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Abstract— This paper deals with the identification of discrete 

event manufacturing systems that are automated using a 

programmable logic controller (PLC). The behavior of the closed 

loop system (PLC and Plant) is observed during its operation 

and is represented by a single long sequence of observed 

input/output (I/O) signals vectors. The proposed method follows 

a black-box and passive identification approach that allows 

addressing large and complex industrial DES and yields compact 

and expressive interpreted Petri net (IPN) models. It consists of 

two complementary stages; the first one obtains, from the I/O 

sequence, the reactive part of the model composed by observable 

places and transitions. The I/O sequence is also mapped into a 

sequence of the created transitions, from which the second stage 

builds the non observable part of the model including places that 

ensure the reproduction of the observed input output sequence. 

This method, based on polynomial-time algorithms on the size of 

the input data, has been implemented as a software tool that 

generates and draws the IPN model; it has been tested with 

input/output sequences obtained from real systems in operation. 

The tool is described and its application is illustrated through a 

case study. 

 

Note to practitioners— Automated modeling of controlled 

discrete manufacturing systems can be achieved by efficient 

identification algorithms that cope with large and complex 

plants performing concurrent and repetitive tasks a priori 

unknown. The black-box identification procedure processes an 

input/output sequence recorded during the system functioning 

for a long period of time, and then yields a comprehensive model 

of the closed-loop controlled system; this model approximates 

closely the actual behavior of the compound system controller-

plant. A tool based on identification algorithms constitutes an 

excellent resource for computer-aided reverse engineering of 

controlled manufacturing systems. The method proposed herein 

allows processing sequences composed by thousands of I/O 

vectors in few seconds. 

Index Terms— Discrete Event Systems, Black-box 

Identification, Interpreted Petri Nets. 

I. INTRODUCTION 

DENTIFICATION of discrete event systems (DES) allows 
building systematically a mathematical model (Petri nets, 
automata) that describes the behavior of an unknown or ill-

known system based on the observation of its evolution. 
Observations consist of data revealing the system activity: 

sequences of operations, events, messages, signals etc., and the 
models allow reproducing the observed behavior. 

A. Related works 

DES identification has been first addressed as a problem of 
grammatical inference [1], [2] for obtaining finite automata 
(FA) that represents a given language. Afterwards, Petri net 
(PN) models have been proposed for coping with more 
complex systems exhibiting concurrent behavior; in [3] an 
algorithm for constructing PN models is presented. 

Several approaches for identification of DES have been 
proposed in literature in various formulations and from diverse 
approaches. Below there is an overview of the main 
approaches; other works can be found in detailed surveys on 
identification methods [4] and [5]. 

In [6], [7] methods based on Integer Linear Programming 
(ILP) are proposed; they allow obtaining accurate Petri nets 
from a set of transition sequences that can be fired from the 
initial marking. These methods require the a priori knowledge 
of the set of transitions and of the number of places, what 
makes difficult their application to identify real DES as black 
boxes, since the only available information after observation is 
the evolution of input and outputs signals exchanged between 
the control system and the plant. 

 In [8], [9] it is described an efficient method to 
incrementally construct an IPN model from a single output 
vectors sequence. The considered DESs to identify must be 
event-detectable by the outputs. Applying this method to an 
I/O sequence would lead to models in which same output 
changes caused by different input evolutions would not be 
distinguished, and then incorrect behavior could be introduced. 

The method presented in [10] is dedicated to fault detection 
and isolation (FDI). It allows obtaining a finite automaton 
representing precisely a set of cyclic I/O sequences. An 
extension to distributed identification and distributed FDI has 
been presented in [11]. However, due to the usage of finite 
automata, structural information such as parallelism cannot be 
explicitly expressed into the models, what makes this approach 
inefficient for applications such reverse engineering. Other 
proposals related with FDI in the PN framework are presented 
in [12] and [13]. 
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In [14], [15] an event sequence is observed, as well as the 
corresponding output symbols of a DES to produce an IPN 
model, in which the sequence and the observed output vectors 
are reproducible. This method requires the definition of an 
event list, which is not available a priori in the context of 
black-box identification problem addressed in this work. An 
alternative to this lack of events list could be the consideration 
of all the observed input changes. In this case, models with 
several paths describing input changes would be constructed, 
in which some input/output relations would not be explicitly 
observed. This work has been extended in [16] towards the 
determination of stochastic transitions for FDI purposes. 

In [17] a technique for constructing a Petri net-like model 
that describes the relationship between tasks from a sequence 
of workflow events is presented. This technique allows the 
discovering of events belonging to certain threads and 
synchronization points (forks and joins of tasks) through a 
probabilistic analysis of metrics such as the entropy, number 
and regularity of task occurrences. It is assumed that all the 
workflow operations are observable. 

In [18] the modeling of a workflow is also considered. The 
input of the algorithm is a workflow log of several workflow 
instances composed by several tasks. Workflow instances are 
recorded sequentially, even if tasks may be executed in 
parallel. Based on the information in the workflow log and by 
making some assumptions about completeness of the log, a 
process model in the form of a workflow net is deduced. 

B. Black-box approach 

Beyond the theoretical interest of defining model synthesis 
methods from event sequences, the challenges of applying 
identification methods to actual industrial automated systems 
are related to the scalability of the algorithms and 
technological issues: the techniques must be efficient to cope 
with large and complex systems that handle actual signals.  

In our approach we deal with Programmable Logic 
Controller (PLC) based automated systems. The aim is to 
discover, from observations of the system behavior expressed 
as a single sequence of PLC input and output signals how 
components of the system are interrelated, and to construct a 
concise model which can explicitly show the discovered 
behavior, in particular, concurrency, synchronization, resource 
sharing, etc. Identification of systems in operation involves 
two important aspects to consider: the system operation and 
the observation process. Technological issues of both aspects 
must be considered in the proposed algorithms to construct 
suitable abstractions. 

In previous works [19], [20] an I/O sequence is considered 
to compute an IPN including cyclic behavior. Although the 
proposed methodology is scalable due to the algorithms 
efficiency, the obtained models are close to finite automata 
and can be huge, due to the explicit representation of observed 
input changes that could not be relevant to define the output 
evolution. 

