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A BLACK-BOX GROUP ALGORITHM FOR RECOGNIZING
FINITE SYMMETRIC AND ALTERNATING GROUPS, I

ROBERT BEALS, CHARLES R. LEEDHAM-GREEN, ALICE C. NIEMEYER,

CHERYL E. PRAEGER, AND ÁKOS SERESS

Abstract. We present a Las Vegas algorithm which, for a given black-box
group known to be isomorphic to a symmetric or alternating group, produces
an explicit isomorphism with the standard permutation representation of the
group. This algorithm has applications in computations with matrix groups
and permutation groups.

In this paper, we handle the case when the degree n of the standard per-
mutation representation is part of the input. In a sequel, we shall treat the
case when the value of n is not known in advance.

As an important ingredient in the theoretical basis for the algorithm, we
prove the following result about the orders of elements of Sn: the conditional
probability that a random element σ ∈ Sn is an n-cycle, given that σn = 1, is
at least 1/10.

1. Introduction

Recent advances in computing with permutation groups and matrix groups re-
duce a host of algorithmic problems to the constructive recognition of almost simple
groups. Here we formulate constructive recognition only in the case of symmetric
and alternating groups. Since we want to work with arbitrary permutation or
matrix group representations of these groups, we consider the input group as a
black-box group (cf. Section 2). Straight-line programs, which are part of the def-
inition, are also discussed in Section 2. Recall that a randomized algorithm is Las
Vegas if it never returns an incorrect answer; it may report failure with a small
probability, prescribed by the user. In contrast, a Monte Carlo algorithm may
return an incorrect answer, with a small probability prescribed by the user.

Definition 1.1. Let G = 〈X〉 be a black-box group, isomorphic to a finite sym-
metric or alternating group. We say that G is constructively recognizable if there
are Las Vegas algorithms for the following tasks:

(i) find the isomorphism type of G (i.e., find the degree n of the natural per-
mutation representation and decide whether G ∼= An or G ∼= Sn);
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(ii) find a new set X∗ of size 2 generating G and a homomorphism λ : G →
Sym(Ω), specified by the image of X∗, for Ω = {1, 2, . . . , n};

and, in addition, if there are deterministic algorithms for the following:
(iii) given g ∈ G, find λ(g) and a straight-line program of length O(n log n) from

X∗ to g;
(iv) given σ ∈ Sym(Ω), decide whether or not σ ∈ λ(G); and, if it does, find

λ−1(σ) and a straight-line program of length O(n log n) from λ(X∗) to σ.

Our main result is that alternating and symmetric groups can be recognized
constructively by polynomial-time algorithms. In this paper, we handle the case
when the degree n of the natural permutation representation is given as part of the
input, and part (i) of Definition 1.1 reduces to determining whether G is alternating
or symmetric of this given degree. In the sequel [4], we shall give a modification
which determines n when it is not part of the input.

An important special case is when G is the smallest dimensional faithful rep-
resentation of An or Sn as a matrix group over a finite field. In this case, the
constructive recognition of G can be done by an algorithm which is asymptotically
much faster than the general procedure described in this paper. This result will
appear in [5].

In order to state the main result of the present paper, we need the following
notation. Suppose that the elements of G are encoded as bit-strings of length N .
Let ξ be an upper bound on the time required per element to construct independent,
(nearly) uniformly distributed random elements of G and let µ be an upper bound
on the time required for each group operation in G.

Theorem 1.2. (a) Given an integer n with n ≥ 7, a black-box group G = 〈X〉
isomorphic to An or Sn, and an upper bound ε > 0 for the probability of failure of
the algorithm, G can be constructively recognized with probability at least 1− ε.

The time requirement is O(log ε−1(ξn + µ|X |n logn)) for parts (i) and (ii) of
Definition 1.1. The time requirement of (iii) is O(µn logn), while constructing the
straight-line program in (iv) is in time O(n logn) and the computation of the inverse
image is in time O(µn log n). The data structures underlying (iii) and (iv) require
the storage of O(log n) elements of G.

(b) Given an arbitrary black-box group G = 〈X〉, the algorithm described in
part (a) can be used as a Monte Carlo algorithm to decide whether G is alternat-
ing or symmetric of a given degree n. The time requirement is O(log ε−1(ξn +
µ|X |n logn)).

In the case when n is not known, our algorithm in [4] is roughly of the same
asymptotic efficiency as the one indicated in Theorem 1.2.

One of the main ingredients of the algorithm in Theorem 1.2 is a result concerning
the orders of elements in Sn (cf. Theorems 3.7 and 3.9). This is in the spirit of the
statistical investigations of Erdős and Turán [14]. The casem = 0 of Theorem 1.3(a)
was proved by Warlimont [18].

Theorem 1.3. (a) Let m ≥ 0 be a fixed integer. For any ε > 0 there exists a bound
n(ε) such that if σ ∈ Sn for some n > n(ε) then the conditional probability that σ
contains an (n−m)-cycle, provided that σm! (n−m) = 1, is at least 1− ε.

(b) For all n, the conditional probability that σ ∈ Sn is an n-cycle, provided that
σn = 1, is at least 1/10.
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The first polynomial-time constructive recognition algorithm for symmetric and
alternating groups was described by Beals and Babai [3], and recently Bratus and
Pak [7] developed a faster version. Constructive recognition algorithms for almost
simple black-box groups of Lie type appeared (in chronological order) in [12], [6],
[16], [9], [8], and [15].

We finish this introduction with a brief comparision of our result with [7]. Using
various generalizations of Goldbach’s conjecture and an oracle to compute element
orders, the running time of constructive recognition in [7] is about the same as in
Theorem 1.2. Eliminating the order oracle in [7] multiplies the running time by a
factor n, and using a weaker form of Goldbach’s conjecture which is already proven
for n > 107200 multiplies the running time in [7] by a factor log2 n.

The paper [7] describes the caseG ∼= Sn and sketches the necessary modifications
for the case G ∼= An. In this paper, we present a complete argument which works
for both cases. The case G ∼= An is more complicated, and it is the more important
one in applications.

The papers use similar ideas for the construction of λ(g) for a given g ∈ G, and
the asymptotic time requirement is the same. However, in [7] pre-computation and
storage of 2n elements of G are needed, while here we compute and store less than
2 logn group elements.

Unlike [7], our paper constructs straight-line programs and handles part (iv) of
Definition 1.1. These are important features in most applications, and they are
necessary for the proof of both parts of Theorem 1.2.

