
 Open access Journal Article DOI:10.1109/TASE.2015.2445332

A Black-Box Identification Method for Automated Discrete-Event Systems
— Source link

Ana Paula Estrada-Vargas, Ernesto López-Mellado, Jean-Jacques Lesage

Institutions: CINVESTAV, École normale supérieure de Cachan

Published on: 01 Jul 2017 - IEEE Transactions on Automation Science and Engineering (IEEE)

Topics: Input/output, Petri net, Programmable logic controller, Stochastic Petri net and Black box

Related papers:

 A Comparative Analysis of Recent Identification Approaches for Discrete-Event Systems

 Identification of partially observable discrete event manufacturing systems

 Identification of the unobservable behaviour of industrial automation systems by Petri nets

 Identification of Petri Nets from Knowledge of Their Language

 A passive method for online identification of discrete event systems

Share this paper:

View more about this paper here: https://typeset.io/papers/a-black-box-identification-method-for-automated-discrete-
aeu4mbol4i

https://typeset.io/
https://www.doi.org/10.1109/TASE.2015.2445332
https://typeset.io/papers/a-black-box-identification-method-for-automated-discrete-aeu4mbol4i
https://typeset.io/authors/ana-paula-estrada-vargas-2d98xzmzdz
https://typeset.io/authors/ernesto-lopez-mellado-347z11j3c5
https://typeset.io/authors/jean-jacques-lesage-37fet6l8qz
https://typeset.io/institutions/cinvestav-1bhhg7br
https://typeset.io/institutions/ecole-normale-superieure-de-cachan-1us5b34j
https://typeset.io/journals/ieee-transactions-on-automation-science-and-engineering-22r8hbc0
https://typeset.io/topics/input-output-adez53fj
https://typeset.io/topics/petri-net-1xqxexw7
https://typeset.io/topics/programmable-logic-controller-2wvag9l5
https://typeset.io/topics/stochastic-petri-net-3e3vvraf
https://typeset.io/topics/black-box-3oqdpjvk
https://typeset.io/papers/a-comparative-analysis-of-recent-identification-approaches-2bc1pcq9qe
https://typeset.io/papers/identification-of-partially-observable-discrete-event-3r5rhkrgzw
https://typeset.io/papers/identification-of-the-unobservable-behaviour-of-industrial-4m6ilqn61n
https://typeset.io/papers/identification-of-petri-nets-from-knowledge-of-their-2no8zbx8b3
https://typeset.io/papers/a-passive-method-for-online-identification-of-discrete-event-688fiknxu1
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/a-black-box-identification-method-for-automated-discrete-aeu4mbol4i
https://twitter.com/intent/tweet?text=A%20Black-Box%20Identification%20Method%20for%20Automated%20Discrete-Event%20Systems&url=https://typeset.io/papers/a-black-box-identification-method-for-automated-discrete-aeu4mbol4i
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/a-black-box-identification-method-for-automated-discrete-aeu4mbol4i
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/a-black-box-identification-method-for-automated-discrete-aeu4mbol4i
https://typeset.io/papers/a-black-box-identification-method-for-automated-discrete-aeu4mbol4i

HAL Id: hal-01269980
https://hal.archives-ouvertes.fr/hal-01269980

Submitted on 5 Feb 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Black-box Identification Method for Automated
Discrete Event Systems

Ana Paula Estrada-Vargas, E. López-Mellado, Jean-Jacques Lesage

To cite this version:
Ana Paula Estrada-Vargas, E. López-Mellado, Jean-Jacques Lesage. A Black-box Identification
Method for Automated Discrete Event Systems. IEEE Transactions on Automation Science and
Engineering, Institute of Electrical and Electronics Engineers, 2015, 14 (3), pp. 1321-1336.
฀10.1109/TASE.2015.2445332฀. ฀hal-01269980฀

https://hal.archives-ouvertes.fr/hal-01269980
https://hal.archives-ouvertes.fr

E. López-Mellado is with CINVESTAV Unidad Guadalajara. Av. del Bosque 1145, Col. El Bajío 45019 Zapopan, Mexico. Email:

elopez@gdl.cinvestav.mx. J-J. Lesage is with LURPA, ENS Cachan, Univ Paris-Sud, F-94235 Cachan, France. Email: Jean-Jacques.lesage@lurpa.ens-
cachan.fr. A. P. Estrada-Vargas was with both institutions; she has been sponsored by CONACYT (Mexico) under Grant No. 50312, and by Région Île-de-
France. Email: aestrada@gdl.cinvestav.mx.

Abstract— This paper deals with the identification of discrete

event manufacturing systems that are automated using a

programmable logic controller (PLC). The behavior of the closed

loop system (PLC and Plant) is observed during its operation

and is represented by a single long sequence of observed

input/output (I/O) signals vectors. The proposed method follows

a black-box and passive identification approach that allows

addressing large and complex industrial DES and yields compact

and expressive interpreted Petri net (IPN) models. It consists of

two complementary stages; the first one obtains, from the I/O

sequence, the reactive part of the model composed by observable

places and transitions. The I/O sequence is also mapped into a

sequence of the created transitions, from which the second stage

builds the non observable part of the model including places that

ensure the reproduction of the observed input output sequence.

This method, based on polynomial-time algorithms on the size of

the input data, has been implemented as a software tool that

generates and draws the IPN model; it has been tested with

input/output sequences obtained from real systems in operation.

The tool is described and its application is illustrated through a

case study.

Note to practitioners— Automated modeling of controlled

discrete manufacturing systems can be achieved by efficient

identification algorithms that cope with large and complex

plants performing concurrent and repetitive tasks a priori

unknown. The black-box identification procedure processes an

input/output sequence recorded during the system functioning

for a long period of time, and then yields a comprehensive model

of the closed-loop controlled system; this model approximates

closely the actual behavior of the compound system controller-

plant. A tool based on identification algorithms constitutes an

excellent resource for computer-aided reverse engineering of

controlled manufacturing systems. The method proposed herein

allows processing sequences composed by thousands of I/O

vectors in few seconds.

Index Terms— Discrete Event Systems, Black-box

Identification, Interpreted Petri Nets.

I. INTRODUCTION

DENTIFICATION of discrete event systems (DES) allows
building systematically a mathematical model (Petri nets,
automata) that describes the behavior of an unknown or ill-

known system based on the observation of its evolution.
Observations consist of data revealing the system activity:

sequences of operations, events, messages, signals etc., and the
models allow reproducing the observed behavior.

A. Related works

DES identification has been first addressed as a problem of
grammatical inference [1], [2] for obtaining finite automata
(FA) that represents a given language. Afterwards, Petri net
(PN) models have been proposed for coping with more
complex systems exhibiting concurrent behavior; in [3] an
algorithm for constructing PN models is presented.

Several approaches for identification of DES have been
proposed in literature in various formulations and from diverse
approaches. Below there is an overview of the main
approaches; other works can be found in detailed surveys on
identification methods [4] and [5].

In [6], [7] methods based on Integer Linear Programming
(ILP) are proposed; they allow obtaining accurate Petri nets
from a set of transition sequences that can be fired from the
initial marking. These methods require the a priori knowledge
of the set of transitions and of the number of places, what
makes difficult their application to identify real DES as black
boxes, since the only available information after observation is
the evolution of input and outputs signals exchanged between
the control system and the plant.

 In [8], [9] it is described an efficient method to
incrementally construct an IPN model from a single output
vectors sequence. The considered DESs to identify must be
event-detectable by the outputs. Applying this method to an
I/O sequence would lead to models in which same output
changes caused by different input evolutions would not be
distinguished, and then incorrect behavior could be introduced.

The method presented in [10] is dedicated to fault detection
and isolation (FDI). It allows obtaining a finite automaton
representing precisely a set of cyclic I/O sequences. An
extension to distributed identification and distributed FDI has
been presented in [11]. However, due to the usage of finite
automata, structural information such as parallelism cannot be
explicitly expressed into the models, what makes this approach
inefficient for applications such reverse engineering. Other
proposals related with FDI in the PN framework are presented
in [12] and [13].

A Black-box Identification Method for
Automated Discrete Event Systems

Ana Paula Estrada-Vargas, Ernesto López-Mellado, and Jean-Jacques Lesage, Members, IEEE

I

mailto:aestrada@gdl.cinvestav.mx

In [14], [15] an event sequence is observed, as well as the
corresponding output symbols of a DES to produce an IPN
model, in which the sequence and the observed output vectors
are reproducible. This method requires the definition of an
event list, which is not available a priori in the context of
black-box identification problem addressed in this work. An
alternative to this lack of events list could be the consideration
of all the observed input changes. In this case, models with
several paths describing input changes would be constructed,
in which some input/output relations would not be explicitly
observed. This work has been extended in [16] towards the
determination of stochastic transitions for FDI purposes.

In [17] a technique for constructing a Petri net-like model
that describes the relationship between tasks from a sequence
of workflow events is presented. This technique allows the
discovering of events belonging to certain threads and
synchronization points (forks and joins of tasks) through a
probabilistic analysis of metrics such as the entropy, number
and regularity of task occurrences. It is assumed that all the
workflow operations are observable.

In [18] the modeling of a workflow is also considered. The
input of the algorithm is a workflow log of several workflow
instances composed by several tasks. Workflow instances are
recorded sequentially, even if tasks may be executed in
parallel. Based on the information in the workflow log and by
making some assumptions about completeness of the log, a
process model in the form of a workflow net is deduced.

B. Black-box approach

Beyond the theoretical interest of defining model synthesis
methods from event sequences, the challenges of applying
identification methods to actual industrial automated systems
are related to the scalability of the algorithms and
technological issues: the techniques must be efficient to cope
with large and complex systems that handle actual signals.

In our approach we deal with Programmable Logic
Controller (PLC) based automated systems. The aim is to
discover, from observations of the system behavior expressed
as a single sequence of PLC input and output signals how
components of the system are interrelated, and to construct a
concise model which can explicitly show the discovered
behavior, in particular, concurrency, synchronization, resource
sharing, etc. Identification of systems in operation involves
two important aspects to consider: the system operation and
the observation process. Technological issues of both aspects
must be considered in the proposed algorithms to construct
suitable abstractions.

In previous works [19], [20] an I/O sequence is considered
to compute an IPN including cyclic behavior. Although the
proposed methodology is scalable due to the algorithms
efficiency, the obtained models are close to finite automata
and can be huge, due to the explicit representation of observed
input changes that could not be relevant to define the output
evolution.