C. Contribution 

In this paper we address these problems by analyzing the 
observed sequence to establish a clearer relation between 
inputs and outputs of the controller. The proposed method 
allows building a reduced representation of the observable part 
of the model which yields consequently, a reduced complete 
IPN. It consists of two complementary stages; the first one 
obtains, from the I/O sequence, the reactive part of the model 
composed by observable places and transitions. A first version 
of this stage has been presented in [21]. The I/O sequence is 
mapped into a sequence of the created transitions, from which 
the second stage builds the non-observable part of the model 
including places that ensure the reproduction of the observed 
input output sequence. This method, based on polynomial-time 
algorithms on the size of the input data, has been implemented 
as a software tool that generates and draws the IPN model 
[22]. None of the black-box identification approaches in 
related works allows obtaining such well structured models. 
The present article gathers both stages of the method; it 
includes a detailed presentation of the revised results, 
additional illustrative examples, all the proofs omitted in the 
conference papers, and a case study regarding the 
identification of a real process.  

D. Contents 

The paper is organized as follows. In Section II IPN basic 
notions are overviewed. Section III states the problem of 
industrial automated systems identification and overviews the 
two steps method.  Such steps are explained in Section IV and 
Section V. Finally, the implementation details and a case study 
are presented in Section VI. 

II. INTERPRETED PETRI NETS 

This section contains the basic concepts and notation of PN 
and IPN used in this paper. 

Definition 1: An ordinary Petri Net structure G is a bipartite 
digraph represented by the 4-tuple G = (P, T, Pre, Post) 
where: P = {p1, p2, ..., p|P|} and T = {t1, t2, ..., t|T|} are finite 
sets of vertices named places and transitions respectively; 
Pre(Post) : P × T → {0,1} is a function representing the arcs 
going from places to transitions (from transitions to places). 

The incidence matrix of G is W = W+ − W−, where W− = 
[wij

−];  wij
− = Pre(pi, tj); and W+ = [wij

+]; wij
+ = Post(pi, tj) are 

the pre-incidence and post-incidence matrices respectively.   
A marking function M : P→ Z+ represents the number of 

tokens residing inside each place; it is usually expressed as a 
|P|-entry vector. Z+ is the set of nonnegative integers. In 
particular, in this paper M : P→ {0,1}; the PN is referred as 1-
bounded or safe.  

Definition 2: A Petri Net system or Petri Net (PN) is the 
pair N = (G,M0), where G is a PN structure and M0 is an initial 
marking. 

In a PN system, a transition tj is enabled at marking Mk if 
∀pi ∈ P, Mk(pi) ≥ Pre(pi, tj); an enabled transition tj can be 
fired reaching a new marking Mk+1. This behavior is 



 
 

represented as Mk → jt Mk+1. The new marking can be 
computed as Mk+1 = Mk + Wuk, where uk(i) = 0, i≠j, uk(j) = 1; 
this equation is called the PN state equation. The reachability 
set of a PN is the set of all possible reachable markings from 
M0 firing only enabled transitions; this set is denoted by 
R(G,M0).  

Definition 3. A Petri net circuit is a path of vertices linked 
by arcs starting and ending in the same node. A circuit is said 
to be simple if it does not use the same transition more than 
once, and elementary if it does not use the same place more 
than once.  

Now it is defined IPN, an extension to PN that allows 
associating input and output signals to PN models. This 
definition is adapted from [23]. 

Definition 4 : An interpreted Petri net (IPN) (Q, M0) is a 
labeled net structure Q = (G, Σ, Φ, λ, ϕ) with an initial 
marking M0 where:  
- G is a PN structure,  
- Σ= {I1, I2, ..., Ir} is the input alphabet, 
- Φ = {O1, O2,..., Oq} is the output alphabet,  
- λ : T→ C × E is a labeling function of transitions, where  
-  C={C1, C2,…} is the set of input conditions in which 

every Ci is a Boolean function on Σ; when a Ci is always 
true it is denoted as “=1”, and  

-  E={E1, E2,…} is the set of input events conditions; every 
Ei is a Boolean function of input events, build on Σ; 
events are denoted as Ii_0 and Ii_1 for representing that 
the input value changes from 1 to 0, or from 0 to 1 
respectively. A condition Ei may not exist; this is denoted 
as “ε”. 

In an IPN, a transition tj will be fired if a) tj is enabled, and 
b) condition C(tj) is true, and c) the event in E(tj) occurs. 

- ϕ : R(Q,M0)→(Z+)q is an output function, that associates 
with each marking in R(G,M0) a q-entry output vector, 
where q=|Φ| is the number of outputs. ϕ is represented by 
a q×|P| matrix, such that if the output symbol Oi is 
present (turned on) every time that M(pj) ≥ 1, thenϕ (i, 
j) = 1, otherwise ϕ(i, j) = 0. 

The state equation of PN is completed with the marking 
projection Yk = ϕMk, where Yk ∈ (Z+)q is the k-th output vector 
of the IPN. 

Definition 5:  A place pi∈P is said to be observable if the i-
th column vector of ϕ  (denoted as ϕ(•,i)) is not null. 
Otherwise it is non-observable. P = Pobs ∪ Pnobs, 
and Pobs ∩ Pnobs =∅; where Pobs is the set of observable places 
and Pnobs the set of non-observable places. 

III. IDENTIFICATION OF INDUSTRIAL AUTOMATED SYSTEMS 

A. The process PLC+Plant 

In this work we consider systems composed by a Controller 
(a PLC) and a Plant denoted as {PLC + Plant} working on a 
closed loop. The input signals of the PLC (outputs of the 
Plant) are generated by the sensors of the Plant. The output 
signals of the PLC (inputs of the Plant) control the actuators of 

the Plant. 
The identification is made with respect to the inputs-outputs of 
the PLC (Fig. 1). A PLC cyclically performs three main steps: 
i) Input reading, where signals are read from the sensors; ii) 
Program execution, to determine the new outputs values for 
the actuators; and iii) Output writing, where the control signals 
to the actuators are set. At each end of the Program execution 
phase, the current value of all r inputs and q outputs, called I/O 
vector, is captured and recorded in a data base.  