2. Preliminaries

Notation. Throughout the paper let n denote a positive integer. We denote the
symmetric and alternating group of degree n by Sn and An, respectively. Elements
of these groups will be denoted by lowercase Greek letters (except the letters λ, µ, ξ
which are reserved for their special meaning in Definition 1.1 and Theorem 1.2).
Elements of black-box groups will be denoted by lowercase italics. If the cycle
decomposition of an element σ ∈ Sn consists of mi cycles of length i, where 0 ≤
mi ≤ n for 1 ≤ i ≤ n, then we say that σ has cycle type 1m1 . . . nmn . If mi = 0
then we omit imi from this expression. Note that if n 6= 6 then Aut(An) ∼= Sn, so
the cycle type of λ(g) is the same at any isomorphism λ : G → Sn or An. Hence
we can talk about the cycle type of elements of G.

We call the set of points moved by a permutation σ the support set of σ and
denote it supp(σ); its cardinality |supp(σ)| is called the support of σ. The order of
the permutation σ is denoted by |σ|.

Black-box groups. A black-box group is a group G whose elements are encoded
as 0-1 strings (bit-strings) of uniform length N , and the group operations are per-
formed by an oracle (the “black box”). Given strings representing g, h ∈ G, the
black box can compute strings representing gh and g−1 and decide whether g = h.
Note that |G| ≤ 2N , and so we have an upper bound on |G|. We always let µ be
an upper bound on the time for each multiplication or inversion or equality test
within the group G. Clearly µ ≥ N .

Each string represents at most one element of G, and the same element of G
may be encoded by different strings. Thus, an equivalence relation is defined on
the set of bit-strings: one class C consists of those bit-strings which do not represent
elements of G and the elements of G are the other equivalence classes. We do not
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assume that we can determine whether a bit-string is in C. Given a bit-string in C
as input to the multiplication or inversion oracle, the oracle may report failure or
it may return a bit-string.

Straight-line programs. A straight-line program reaching some g ∈ G = 〈X〉 is
a sequence of expressions (w1, . . . , wm) such that for each i one of the following
holds:

• wi is a symbol for some element of X ,
• wi = (wj ,−1) for some j with j < i, or
• wi = (wj , wk) for some j, k with j, k < i,

and, if the expressions are evaluated, then the value of wm is g. Here, (wj ,−1) is
evaluated as the inverse of the evaluated value of wj , and (wj , wk) is evaluated as
the product of the evaluated values of wj and wk.

A straight-line program of length m may reach an element of G which can be
written only as a word of length exponential in m. In fact, Babai and Szemerédi [2]
showed that, for any G = 〈X〉 and g ∈ G, there exists a straight-line program from
X to g using at most (log |G| + 1)2 multiplications and inversions. Keeping track
of how the new generating set X∗ is constructed (cf. Definition 1.1), we obtain a
constructive version of this result, though with a weaker bound on the length of
such a program.

Random elements. Our methods are largely statistical. In the theoretical anal-
ysis, we assume that we can construct a sequence of independent, uniformly dis-
tributed elements ofG. This sequence will be used as follows. If a certain proportion
of the elements of G have a certain property, we expect to find an element with
this property on repeated random selection from G.

Although uniformly distributed random elements of G are not available in most
applications, there are adequate methods for generating random elements both from
the theoretic [1] and from the practical [11] points of view. We refer to [16, Section
2.2.2] for a brief discussion of the ways in which the quality of the random element
generator influences constructive recognition algorithms.

Presentations for the symmetric and alternating groups. In order to make
our algorithms Las Vegas, we shall check that the elements of the new generating
set constructed in Theorem 1.2 satisfy a certain presentation of the alternating or
symmetric group, as appropriate.

The following presentation for Sn can be found in the book of Coxeter and Moser
[13].

(2.1) 〈s, t | sn = t2 = (st)(n−1) = [t, sj]2 = 1 for 2 ≤ j ≤ n/2〉.
Note that σ = (1, 2, . . . , n) and τ = (1, 2) satisfy this presentation.

The following presentations for An,

(2.2) 〈s, t | sn−2 = t3 = (st)n = (ts−ktsk)2 = 1 for 1 ≤ k ≤ (n− 3)/2〉,
if n is odd and

(2.3) 〈s, t | sn−2 = t3 = (st)n−1 = [t, s]2 = 1〉,
if n is even, are due to Carmichael [10]. Note that σ = (1, 2)(3, 4, . . . , n) if n is even
or σ = (3, 4, . . . , n) if n is odd and τ = (1, 2, 3) satisfy this presentation.
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Organization of the paper. In Section 3, we describe some number theoretic
and probabilistic estimates which are used in the proof of Theorem 1.2. Section 4
contains the construction of the new generating set X∗ (cf. Definition 1.1, part
(ii)). In Section 5, we construct the data structure which supports the algorithms
in parts (iii) and (iv) and summarize the proof of Theorem 1.2.

3. Number theoretic and probabilistic estimates

In this section, we collected some estimates which are needed in the proof of
Theorem 1.2. The first four lemmas are of a number theoretic nature. In most
cases, there are better asymptotic results but, for the algorithmic applications, we
need estimates which are valid for all values of n.

Lemma 3.1. For all n, the number of divisors of n is at most c1n1/3 with c1 =
48/25201/3 ≈ 3.527, and the sum of the divisors of n is at most n(3 + lnn)/2.

Proof. For each δ > 0, the number of divisors of n is at most Cδnδ for a constant
Cδ. An algorithm for computing the value of Cδ is described in [17, pp. 395–396];
C1/3 = 48/25201/3 ≈ 3.527.

We use the trivial estimate
∑d√ne−1
i=1 i < n/2 for the sum of the divisors less

than
√
n. The sum Σ of divisors greater than or equal to

√
n satisfies

Σ ≤ n+
n

2
+
n

3
+ · · ·+ n

b
√
nc < n(1 +

∫ √n
1

1
t
dt) = n(1 +

lnn
2

).

Adding these two estimates, we obtain the second assertion of the lemma. �

Lemma 3.2. Let x = np, where p is prime, n > p2, and all prime divisors of n
are greater than p. Let D denote the set of divisors of x which are not greater than
n. Then |D| ≤ c2n1/3 with c2 = 2c1 ≈ 7.054 and∑

d∈D
d ≤ n p+ 3− 2(p+ 1) ln p+ (p+ 1) lnn

2
.

Proof. Because p 6
∣∣n, the number of divisors of x is twice the number of divisors of

n. Thus Lemma 3.1 yields |D| ≤ 2c1n1/3.
Also, because of the restriction on the prime factorization of n, all divisors of x

except np are at most n, and
∑
d∈D d = (p + 1)

∑
d|n d − pn. Hence it is enough

to estimate the sum of the divisors of n. We use a refinement of the argument in
Lemma 3.1. For the sum of divisors less than

√
n, we still use the trivial estimate

n/2. However, for the larger divisors, we note that since the largest proper divisor
of n is at most n/(p+1), the sum Σ of divisors greater than or equal to

√
n satisfies

Σ ≤ n+
n

p+ 1
+

n

p+ 2
+ · · ·+ n

b
√
nc < n(1 +

∫ √n
p

1
t
dt) = n(1 +

lnn
2
− ln p).

