)log2 k+q

= 1 − negl(k).

This follows from a union bound over these ciphertexts in the tree and the analysis
in Section 4.2.

• For every S such that good(S) is true, the outputs in both experiments are the
same. This follows readily by induction on the queries made by A, and using the
fact both NMDec and NMDec∗ always output the same answer for any �M 
∈ ΠN

as explained in Section 4.2.

�

5.1. Remark on Achieving (Full) CCA2 Security

It should be clear from the preceding analysis that the barrier to obtaining full CCA2
security lies in handling queries outside ΠN . Specifically, with even just a (full) CCA1
attack, an adversary could query NMDec on a series of adaptively chosen ciphertexts
corresponding to matrices outside ΠN to learn the set S upon which it could readily
break the security of our construction.
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Appendix: Example Instantiation of Non-Malleable Encryption Π

We instantiate a non-malleable encryption scheme Π using the RPE construction given
in Lemma 1 with δ = 0.5. We summarize the description below:

Let (Gen,Enc,Dec) be an encryption scheme, (GenSig,Sign,VerSig) be a strong one-time signature
scheme. Let k be the security parameter and t = log2 k.
NMGen(1k ):

1. For i ∈ [k], j ∈ [2t], b ∈ {0, 1}, run Gen(1k ) to generate key-pairs (pkb
i, j , sk

b
i, j ).

2. Pick a random subset S ⊂ [2t] of size t .

3. Set pk =
{
(pk0i, j , pk

1
i, j ) | i ∈ [k], j ∈ [2t]

}
, sk =

{
S, (sk0i, j , sk

1
i, j ) | i ∈ [k], j ∈ [2t]

}
.

NMEncpk(m):

1. Pick random α1, . . . , αt ∈ GF(2n) and set p(x) = m0 + α1x + . . . + αt x t . Set s j = p( j) for
j ∈ [2t].

2. RunGenSig(1k ) to generate (sksig, vksig). Let (v1, . . . , vk ) be the binary representation of vksig.
3. Compute the ciphertext ci, j ← Enc

pk
vi
i, j

(s j ), for i ∈ [k], j ∈ [2t].
4. Compute the signature σ ← Signsksig(�c) where �c = (ci, j ).
5. Output the tuple [�c,vksig, σ ].

NMDecsk([�c, vksig, σ ]):
1. (sig-check) Verify the signature with VerSigvksig(�c, σ ).
2. (decoding-check) Let �c = (ci, j ) and vksig = (v1, . . . , vk ). Compute s j = Dec

sk
v1
1, j

(c1, j ) for

j = 1, . . . , 2t . Compute the codeword w = (w1, . . . , w2t ) ∈ W that agrees with (s1, . . . , s2t ) in at
least 1.75t positions. If no such codeword exists, output ⊥.

3. (column-check) For all j ∈ S, check that Dec
sk

v1
1, j

(c1, j ) = Dec
sk

v2
2, j

(c2, j ) = · · · =
Dec

sk
vk
k, j

(ck, j ).

4. (codeword-check) For all j ∈ S, check that s j = w j .
5. If all checks accept, output the message m corresponding to the codeword w; else, output ⊥.
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