Regarding the implementation of the data link between PLC 
and identification data base, we use the UDP (User Datagram 
Protocol) connection presented in [24]. Tests performed using 
a Siemens PLC (CPU 315-2 DP) equipped with a program 
leading to a PLC-cycle time of 25 to 30ms have shown that 
this connection is reliable and efficient: no data packets got 
lost during the transmission and the execution of the PLC 
program is not delayed by the capture of data. 

The only available data for the identification procedure is 
therefore a single sequence of I/O vectors whose length 
depends on the observation duration: 
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(1) 

I(k) and O(k) are vectors whose entries are respectively the 
values of the r inputs I1, I2,… Ir and q outputs O1, O2,… Oq at 
the k-th PLC cycle. Furthermore we denote Ii(k) and Oi(k) the 
values of input Ii and output Oi respectively at the k-th cycle. 

  

B. Event types 

In order to analyze signals evolution, we compute event 
vectors, i.e., the difference between two consecutive I/O 
vectors. Each event vector can be decomposed into input and 
output event vectors: 
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Regarding input and output event vectors and the PLC cycle 
described in the previous subsection, there only exist four 
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Fig. 1. {PLC + Plant} compound and identification procedure. 



 
 

situations (behavior types) between consecutive I/O vectors 
that could be observed, which are explained by different 
occurring phenomena: 
Type 1. IE(k) ≠ 0 and OE(k)  ≠ 0 

An input change has provoked directly an output change, 
and consequently, a state evolution. This I/O reactive 
causality is observed at the same PLC cycle.  

Type 2. IE(k) = 0 and OE(k)  ≠ 0 
The controller has arrived at step k-1 to a state in which, 
given the input values, an output (and state) evolution is 
allowed at step k. 

Type 3. IE(k) ≠ 0 and OE(k)  = 0 
Let X(k) be the internal current state of the controller, 

a) X(k −1) ≠ X(k) An input evolution has provoked a non-
observable state evolution of the controller. 

b) X(k −1) = X(k) It has occurred an input evolution to 
which the controller is not sensitive. 

Type 4. IE(k) = 0 and OE(k)  = 0 

a) X(k −1)  ≠ X(k) It has occurred a non-observable state 
evolution of the controller which is not exhibited by any 
input nor output change.  

b) X(k −1) = X(k) The controller remains in a stable state, 
i.e., no state evolution condition is satisfied. 

All of these situations should be taken into account to 
represent the system dynamics. Our aim in this work is to 
express the system’s behavior extractible from the I/O vector 
sequence as an IPN. 

C.  Input-Output identification approach 

C.1 Overview of the method 
The purpose in this research is not only to compute an IPN 

model in which the observed sequence is reproducible, but 
also to achieve expressivity and compactness in the identified 
model allowing representing causal relationship and 
concurrency of the involved operations. 

The method processes off-line the I/O-sequence w captured 
during the process operation and delivers an IPN model that 
reproduces the observed behavior (w).  

The method is outlined here with the help of a simple 
example. It regards a controller handling 3 inputs (s, x, y) and 
3 outputs (A, B, C), from which the following I/O sequence is 
obtained: 
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The method consists of two main steps which are outlined 
below. 

Step1. Discovering the reactive input/output behavior. In 
this step is determined the observable part of the IPN 
consisting of subnets, named fragments, composed by 
observable places labeled with output symbols, and transitions 
labeled with algebraic expressions of input symbols (Fig. 2). 

From the sequence w, a corresponding sequence of transitions 
S=t1 t2 t3 t4 t1 t2 t5 t6 t1 t2 t3 t4 t1 t2 t5 is obtained.  

A

s_1t1

t2

p1

B

x_1

x=0

t3

t4

p2 C

y_1

y=0

t5

t6

p3
s=0

 
Fig 2. First step of the identification method: IPN fragments. 

 
Step2. Determining the non-observable part of the IPN and 

the initial marking M0. The sequence S is processed for 
obtaining causal and concurrency relationships useful for 
determining the non-observable places that relate the 
fragments such that S (thus w) can be executed from M0 
(Fig. 3).  
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s_1

s=0
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x=0

C
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p1

p5

p4
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t6

p3p2
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Fig 3. Second step: assembled IPN fragments 
 

C.2 Dealing with event types 
Since situations Type 1 and Type 2 (cf. section III.B) are 

directly observable by an output change, they can be 
straightforwardly modeled in an IPN. Such a modeling is 
performed by the first step of our method. 
The Type 1 situation represents a direct input/output reactive 
behavior, and thus the modeling is quite easy: the input change 
is associated with the label of a transition and the output 
change is represented as arcs relating such a transition with the 
observable places representing outputs involved.  
In the Type 2 situation the input values which lead to the 
output evolution are not observed at the same PLC cycle (i.e. 
at the same event vector). In order to represent such a 
behavior, the context (the values of the inputs) in which the 
output changes occur is analyzed; in this case, the output 
change is modeled such as in the Type 1 situation, but the label 
of the corresponding transition contains only a condition on 
inputs levels (the input change is ε).  

The Type 3 situation is divided in two, depending on 
whether or not there is an internal state evolution of the 
controller. Situation Type 3.a is the case of the input events 
which provoke internal state evolutions and eventually lead to 
an output event of Type 2. Such internal evolutions cannot be 
directly computed, but can be inferred. By looking in the 
sequence built in Step 1, the order in which transitions appear 
can be determined. Such internal state inference will be 
performed by the second step of our method and will be 



 
 

modeled by the addition of non observable places assuring the 
order of the transition firings, such as in Fig. 3. 

In the situation Type 3.b there is no internal state evolution, 
and thus there is nothing to be inferred, as well as the situation 
Type 4, where there are neither input nor output events 
occurring in a PLC cycle. Consequently, the sequence stored 
in the database will be built by adding a new I/O vector only 
when it is different to the last one. Notice that in this work we 
can only infer internal state evolutions by means of transition 
firing order. Other type of internal evolutions, such as timers 
or counters, is out of the scope of this work. We can now make 
the description of the two identification steps. 