Combining these estimates, we obtain the assertion of the lemma. �

Lemma 3.3. Let x = ny, and let D denote the set of divisors of x which are not
greater than n. Let k > 1. Then∑

d∈D
dk ≤ nk(1 +

y

k − 1
).
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Proof. All divisors d ∈ D are of the form d = x/s for some s ≥ y. Therefore,∑
d∈D

dk ≤
x∑
s=y

(x
s

)k
<
(x
y

)k + xk
∫ ∞
y

1
tk
dt

=
(x
y

)k + xk · 1
yk−1(k − 1)

=
(x
y

)k(1 +
y

k − 1
)
.

�
Lemma 3.4. Let x = m! (n −m). If n > m + m!m then the largest divisor of x
not exceeding n is n−m.

Proof. Suppose that there is a divisor k of x with n−m < k ≤ n. Then (k, n−m) ≤
m, and so the least common multiple of k and n−m is at least k(n−m)/m. This
implies x ≥ k(n−m)/m > k(m!m)/m > m! (n−m), a contradiction. �

The proofs of the next two lemmas are trivial counting arguments, and they are
omitted.

Lemma 3.5. For n ≥ 10, each column of the following table lists a cycle type in
the first row and the proportion of elements of that cycle type in Sn in the second
row.

cycle type n1 11(n− 1)1 31(n− 3)1

proportion n−1 (n− 1)−1 1
3 (n− 3)−1

cycle type 1131(n− 4)1 1231(n− 5)1 1331(n− 6)1

proportion 1
3 (n− 4)−1 1

6 (n− 5)−1 1
18 (n− 6)−1

In An, the proportions are 0 or twice the proportions in Sn, depending on whether
the permutations with the desired cycle type are odd or even.

Lemma 3.6. Let q be an integer in the range n/2 < q ≤ n. The proportion of
elements of Sn containing a cycle of length q is 1/q. In An, this proportion is 1/q
if q ≤ n− 2, and it is 0 or 2/q if q ∈ {n− 1, n}.

Let x be the product of the cycle lengths in a cycle type occurring in Lemma 3.5.
The rest of this section is devoted to estimating the conditional probability that a
randomly chosen element σ ∈ An or Sn satisfying σx = 1 has the cycle type which
defined x. This is the key step in the analysis of the algorithm proving Theorem 1.2.

For integers n, x, we define Tn(x) := {σ ∈ Sn : σx = 1} and Nn(x) := |Tn(x)|.
Theorem 3.7. Let m be a fixed non-negative integer. For any ε > 0 there exists a
bound n(ε) such that if σ is a uniformly distributed random permutation from Sn
for some n > n(ε) then the probability that σm! (n−m) = 1 is less than (1 + ε)/n.

Proof. If σ is a uniformly distributed random permutation from Sn then
Prob(σm! (n−m) = 1) = Nn(m! (n−m))/n!. Therefore, we have to prove the upper
bound (1 + ε)n!/n for Nn(m! (n −m)). We can suppose that n > 8 + 8m!m. We
denote the set of divisors of m! (n−m) by D.

The basic strategy of the proof is as follows. For σ ∈ Sn, σm! (n−m) = 1 if and
only if the length of each cycle of σ is a divisor of m! (n −m). This gives us too
many conditions to handle so, instead, we fix a number k and consider the set T ∗k
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of those σ which satisfy the property that the lengths of the cycles intersecting
the first k points of the permutation domain are divisors of m! (n − m). Clearly,
Nn(m! (n −m)) ≤ |T ∗k |. We shall compute an upper estimate for |T ∗k | in terms of
n,m and k (cf. (3.3) below), and we are lucky enough that k can be chosen to be
a constant (depending on m and ε, but independent of n) so that for large enough
n, this upper bound is less than (1 + ε)n!/n.

Let k ≥ 3 be fixed, let Π = {P1, . . . , P`} be a fixed partition of {1, . . . , k}
into ` non-empty parts for some ` ≤ k, and let d1, d2, . . . , d` be a sequence of
elements from D such that

∑`
i=1 di ≤ n. First, we estimate from above the number

N(k,Π, d1, . . . , d`) of permutations σ ∈ Tn(m! (n − m)) for which σ has cycles
C1, . . . , C` of lengths d1, . . . , d`, respectively, such that Ci ∩ {1, 2, . . . , k} = Pi for
1 ≤ i ≤ `.

We can choose the support set of C1 in
(

n−k
d1−|P1|

)
ways and then the cycle C1

itself in (d1−1)! ways. Recursively, if C1, . . . , Ci−1 are already defined, the support
set of Ci can be chosen in (

n− k −
∑i−1
j=1(dj − |Pj |)

di − |Pi|

)
ways and then the cycle Ci in (di−1)! ways. Finally, after C1, . . . , C` are defined, the
rest of the permutation can be chosen in at most (n−

∑`
i=1 di)! ways. Multiplying

these numbers, we obtain

(3.1) N(k,Π, d1, . . . , d`) ≤
(n− k)!

∏`
i=1(di − 1)!∏`

i=1(di − |Pi|)!
≤ (n− k)!

∏̀
i=1

d
|Pi|−1
i .

For a fixed partition Π, let N(k,Π) denote the sum of all N(k,Π, d1, . . . , d`) ob-
tained above for all choices d1, . . . , d` of divisors of m! (n −m). If ` = 1 then we
obtain N(k,Π) ≤ (n− k)!

∑
d∈D d

k−1 which, by Lemmas 3.4 and 3.3, is at most

(3.2) (n− k)!(n−m)k−1(1 +
m!
k − 2

).

For ` ≥ 2, we use the estimates that by Lemma 3.1, a sequence d1, . . . , d` from D
can be chosen in at most (8(m! (n−m))1/3)` ways, and for each sequence trivially∏`
i=1 d

|Pi|−1
i ≤ n

∑
i(|Pi|−1) = nk−`. Hence, since n ≥ 8 + 8m!m,

N(k,Π) ≤ (n− k)! (8(m! (n−m))1/3)`nk−`

≤ (n− k)! (8(m! (n−m))1/3)2nk−2 < 64m! (n− k)!nk−4/3.

We estimate (n− k)! by

(n− k)! =
n!
nk

n

n− 1
n

n− 2
· · · n

n− k + 1
<
n!
nk

(1 +
k

n− k )k <
n!
nk
e

k
n−k ,

and the number of partitions of {1, 2, . . . , k} by kk (note that each partition can
be obtained as the sets where some function f : {1, 2, . . . , k} → {1, 2, . . . , k} takes
constant values). Combining these estimates with the observation that each element
of Tn(m! (n−m)) is counted exactly once in

∑
ΠN(k,Π), we obtain that

(3.3) Nn(m! (n−m)) ≤ n!
(
(1 +

m!
k − 2

)e
k

n−k
1
n

+ 64m!kke
k

n−k
1

n4/3

)
.
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Given ε > 0, we choose k such that

(1 +
m!
k − 2

)e
k

k2−k < 1 +
ε

2
.