C. Contribution

In this paper we address these problems by analyzing the
observed sequence to establish a clearer relation between
inputs and outputs of the controller. The proposed method
allows building a reduced representation of the observable part
of the model which yields consequently, a reduced complete
IPN. It consists of two complementary stages; the first one
obtains, from the I/O sequence, the reactive part of the model
composed by observable places and transitions. A first version
of this stage has been presented in [21]. The I/O sequence is
mapped into a sequence of the created transitions, from which
the second stage builds the non-observable part of the model
including places that ensure the reproduction of the observed
input output sequence. This method, based on polynomial-time
algorithms on the size of the input data, has been implemented
as a software tool that generates and draws the IPN model
[22]. None of the black-box identification approaches in
related works allows obtaining such well structured models.
The present article gathers both stages of the method; it
includes a detailed presentation of the revised results,
additional illustrative examples, all the proofs omitted in the
conference papers, and a case study regarding the
identification of a real process.

D. Contents

The paper is organized as follows. In Section II IPN basic
notions are overviewed. Section III states the problem of
industrial automated systems identification and overviews the
two steps method. Such steps are explained in Section IV and
Section V. Finally, the implementation details and a case study
are presented in Section VI.

II. INTERPRETED PETRI NETS

This section contains the basic concepts and notation of PN
and IPN used in this paper.

Definition 1: An ordinary Petri Net structure G is a bipartite
digraph represented by the 4-tuple G = (P, T, Pre, Post)
where: P = {p1, p2, ..., p|P|} and T = {t1, t2, ..., t|T|} are finite
sets of vertices named places and transitions respectively;
Pre(Post) : P × T → {0,1} is a function representing the arcs
going from places to transitions (from transitions to places).

The incidence matrix of G is W = W+ − W−, where W− =
[wij

−]; wij
− = Pre(pi, tj); and W+ = [wij

+]; wij
+ = Post(pi, tj) are

the pre-incidence and post-incidence matrices respectively.
A marking function M : P→ Z+ represents the number of

tokens residing inside each place; it is usually expressed as a
|P|-entry vector. Z+ is the set of nonnegative integers. In
particular, in this paper M : P→ {0,1}; the PN is referred as 1-
bounded or safe.

Definition 2: A Petri Net system or Petri Net (PN) is the
pair N = (G,M0), where G is a PN structure and M0 is an initial
marking.

In a PN system, a transition tj is enabled at marking Mk if
∀pi ∈ P, Mk(pi) ≥ Pre(pi, tj); an enabled transition tj can be
fired reaching a new marking Mk+1. This behavior is

represented as Mk → jt Mk+1. The new marking can be
computed as Mk+1 = Mk + Wuk, where uk(i) = 0, i≠j, uk(j) = 1;
this equation is called the PN state equation. The reachability
set of a PN is the set of all possible reachable markings from
M0 firing only enabled transitions; this set is denoted by
R(G,M0).

Definition 3. A Petri net circuit is a path of vertices linked
by arcs starting and ending in the same node. A circuit is said
to be simple if it does not use the same transition more than
once, and elementary if it does not use the same place more
than once.

Now it is defined IPN, an extension to PN that allows
associating input and output signals to PN models. This
definition is adapted from [23].

Definition 4 : An interpreted Petri net (IPN) (Q, M0) is a
labeled net structure Q = (G, Σ, Φ, λ, ϕ) with an initial
marking M0 where:
- G is a PN structure,
- Σ= {I1, I2, ..., Ir} is the input alphabet,
- Φ = {O1, O2,..., Oq} is the output alphabet,
- λ : T→ C × E is a labeling function of transitions, where
- C={C1, C2,…} is the set of input conditions in which

every Ci is a Boolean function on Σ; when a Ci is always
true it is denoted as “=1”, and

- E={E1, E2,…} is the set of input events conditions; every
Ei is a Boolean function of input events, build on Σ;
events are denoted as Ii_0 and Ii_1 for representing that
the input value changes from 1 to 0, or from 0 to 1
respectively. A condition Ei may not exist; this is denoted
as “ε”.

In an IPN, a transition tj will be fired if a) tj is enabled, and
b) condition C(tj) is true, and c) the event in E(tj) occurs.

- ϕ : R(Q,M0)→(Z+)q is an output function, that associates
with each marking in R(G,M0) a q-entry output vector,
where q=|Φ| is the number of outputs. ϕ is represented by
a q×|P| matrix, such that if the output symbol Oi is
present (turned on) every time that M(pj) ≥ 1, thenϕ (i,
j) = 1, otherwise ϕ(i, j) = 0.

The state equation of PN is completed with the marking
projection Yk = ϕMk, where Yk ∈ (Z+)q is the k-th output vector
of the IPN.

Definition 5: A place pi∈P is said to be observable if the i-
th column vector of ϕ (denoted as ϕ(•,i)) is not null.
Otherwise it is non-observable. P = Pobs ∪ Pnobs,
and Pobs ∩ Pnobs =∅; where Pobs is the set of observable places
and Pnobs the set of non-observable places.

III. IDENTIFICATION OF INDUSTRIAL AUTOMATED SYSTEMS

A. The process PLC+Plant

In this work we consider systems composed by a Controller
(a PLC) and a Plant denoted as {PLC + Plant} working on a
closed loop. The input signals of the PLC (outputs of the
Plant) are generated by the sensors of the Plant. The output
signals of the PLC (inputs of the Plant) control the actuators of

the Plant.
The identification is made with respect to the inputs-outputs of
the PLC (Fig. 1). A PLC cyclically performs three main steps:
i) Input reading, where signals are read from the sensors; ii)
Program execution, to determine the new outputs values for
the actuators; and iii) Output writing, where the control signals
to the actuators are set. At each end of the Program execution
phase, the current value of all r inputs and q outputs, called I/O
vector, is captured and recorded in a data base.

Regarding the implementation of the data link between PLC
and identification data base, we use the UDP (User Datagram
Protocol) connection presented in [24]. Tests performed using
a Siemens PLC (CPU 315-2 DP) equipped with a program
leading to a PLC-cycle time of 25 to 30ms have shown that
this connection is reliable and efficient: no data packets got
lost during the transmission and the execution of the PLC
program is not delayed by the capture of data.

The only available data for the identification procedure is
therefore a single sequence of I/O vectors whose length
depends on the observation duration:

,...
)(
)(

,...,
)3(
)3(

,
)2(
)2(

,
)1(
)1(

































=

kO

kI

O

I

O

I

O

I
w

(1)

I(k) and O(k) are vectors whose entries are respectively the
values of the r inputs I1, I2,… Ir and q outputs O1, O2,… Oq at
the k-th PLC cycle. Furthermore we denote Ii(k) and Oi(k) the
values of input Ii and output Oi respectively at the k-th cycle.

B. Event types

In order to analyze signals evolution, we compute event
vectors, i.e., the difference between two consecutive I/O
vectors. Each event vector can be decomposed into input and
output event vectors:









−








+
+

=







=

)(
)(

)1(
)1(

)(
)(

)(
kO

kI

kO

kI

kOE

kIE
kE ,

where



















=

)(

)(

)(

)(2

1

kIE

kIE

kIE

kIE

r



and





















=

)(

)(

)(

)(1

1

kOE

kOE

kOE

kOE

q



(2)

Regarding input and output event vectors and the PLC cycle
described in the previous subsection, there only exist four

Input Reading

Output Writing

End of I/O calculation

| |

| | ()

| |
.

.

.

Program execution

Controller

l1 r1

r2

R1L1

R2L2

s

l2

Plant

s R1

R1 r1
Data

link

(UDP)

l1_1

I/O sequence

Identification

algorithm









)(
)(

kO

kI

Data collection and

IPN identification

s1
r1_1

r2_1

R1

R2 L2

L1

l2_1

Fig. 1. {PLC + Plant} compound and identification procedure.

situations (behavior types) between consecutive I/O vectors
that could be observed, which are explained by different
occurring phenomena:
Type 1. IE(k) ≠ 0 and OE(k) ≠ 0

An input change has provoked directly an output change,
and consequently, a state evolution. This I/O reactive
causality is observed at the same PLC cycle.

Type 2. IE(k) = 0 and OE(k) ≠ 0
The controller has arrived at step k-1 to a state in which,
given the input values, an output (and state) evolution is
allowed at step k.

Type 3. IE(k) ≠ 0 and OE(k) = 0
Let X(k) be the internal current state of the controller,

a) X(k −1) ≠ X(k) An input evolution has provoked a non-
observable state evolution of the controller.

b) X(k −1) = X(k) It has occurred an input evolution to
which the controller is not sensitive.

Type 4. IE(k) = 0 and OE(k) = 0

a) X(k −1) ≠ X(k) It has occurred a non-observable state
evolution of the controller which is not exhibited by any
input nor output change.

b) X(k −1) = X(k) The controller remains in a stable state,
i.e., no state evolution condition is satisfied.

All of these situations should be taken into account to
represent the system dynamics. Our aim in this work is to
express the system’s behavior extractible from the I/O vector
sequence as an IPN.

C. Input-Output identification approach

C.1 Overview of the method
The purpose in this research is not only to compute an IPN

model in which the observed sequence is reproducible, but
also to achieve expressivity and compactness in the identified
model allowing representing causal relationship and
concurrency of the involved operations.

The method processes off-line the I/O-sequence w captured
during the process operation and delivers an IPN model that
reproduces the observed behavior (w).

The method is outlined here with the help of a simple
example. It regards a controller handling 3 inputs (s, x, y) and
3 outputs (A, B, C), from which the following I/O sequence is
obtained:











































































































































































































































































































































































































































































































































































































































































=

1

0

0

0

0

0

1

0

0

1

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

1

0

0

1

0

0

0

0

0

0

0

1

0

0

0

0

0

1

0

0

1

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

1

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

1

0

0

1

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

1

0

0

1

0

0

0

0

0

0

0

1

0

0

0

0

0

1

0

0

1

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

1

0

0

1

0

0

0

0

0

0

C

B

A

y

x

s

w

The method consists of two main steps which are outlined
below.

Step1. Discovering the reactive input/output behavior. In
this step is determined the observable part of the IPN
consisting of subnets, named fragments, composed by
observable places labeled with output symbols, and transitions
labeled with algebraic expressions of input symbols (Fig. 2).