IV. IDENTIFICATION OF THE OBSERVABLE BEHAVIOR 

In this section the first step of the method is presented. The 
introduced concepts and algorithms are illustrated through a 
simple case study inspired from a manufacturing example. 

A. Overview and case study description 

 Algorithm 1 summarizes the steps of the procedure to 
identify the {PLC + Plant} observable behavior; the steps will 
be described in detail in the next sub-sections.  

Algorithm 1.Computing the observable IPN components  

Input: I/O sequence w 

Output: Observable incidence matrix φW and labeling 
transition function λ 

 1) Analyze sequence w in order to 
• Compute events vector sequence 
• Compute elementary events 
• Compute Direct and Indirect Causality Matrices 
• Construct Output Event Firing Functions  
• Find Input events with differed influence 

 2) Use computed data in the previous step to 
• Compute transitions of the IPN and their labeling λ 
• Compute observable incidence matrix φW 

 

Example 1. The purpose of this system (Fig. 4) is to sort 
parcels according to their size. It has 9 signal sensors from the 
system: a0, a1, a2, b0, b1, c0, c1, k1, k2, and 4 signals to the 
actuators: A+, A-, B, C. This example has been used in other 
publications [19], [20] and we describe it to confront this work 
against previous results. 

 
Fig. 4. Layout of the system case study. 

B. Events vector sequence 

In Fig. 5 the beginning of an I/O vector sequence is shown 
for illustrative purposes; however, recall that treated sequences 
are usually very much longer (thousands of vectors). We have 
included in the sequence the result of first sub-step of the 
algorithm, i.e., the computed event vectors (below the arrows) 
between each two consecutive I/O vectors.  
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Fig. 5. Beginning of I/O vector sequence. 

C. Elementary events 

In order to analyze the system behavior in a deeper way, 
event vectors can be decomposed into a set of elementary 
events (simply called events): 
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If no elementary input (output) event occurs in E(k), we 
denote it as IE(j)={ε} (OE(j)={ε}). The rising edge event of 
input Ii (output Oi) is denoted as Ii_1 (Oi_1). The falling edge 
event of input Ii (output Oi) is denoted as Ii_0 (Oi_0).  
Table 1 shows the elementary events computed for the 
example sequence. 

 

D. Direct and Indirect Causality Matrices 

As stated in Section III, the influence of some input signals 
over the outputs setting is observed at the same PLC cycle. In 
order to discover such an input/output direct relationship, we 
analyze the relative frequency of the occurrence of both input 
events IEi and output events OEk, with respect to the 
occurrence of OEk along the whole sequence of events. This 
relationship can be naturally expressed as the conditional 
probability of the occurrence of an output event OEk, given 

TABLE I 
ELEMENTARY EVENTS LIST FOR EXAMPLE 1 

Event 
vector 

Elementary input 
events 

Elementary output 
events 

E(1) IE(1) = {k1_1} OE(1) = {A+_1} 
E(2) IE(2) = {a0_0} OE(2) = {ε } 
E(3) IE(3) = {k1_0} OE(3) = {ε} 
E(4) IE(4) = {a1_1} OE(4) = {A+_0,  A−_1,  B_1} 
E(5) 
E(6) 
E(7) 

IE(5) = {b0_0} 
IE(6) = {a1_0} 
IE(7) = {b1_1} 

 
IE(6) = a1_0 

OE(5) = {ε } 
OE(6) = {ε } 

OE(7) = {B_0 } 
 
 



 
 

that a certain input event IEi has occurred at the same PLC 
cycle: 

)(

),(
)|(
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ikObs
ik

OEN

IEOEN
IEOEProb =  (5) 

where NObs(.) denotes the number of observed occurrences. 
Using all values Prob(OEk|IEi), a matrix can be filled. We call 
such a matrix the Direct Causality Matrix (DM), in which 
every DMik = Prob(OEk|IEi). Fig. 6 presents the computed DM 
matrix for the Example 1, considering a sequence much longer 
than the presented one. 

 
Fig. 6. Direct Causality Matrix for the Example 1 

 
Similarly, conditional probability has been used in [17] for 

determining the relationship between workflow operations.  
With the DM matrix, we can find Evolution Type 1 simply 

by looking at each column the values that add up to 1, since 
this represents the total number of occurrences of event OEk. 
For example, from Fig. 6 we can discover that the output event 
A+_0 is always provoked by event a1_1 (in 44.4% of the 
observed cases) or by event a2_1 (in 55.6% of the observed 
cases). The general case where several input events can 
provoke an output event is formalized on the next section. 

Similarly, to discover input/output non direct relationship, 
we look at the input values when a certain output event occurs.  
We compute the occurrence probability of an output event 
OEk, given that certain input has a given value ILi at the same 
PLC cycle: 

)(

),(
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OEN

ILOEN
ILOEProb =  (6) 

We construct the Indirect Context Matrix (IM) in which 
every IMik = Prob(OEk|ILi). The IM matrix for Example 1 is 
shown in Fig. 7. 

Using the IM matrix we can discover evolution Type 2 by 
inspecting in every column the values that add up to 1 which 
are not zero in the DM matrix. In the Example 1, k1=1 and 
k2=1 are input values which can provoke A+_1 output event, 
even if they were not always observed at the same PLC cycle. 

Now we will present how these relations can be 
automatically discovered from the DM and IM matrices. 

 

 
Fig. 7. Indirect Context Matrix of the Example 1. 

E. Computing Firing Functions of Output Events 

It can be noticed that the occurrence of every output event 
OEk is caused by one or several input events occurring at the 
same PLC cycle and by a condition on the input values. In 
order to represent such conditions, a firing function χ(OEk) has 
to be defined for every OEk. It is called the Output Event 
Firing Function (OEFF): 

)()()( kkk OEFOEGOE •=χ       

where G(OEk) is a function of input events and F(OEk) is a 
function of inputs levels which allow the triggering of the 
output event OEk. 