After that, we choose n0 > k2 such that

64m! kke
k

n0−k <
ε

2
n

1/3
0 .

Then, for n > max{8 + 8m!m,n0}, we have Nn(m! (n−m)) < (1 + ε)n!/n. �

Corollary 3.8. Let ε > 0 and n > n(ε).
(a) Let σ be a uniformly distributed random element of Tn(m! (n −m)). Then,

with probability greater than 1− ε, σ contains a cycle of length n−m.
(b) Let 2 ≤ s ≤ m, and let σ be a uniformly distributed random element of

Tn((n −m)s). Then, with probability greater than (1 − ε)/m!, the cycle structure
of σ is 1m−ss1(n−m)1.

Proof. (a) This is immediate from Lemma 3.6 and Theorem 3.7.
(b) Tn((n−m)s) ⊆ Tn(m! (n−m)), so it has at most (1+ε)n!/n elements. Out of

these, there are n!/s(n−m)(m−s)! > n!/m!n with cycle structure 1m−ss1(n−m)1,
so the proportion of elements in Tn((n −m)s) with the required cycle structure is
greater than (1− ε)/m!. �

Corollary 3.8 covers all cases occurring in Lemma 3.5, since if m ∈ {0, 1} then
part (a) of the corollary can also be interpreted as a conditional probability of
permutations with the required cycle structure. Note that if x is odd then Tn(x) ⊆
An, so if (n − m)s is odd then the conditional probability that an element σ ∈
An has cycle structure 1m−ss1(n − m)1, given that σ(n−m)s = 1, is the same
as the corresponding conditional probability in Sn. However, for our algorithmic
application, we need a lower bound for the conditional probability which is valid
for all values of n.

Theorem 3.9. Let n ≥ 5 and let σ be a randomly selected permutation from Sn.
Let x = n or x = (n −m)s for one of the cycle types 1m−ss1(n − m)1 described
in Lemma 3.5. Then, given that σx = 1, the conditional probability that σ is an
n-cycle, or σ has cycle structure 1m−ss1(n−m)1, is at least 1/180.

Proof. Using the notation of the proof of Theorem 3.7, we derive a tighter upper
bound for Nn(x) by evaluating (3.1) more carefully in the case k = 3. First, we
suppose that n > 50.

There is one partition Π3 of {1, 2, 3} with three parts, and (3.1) gives
N(3,Π3, d1, d2, d3) ≤ (n− 3)! d0

1d
0
2d

0
3 = (n− 3)!. By Lemmas 3.1 and 3.2,

N(3,Π3) ≤ c3 (n−m) (n− 3)! ≤ c3 n (n− 3)!

with c3 = c32 for the constant c2 introduced in Lemma 3.2.
There are three partitions Π2 of {1, 2, 3} with two parts, and (3.1) gives

N(3,Π2, d1, d2) ≤ (n − 3)! d1d
0
2. Hence, using both statements of Lemmas 3.1

and 3.2,
N(3,Π2) ≤ (n− 3)!c2n4/3(c4 + 2 lnn)

with c4 = 3 − 4 ln 3. In this estimate, we used Lemma 3.2 with p = 3, since for
n > 50 this value gives the largest upper bound.
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Finally, there is one partition Π1 of {1, 2, 3}with one part, N(Π1, d1) ≤ (n−3)! d2
1

and, by Lemmas 3.3 and 3.4, N(3,Π1) ≤ 4n2 (n−3)!. (Again, the case y = 3 yields
the largest upper estimate.) Adding these estimates, we obtain

Nn(x) ≤ (n− 3)!
(

4n2 + 3c2n4/3(c4 + 2 lnn) + c3n
)

= f(n)(n− 1)!.

The function f(n) is monotone decreasing for n ≥ 50.
We claim that Nn(x) ≤ 10(n− 1)! for all n ≥ 5. For n ≥ 301 this follows from

f(301) < 10, and for 5 ≤ n ≤ 300, we computed the exact value of Nn(x).
By Lemma 3.5 and by checking the cases n ≤ 9 which are not covered by that

lemma, the number of permutations with the required cycle structure is at least
(n− 1)!/18. Hence the proportion of these elements in Tn(x) is at least 1/180. �

4. Construction of the new generators

Given a black-box group G = 〈S〉 isomorphic to An or Sn, in this section we de-
scribe an algorithm which constructs s, t ∈ G such that the subgroup 〈s, t〉 satisfies
the presentation (2.2) or (2.3), if n is odd or even, respectively.

We construct random elements of G (we shall compute in the proof of Theo-
rem 4.5 how many of them have to be taken) in order to find a ∈ G satisfying
an−k = 1, where k = 0 if n is odd, and k = 1 if n is even. Also, we construct
random elements c ∈ G in order to find one satisfying c3(n−m) = 1, where m is
given in the following table.

(4.1)
n mod 6 0 1 2 3 4 5
m 5 6 3 4 3 4

Then, by Theorem 3.9, the cycle type of a is 1k(n − k)1 with probability at least
1/180, and the cycle type of b := cn−m is 1n−331 with probability at least 1/180.

The following two lemmas describe algorithms which, given a, b ∈ G as above,
construct s, t ∈ G as required in (2.2) or (2.3). These algorithms are Las Vegas,
which means that if the input group elements a, b have cycle type 1k(n − k)1 and
1n−331, respectively, then the output group elements s, t behave as required, or
the algorithm reports failure. However, if the input elements do not have the
prescribed cycle types then the algorithms may return an incorrect answer. If the
output group elements s, t are incorrect then this fact is noticed when we check
whether 〈s, t〉 satisfies the presentation (2.2) or (2.3).

Lemma 4.1. Let n be odd and n ≥ 7. Suppose that a ∈ G has cycle type n1 and
b ∈ G has cycle type 1n−331. Then in O(ξn + µn) time, it is possible to construct
s, t ∈ G such that 〈s, t〉 satisfies the presentation (2.2) for An. This algorithm is
Las Vegas and succeeds with probability at least 3/4.

Proof. Let us fix a homomorphism λ : G → Sym([1, n]) such that λ(a) =
(1, 2, . . . , n). Our first goal is to show that, with probability at least 3/4, among
1 + n/3 random conjugates of b we find one, c, satisfying λ(c) = (i, i+ 1, k) or λ(c)
= (i + 1, i, k) with 1 ≤ i, k ≤ n and k 6∈ {i, i + 1}, where the numbers are taken
modulo n.