From the sequence w, a corresponding sequence of transitions
S=t1 t2 t3 t4 t1 t2 t5 t6 t1 t2 t3 t4 t1 t2 t5 is obtained.

A

s_1t1

t2

p1

B

x_1

x=0

t3

t4

p2 C

y_1

y=0

t5

t6

p3
s=0

Fig 2. First step of the identification method: IPN fragments.

Step2. Determining the non-observable part of the IPN and

the initial marking M0. The sequence S is processed for
obtaining causal and concurrency relationships useful for
determining the non-observable places that relate the
fragments such that S (thus w) can be executed from M0
(Fig. 3).

A

s_1

s=0

B

x_1

x=0

C

y_1

y=0

p1

p5

p4

t3

t4

t5

t6

p3p2

t2

t1

Fig 3. Second step: assembled IPN fragments

C.2 Dealing with event types
Since situations Type 1 and Type 2 (cf. section III.B) are

directly observable by an output change, they can be
straightforwardly modeled in an IPN. Such a modeling is
performed by the first step of our method.
The Type 1 situation represents a direct input/output reactive
behavior, and thus the modeling is quite easy: the input change
is associated with the label of a transition and the output
change is represented as arcs relating such a transition with the
observable places representing outputs involved.
In the Type 2 situation the input values which lead to the
output evolution are not observed at the same PLC cycle (i.e.
at the same event vector). In order to represent such a
behavior, the context (the values of the inputs) in which the
output changes occur is analyzed; in this case, the output
change is modeled such as in the Type 1 situation, but the label
of the corresponding transition contains only a condition on
inputs levels (the input change is ε).

The Type 3 situation is divided in two, depending on
whether or not there is an internal state evolution of the
controller. Situation Type 3.a is the case of the input events
which provoke internal state evolutions and eventually lead to
an output event of Type 2. Such internal evolutions cannot be
directly computed, but can be inferred. By looking in the
sequence built in Step 1, the order in which transitions appear
can be determined. Such internal state inference will be
performed by the second step of our method and will be

modeled by the addition of non observable places assuring the
order of the transition firings, such as in Fig. 3.

In the situation Type 3.b there is no internal state evolution,
and thus there is nothing to be inferred, as well as the situation
Type 4, where there are neither input nor output events
occurring in a PLC cycle. Consequently, the sequence stored
in the database will be built by adding a new I/O vector only
when it is different to the last one. Notice that in this work we
can only infer internal state evolutions by means of transition
firing order. Other type of internal evolutions, such as timers
or counters, is out of the scope of this work. We can now make
the description of the two identification steps.

IV. IDENTIFICATION OF THE OBSERVABLE BEHAVIOR

In this section the first step of the method is presented. The
introduced concepts and algorithms are illustrated through a
simple case study inspired from a manufacturing example.

A. Overview and case study description

 Algorithm 1 summarizes the steps of the procedure to
identify the {PLC + Plant} observable behavior; the steps will
be described in detail in the next sub-sections.

Algorithm 1.Computing the observable IPN components

Input: I/O sequence w

Output: Observable incidence matrix φW and labeling
transition function λ

 1) Analyze sequence w in order to
• Compute events vector sequence
• Compute elementary events
• Compute Direct and Indirect Causality Matrices
• Construct Output Event Firing Functions
• Find Input events with differed influence

 2) Use computed data in the previous step to
• Compute transitions of the IPN and their labeling λ
• Compute observable incidence matrix φW

Example 1. The purpose of this system (Fig. 4) is to sort
parcels according to their size. It has 9 signal sensors from the
system: a0, a1, a2, b0, b1, c0, c1, k1, k2, and 4 signals to the
actuators: A+, A-, B, C. This example has been used in other
publications [19], [20] and we describe it to confront this work
against previous results.

Fig. 4. Layout of the system case study.

B. Events vector sequence

In Fig. 5 the beginning of an I/O vector sequence is shown
for illustrative purposes; however, recall that treated sequences
are usually very much longer (thousands of vectors). We have
included in the sequence the result of first sub-step of the
algorithm, i.e., the computed event vectors (below the arrows)
between each two consecutive I/O vectors.





























































































−

 →





























































































−

 →





























































































−

 →





























































































−

 →



























































































−
 →





























































































−

 →




























































































 →















































=

−
+

0

0

1

0

0

1

1

0

0

0

0

0

0

0

1

0

0

0

0

1

0

0

0

0

0

0

)7(

0

1

1

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

)6(

0

1

1

0

0

1

0

0

0

1

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

)5(

0

1

1

0

0

1

0

1

0

1

0

0

0

0

1

1

1

0

0

0

0

0

1

0

0

0

)4(

0

0

0

1

0

1

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

)3(

0

0

0

1

0

1

0

1

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

1

0

0

)2(

0

0

0

1

0

1

0

1

0

0

1

0

1

0

0

0

1

0

0

0

0

0

0

0

0

1

)1(

0

0

0

0

0

1

0

1

0

0

1

0

0

1

0

1

0

2

1

0

2

1
EEEEEEE

w

C

B

A

A

c

c

b

b

a

a

a

k

k

Fig. 5. Beginning of I/O vector sequence.

C. Elementary events

In order to analyze the system behavior in a deeper way,
event vectors can be decomposed into a set of elementary
events (simply called events):

0)()1(s.t. },...,,{)(
1

21 ≠−+==
=

=

kIkIIEIEIEIEkIE ii

ri

i

kikrkk 
(3)

0)()1(s.t. },...,,{)(
1

21 ≠−+==
=

=

kOkOOEOEOEOEkOE ii

qi

i

kikqkk  (4)

If no elementary input (output) event occurs in E(k), we
denote it as IE(j)={ε} (OE(j)={ε}). The rising edge event of
input Ii (output Oi) is denoted as Ii_1 (Oi_1). The falling edge
event of input Ii (output Oi) is denoted as Ii_0 (Oi_0).
Table 1 shows the elementary events computed for the
example sequence.

D. Direct and Indirect Causality Matrices

As stated in Section III, the influence of some input signals
over the outputs setting is observed at the same PLC cycle. In
order to discover such an input/output direct relationship, we
analyze the relative frequency of the occurrence of both input
events IEi and output events OEk, with respect to the
occurrence of OEk along the whole sequence of events. This
relationship can be naturally expressed as the conditional
probability of the occurrence of an output event OEk, given

TABLE I
ELEMENTARY EVENTS LIST FOR EXAMPLE 1

Event
vector

Elementary input
events

Elementary output
events

E(1) IE(1) = {k1_1} OE(1) = {A+_1}
E(2) IE(2) = {a0_0} OE(2) = {ε }
E(3) IE(3) = {k1_0} OE(3) = {ε}
E(4) IE(4) = {a1_1} OE(4) = {A+_0, A−_1, B_1}
E(5)
E(6)
E(7)

IE(5) = {b0_0}
IE(6) = {a1_0}
IE(7) = {b1_1}

IE(6) = a1_0

OE(5) = {ε }
OE(6) = {ε }

OE(7) = {B_0 }

that a certain input event IEi has occurred at the same PLC
cycle:

)(

),(
)|(

kObs

ikObs
ik

OEN

IEOEN
IEOEProb = (5)

where NObs(.) denotes the number of observed occurrences.
Using all values Prob(OEk|IEi), a matrix can be filled. We call
such a matrix the Direct Causality Matrix (DM), in which
every DMik = Prob(OEk|IEi). Fig. 6 presents the computed DM
matrix for the Example 1, considering a sequence much longer
than the presented one.

Fig. 6. Direct Causality Matrix for the Example 1

Similarly, conditional probability has been used in [17] for

determining the relationship between workflow operations.
With the DM matrix, we can find Evolution Type 1 simply

by looking at each column the values that add up to 1, since
this represents the total number of occurrences of event OEk.
For example, from Fig. 6 we can discover that the output event
A+_0 is always provoked by event a1_1 (in 44.4% of the
observed cases) or by event a2_1 (in 55.6% of the observed
cases). The general case where several input events can
provoke an output event is formalized on the next section.

Similarly, to discover input/output non direct relationship,
we look at the input values when a certain output event occurs.
We compute the occurrence probability of an output event
OEk, given that certain input has a given value ILi at the same
PLC cycle:

)(

),(
)|(

kObs

ikObs
ik

OEN

ILOEN
ILOEProb = (6)

We construct the Indirect Context Matrix (IM) in which
every IMik = Prob(OEk|ILi). The IM matrix for Example 1 is
shown in Fig. 7.

Using the IM matrix we can discover evolution Type 2 by
inspecting in every column the values that add up to 1 which
are not zero in the DM matrix. In the Example 1, k1=1 and
k2=1 are input values which can provoke A+_1 output event,
even if they were not always observed at the same PLC cycle.

Now we will present how these relations can be
automatically discovered from the DM and IM matrices.

Fig. 7. Indirect Context Matrix of the Example 1.

E. Computing Firing Functions of Output Events

It can be noticed that the occurrence of every output event
OEk is caused by one or several input events occurring at the
same PLC cycle and by a condition on the input values. In
order to represent such conditions, a firing function χ(OEk) has
to be defined for every OEk. It is called the Output Event
Firing Function (OEFF):

)()()(kkk OEFOEGOE •=χ

where G(OEk) is a function of input events and F(OEk) is a
function of inputs levels which allow the triggering of the
output event OEk.

We compute G(OEk) as a conjunction of disjunctions of
input events Ej:

jk DisjEOEG Π=)(

(8)

where each disjunction DisjEj = (IEx ⊕…⊕IEz) involves those
variables corresponding to non-zero column values of the DM
matrix, which add up to 1, i.e. those satisfying conditions:

0,...0,0 ≠≠≠ zjyjxj DMDMDM (9)

1... =+++ zjyjxj DMDMDM (10)

Similarly, F(OEk) is computed as a conjunction of
disjunctions of input levels Lj:

jk DisjLOEF Π=)((11)

with DisjLj = (ILx ⊕…⊕ILz) such that
0,...0,0 ≠≠≠ yjyjxj IMIMIM (12)

1... =+++ zjyjxj IMIMIM (13)

0,...0,0 ≠≠≠ yjyjxj DMDMDM (14)

At the end of the computing, for every output signal Oi, we
will have the input events and input conditions to produce its
rising and falling edges Oi_1 and Oi_0 respectively. This can
be easily translated into IPN fragments, as shown in Fig. 8.