We compute G(OEk) as a conjunction of disjunctions of 
input events Ej: 

jk DisjEOEG Π=)(
 

(8) 

where each disjunction DisjEj = (IEx ⊕…⊕IEz) involves those 
variables corresponding to non-zero column values of the DM 
matrix, which add up to 1, i.e. those satisfying conditions: 

0,...0,0 ≠≠≠ zjyjxj DMDMDM  (9) 

1... =+++ zjyjxj DMDMDM  (10) 

Similarly, F(OEk) is computed as a conjunction of 
disjunctions of input levels Lj: 

jk DisjLOEF Π=)(  (11) 

with DisjLj = (ILx ⊕…⊕ILz) such that 
0,...0,0 ≠≠≠ yjyjxj IMIMIM  (12) 

1... =+++ zjyjxj IMIMIM  (13) 

0,...0,0 ≠≠≠ yjyjxj DMDMDM  (14) 

At the end of the computing, for every output signal Oi, we 
will have the input events and input conditions to produce its 
rising and falling edges Oi_1 and Oi_0 respectively. This can 
be easily translated into IPN fragments, as shown in Fig. 8. 

 



 
 

 

F. Input events with differed influence on the outputs 

Notice that condition DMxj ≠ 0, DMyj ≠ 0,…, DMzj ≠ 0 
requires that the inputs related to the output change were 
observed at least once changing its value at the same PLC 
cycle that the considered output. This condition may be 
restrictive if the input-output reaction is not observed in the 
same event vector. For example, in order to avoid component 
damages, in the absence of an input sensor to indicate that a 
pusher has been retracted, there may be some security 
temporizations which do not allow another actuator reacting at 
the moment an input condition has been satisfied.  

In such cases, the input-output reaction would not be found 
and thus there may be an output event with empty conditions 
on its firing function. In order to find the correct OEFF, we 
can relax the condition to consider input events which have 
been observed in previous event vectors instead of the same 
event vector. Formally, we can compute: 

)(

),(
)|(  vector)previous(

kObs

ikObs

ik
OEN

IEOEN
IEOEProb =                   (15) 

But this time, the computation is done by considering IEi 
occurred at the previous event vector than OEk. A new OEFF 
can be computed using new values instead of those of the DM 
matrix. If the computed OEFF has still empty conditions, we 
can take the previous to the previous event vector and 
successively while empty conditions are computed. In the 
Example 1, such relaxing condition is not necessary, since, as 
it can be noticed, no empty conditions have been computed. 
However, in the experimental case study of Section VI.B, such 
a technique is applied. 

For the Example 1, D = ∅; the computed PN fragments are 
shown in Fig. 9.  

 

G. Fusion of IPN fragments  

As stated below, at each PLC cycle, several input and state 
conditions could lead to the simultaneous occurrence of 
several output events. This behavior is reproduced by merging 

such conditions into a unique transition, which is labeled by a 
firing function computed from individual firing functions of 
each output event. This is captured in the model as a fusion of 
IPN fragments as shown in Fig. 10. 

 

 
The construction of the observable IPN can be 

systematically done with the next procedure: 

Algorithm 2. 

Input: I/O sequence w, I/O events sequence E, Matrices DM 
and IM, Differed input set D 

Output: Observable incidence matrix φC, labeling transition 
function λ, and sequence of transitions S 

1. P← {p1, p2,…, pq} //Create q observable places, one for every 
output of the system 

2. S←ε  //Initialize the sequence S  
3. ∀E( j), j=1,…,|E| do //Consider all the computed I/O events in E  

3.1. If OE(j) = 0 and ∃ IEs,…,IEu ∈ IE(j) ∩ D //There is not 

an output change in E(j), but IE(j) contains elementary input 
events IEs,…,IEu belonging to D 

  then 

3.1.1. T← T∪{tj}; λ(tj) ← IEs•…•IEu;  
W(tj,pi) ← 0, ∀pi∈P //If it has not been created before, 

create a new zero transition tj (a zero column in the 
incidence matrix) representing input changes IEs,…,IEu 

3.1.2. S← S⋅tj //Concatenate tj to S 
3.2. else if OE(j) ≠ 0 //There is an output change in E(j) 
   then 

3.2.1. ∀OEjk ∈ OE(j) //Consider all the elementary 

output events in OE( j) in order to compute G(OE(j)) and 
F(OE(j))  

3.2.1.1. ∀DisjEi ∈ G(OEjk), do DisjEi' ←  DisjEi ∩ 
IEjk // Look into IE(j) the input event IEjk which has 

satisfied DisjEi and assign it to DisjEi' 
3.2.1.2. G’(OEjk) ←  ΠDisjEi' //Combine into G’(OEjk)  

all the conditions DisjEi' which have satisfied G(OEjk) 
3.2.1.3. G(OE(j)) ←  ΠG'(OEjk) //Combine into 

G(OE(j)) all the input event conditions G'(OEjk) which 
have satisfied all the events OEjk 

3.2.1.4. ∀DisjLi ∈ F(OEjk), do DisjLi' ←  DisjLi ∩ 
I(j+1) // Looking the I(j+1) vector as a set of Boolean 

variables, save into DisjLi' the input value ILik which has 
satisfied DisjLi  

3.2.1.5. F’(OEjk) ←  ΠDisjLi' //Combine into F’(OEjk)  
all the conditions which have made true F(OEjk) 

3.2.1.6. F(OE(j)) ← ΠF'(OEjk) //Combine into 

F(OE(j)) all the conditions which have produced all the 
OEjk 

ε•∧∧∧⊕ )000)21(( cbakk

+A

)1_21_1(1 aa ⊕•=

C

1_21 a•=

1_11 c•=

−A

)1_21_1(1 aa ⊕•=

1_01 a•=

B

1_11 a•=

1_11 b•=

 
Fig. 9. IPN fragments for Example 1 
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Fig. 10. IPN representation of several output events at the same cycle 
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Fig. 8. Rising and falling edges of output Oi 

 



 
 