Suppose c is a conjugate of b satisfying [c, ca] 6= 1. We claim that λ(c) has
support set {i, i + 1, k} as desired. Indeed, as c is a conjugate of b, it satisfies
λ(c) = (i, j, k) for some triple {i, j, k} and λ(ca) = (i+ 1, j + 1, k + 1). Now c and
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ca do not commute if and only if the sets {i, j, k} and {i+ 1, j+ 1, k+ 1} intersect.
Hence it follows that two of i, j, k are consecutive numbers modulo n.

Next we show that the probability that we cannot find such an element c among
1 + n/3 random conjugates of b is less than 1/4. There are

(
n
3

)
possible support

sets for a 3-cycle, and out of these, n(n − 3) contain two consecutive numbers
modulo n. Hence one random conjugate succeeds with probability n(n− 3)/

(
n
3

)
=

6(n−3)/((n−1)(n−2)), and the probability that 1+n/3 > 2(n−1)(n−2)/(6(n−3))
random conjugates succeed is greater than

1− (1− 6(n− 3)
(n− 1)(n− 2)

)
2(n−1)(n−2)

6(n−3) > 1− 1
e2

>
3
4
.

The rest of the algorithm is deterministic and runs in O(µ) time. Without loss of
generality, we can suppose that supp(λ(c)) = {1, 2, k} for some k with 3 ≤ k ≤ n−1.
The next goal is to construct t ∈ G such that λ(t) = (1, 2, 3).

If k = 3 then cca is an involution while if 4 ≤ k ≤ n − 1 then cca has order 5.
Hence these two cases can be distinguished in O(µ) time.

Suppose first that k = 3. We can distinguish the cases λ(c) = (1, 2, 3) and
λ(c) = (1, 3, 2) by computing x := ca

2
and y := cx. In the first case λ(y) = (1, 2, 4)

and in the second case λ(y) = (1, 5, 2), which can be distinguished by checking
whether [y, ya

2
] = 1. After that, t is defined as t := c or t := c2, respectively.

Suppose next that 4 ≤ k ≤ n− 1. The case k ∈ {4, n− 1} can be distinguished
from the case 5 ≤ k ≤ n− 2 by checking whether [c, ca

2
] = 1. If 5 ≤ k ≤ n− 2 then

λ(c) = (1, 2, k) can be distinguished from λ(c) = (1, k, 2) by computing x := ca and
y := cx. In the first case λ(y) = (1, 3, k) and in the second case λ(y) = (1, k, k+ 1),
which can be distinguished by checking whether [y, ya] = 1. If it turns out that
λ(c) = (1, 2, k) then define t := [c2, x]. If λ(c) = (1, k, 2) then define t := [c, x2].

If k ∈ {4, n−1} then the cases λ(c) = (1, 2, 4), λ(c) = (1, 4, 2), λ(c) = (1, 2, n−1),
and λ(c) = (2, 1, n− 1) are also distinguished by computing x := ca and y := cx.
In the four cases, λ(y) = (1, 3, 4), λ(y) = (1, 4, 5), λ(y) = (n − 1, 1, 3), and λ(y) =
(n− 1, n, 1), respectively. The third of these is distinguished from the others as the
only one with [y, ya] = 1. The second one is distinguished among the remaining
three as the only one with [y, ya

2
] = 1. Finally, the first and fourth are distinguished

by the order of yya. If λ(c) = (1, 2, 4) or λ(c) = (1, 2, n− 1) then define t := [c2, x].
If λ(c) = (1, 4, 2) or λ(c) = (2, 1, n− 1) then define t := [c, x2].

Finally, output s := at2, which satisfies λ(s) = (3, 4, . . . , n), and t. �

Remark 4.2. For use in [4], we point out the following corollary of the proof
of Lemma 4.1. Given a, c ∈ G such that λ(a) = (1, 2, . . . , n) and λ(c) ∈
{(i, i + 1, k), (i + 1, i, k)} for some i, k ≤ n, we can construct s, t ∈ G satisfying
the presentation (2.2) for An in O(µ) time, by a deterministic algorithm.

Lemma 4.3. Let n be even and n ≥ 10. Suppose that a ∈ G has cycle type
11(n−1)1 and b ∈ G has cycle type 1n−331. Then in O(ξn+µn) time, it is possible
to construct s, t ∈ G such that 〈s, t〉 satisfies the presentation (2.3) for An. This
algorithm is Las Vegas and succeeds with probability at least 3/4.

Proof. Let us fix a homomorphism λ : G → Sym([1, n]) such that λ(a) =
(2, 3, . . . , n). Our first goal is to show that, with probability at least 3/4, among
2n/3 random conjugates of b we find one, c, satisfying λ(c) = (1, i, j) with 2 ≤
i, j ≤ n.
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Suppose c is a conjugate of b satisfying [c, ca] 6= 1, [c, ca
2
] 6= 1, and [c, ca

4
] 6= 1.

We claim that λ(c) has support set {1, i, j} as desired. Indeed, as c is a conjugate
of b, if 1 ∈ supp(λ(c)) then c does not commute with ca

m

for any m. On the other
hand, if supp(λ(c)) = {i, j, k} ⊆ {2, 3, . . . , n} then c commutes with ca if no two of
i, j, k are consecutive in the (n− 1)-cycle λ(a) and in the other cases, it is easy to
check that c commutes with ca

2
or ca

4
.

Next we show that the probability that we cannot find such an element c among
2n/3 random conjugates of b is less than 1/4. There are

(
n
3

)
possible support sets for

a 3-cycle, and out of these,
(
n−1

2

)
contain 1. One random conjugate succeeds with

probability
(
n−1

2

)
/
(
n
3

)
= 3/n. Hence the probability that 2n/3 random conjugates

succeed is greater than 1− (1− 3/n)2n/3 > 1− 1/e2 > 3/4.
Define t := [ca, c]. Then λ(t) = (1, i, i+1) and, without loss of generality, we may

suppose λ(t) = (1, 2, 3). Then s := at satisfies λ(s) = (1, 2)(3, 4, . . . , n). Output s
and t. �

Lemma 4.4. Given s, t ∈ G, it can be checked in O(µn) time whether 〈s, t〉 satisfies
the presentation for An given in (2.2) and (2.3).

Proof. The case n even, as well as the evaluation of the relators sn−2, t3, and
(st)n in the odd case is clear. In the case when n is odd, we evaluate the relators
(ts−ktsk)2 for k = 1, . . . , b(n − 3)/2c in b(n − 3)/2c rounds: in the kth round, we
use the input sk−1 and we output sk and (ts−ktsk)2. One round requires only a
constant number of group operations. �

Theorem 4.5. Given a black-box group G = 〈S〉 isomorphic to An or Sn and an
error probability ε > 0, group elements s, t ∈ G such that 〈s, t〉 satisfies the presen-
tation for An given in (2.2) or (2.3) can be constructed by a Las Vegas algorithm,
with probability at least 1 − ε, in O(log ε−1(ξn + µn logn)) time. At any moment
during the execution of the algorithm, we have to store only a constant number of
group elements.