F. Input events with differed influence on the outputs

Notice that condition DMxj ≠ 0, DMyj ≠ 0,…, DMzj ≠ 0
requires that the inputs related to the output change were
observed at least once changing its value at the same PLC
cycle that the considered output. This condition may be
restrictive if the input-output reaction is not observed in the
same event vector. For example, in order to avoid component
damages, in the absence of an input sensor to indicate that a
pusher has been retracted, there may be some security
temporizations which do not allow another actuator reacting at
the moment an input condition has been satisfied.

In such cases, the input-output reaction would not be found
and thus there may be an output event with empty conditions
on its firing function. In order to find the correct OEFF, we
can relax the condition to consider input events which have
been observed in previous event vectors instead of the same
event vector. Formally, we can compute:

)(

),(
)|(vector)previous(

kObs

ikObs

ik
OEN

IEOEN
IEOEProb = (15)

But this time, the computation is done by considering IEi
occurred at the previous event vector than OEk. A new OEFF
can be computed using new values instead of those of the DM
matrix. If the computed OEFF has still empty conditions, we
can take the previous to the previous event vector and
successively while empty conditions are computed. In the
Example 1, such relaxing condition is not necessary, since, as
it can be noticed, no empty conditions have been computed.
However, in the experimental case study of Section VI.B, such
a technique is applied.

For the Example 1, D = ∅; the computed PN fragments are
shown in Fig. 9.

G. Fusion of IPN fragments

As stated below, at each PLC cycle, several input and state
conditions could lead to the simultaneous occurrence of
several output events. This behavior is reproduced by merging

such conditions into a unique transition, which is labeled by a
firing function computed from individual firing functions of
each output event. This is captured in the model as a fusion of
IPN fragments as shown in Fig. 10.

The construction of the observable IPN can be

systematically done with the next procedure:

Algorithm 2.

Input: I/O sequence w, I/O events sequence E, Matrices DM
and IM, Differed input set D

Output: Observable incidence matrix φC, labeling transition
function λ, and sequence of transitions S

1. P← {p1, p2,…, pq} //Create q observable places, one for every
output of the system

2. S←ε //Initialize the sequence S
3. ∀E(j), j=1,…,|E| do //Consider all the computed I/O events in E

3.1. If OE(j) = 0 and ∃ IEs,…,IEu ∈ IE(j) ∩ D //There is not

an output change in E(j), but IE(j) contains elementary input
events IEs,…,IEu belonging to D

 then

3.1.1. T← T∪{tj}; λ(tj) ← IEs•…•IEu;
W(tj,pi) ← 0, ∀pi∈P //If it has not been created before,

create a new zero transition tj (a zero column in the
incidence matrix) representing input changes IEs,…,IEu

3.1.2. S← S⋅tj //Concatenate tj to S
3.2. else if OE(j) ≠ 0 //There is an output change in E(j)
 then

3.2.1. ∀OEjk ∈ OE(j) //Consider all the elementary

output events in OE(j) in order to compute G(OE(j)) and
F(OE(j))

3.2.1.1. ∀DisjEi ∈ G(OEjk), do DisjEi' ← DisjEi ∩
IEjk // Look into IE(j) the input event IEjk which has

satisfied DisjEi and assign it to DisjEi'
3.2.1.2. G’(OEjk) ← ΠDisjEi' //Combine into G’(OEjk)

all the conditions DisjEi' which have satisfied G(OEjk)
3.2.1.3. G(OE(j)) ← ΠG'(OEjk) //Combine into

G(OE(j)) all the input event conditions G'(OEjk) which
have satisfied all the events OEjk

3.2.1.4. ∀DisjLi ∈ F(OEjk), do DisjLi' ← DisjLi ∩
I(j+1) // Looking the I(j+1) vector as a set of Boolean

variables, save into DisjLi' the input value ILik which has
satisfied DisjLi

3.2.1.5. F’(OEjk) ← ΠDisjLi' //Combine into F’(OEjk)
all the conditions which have made true F(OEjk)

3.2.1.6. F(OE(j)) ← ΠF'(OEjk) //Combine into

F(OE(j)) all the conditions which have produced all the
OEjk

ε•∧∧∧⊕)000)21((cbakk

+A

)1_21_1(1 aa ⊕•=

C

1_21 a•=

1_11 c•=

−A

)1_21_1(1 aa ⊕•=

1_01 a•=

B

1_11 a•=

1_11 b•=

Fig. 9. IPN fragments for Example 1









+
+

 →







)1(
)1()(

)(
)(

jO

jIjE

jO

jI

))(())(()(jOEGjOEFT j •=λ

jT

jpOE

jqOE

jrOE

jrjqjp OEOEOEjOE ••=)(

Fig. 10. IPN representation of several output events at the same cycle

F(OEj)• G(OEj)

Oi

OEj = Oi _1

Oi

OEj = Oi _0

F(OEj)• G(OEj)

Fig. 8. Rising and falling edges of output Oi

3.2.2. T← T ∪ {tj}, λ(tj) = F(OE(j))• G(OE(j)) //If it
has not been created before, create a new transition tj and
label it with the computed F(OE(j)) and G(OE(j))

3.2.3. ∀pi∈P, do

 If Oq_1 ∈OE(j) then W(tj,pq) ←1,
 else If Oq_0∈OE(j) then W(tj,pq) ← -1,
 else W(tj,pjq) ← 0 //for all elementary output

events in OE(j) = OEjp• OEjq•…• OEjr, put a 1 into the line
corresponding to OEjk if it is a rising event, and a -1 if it is a

falling event; for the rest of the lines, assign a 0.
3.2.4. S← S⋅ tj //Concatenate tj to S

Complexity of Algorithm 2. Let r’<r and q’<q be
respectively the maximum number of input and output
elementary events appearing simultaneously in an event vector,
and |E| be the length of the events sequence. The Algorithm 2
processes each one of the events in E. When a transition
should be added to represent one of such events, an
appropriate firing function should be computed. If only inputs
changed, it is only necessary to include in the firing function
the elementary input events with differed influence. This is
achieved in O(r’). If there is at least an output change, for each
one of the output elementary events which have occurred, we
need search for each individual firing function the input events
and input conditions that produced the evolution. This is
performed in O(q’(r’log r’)). Thus, the complexity of the
procedure for building the transition sequence and fragments is
O((q’r’ log r’)|E|). Consequently, the Algorithm 2 can be
executed in polynomial time on the size of the input data.

Property 1. The transitions sequence S is a translation of the
I/O sequence w into transition firings of the PN-fragments built
by Algorithm 2.

Proof. It is easy to see that at the steps 3.1.2 and 3.2.4 of
Algorithm 2, S is formed by concatenating the computed
transitions from the event sequence produced by w. This
allows that the reactive behavior can be reproduced in the
created IPN model. ▄

Fig. 11 shows how events E(1) and E(4) are treated by the
algorithm. For E(1) the elementary output event A+_1 in
OE(1) is analyzed and function λ(t1) = (k1 • a0 • b0 • c0) • (ε)
is extracted considering that k1=1, a0=1, b0=1, and c0=1 are
the input values which have satisfied χ(A+_1). For E(4) all
elementary output events A+_0, A-_1 and B_1 in OE(4) are
considered and their Firing Functions χ(A+_0) = (=1)•(a1_1⊕
a2_1), χ(A-_1)=(=1)•(a1_1 ⊕ a2_1) and χ(B_1)=(=1)•(a1_1)
are combined into λ(t2) = (=1)•(a1_1).

Notice that interesting labeling functions have been
computed. For example, the output event A+_1 is provoked by
the presence of a piece (k1=1 or k2=1) and it occurs only
when the three components corresponding to outputs A+, B,
and C are on its initial position (a0=1, b0=1 and c0=1).

At the end of the procedure, the following observable
incidence matrix ϕW and labeling functions are obtained, as
well as the transition sequence S, which is the projection of w
over T: S = t1 t2 t3 t4 t1 t2 t4 t3 t5 t6 t7 t4 t1 t2 t3 t4 t5 t6 t7 t4 t1 t2 t3 t4

t1 t2 t3 t4 t5 t6 t7 t4 t5 t6 t7 t4 t1 t2 t3 t4 t5 t6 t7 t4 t5 t6 t7 t4 t5 t6 t7 t4 t5
t6 t7 t4 t5 t6 t7 t4 t1 t2 t4 t3 t1 t2 t3 t4 t1 t2 t3 t4 t1 t2 t4 t3 t1 t2 t3 t4 t1.



















−
−

−
−−

−
+

1100000

0000110

0101010

0110011
7654321

C

B

A

A

ttttttt

)1_1()1()(

)1_2()1()(

)()0002()(

)1_0()1()(

)1_1()1()(

)1_1()1()(

)()0001()(

7

6

5

4

3

2

1

ct

at

cbakt

at

bt

at

cbakt

•==
•==

•∧∧∧=
•==
•==
•==

•∧∧∧=

λ
λ

ελ
λ
λ
λ

ελ

The corresponding partial model is shown in Fig. 12. The

inferring procedure which allows discovering the non-
observable behavior is described in next section.

V. IDENTIFICATION OF THE NON-OBSERVABLE BEHAVIOR

A. Problem (re)statement

The previously described procedures allow obtaining an
observable structure which represents the reactive behavior of
the system. Given that events and transitions of the net are
completely defined, we need to add non-observable places to
translate an aggregation of the non-observable dynamics of the
process in such a way that the global PN will reproduce the
whole behavior of the system. By adding non-observable
places (depicted as grey circles), we make the inference of
situation Type 3.a described in Section III.B, which is the case
of input events provoking internal state evolutions.

1t1t 5t5t

2t2t 6t6t

−A −A

4t4t

BB CC

3t3t

+A +A

7t7t
Fig. 12. Observable IPN model

+A

)1_21_1(1 aa ⊕•=

−A

)1_21_1(1 aa ⊕•=
B

1_11 a•=

−AB

+A

(=1) • (a1_1)

ε•∧∧∧⊕)000)21((cbakk

+A

+A

(k1 • a0 • b0 • c0) • (ε)

t2

λ(t2) = (=1)•(a1_1)

λ(t1) = (k1 • a0 • b0 • c0) • (ε)

IE(1) = {k1_1} OE(1) = {A+_1}

I(2) = k1 • a0 • b0 •c0

IE(4) = {a1_1} OE(4) = {A+_0, A−_1, B_1}

I(5) = a1 • b0 •c0

Fig. 11. Treatment of E(1) and E(4) by the Algorithm 2.