3.2.2. T← T ∪ {tj}, λ(tj) = F(OE(j))• G(OE(j)) //If it 
has not been created before, create a new transition tj and 
label it with the computed F(OE(j)) and G(OE(j)) 

3.2.3. ∀pi∈P, do 

    If Oq_1 ∈OE(j) then W(tj,pq) ←1,  
    else If Oq_0∈OE(j) then W(tj,pq) ← -1,  
      else W(tj,pjq) ← 0 //for all elementary output 

events in OE(j) = OEjp• OEjq•…• OEjr, put a 1 into the line 
corresponding to OEjk if it is a rising event, and a -1 if it is a 

falling event; for the rest of the lines, assign a 0. 
3.2.4. S← S⋅ tj //Concatenate tj to S 

 

Complexity of Algorithm 2. Let r’<r and q’<q be 
respectively the maximum number of input and output 
elementary events appearing simultaneously in an event vector, 
and |E| be the length of the events sequence. The Algorithm 2 
processes each one of the events in E. When a transition 
should be added to represent one of such events, an 
appropriate firing function should be computed. If only inputs 
changed, it is only necessary to include in the firing function 
the elementary input events with differed influence. This is 
achieved in O(r’). If there is at least an output change, for each 
one of the output elementary events which have occurred, we 
need search for each individual firing function the input events 
and input conditions that produced the evolution. This is 
performed in O(q’(r’log r’)). Thus, the complexity of the 
procedure for building the transition sequence and fragments is 
O((q’r’ log r’)|E|). Consequently, the Algorithm 2 can be 
executed in polynomial time on the size of the input data. 

Property 1. The transitions sequence S is a translation of the 
I/O sequence w into transition firings of the PN-fragments built 
by Algorithm 2. 

Proof. It is easy to see that at the steps 3.1.2 and 3.2.4 of 
Algorithm 2, S is formed by concatenating the computed 
transitions from the event sequence produced by w. This 
allows that the reactive behavior can be reproduced in the 
created IPN model. ▄ 

Fig. 11 shows how events E(1) and E(4) are treated by the 
algorithm. For E(1) the elementary output event A+_1 in 
OE(1) is analyzed and function λ(t1) = (k1 • a0 • b0 • c0) • (ε) 
is extracted considering that k1=1, a0=1, b0=1, and c0=1 are 
the input values which have satisfied χ(A+_1). For E(4) all 
elementary output events A+_0, A-_1 and B_1 in OE(4) are 
considered and their Firing Functions χ(A+_0) = (=1)•(a1_1⊕ 
a2_1), χ(A-_1)=(=1)•(a1_1 ⊕ a2_1) and χ(B_1)=(=1)•(a1_1) 
are combined into λ(t2) = (=1)•(a1_1). 

Notice that interesting labeling functions have been 
computed. For example, the output event A+_1 is provoked by 
the presence of a piece (k1=1 or k2=1) and it occurs only 
when the three components corresponding to outputs A+, B, 
and C are on its initial position (a0=1, b0=1 and c0=1).  

At the end of the procedure, the following observable 
incidence matrix ϕW and labeling functions are obtained, as 
well as the transition sequence S, which is the projection of w 
over T:  S = t1 t2 t3 t4 t1 t2 t4 t3 t5 t6 t7 t4 t1 t2 t3 t4 t5 t6 t7 t4 t1 t2 t3 t4 

t1 t2 t3 t4 t5 t6 t7 t4 t5 t6 t7 t4 t1 t2 t3 t4 t5 t6 t7 t4 t5 t6 t7 t4 t5 t6 t7 t4 t5 
t6 t7 t4 t5 t6 t7 t4 t1 t2 t4 t3 t1 t2 t3 t4 t1 t2 t3 t4 t1 t2 t4 t3 t1 t2 t3 t4 t1. 
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The corresponding partial model is shown in Fig. 12. The 

inferring procedure which allows discovering the non-
observable behavior is described in next section. 

 

V. IDENTIFICATION OF THE NON-OBSERVABLE BEHAVIOR 

A. Problem (re)statement 

The previously described procedures allow obtaining an 
observable structure which represents the reactive behavior of 
the system. Given that events and transitions of the net are 
completely defined, we need to add non-observable places to 
translate an aggregation of the non-observable dynamics of the 
process in such a way that the global PN will reproduce the 
whole behavior of the system. By adding non-observable 
places (depicted as grey circles), we make the inference of 
situation Type 3.a described in Section III.B, which is the case 
of input events provoking internal state evolutions. 

1t1t 5t5t

2t2t 6t6t

−A −A

4t4t

BB CC

3t3t

+A +A

7t7t  
Fig. 12. Observable IPN model 
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Fig. 11. Treatment of E(1) and E(4) by the Algorithm 2. 

 



 
 

The problem of determining the non-observable part of the 
IPN model complementary to that describing the observable 
(reactive) behavior can be stated as follows. 

Given an observable IPN model whose structure is 
Gobs=(Pobs, T, Preobs, Postobs) and a transitions sequence S = t1 

t2 … tj …  ∈ T* reproducing the I/O sequence w, an ordinary 
PN structure  Gnobs=(Pnobs, T, Prenobs, Postnobs) that reproduces 
S and an initial marking M0 enabling S must be found; (Gobs, 
M0) must be safe.  

Thus, the PN structure of the complete identified model is 
G=(P, T, Pre, Post) with P= Pobs ∪ Pnobs, Pre= Preobs ∪ 
Prenobs, Post= Postobs ∪ Postnobs.  

Observe that in S there are not consecutive apparitions of 
the same transition, due to the nature of the considered events 
(rising and falling edges of binary signals). 

In the literature there are many approaches which tackle the 
identification problem as stated above. However, our problem 
exceeds the hypothesis held in such works or they are not 
enough efficient to cope with long sequences. In particular,   
a) the system cycles are not know a priori, 
b) the whole language of the system is not known, 
c) the size of S is very large; thus finding efficient algorithms 

is required,  
d) the aim is building IPNs that shows structural parallelism. 