Proof. By Lemma 3.5, among 2n uniformly distributed random elements a ∈ G we
can find one satisfying an−k = 1, with the appropriate k ∈ {0, 1}, with probability
at least 1−(1−1/n)2n > 1−1/e2 > 3/4. Similarly, among 36n uniformly distributed
random elements c ∈ G we can find one satisfying c3(n−m) = 1 for the value m
described in (4.1), with probability greater than 3/4. Constructing a, c and taking
the appropriate powers can be done in O(ξn + µn logn) time. By Theorem 3.9, a
has cycle type 1k(n− k)1 and cn−m has cycle type 1n−331 with probability at least
1/1802. Applying the appropriate one of Lemmas 4.1 and 4.3, and then Lemma 4.4,
if a and c have the correct cycle type then s and t are constructed in O(ξn+µn) time,
with probability at least 3/4. Hence the entire procedure takes O(ξn + µn logn)
time and succeeds with probability greater than (3/4)3/1802.

Repeating this procedure up to d(4/3)31802 ln(ε−1)e times, we construct s and
t with probability at least 1− ε, in O(log ε−1(ξn+ µn logn)) time. �

Remark 4.6. For the “practical” values 8 ≤ n ≤ 300, we have computed the exact
value of the conditional probabilities that an element of order dividing s(n − m)
has cycle type 1n−m−ss1(n −m)1 for the values s,m in Lemma 3.5. All of these
conditional probabilities are greater than 1/7 so, for 8 ≤ n ≤ 300, the number
d(4/3)31802 ln(ε−1)e can be replaced by d(4/3)372 ln(ε−1)e in the expression for the
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number of iterations in the proof of Theorem 4.5. This reduction does not really
matter if the input group is indeed isomorphic to An or Sn, since the expected
number of iterations depends on the true conditional probabilities that an element
of order dividing (n −m)s has cycle type 1n−m−ss1(n −m)1 for the appropriate
values of s and m, and it does not depend on how badly or well we estimate
these conditional probabilities. However, if the algorithm is used as a Monte Carlo
algorithm to test whether an unknown input group G is isomorphic to An or Sn
then the better constants ensure earlier termination in the case of a negative answer.

5. The homomorphism λ

Given a black-box group G = 〈S〉 isomorphic to An or Sn, the algorithm de-
scribed in the proof of Theorem 4.5 constructs s, t ∈ G such that 〈s, t〉 ∼= An and
it satisfies the presentation in (2.2) or (2.3). In this section we construct a homo-
morphism λ : G→ Sym([1, n]) by specifying the images of s and t and by giving a
procedure which constructs the image of any z ∈ G. The algorithm will detect if
G ∼= Sn, and in this case it replaces s and t by two new elements s1, t1 such that
〈s1, t1〉 satisfies (2.1). We shall also describe a procedure which, given an arbitrary
element z ∈ G, computes a straight-line program reaching z from s and t (or from
s1 and t1 in the case G ∼= Sn).

Recall that for n > 6 we have Aut(An) ∼= Sn, and so, for any g ∈ G, the cycle
structure of λ(g) is the same for any faithful homomorphism λ : G → Sym([1, n]).
Therefore, without loss of generality, we can assume that λ(s) = (3, 4, . . . , n) or
λ(s) = (1, 2)(3, 4, . . . , n), depending on the parity of n, and λ(t) = (1, 2, 3).

We start with the easier inverse problem: finding straight-line programs reaching
any π ∈ An from σ := λ(s) and τ := λ(t).

Lemma 5.1. Given π ∈ An, a straight-line program of length O(n logn) reaching
π from σ and τ can be constructed in O(n logn) time, by a deterministic algorithm.

Proof. Let σ1 := σ and τ1 := τ . Recursively for i = 1, . . . , n− 3, define

τi+1 =
{
τ−1
i σ−1

i τiσiτi if n− i is even
τ−1
i σ−1

i τ2
i σiτi if n− i is odd,

σi+1 =
{
σiτi+1 if n− i is even
σiτ

2
i τ
−1
i+1 if n− i is odd.

(5.1)

Then τi = (i, i+ 1, i+ 2) for 1 ≤ i ≤ n− 2 and σi = (i, i+ 1)(i+ 2, i+ 3, . . . , n) or
(i+ 2, i+ 3, . . . , n), depending on the parity of n− i. It is clear from the recursion
that all σi, τi can be obtained by a single straight-line program of length O(n) from
σ and τ . Hence it is enough to write a straight-line program of length O(n logn)
from T := {σi, τi : 1 ≤ i ≤ n− 2} to π.

Write π as the product of transpositions, by decomposing each cycle (c1, . . . , c`)
of π as (c1, . . . , c`) = (c1, c2)(c1, c3) · · · (c1, c`). Since π ∈ An, we have an even
number of transpositions in this product. By inserting (n− 1, n)(n− 1, n) between
the (2k−1)st and (2k)th transposition for all k, the permutation π is written as the
product of less than n permutations of the form (i, j)(n−1, n) or (n−1, n)(i, j) and
it is enough to show that any such permutation can be obtained by a straight-line
program of length O(log n) from T .

For any k ∈ [i+ 2, n], we have

σ
−(k−i−2)
i τiσ

k−i−2
i = (i, i+ 1, k) or σ

−(k−i−2)
i τiσ

k−i−2
i = (i + 1, i, k),
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and these 3-cycles can be reached by straight-line programs of length O(log n) from
T . Hence it is enough to observe that if i < n− 1, then

(i, i+ 1)(n− 1, n) = (i, n, i+ 1)(i, i+ 1, n− 1)(i, n, i+ 1)

and, for j ∈ [i+ 2, n−2], (i, j)(n−1, n) = (i, i+ 1, j) · (i, i+ 1)(n−1, n) · (i, j, i+ 1).
If i < n− 2 and j ∈ {n− 1, n}, then (i, j)(n− 1, n), (n− 1, n)(i, j) ∈ 〈(i, n− 1, n)〉
and (i, n− 1, n) = (i, n− 1, i+ 1)(i, i+ 1, n). �

The evaluation of a straight-line program of length O(n log n) may require the
simultaneous storage of cn logn group elements, but in the case of the straight-line
programs constructed in Lemma 5.1, we can do much better.

Corollary 5.2. Given π ∈ An, the inverse image λ−1(π) ∈ G can be computed
in O(µn log n) time, by a deterministic algorithm. At any moment during the ex-
ecution of this algorithm, we have to store only a constant number of elements of
G.