The problem of determining the non-observable part of the
IPN model complementary to that describing the observable
(reactive) behavior can be stated as follows.

Given an observable IPN model whose structure is
Gobs=(Pobs, T, Preobs, Postobs) and a transitions sequence S = t1

t2 … tj … ∈ T* reproducing the I/O sequence w, an ordinary
PN structure Gnobs=(Pnobs, T, Prenobs, Postnobs) that reproduces
S and an initial marking M0 enabling S must be found; (Gobs,
M0) must be safe.

Thus, the PN structure of the complete identified model is
G=(P, T, Pre, Post) with P= Pobs ∪ Pnobs, Pre= Preobs ∪
Prenobs, Post= Postobs ∪ Postnobs.

Observe that in S there are not consecutive apparitions of
the same transition, due to the nature of the considered events
(rising and falling edges of binary signals).

In the literature there are many approaches which tackle the
identification problem as stated above. However, our problem
exceeds the hypothesis held in such works or they are not
enough efficient to cope with long sequences. In particular,
a) the system cycles are not know a priori,
b) the whole language of the system is not known,
c) the size of S is very large; thus finding efficient algorithms

is required,
d) the aim is building IPNs that shows structural parallelism.

New places and arcs must be determined such that they join
the IPN fragments found in the first part of the method. Since
the tasks in different processes can occur simultaneously or at
some predefined order, each two fragments can be related in
two manners only: sequentially or concurrently. Thus, several
connecting forms are possible. Some of them are illustrated in
Fig. 13, where “clouds” represent the fragments.

In this section, we present a procedure to build a non-

observable PN structure that is able to reproduce the sequence
S of transitions firings. This construction principle is based on
the precedence and concurrency relations among transitions,
which will determine the final structure of the identified
model. Algorithm 3 given below provides an overview of the
procedure.

Algorithm 3. Non-observable behavior construction

Input: Transitions sequence S
Output: Non-observable model representing S

1. Compute basic structures and relations (Seq, SP, and TC)
from S

2. From the information in Seq, SP and TC compute the
causal relation between transitions CausalR

3. From Seq and CausalR, compute concurrency relation
(ConcR) between transitions

4. Build a PN model representing CausalR and ConcR
5. Verify the tokens flow and correct part of the structure if

needed

The steps of Algorithm 3 are detailed in the following

subsections. First some properties derived from the sequence S
are introduced. Afterwards, based on such properties, an
analysis technique allowing determining causal and
concurrency relationships among the transitions in S is
proposed. Then, the steps for building a PN structure
observing the causal and concurrency relationships are
presented.

B. Dynamical properties

Since the construction method is based on the analysis of
causal and concurrency relationships, some notions must be
defined before introducing the non-observable behavior
construction procedure.

Definition 6. The relationship between transitions in S that
are observed consecutively is expressed in a relation Seq ⊆ T ×
T which is defined as Seq ={(tj, tj+1)| 1 ≤ j < |S| }. If (ta, tb) ∈
Seq, this is denoted by ta<tb.

Example 2. Let us reuse the sequence S of example 1,
which is the projection of the observed I/O sequence w over
the set of observable transitions T:

S = t1 t2 t3 t4 t1 t2 t4 t3 t5 t6 t7 t4 t1 t2 t3 t4 t5 t6 t7 t4 t1 t2 t3 t4 t1 t2
t3 t4 t5 t6 t7 t4 t5 t6 t7 t4 t1 t2 t3 t4 t5 t6 t7 t4 t5 t6 t7 t4 t5 t6 t7 t4 t5 t6 t7
t4 t5 t6 t7 t4 t1 t2 t4 t3 t1 t2 t3 t4 t1 t2 t3 t4 t1 t2 t4 t3 t1 t2 t3 t4 t1

We can compute Seq = {(t1, t2), (t2, t3), (t3, t4), (t4, t1), (t2, t4),
(t4, t3), (t3, t5), (t5, t6), (t6, t7), (t7, t4), (t4, t5), (t3, t1)}, which can
be expressed also as {t1<t2, t2<t3, t3<t4, t4<t1, t2<t4, t4<t3, t3<t5,
t5<t6, t6<t7, t7<t4, t4<t5, t3<t1}.

In a PN model every pair in Seq may in fact be represented
differently. If ta, tb were observed consecutively in S, this
behavior could be issued from one of two situations in Gnobs
described in the following definition.

Definition 7. Every couple of consecutive transitions ta, tb in
Seq can be classified in one of the following situations:

Causal relationship. If the occurrence of ta enables tb. In a
PN structure, this implies that there must be at least one place
from ta to tb (Fig. 14a).

Concurrent relationship. If both ta and tb are simultaneously
enabled, but ta occurs first and its firing does not disable tb. In
an ordinary PN structure, this implies that it is impossible the
existence of a place from ta to tb. In this case, ta and tb are said
to be concurrent, denoted as ta||tb. (Fig. 14b).

Fig. 13. Some different possibilities for fragments assembling

In order to find which is the situation occurring between
every pair of transitions in Seq, some other definitions are now
introduced. The following notion is the systematical
precedence of a transition tj with respect to another transition
tk; it establishes a necessary condition for tj to occur
repeatedly.

Definition 8. A transition tj is preceded systematically by tk,
denoted as tk∠tj iff tk is always observed between two
apparitions of tj in S. By convention, we say that tj∠tj if tj was
observed at least twice in S. Then the Systematical Precedence

Set of a transition tj is given by the function SP: T→2T, that
indicates which transitions must be fired to re-enable the firing
of tj, i.e. SP(tj)={tk |tk∠tj}. If tj was observed only once in S,
then SP(tj) = ∅.

In the sequence S from Example 2, one may compute that
t1∠t1, t2∠t1, t3∠t1, and t4∠t1, thus SP(t1)={t1, t2, t3, t4}. Notice
that SP(tj) is the set of transitions that must invariantly occur to
fire tj repeatedly. The rest of the SP sets are :
SP(t2)={t1, t2, t3, t4}, SP(t3)={t1, t2, t3}, SP(t4)={t4},
SP(t5)={t4, t5, t6, t7}, SP(t6)={t4, t5, t6, t7}, SP(t7)={t4, t5, t6, t7}.

ta tb

ta

tb

a) b)
Fig. 14. Structures that represent ta< tb. a) shows a causal relationship from ta
to tb, whereas b) shows a concurrent relationship between ta and tb.

Definition 9. Two transitions ta, tb are called transitions in a
two length cycle relationship (named two-cycle transitions) if S
contains the subsequence tatbta or the subsequence tbtatb. The
two-cycle transitions set TC of S is given by TC={(ta,tb)|ta, tb
are in a two-cycle}.

From the sequence S in Example 2, we observe that the set
of transitions in a two-cycle is TC= ∅.

Remark. Computing Seq, SP and TC can be executed in
polynomial time on the size of S.

We will now extract some structural properties regarding N
from S. The previously defined terms will be used to determine
which situation between causality and concurrence is the most
appropriated for every pair of consecutively observed
transitions in S.

C. Causal and concurrency relationships

1) Causal relationship
In order to determine that two transitions are causally

related as shown in Figure 14.a, several conditions stated
below must be fulfilled.

Proposition 1. If ta∠tb (ta∈SP(tb)) then, there must exist in
N a simple elementary circuit (SE circuit) to which both ta and
tb belong.

Proof. Suppose that there is not a SE circuit containing ta
and tb. Thus, right after the firing of tb, all the tokens in tb

• (the
output places of tb) could be displaced by transition firings

through some path to •tb (the input places of tb), enabling tb
without needing to fire ta, which implies that ta∉SP(tb).▄

Proposition 2. If ta < tb and ta∠tb, then there must exist in N
a place from ta to tb.

Proof. Suppose that there is not a place from ta to tb. In
order to allow the observation ta < tb, both ta and tb should be
enabled simultaneously. By Proposition 1, there is at least one
SE circuit containing ta and tb and thus, at least one path from
ta to tb. Thus, if ta and tb are enabled simultaneously and ta is
fired, all paths from ta to tb contain two tokens. If all transitions
in a path from ta to tb are fired, then there will be two tokens in
one of the input places of tb, resulting in a non-safe net. Then,
at least one of the transitions ti in each path from ta to tb must
be conditioned to the previous firing of tb. But if tb is fired, all
the transitions in paths from ta to tb can be fired and all the
transitions in paths from tb to tb which do not include ta can be
fired; thus tb will be enabled before ta fires and as a
consequence ta∉SP(tb). ▄

Proposition 3. If ta < tb and tb∠ta, then there must exist in N
a place from ta to tb.

Proof. Suppose that there is not a place from ta to tb. Then,
before the observation of ta < tb, both ta and tb must be enabled,
and thus the occurrence of tb<ta is possible. Furthermore,
together with tb∠ta and by Proposition 2 implies that there
should be a place from tb to ta. However, at the firing of tb
there are two tokens in such a place, and thus the net is not
safe.▄

Proposition 4. If (ta,tb) ∈TC, then there must exist in N a
place from ta to tb and a place from tb to ta.

Proof. The sequence tatbta must be reproducible in N. Right
after the firing of ta there is a token on its output places, and
thus tb must be at the output of such places; otherwise, there
would be two tokens in such places after the second firing of
ta. Similarly, right after the first firing of ta, there are no tokens
on its input places, and thus tb must be at the input of such
places; otherwise, ta could not be fired again. The same
reasoning can be applied to reproduce the sequence tbtatb.▄

Notice that when two transitions are observed consecutively
and one is systematically preceded by the other, a causal
relationship is found. Also, when two transitions are involved
in a two-cycle relation, they are in a causal relationship each
other. Observe that all of these relationships are structural, and
thus they do not depend of the initial marking of the net.

Definition 10. The causal relationship set CausalR keeps
track of all the causal relationships in S. CausalR = {(ta,tb) |
(ta<tb) and (ta∠tb or tb∠ta or (ta,tb)∈TC)}.

From the Seq set in Example 2 (see Definition 6), the SP
sets (see Definition 8) and the TC set (see Definition 9) we
compute CausalR={(t1,t2), (t2,t3), (t4,t1), (t2,t4), (t5,t6), (t6,t7),
(t7,t4), (t4,t5), (t3,t1)}.