New places and arcs must be determined such that they join 
the IPN fragments found in the first part of the method. Since 
the tasks in different processes can occur simultaneously or at 
some predefined order, each two fragments can be related in 
two manners only: sequentially or concurrently. Thus, several 
connecting forms are possible. Some of them are illustrated in 
Fig. 13, where “clouds” represent the fragments. 

 

 
In this section, we present a procedure to build a non-

observable PN structure that is able to reproduce the sequence 
S of transitions firings. This construction principle is based on 
the precedence and concurrency relations among transitions, 
which will determine the final structure of the identified 
model. Algorithm 3 given below provides an overview of the 
procedure. 

Algorithm 3. Non-observable behavior construction 

Input: Transitions sequence S 
Output: Non-observable model representing S 

1. Compute basic structures and relations (Seq, SP, and TC) 
from S 

2. From the information in Seq, SP and TC compute the 
causal relation between transitions CausalR 

3. From Seq and CausalR, compute concurrency relation 
(ConcR) between transitions  

4. Build a PN model representing CausalR and ConcR 
5. Verify the tokens flow and correct part of the structure if 

needed 

 
The steps of Algorithm 3 are detailed in the following 

subsections. First some properties derived from the sequence S 
are introduced. Afterwards, based on such properties, an 
analysis technique allowing determining causal and 
concurrency relationships among the transitions in S is 
proposed. Then, the steps for building a PN structure 
observing the causal and concurrency relationships are 
presented. 

B. Dynamical properties 

Since the construction method is based on the analysis of 
causal and concurrency relationships, some notions must be 
defined before introducing the non-observable behavior 
construction procedure. 

Definition 6. The relationship between transitions in S that 
are observed consecutively is expressed in a relation Seq ⊆ T × 
T which is defined as Seq ={(tj, tj+1)| 1 ≤ j < |S| }. If (ta, tb) ∈ 
Seq, this is denoted by ta<tb. 

Example 2. Let us reuse the sequence S of example 1, 
which is the projection of the observed I/O sequence w over 
the set of observable transitions T: 

S = t1 t2 t3 t4 t1 t2 t4 t3 t5 t6 t7 t4 t1 t2 t3 t4 t5 t6 t7 t4 t1 t2 t3 t4 t1 t2 
t3 t4 t5 t6 t7 t4 t5 t6 t7 t4 t1 t2 t3 t4 t5 t6 t7 t4 t5 t6 t7 t4 t5 t6 t7 t4 t5 t6 t7 
t4 t5 t6 t7 t4 t1 t2 t4 t3 t1 t2 t3 t4 t1 t2 t3 t4 t1 t2 t4 t3 t1 t2 t3 t4 t1  

We can compute Seq = {(t1, t2), (t2, t3), (t3, t4), (t4, t1), (t2, t4), 
(t4, t3), (t3, t5), (t5, t6), (t6, t7), (t7, t4), (t4, t5), (t3, t1)}, which can 
be expressed also as {t1<t2, t2<t3, t3<t4, t4<t1, t2<t4, t4<t3, t3<t5, 
t5<t6, t6<t7, t7<t4, t4<t5, t3<t1}. 

In a PN model every pair in Seq may in fact be represented 
differently. If ta, tb were observed consecutively in S, this 
behavior could be issued from one of two situations in Gnobs 
described in the following definition. 

Definition 7. Every couple of consecutive transitions ta, tb in 
Seq can be classified in one of the following situations: 

Causal relationship. If the occurrence of ta enables tb. In a 
PN structure, this implies that there must be at least one place 
from ta to tb (Fig. 14a).  

Concurrent relationship. If both ta and tb are simultaneously 
enabled, but ta occurs first and its firing does not disable tb. In 
an ordinary PN structure, this implies that it is impossible the 
existence of a place from ta to tb. In this case, ta and tb are said 
to be concurrent, denoted as ta||tb. (Fig. 14b). 

 
 

Fig. 13. Some different possibilities for fragments assembling 
 



 
 

In order to find which is the situation occurring between 
every pair of transitions in Seq, some other definitions are now 
introduced. The following notion is the systematical 
precedence of a transition tj with respect to another transition 
tk; it establishes a necessary condition for tj to occur 
repeatedly. 

Definition 8. A transition tj is preceded systematically by tk, 
denoted as tk∠tj iff tk is always observed between two 
apparitions of tj in S. By convention, we say that tj∠tj if tj was 
observed at least twice in S. Then the Systematical Precedence 

Set of a transition tj is given by the function SP: T→2T, that 
indicates which transitions must be fired to re-enable the firing 
of tj, i.e. SP(tj)={tk |tk∠tj}. If tj was observed only once in S, 
then SP(tj) = ∅. 

In the sequence S from Example 2, one may compute that 
t1∠t1, t2∠t1, t3∠t1, and t4∠t1, thus SP(t1)={t1, t2, t3, t4}. Notice 
that SP(tj) is the set of transitions that must invariantly occur to 
fire tj repeatedly. The rest of the SP sets are : 
SP(t2)={t1, t2, t3, t4}, SP(t3)={t1, t2, t3}, SP(t4)={t4},  
SP(t5)={t4, t5, t6, t7}, SP(t6)={t4, t5, t6, t7}, SP(t7)={t4, t5, t6, t7}. 

ta tb

ta

tb

a) b)  
Fig. 14. Structures that represent ta< tb. a) shows a causal relationship from ta 
to tb, whereas b) shows a concurrent relationship between ta and tb. 

 
 

Definition 9. Two transitions ta, tb are called transitions in a 
two length cycle relationship (named two-cycle transitions) if S 
contains the subsequence tatbta or the subsequence tbtatb. The 
two-cycle transitions set TC of S is given by TC={(ta,tb)|ta, tb 
are in a two-cycle}. 

From the sequence S in Example 2, we observe that the set 
of transitions in a two-cycle is TC= ∅. 

Remark. Computing Seq, SP and TC can be executed in 
polynomial time on the size of S. 

We will now extract some structural properties regarding N 
from S. The previously defined terms will be used to determine 
which situation between causality and concurrence is the most 
appropriated for every pair of consecutively observed 
transitions in S. 