Proof. We simply evaluate in G the straight-line program reaching π from σ and
τ , starting with s and t. The storage requirement can be satisfied by ordering the
cycles of π according to the smallest element contained in them and decomposing
each cycle as (c1, . . . , c`) = (c1, c2)(c1, c3) · · · (c1, c`) using its smallest element c1.
Then transpositions (i, j) with i < j for some fixed i occur consecutively, and all
later transpositions (i1, j1) have i1, j1 > i. Therefore, evaluating the straight-line
programs reaching the preimages of the elements (i, j)(n− 1, n) and (n− 1, n)(i, j)
successively as required in the proof of Lemma 5.1, we have to store λ−1(σi) and
λ−1(τi) only for a fixed i at any given time. Note that an inverse image λ−1(σk−i−2

i )
can be computed by repeated squaring, storing only a constant number of elements
of G at any time. After processing all (i, j) with this fixed i, we compute λ−1(σi+1)
and λ−1(τi+1) by the formulas in (5.1) and discard λ−1(σi) and λ−1(τi). �

The main idea of the construction of λ(z) for an arbitrary z ∈ G is the following.
We need to define an n-element set Ω on which G acts, and then we need to identify
Ω with {1, 2, . . . , n}. We define Ω as a set of unordered pairs {a, b} ⊆ G such that
both a and b have cycle type 1n−331, satisfying the requirement that the supports
of λ(a) and λ(b) intersect in exactly one point i ∈ [1, n]. In this way, {a, b} can be
identified with i, and Ω can be identified with [1, n].

Representing Ω in this way creates two problems. First, we do not want to
store 2n elements of G, so the set Ω is not computed explicitly. Elements of Ω,
when needed, will be reached by straight-line programs from s and t. Second, for an
arbitrary z ∈ G the image {az, bz} of a point {a, b} ∈ Ω is not necessarily an element
of Ω. Thus we need to be able to identify the intersection of the supports of λ(az)
and λ(bz) with supp(λ(c)) ∩ supp(λ(d)) for some {c, d} ∈ Ω in a way different from
simply checking whether {az, bz} = {c, d}. We shall narrow down the possibilities
for supp(λ(az)) ∩ supp(λ(bz)) to a constant number by taking commutators of az

and bz with certain elements x1, . . . , xm of G of order five, utilizing the fact that an
element of order five and a three-cycle in Sn commute if and only if their supports
are disjoint.

Now we describe the construction of the elements x1, . . . , xm. Let n = 5k + r
where 0 ≤ r ≤ 4, let m′ := dlog2(k + 1)e, and put m := 2m′. For 1 ≤ j ≤ m′, we
define partitions Πj = {Pj,0, Pj,1} of the set {1, . . . , k} into two parts such that the
common refinement of these partitions is the trivial one. Namely, for each i ∈ [1, k],
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we compute the binary expansion b
(i)
1 b

(i)
2 . . . b

(i)
m′ of i. For i ∈ [1, k] and j ∈ [1,m],

let

ε(j, i) =

{
b
(i)
j if j ≤ m′

1− b(i)j−m′ if j ≥ m′ + 1.
(5.2)

Then, for 1 ≤ j ≤ m′, we define Pj,0 := {i : ε(j, i) = 0} and Pj,1 := {i : ε(j, i) = 1}.
We define elements a1, . . . , ak of G with cycle type 1n−551 as follows. Working

in the group A := 〈{s−etse : 0 ≤ e ≤ 7}〉 ∼= A10, in O(µ) time we construct
a1, a2 ∈ 〈s, t〉 with λ(a1) = (1, 2, 3, 4, 5) and λ(a2) = (6, 7, 8, 9, 10). We also compute
c := s5 and define, but do not compute, ai := c−(i−2)a2c

i−2 for 3 ≤ i ≤ k. Note
that λ(ai) = (5i− 4, 5i− 3, 5i− 2, 5i− 1, 5i).

Finally we define xj :=
∏k
i=1 a

ε(j,i)
i for 1 ≤ j ≤ m. Thus each xj has order five.

For j ≤ m′, we have {i : supp(λ(ai)) ⊆ supp(λ(xj))} = Pj,1. Similarly, for j > m′,
we have {i : supp(λ(ai)) ⊆ supp(λ(xj))} = Pj−m′,0 and so the supports of λ(xj)
and λ(xj+m′ ) are disjoint for all j ∈ [1,m′].

Note that for any J ⊆ {1, 2, . . . ,m′},

(5.3)

∣∣∣∣∣∣
⋂
j∈J

supp(λ(xj)) ∩
⋂

j∈{1,2,...,m′}\J
supp(λ(xj+m′ ))

∣∣∣∣∣∣ ∈ {0, 5}.
If this intersection is non-empty, then it is the support of λ(ai) for the unique i
whose binary expansion contains 1’s exactly in the positions given in J .

Lemma 5.3. Given a1, a2, and c as defined above, x1, . . . , xm and their images
under λ can be computed in O(µn log n) time, storing only O(log n) elements of G
at any moment of the computation.

Proof. Initialize xj := 1 for 1 ≤ j ≤ m. Iteratively for i = 1, . . . , k, compute
xj := xja

ε(j,i)
i for all j, compute ai+1 = aci , and discard ai. �

Lemma 5.4. Given z ∈ G and {x1, . . . , xm} as constructed above, for any ` ∈
{1, . . . , n} the image `λ(z) can be determined in O(µ log n) time, by a deterministic
algorithm.

Proof. We choose some i with 1 ≤ i ≤ n−4 such that ` ∈ {i, i+1, i+2, i+3, i+4},
and determine iλ(z), (i + 1)λ(z), (i + 2)λ(z), (i + 3)λ(z), and (i + 4)λ(z) simultane-
ously. First, we construct the ten elements t{i1,i2,i3} of G with the property
that supp(λ(t{i1,i2,i3})) = {i1, i2, i3}, for all three-element subsets {i1, i2, i3} ⊆
{i, i + 1, i + 2, i + 3, i + 4}. This can be done by constructing these ten elements
t{i1,i2,i3} for 6 ≤ i1, i2, i3 ≤ 10 in the group A := 〈{s−etse : 0 ≤ e ≤ 7}〉 ∼= A10 in
O(µ) time and, for i ≥ 3, conjugating the result by si−6. For i = 1, 2, we construct
those elements directly in A.

Let j ∈ [1,m′] be fixed. We construct the twenty commutators [xj , (t{i1,i2,i3})
z],

[xj+m′ , (t{i1,i2,i3})
z]. At least one of these twenty commutators is trivial, since at

least three elements of {i, i + 1, i + 2, i + 3, i + 4}λ(z) are outside supp(λ(xj)) or
supp(λ(xj+m′ )), and two permutations with disjoint support commute.