If a couple of transitions (ta,tb) in the Seq set, belongs also to
CausalR, then there must be a place from ta to tb in order to

constrain the observed firing order. For the rest of the
transition couples in Seq, we must decide if a place should
exist to relate them. Next, we will discuss some cases where
the existence of a place can be discarded.

2) Concurrency relationship
If two transitions ta and tb are concurrent, there must not

exist a place neither from ta to tb nor from tb to ta; otherwise,
the firing of one would constrain the firing of the other one.

Definition 11. The set of all pairs of concurrent transitions
is called ConcR={(ta,tb)| ta||tb}.

If the sequence w is complete, (consequently, S) i.e., if it
exhibits all of the possible behavior of the observed system,
we can find concurrence between transitions that are not in a
causal relation, as shown in the next proposition.

Proposition 5. Let ta, tb be two transitions which have been
observed consecutively in a complete sequence S in both
orders, i.e. (ta, tb)∈Seq, (tb, ta)∈Seq. Then (ta, tb)∉CausalR and
(tb, ta)∉CausalR if and only if ta||tb.

Proof. Suppose that (ta,tb)∉ConcR. Without loss of
generality, we suppose there is a place pab from ta to tb. Since
(tb, ta)∈Seq, there must also be a place pba from tb to ta;
otherwise, ta could be enabled simultaneously with tb to allow
tb<ta and ta may be fired, yielding to the presence of two
tokens in the place pab and breaking the safeness condition.
Since (ta,tb)∉CausalR, tb∉SP(ta) and thus there must be at least
one path from pab to pba which does not contain tb. Similarly,
there must be at least one path from pba to pab which does not
contain ta. Since (ta,tb)∉TC, tatbta should not be enabled and
thus, there must be at least one SE circuit to which ta belongs,
but tb does not belong. The resulting net violates the free-
choice conditions (observe Fig. 15).

Suppose now that (ta,tb)∈ConcR. That means that they can

be both enabled simultaneously and one can be fired without
needing the firing of the other one, and thus ta∉SP(tb) and
tb∉SP(ta). Also, since there cannot be any place from ta to tb
nor from tb to ta, neither the subsequence tatbta, nor the
subsequence tbtatb can be enabled, and thus (ta,tb)∉CausalR
and (tb, ta)∉CausalR. ▄

Notice that our methodology allows computing also non
free-choice nets. Only in the case where the system includes a
behavior like the one shown in Fig. 15, the transitions ta and tb
would be wrongly considered as concurrent and the existence
of links from ta to pab and from tb to pba would be missed.

However, the obtained model would be still capable to
reproduce the sequence S.

It is well known that in practice, the sequence w is not
complete, since in the general case, the observed systems do
not show all their possible behavior during a finite time of data
collection. In fact, it is not possible to assure that the whole
behavior of a system has been observed. The consideration of
Proposition 5 is then very restrictive, since it demands the
observation of all possible behavior; it could lead to the
construction of incorrect models in case of incomplete
sequences. Then, some less constraining rules to find
concurrence must be considered. Next, we present several
properties which allow us to identify couples of transitions
which must be concurrent in the identified net N.

First, we will introduce the notion of Sequential
Independence, which is a characteristic of concurrent
transitions. Later, the propositions to find concurrency will be
introduced.

Definition 12. Two transitions ta and tb are Sequentially

Independent if ta∉SP(tb) and tb∉SP(ta).

From the SP sets of Example 2 (see Definition 8) we
compute the set of Sequentially Independent transitions:
{(t1,t5), (t1,t6), (t1,t7), (t2,t5), (t2,t6), (t2,t7), (t3,t4), (t3,t5), (t3,t6)}.

Observe the net in Fig. 16 which is composed by two
independent t-components X1 and X2 with supports <X1>= {ta,
ti} and <X2>= {tb, tk} respectively. In a sequence belonging to
the language of such a net, transitions belonging to different t-
components are sequentially independent. In fact, SP sets of
this net correspond exactly to t-components of the net.

Proposition 6. Let ta and tb be two transitions in S which
have been observed consecutively in both orders (ta<tb and

tb<ta). If:
a) (ta,tb) ∉ CausalR and (tb,ta) ∉ CausalR,
b) and |SP(ta)| >1 and |SP(tb)| >1,
then ta||tb.

Proof. Suppose that ta and tb are not concurrent. Without
loss of generality, we suppose there is a place pab from ta to tb.
Since tb<ta has been observed, there must be also a place pba
from tb to ta (and as consequence N contains a two-transition
cycle); otherwise, ta could be enabled simultaneously with tb to
allow tb<ta and ta may be fired, yielding to the presence of two
tokens in the place pab and breaking the safeness condition.
Since tb∉SP(ta), there must be at least one path leading from
pab to pba not including tb. Since |SP(ta)| >1, there must be at
least one circuit including ta and not including pab, pba nor tb.
Since ta∉SP(tb), there must be at least one path leading from

ta ti tb tk

Fig. 16. A net with two t-components

ta
tb

pab

pba

.

.

.

.

.

.

.

.

.

Fig. 15. Structure where (ta, tb)∈Seq and (tb, ta)∈Seq but (ta,tb)∉ConcR

pba to pab not including ta. Consider the first transition tx of this
path. The free-choice conditions are not satisfied, since tx and
ta share pba as input place, but ta has at least one different input
place. ▄

We may observe that for Example 2, (t3, t4) are sequentially
independent (see Definition 12), however, |SP(t4)| =1 and thus
we cannot infer any concurrence.

When SP(tj) is a singleton, it means that it belongs to several
elementary circuits and then Proposition 6 does not allow to
find concurrent transitions to tj. But if tj is included in the SP
of other transitions, we may find some concurrence relations,
as shown in the next proposition.

Proposition 7. Let ta and tb be two transitions in S that have
been observed consecutively in both orders (ta < tb and tb < ta).
If ta and tb

a) are Sequentially Independent and
b) there exists a transition tk such that ta∠tk (ta∈SP(tk))

and tb∠tk (tb∈SP(tk))
then ta||tb.

Proof. Suppose that it does not hold that ta||tb. Without loss
of generality, we suppose that there is a place from ta to tb.
Since ta ∈SP(tk) and tb ∈SP(tk), after the firing of tk, both ta and
tb must be fired before the next firing of tk. Since tb < ta may
happen, the place from ta to tb must be marked. However ta < tb

may occur too, leading to the presence of two tokens in the
same place after the firing of ta, and making the net not safe.▄

Fig. 17 shows an example of the case characterized by
Proposition 7. It is the general case of transitions belonging to
concurrent threads (ta, tc and tb, td, te, tf respectively), which are
eventually synchronized by one transition (tk). If we make
several firings to build a transition sequence, eventually the SP
sets would become: SP(tk) = {tk, ta, tc, tb, td, tf}, SP(ta) = SP(tc)
= {tk, ta, tc}, SP(tb) = SP(tf) = {tk, tb, td, tf}, SP(te) = {te, td},
SP(td) = {td}. Even if SP(td) is a singleton, the synchronization
point tk help us to find by Proposition 7 several concurrent
relationships: ta||tb, ta||td, ta||tf, tc||tb, tc||td, and tc||tf.

In Example 2, (t3,t4) are Sequentially Independent (see
Definition 12), and we have determined that t3∠t1 and t4∠t1

(see Definition 8), thus we can conclude that t3||t4.

tk ta

te

tc

tb

td tf

Fig. 17. Concurrent threads synchronized by a transition

If concurrent transitions do not belong to synchronized

threads, conditions of the next propositions help us to find a
subset of concurrent transitions which do not depend from
another transition tk.

Proposition 8. Let be two transitions ta and tb which have

been observed consecutively in both orders (ta < tb and tb < ta).
If ta and tb are:

a) Sequentially Independent, and

b) ∃ tk such that tk∈SP(tb), tk∉SP(ta), and

c) (ta,tk)∈Seq
then ta||tb.

Proof. Suppose there is a place pab from ta to tb. Since tb<ta
has also been observed, there must be also a place pba from tb
to ta; otherwise, ta should be enabled simultaneously with tb to
allow tb<ta and ta may be fired, yielding to the presence of two
tokens in pab. Since there exists tk such that tk∈SP(tb), then
there must be a SE circuit containing both tb and tk. If such a
circuit contains places pba or pba, it is not possible to fire ta<tk
and thus such a circuit must contain another input place pkb of
tb and another output place pbk of tb. Now, to accomplish that
tb∉SP(ta), there must be at least one path leading from pab to
some input place of ta not including tb. Consider the first
transition tx of this path. In order to respect the free-choice
conditions, pkb should be an input place of tx, making the
occurrence of ta<tk impossible. ▄

Definition 13. The Inverse Systematical Precedence set of a
transition SP-1: T→ 2T contains the transitions which are
dependent of a common transition to re-enable their firing:

)}(|{)(1
kjjkkj tPStandttttPS ∈≠=− (13)

Proposition 9. Let ta and tb be two transitions which have
been observed consecutively in both orders (ta < tb and tb < ta).
If ta and tb are: Sequentially Independent, and SP-1(ta) ≠ ∅,
∀tj∈SP-1(ta), tj || tb, then ta||tb.

Proof. Suppose there is a place pab from ta to tb. Since tb<ta
has also been observed, there must be also a place pba from tb
to ta; otherwise, ta should be enabled simultaneously with tb to
allow tb<ta and thus ta may be fired, yielding to the presence of
two tokens in the place from ta to tb. Since tb∉SP(ta), there
must be at least one path leading from pab to pba not including
tb. Similarly, there must be at least one path leading from pba to
pab not including ta. Since SP-1(ta) ≠ ∅, there is at least one
transition tj concurrent to tb such that tj∠ta and there must be a
SE circuit including ta and tj. Such a circuit cannot contain pab
nor pba otherwise tj may be able to fire without need of firing
ta. Consider the input place px of ta in this path. The free-
choice conditions are not satisfied between px and pba: they
share ta as output transition, but pba has at least another output
transition. ▄

An example where Proposition 9 can be used is shown in
Fig. 18. SP-1(ta) ={tj1, tj2} and tj1||tb, tj2||tb are determined by
Proposition 6. Consequently, ta || tb.