Suppose, for example, that [xj , (t{i,i+1,i+2})z] = 1; in the other nineteen cases,
we can use an analogous argument. The fact [xj , (t{i,i+1,i+2})z ] = 1 means that

iλ(z), (i+ 1)λ(z), (i+ 2)λ(z) ∈ supp(λ(xj+m′ )) ∪ {5k + 1, . . . , 5k + r}.
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We also want to compute which of the sets supp(λ(xj)) ∪ {5k+ 1, . . . , 5k + r} and
supp(λ(xj+m′ )) ∪ {5k+ 1, . . . , 5k+ r} contain the other two images (i+ 3)λ(z) and
(i+4)λ(z). If [xj , (t{i,i+1,i+3})z ] 6= 1 then (i+3)λ(z) ∈ supp(λ(xj))∪{5k+1, . . . , 5k+
r}, since {i, i+ 1, i+ 3}λ(z) can intersect supp(λ(xj)) only in the point (i+ 3)λ(z).
If [xj , (t{i,i+1,i+3})z] = 1 then (i + 3)λ(z) ∈ supp(λ(xj+m′ )) ∪ {5k + 1, . . . , 5k + r}.
We can decide similarly which of these two sets contains (i+ 4)λ(z).

Having performed the commutator calculations of the previous two paragraphs
for all j ∈ [1,m′], by (5.3) we have at most 5 + r ≤ 9 possibilities for `λ(z). To
finish the algorithm, we need a procedure which decides whether `λ(z) = ı̄ for a
fixed ı̄ ∈ [1, n], in O(µ log n) time.

We construct s1, s2, s3, s4, s5 ∈ 〈s, t〉 of cycle type 1n−331, such that supp(λ(sd1))
∩ supp(λ(sd2)) = {ı̄} for any two distinct d1, d2 ∈ [1, 5]. Again, these sd can
be obtained as conjugates of appropriate elements of A. We also pick t{i1,i2,i3}
and t{i′1,i′2,i′3} from our collection of ten group elements such that {i1, i2, i3} ∩
{i′1, i′2, i′3} = {`}. We claim that `λ(z) = ı̄ if and only if [sd, (t{i1,i2,i3})

z] 6= 1
for at least four d ∈ [1, 5] and [sd, (t{i′1,i′2,i′3})

z ] 6= 1 for at least four d ∈ [1, 5].
Indeed, if `λ(z) = ı̄ then supp(λ((t{i1 ,i2,i3})

z)) intersects but is not equal to at least
four of the sets supp(λ(sd)) and so (t{i′1,i′2,i′3})

z and sd do not commute. The same
argument works for (t{i′1,i′2,i′3})

z as well. Conversely, if [sd, (t{i1,i2,i3})
z] 6= 1 for

at least four d ∈ [1, 5] then supp(λ((t{i1,i2,i3})
z)) intersects four three-element sets

with pairwise intersection ı̄. This can happen only if ı̄ ∈ {i1, i2, i3}λ(z) and similarly
ı̄ ∈ {i′1, i′2, i′3}λ(z). �

Lemma 5.5. (a) Given s, t and x1, . . . , xm, it can be decided in O(µ|X |n logn)
time whether G ∼= An or G ∼= Sn.

(b) If it turns out that G ∼= Sn then generators s1, t1 for G satisfying (2.1) can
be computed in O(µn log n) time.

(c) If G ∼= Sn then for any permutation σ ∈ Sn, a straight-line program of
length O(n logn) reaching σ from λ(s1) and λ(t1) can be written by a determinis-
tic algorithm, in O(n log n) time. The inverse image λ−1(σ) can be computed in
O(µn logn) time, storing only a constant number of elements of G at any moment
during the computation.

Proof. (a) By Lemma 5.4, the images λ(z) of all input generators z ∈ X can be
computed in O(µ|X |n logn) time. All λ(z) are even permutations if and only if
G ∼= An.

(b) Suppose that we have found z0 ∈ X such that π := λ(z0) is an odd permuta-
tion. By Corollary 5.2, z1 := λ−1(π · (1, 2)) can be computed in O(µn log n) time,
and then t1 := z−1

0 z1 satisfies λ(t1) = (1, 2). Depending on the parity of n, we
compute z2 := s or z2 := t1s such that λ(z2) = (3, 4, . . . , n). Finally, we compute
s1 := z2t, which satisfies λ(s1) = (1, 2, . . . , n).

(c) Depending on the parity of σ, we compute a straight-line program reaching
σ or σ · (1, 2) from λ(s) and λ(t), as described in Lemma 5.1. Then, it is enough to
observe that λ(s) and λ(t) can be reached from λ(s1) and λ(t1) by a straight-line
program of constant length, since t = [s1, t1] and s = s1t

2 if n is odd, and s = t1s1t
2

if n is even.
The evaluation of this straight-line program in G is done as described in Corol-

lary 5.2. �
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Lemma 5.6. Given any z ∈ G, a straight-line program of length O(n log n) and
reaching z from s1, t1 in the case G ∼= Sn and from s, t in the case G ∼= An can be
computed in O(µn log n) time.

Proof. Using the algorithm described in the proof of Lemma 5.4, we compute λ(z).
By Lemma 5.1 and Lemma 5.5(c), we can write a straight-line program reaching
λ(z) from λ(s), λ(t) or λ(s1), λ(t1), respectively. The same straight-line program
reaches z from s, t or s1, t1. �

Summary of the proof of Theorem 1.2(a). The decision procedure whether
G ∼= An or G ∼= Sn is described in Lemma 5.5(a), and the new generators for
G are constructed in the proof of Theorem 4.5 for G ∼= An and in the proof of
Lemma 5.5(b) for G ∼= Sn. Given g ∈ G, the construction of λ(g) is described in
Lemma 5.4, and the straight-line program reaching g is constructed in Lemma 5.6.
Finally, the inverse image of a permutation is constructed in Lemma 5.1 and Corol-
lary 5.2 in the case G ∼= An and in Lemma 5.5(c) for G ∼= Sn.

Proof of Theorem 1.2(b). Given G = 〈X〉 of unknown isomorphism type, we at-
tempt to construct s, t, x1, . . . , xm (and s1, t1, if necessary). If the construction
fails then with large probability G is not isomorphic to An or Sn. If the construc-
tion succeeds and s1, t1 have been computed then we check that 〈s1, t1〉 satisfies
(2.1) (recall that it has been checked during the construction that 〈s, t〉 satisfies the
appropriate one of (2.2) or (2.3)).

Finally, we write straight-line programs from s, t or s1, t1 to each generator z ∈
X , as described in the proof of Lemma 5.6, and evaluate the straight-line programs.
If the construction of the straight-line program succeeds and the evaluated value is
equal to z for all z ∈ X then we know with certainty that G is An or Sn. If not,
then G is not isomorphic to An or Sn.
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