Remark. Computing CasualR and ConcR can be executed
in polynomial time on the size of S.

tbtatj2 tj1

Fig. 18. Concurrence between transitions whose SP is a singleton

D. Building the non-observable PN

We will use now the computed data from sequence S to
infer internal evolutions of the system. We will make an
analysis of causal and concurrency relations that have been
found between consecutive transitions in order to compute
non-observable places of the net.

Definition 14. The set Seq’= (Seq - CausalR) - ConcR
contains the set of transition pairs (ta,tb) which have been
observed consecutively, but are not in a causal relation or in a
concurrency relation.

Until now, we have computed for Example 2 that Seq = {(t1,
t2), (t2, t3), (t3, t4), (t4, t1), (t2, t4), (t4, t3), (t3, t5), (t5, t6), (t6, t7),
(t7, t4), (t4, t5), (t3, t1)}, CausalR={(t1, t2), (t2, t3), (t4, t1), (t4, t5),
(t5, t6), (t6, t7), (t7, t4), (t2, t4), (t3, t1)} and ConcR =
{(t3,t4)(t4,t3)}. Thus, Seq’ = {(t3, t5)}. This means that there is a
relationship which has not been explained.

If Seq’ ≠ ∅, then there are two possibilities for the
remaining transition pairs (ta,tb) in Seq’:

b) They are both input and output transitions of a place with
several input and output transitions

c) They are concurrent, but w (thus, S) is not complete
enough to find such a relationship

Since our goal is to approximate as much as possible the
language generated by identified IPN, to the observed
sequence S, we assume that if we have observed two
transitions consecutively (ta<tb) but by none of the previous
propositions we have determined that they are concurrent, thus
the firing of ta has enabled tb. This is made in order to preserve
in the PN the firing order observed in S. Then, a place will be
added from ta to tb; this denoted by [ta, tb].

When it is found that [ta, tc] and [tb, tc], and the involved
transitions are related by a single place, this is represented as
[tatb, tc]. In general, a place p can be denoted as [ta1 ta2… tal, tb1
tb2… tbh], where tai are the input transitions of p and tbi are the
output transitions of p, and l=|•p|, h=|p•|, as illustrated in Fig.
19.

The same place could be used to relate several consecutive
transitions. If a transition tk has been observed followed by two
transitions tai, taj in S (tk<tai and tk<taj), there are two cases to
represent such observations into the PN model: the case of
selection, where they are represented with the same place [tk,
tai taj] (Fig. 20a) or the case of concurrence, where they are
represented with different places [tk,tai] [tk, taj] (Fig. 20b).

In a generalized form, for every set tk<ta1,…, tk<taw of non-

concurrent consecutive transition pairs with the same first
transition tk, we can thus merge all tk<ta1,…, tk<tax whose
second transitions ta1…taw are non-concurrent nor consecutive
and represent them into a single place [tk, ta1…taw], as
illustrated in Fig. 21.

Once we have made the first merging, all places [tk1,

ta1…taw], [tk2, ta1…taw],…, [tkz, ta1…taw] whose input transitions
are non-concurrent nor consecutive and whose output
transitions are the same, can be merged into a single place as
illustrated in Fig. 22.

Remark. Building the non-observable PN can be executed
in polynomial time on the size of Seq.

E. Initial marking

 Once the structure of the net is built, the initial marking can
be computed by allowing the firing of S. All transitions are
processed, from the last transition till the first one. The
processing of a transition is as follows:
• If its output places are unmarked, the tokens in such places

are retired,
• Tokens are added to its unmarked input places.

Example 2 (Cont.). By considering the couples of
consecutive non-concurrent transitions in Seq’(which in this
example is only (t3, t5) – see Definition 14), the places: [t1, t2]

tk

ta1 tawta2
… tb1 tbxtb2

… tc1 tcytc2
…

…

Fig. 21. A PN place p = [ta1 ta2…tal, tb1 tb2… tbh]

tk

tai taj

tk

tai taj
a) b)

Fig. 20. Selection and parallelism representation. a)Shows the case where tai,
taj are not concurrent and have not been observed consecutively whereas b)
shows the case where tai, taj are concurrent or have been observed
consecutively.

tb1 tb2
…

ta1 talta2 …

tbh
Fig. 19. A PN place p = [ta1 ta2…tal, tb1 tb2… tbh]

ta1 tawta2
…

tk1 tkztk2
… tk1 tkztk2

…

Fig. 22. Selection and concurrence between pre-transitions

[t2, t3] [t3, t1t5] [t4, t1t5] [t5, t6] [t6, t7] and [t2t7, t4] are computed.
The PN structure and the computed initial marking is shown in
Fig. 23.

1t1t 5t5t

2t2t 6t6t

4t4t3t3t 7t7t

p1

p2

p3 p4

p5

p6p7

Fig. 23. (Gnobs, M0) the non-observable IPN of Example 1

F. Token flow verification

As stated before, with the proposed mechanisms in last
section, the sequence w may not have shown enough
combinations which allow us to determine concurrence. If the
sequence w were complete, all the concurrent and sequential
behavior could be found and represented, according to
Proposition 6. However, since we know that w could not be
complete, in order to approximate the language of the
identified IPN to S as much as we can, we have considered that
if two transitions have not been declared as concurrent, they
must be in a sequential relationship. But if the transitions are
actually concurrent, the sequential consideration could lead us
to links or places in the built model which restrict too much the
behavior of the system and don’t allow the firing of S. Now,
we present some notions that will help us to verify if added
places until now do not interfere in the correct reproduction of
S.

Proposition 10. If the IPN model has been correctly build,
every computed non-observable place p in N must fulfill the
place input/output flow equation:

1)()(±= ∑∑
•∈•∈ pt

i
pt

i

ii

tOcctOcc (16)

where Occ(tk) is the number of occurrences of tk in S.

Proof. Equation follows straightforward from the IPN
transition enabling and firing conditions and from the fact that
(Gnobs, M0) must be safe. ▄

Proposition 11. If there exists a place p such that |•p|=1,
then ∀tj ∈ p•, tk ∈ SP(tj), SP(tj)≠∅ where tk is the input
transition of p. Also, if there exists a place p such that |p•|=1,
then ∀tj ∈ •p, tk ∈ SP(tj), SP(tj)≠∅ where tk is the output
transition of p.

Proof. If |•p|=1, for the re-enabling of tj, p must be marked
and the only way to do so is the firing of tk, and thus tk ∈
SP(tj). Similarly, if |p•|=1, for the re-enabling of tj, p must be
unmarked and the only way to do so is the firing of tk, thus tk

∈ SP(tj).▄

Correction rule. If the input/output flow equation or the
conditions in Proposition 11 are not satisfied by some place,

the arcs relating transitions which are not in CausalR are
removed. If there are not CausalR represented in such a place,
it is deleted.

Example 2 (Cont.). In the model of Figure 23, we verify the
input/output flow equation for each place. From Example 2,
we can compute Occ(t1)=12, Occ(t2)=11, Occ(t3)=11,
Occ(t4)=20, Occ(t5)=9, Occ(t6)=9, and Occ(t7)=9. We check
also the condition of Proposition 11.

p1: Occ(t1) = Occ(t2) (±1), t1∈SP(t2), t2∈SP(t1)
p2: Occ(t2) = Occ(t3) (±1), t2∈SP(t3), t3∈SP(t2)
p3: Occ(t3) ≠ Occ(t1) + Occ(t5) (±1), t3∈SP(t1), t3∈SP(t5)
p4: Occ(t4) = Occ(t1) + Occ(t5) (±1), t4∈SP(t1), t4∈SP(t5)
p5: Occ(t5) = Occ(t6) (±1), t5∈SP(t6), t6∈SP(t5)
p6: Occ(t6) = Occ(t7) (±1), t6∈SP(t7), t7∈SP(t6)
p7: Occ(t2) + Occ(t7) = Occ(t4) (±1), t4∈SP(t2), t4∈SP(t7)
As can be observed, p3 is a wrong place, since Occ(t3)≠

Occ(t1)+ Occ(t5)±1. Since (t3, t5)∈Seq’; this means that the
sequence is not complete, and thus the causal relationship we
assumed between t3 and t5 is wrong. In order to fix this, we can
delete the arc going from place p3 to transition t5. After this
correction, all of the conditions from Proposition 10 and
Proposition 11 are satisfied.

Finally, the identified IPN of the sorting system described in
Example 1 is obtained by merging the observable model in
Fig. 12 and the non-observable model from Fig. 23 after
applying the places correction. We can also delete non-
observable implicit places. Then the IPN shown in Fig. 24,
which reproduces w, is the final result of the model merging.

In the supplementary file [26] several additional examples
regarding the method for identifying a non observable model
from a sequence S are included.

0001:1 cbakt ∧∧∧ 0002:5 cbakt ∧∧∧

1:2 at ↑ 2:6 at ↑

−A

0:4 at ↑

B C

1:3 bt ↑

+A

0:7 ct ↑

Fig. 24. Final IPN model for the process in Example 1

G. Features of the method

G.1 Reproducibility of S

Proposition 12. The PN model (Gnobs, M0) built with the
previous procedures summarized in Algorithm 3 reproduces
the sequence S.

Proof. Regard that we have computed the following sets:
• Seq containing all the consecutive transition couples in S.

If we represent into a net all couples in Seq, the net will be
able to reproduce S,

• CausalR containing transition couples (ta, tb)∈Seq that
must be related by a place,

• ConcR containing transition couples (ta, tb)∈Seq, that must
not be related by any place.

If the set Seq’= (Seq - CausalR) - ConcR = ∅, it means that
all transition couples (ta,tb)∈Seq are correctly represented in N
and thus the sequence S is reproducible. If Seq’≠∅, it means
that there are still transition couples that cannot be
distinguished as concurrent or sequential. Thus, by merging
several couples in Seq, all couples in Seq’ are considered as
sequential by creating places with several input and output
transitions. If they are actually sequential, all the verification
rules are satisfied. Otherwise, they are actually concurrent and
they are corrected using the described procedure. Once they
are corrected, it only remains places relating sequential
transitions and thus the sequence S is reproducible.▄

G.2 Performance
Given that all of the procedures of Algorithm 3 are executed

in polynomial time on |S|, the construction of (Gnobs, M0) is
efficiently performed.

Note also that the application of Algorithm 3 to a sequence
S yields always the same PN model, due to that all the
constructive steps in the procedures are deterministically
performed, i.e. there are not random selections on the input
and intermediate data.

VI. METHOD IMPLEMENTATION AND APPLICATION

Based on the presented algorithms, a software tool has been
developed to automate the IPN model synthesis. The
architecture of the tool is shown in Fig. 25.

The user interface allows capturing the input/output

sequence and shows the obtained model graphically.
Following input data is provided to the tool: the name of a text
file containing the I/O sequence (with one line per I/O vector),
the names of the input and output signals, and the desired
name for the output file. Additionally it is specified the order
in which inputs and outputs appear in the txt file (since
depending on data collection procedure, order could change)
and the index numbers of the signals to take into account if a
mask is going to be applied (some inputs or outputs could be
ignored like indicator lights or push-buttons).

Later, an input reader component processes the input file
and transforms the input/output sequence into a vector

sequence. These vectors are delivered to a component called
Algorithm in which the identification procedure is
implemented. The output of this component is an XML file
that can be opened with the Platform Independent Petri net
Editor (PIPE [25]), which is an editor for visualization and
analysis of Petri nets.

The presented identification tool has been tested on several
examples of diverse size and complexity. A small size case
study regarding an actual manufacturing system is described in
the supplementary files to this article [26] in which the use of
such a software tool is illustrated.

VII. CONCLUSION

The proposed identification method discovers the actual
input-output relation of PLC controlled discrete event systems.
The technique allows building a concise IPN model in which
the transitions are labeled with sufficient conditions on the
inputs which represent both the input changed and the inputs
execution context. The obtained structure is remarkably more
clear and expressive than that synthesized with a previous
method.

The technique copes with complex automated DES because
it takes into account technological characteristics of actual
controlled systems, and because it is based on efficient
algorithms. This feature is not still addressed in current
literature on the matter, in which several features considered in
the current stated problem have not been dealt.

The algorithms issued from the present method have been
implemented as a software tool and tested on experimental
case studies which are very close to actual industrial discrete
event processes. The performed tests reveal the efficiency of
the methods when data including thousands of input-output
vectors are processed in few seconds.

Due to this is a black-box approach, the obtained models
represent the observed behavior; consequently, when the
observation has been made for a long time, the identified IPN
approximates closely the actual behavior. Afterwards this
model can be completed using available knowledge on the
process.

REFERENCES

[1] E.M. Gold, “Language Identification in the Limit”, Information and
Control, vol. 10, pp. 447–474, 1967.

[2] D. Angluin, “Queries and Concept Learning”, Machine Learning, vol.
2, no. 4, pp. 319–342, 1988.

[3] K. Hiraishi, “Construction of Safe Petri Nets by Presenting Firing
Sequences”, Lectures Notes in Computer Sciences, vol. 616, pp. 244–
262, 1992.

[4] A.P. Estrada-Vargas, E. López-Mellado, J.-J. Lesage. “A Comparative
Analysis of Recent Identification Approaches for Discrete-Event
Systems”, Mathematical Problems in Engineering, Vol. 2010, 21 pages,
2010.

[5] M. P. Cabasino, P. Darondeau, M. P. Fanti, C. Seatzu, “Model
identification and synthesis of discrete-event systems”, Contemporary
Issues in System Science and Engineering, IEEE/Wiley Press Book
Series, M. Zhou, H.-X. Lim M. Weijnen (Eds), 2013.

[6] M.P. Cabasino, A. Giua, and C. Seatzu, “Identification of Petri Nets
from Knowledge of Their Language”, Discrete Event Dynamic Systems,
vol. 17, no. 4, pp. 447–474, 2007.

User
interface

Options

Input file

Input reader
Identification

Algorithm
Drawer

IPN

I/O vectors dot file

Mnemonics, κ

2 0000 001001010
45 1000 101001010
67 1000 100001010
83 1000 000001010
99 0110 000101010
...

Fig. 25. Software architecture

[7] M. P. Cabasino, A. Giua, C. Seatzu, “Linear Programming Techniques
for the Identification of Place/Transition Nets”, in Proc. IEEE Int. Conf.
on Decision & Control, pp. 514–520, Cancun, Mexico, Dec. 2008.

[8] M. Meda-Campaña, and E. López-Mellado, “Identification of
Concurrent Discrete Event Systems Using Petri Nets”, in Proc. 17th
IMACS World Congress, pp.1–7, Paris, France, Jul. 2005.

[9] M. Meda, A. Ramírez, E. López, “Asymptotic Identification for DES”,
in Proc. IEEE Conf. on Decision and Control, Sydney, Australia, pp.
2266–2271, Dec. 2000.

[10] S. Klein, L. Litz, J.-J. Lesage, “Fault detection of Discrete Event
Systems using an identification approach”, in Proc. 16th IFAC World
Congress, pp. 1–6, Praha, Czech Republic, Jul. 2005.

[11] M. Roth, J.-J. Lesage, L. Litz, “Black-box identification of discrete
event systems with optimal partitioning of concurrent subsystems”, in
Proc. American Control Conference, pp. 2601–2606, Baltimore,
Maryland, USA, Jun. 2010.

[12] M. P. Cabasino, A. Giua, C. N. Hadjicostis, and C. Seatzu, “Fault
Model Identification and Synthesis in Petri Nets,” Discrete Event
Dynamic Systems, vol. 24, no. 3, pp. 275-307, 2014.

[13] S. Ould El Medhi, E. Leclercq, D. Lefebvre, “Petri nets design and
identification for the diagnosis of discrete event systems”, in Proc. 2006
IAR Annual Meeting, Nancy, France, Nov. 2006.

[14] M. Dotoli, M. P. Fanti, and A. M. Mangini, “Real time identification of
discrete event systems using Petri nets”, Automatica, vol. 44, no. 5, pp.
1209–1219, May. 2008.

[15] M. Dotoli, M. P. Fanti, A. M. Mangini, and W. Ukovich,
“Identification of the unobservable behaviour of industrial automation
systems by Petri nets”, Control Engineering Practice, vol. 19, no. 9, pp.
958–966, Sep. 2011.

[16] S. Ould El Mehdi, R. Bekrar, N. Messai, E. Leclercq, D. Lefebvre, B.
Riera, “Design and Identification of Stochastic and Deterministic
Stochastic Petri Nets”, IEEE Trans. on Systems, Man and Cybernetics,
Part A, vol. 42, no. 4, pp. 931–946.

[17] J. E. Cook, Z. Du, C. Liu, A. L. Wolf, “Discovering models of behavior
for concurrent workflows”, Computers in Industry, vol. 53, no.3, pp.
297–319, 2004.

[18] W. van der Aalst, T. Weijters, L. Maruster, “Workflow Mining:
Discovering Process Models from Event Logs”, IEEE Trans. on
Knowledge and Data Engineering, vol. 16, no. 9, Sep. 2004.

[19] A. P. Estrada-Vargas, J.-J. Lesage, E. López-Mellado, “A Stepwise
Method for Identification of Controlled Discrete Manufacturing
Systems”, Int. Journal of Computer Integrated Manufacturing, vol. 28,
no. 2, pp. 187-199, 2014.

[20] A. P. Estrada-Vargas, E. López-Mellado, J.-J. Lesage, “Input-Output
Identification of Controlled Discrete Manufacturing Systems”, Int.
Journal of Systems Science, vol. 45, no. 3, pp. 456-471, 2014

[21] A. P. Estrada-Vargas, J.-J. Lesage, E. López-Mellado, “Identification of
Industrial Automation Systems: Building Compact and Expressive Petri
Net Models from Observable Behavior”, in Proc. American Control
Conference, pp. 6095 – 6101, Montréal, Canada, Jun. 2012.

[22] A. P. Estrada-Vargas, E. López-Mellado, J.-J. Lesage, “Identification of
Partially Observable Discrete Event Manufacturing Systems”. in Proc.
IEEE International Conference on Emmerging Technologies and
Factory Automation, pp1-7, Cagliari, Italy, Sept. 2013.

[23] R. David and H. Alla, “Petri Nets for Modeling of Dynamic Systems−A
Survey”, Automatica, vol. 30, no. 2, pp. 175–202, 1994.

[24] M. Roth, J.-J. Lesage, and L. Litz, “Identification of Discrete Event
Systems, implementation issues and model completeness”, in Proc. 7th
Int. Conf. on Informatics in Control Automation and Robotics, pp. 73–
80, Funchal, Portugal, Jun. 2010.

[25] PIPE 2: Platform Independent Petri net Editor 2,
http://pipe2.sourceforge.net/

[26] Supplementary file. Examples and Case study:
http://www.gdl.cinvestav.mx/Black-box-Ident-Suppl.zip

Biographies

Ana-Paula Estrada-Vargas received the
B.Sc. degree in computer engineering from
the Universidad de Guadalajara,
Guadalajara, Mexico, in 2007, and the M.Sc.
degree from CINVESTAV, Guadalajara,
Mexico, in 2009. She obtained the Ph.D.
degree from both CINVESTAV in
Guadalajara and the ENS de Cachan, in

Cachan, France in 2013. Currently, she belongs to the Oracle
Semantic Technologies team in Mexico Development Center.
Her research interests include identification of Discrete Event
Systems, formal modelling and analysis using Petri nets, as
well as Semantic Web technologies.

Ernesto López-Mellado received the

B.Sc. degree in electrical engineering from
the Instituto Tecnologico de Cd. Madero,
México, in 1977, the M.Sc. degree from the
CINVESTAV, México City, México, in
1979, and the Docteur-Ingénieur degree in
automation from the University of Toulouse,
France, in 1986. Currently, he is Professor of

Computer Sciences at CINVESTAV Unidad Guadalajara,
Guadalajara, Mexico. His research interests include discrete
event systems, and distributed intelligent systems.

Jean-Jacques Lesage received the

Ph.D. degree from the Ecole Centrale de
Paris and the “Habilitation à diriger des
recherches” from the University Nancy 1 in
1989 and 1994 respectively. He is currently
Professor of Automatic Control at the
Ecole Normale Supérieure de Cachan,
France, where he was head of the

Automated Production Research Laboratory during eight
years. His research interests are in the field of formal methods
and models for synthesis, analysis and diagnosis of Discrete
Event Systems (DES), and applications to manufacturing
systems, network automated systems, energy production, and
more recently ambient assisted living.

http://pipe2.sourceforge.net/
http://www.gdl.cinvestav.mx/Black-box-Ident