C. Causal and concurrency relationships 

1) Causal relationship 
In order to determine that two transitions are causally 

related as shown in Figure 14.a, several conditions stated 
below must be fulfilled. 

Proposition 1. If ta∠tb (ta∈SP(tb)) then, there must exist in 
N a simple elementary circuit (SE circuit) to which both ta and 
tb belong. 

Proof. Suppose that there is not a SE circuit containing ta 
and tb. Thus, right after the firing of tb, all the tokens in tb

• (the 
output places of tb) could be displaced by transition firings 

through some path to •tb (the input places of tb), enabling tb 
without needing to fire ta, which implies that ta∉SP(tb).▄ 

Proposition 2. If ta < tb and ta∠tb, then there must exist in N 
a place from ta to tb. 

Proof. Suppose that there is not a place from ta to tb. In 
order to allow the observation ta < tb, both ta and tb should be 
enabled simultaneously. By Proposition 1, there is at least one 
SE circuit containing ta and tb and thus, at least one path from 
ta to tb. Thus, if ta and tb are enabled simultaneously and ta is 
fired, all paths from ta to tb contain two tokens. If all transitions 
in a path from ta to tb are fired, then there will be two tokens in 
one of the input places of tb, resulting in a non-safe net. Then, 
at least one of the transitions ti in each path from ta to tb must 
be conditioned to the previous firing of tb. But if tb is fired, all 
the transitions in paths from ta to tb can be fired and all the 
transitions in paths from tb to tb which do not include ta can be 
fired; thus tb will be enabled before ta fires and as a 
consequence ta∉SP(tb). ▄ 

Proposition 3. If ta < tb and tb∠ta, then there must exist in N 
a place from ta to tb. 

Proof. Suppose that there is not a place from ta to tb. Then, 
before the observation of ta < tb, both ta and tb must be enabled, 
and thus the occurrence of tb<ta is possible. Furthermore, 
together with tb∠ta and by Proposition 2 implies that there 
should be a place from tb to ta. However, at the firing of tb 
there are two tokens in such a place, and thus the net is not 
safe.▄ 

Proposition 4.  If (ta,tb) ∈TC, then there must exist in N a 
place from ta to tb and a place from tb to ta. 

Proof. The sequence tatbta must be reproducible in N. Right 
after the firing of ta there is a token on its output places, and 
thus tb must be at the output of such places; otherwise, there 
would be two tokens in such places after the second firing of 
ta. Similarly, right after the first firing of ta, there are no tokens 
on its input places, and thus tb must be at the input of such 
places; otherwise, ta could not be fired again. The same 
reasoning can be applied to reproduce the sequence tbtatb.▄ 

Notice that when two transitions are observed consecutively 
and one is systematically preceded by the other, a causal 
relationship is found. Also, when two transitions are involved 
in a two-cycle relation, they are in a causal relationship each 
other. Observe that all of these relationships are structural, and 
thus they do not depend of the initial marking of the net. 

Definition 10. The causal relationship set CausalR keeps 
track of all the causal relationships in S. CausalR = {(ta,tb) | 
(ta<tb) and (ta∠tb or tb∠ta  or (ta,tb)∈TC)}. 

From the Seq set in Example 2 (see Definition 6), the SP 
sets (see Definition 8) and the TC set (see Definition 9) we 
compute CausalR={(t1,t2), (t2,t3), (t4,t1), (t2,t4), (t5,t6), (t6,t7), 
(t7,t4), (t4,t5), (t3,t1)}. 

If a couple of transitions (ta,tb) in the Seq set, belongs also to 
CausalR, then there must be a place from ta to tb in order to 



 
 

constrain the observed firing order. For the rest of the 
transition couples in Seq, we must decide if a place should 
exist to relate them. Next, we will discuss some cases where 
the existence of a place can be discarded. 

2) Concurrency relationship 
If two transitions ta and tb are concurrent, there must not 

exist a place neither from ta to tb nor from tb to ta; otherwise, 
the firing of one would constrain the firing of the other one. 

Definition 11. The set of all pairs of concurrent transitions 
is called ConcR={(ta,tb)| ta||tb}. 

If the sequence w is complete, (consequently, S) i.e., if it 
exhibits all of the possible behavior of the observed system, 
we can find concurrence between transitions that are not in a 
causal relation, as shown in the next proposition. 

Proposition 5. Let ta, tb be two transitions which have been 
observed consecutively in a complete sequence S in both 
orders, i.e. (ta, tb)∈Seq, (tb, ta)∈Seq. Then (ta, tb)∉CausalR and 
(tb, ta)∉CausalR if and only if ta||tb. 

Proof. Suppose that (ta,tb)∉ConcR. Without loss of 
generality, we suppose there is a place pab from ta to tb. Since 
(tb, ta)∈Seq, there must also be a place pba from tb to ta; 
otherwise, ta could be enabled simultaneously with tb to allow 
tb<ta and ta may be fired, yielding to the presence of two 
tokens in the place pab and breaking the safeness condition. 
Since (ta,tb)∉CausalR, tb∉SP(ta) and thus there must be at least 
one path from pab to pba which does not contain tb. Similarly, 
there must be at least one path from pba to pab which does not 
contain ta. Since (ta,tb)∉TC, tatbta should not be enabled and 
thus, there must be at least one SE circuit to which ta belongs, 
but tb does not belong. The resulting net violates the free-
choice conditions (observe Fig. 15). 

 
Suppose now that (ta,tb)∈ConcR. That means that they can 

be both enabled simultaneously and one can be fired without 
needing the firing of the other one, and thus ta∉SP(tb) and 
tb∉SP(ta). Also, since there cannot be any place from ta to tb 
nor from tb to ta, neither the subsequence tatbta, nor the 
subsequence tbtatb can be enabled, and thus (ta,tb)∉CausalR 
and (tb, ta)∉CausalR.  ▄ 

Notice that our methodology allows computing also non 
free-choice nets. Only in the case where the system includes a 
behavior like the one shown in Fig. 15, the transitions ta and tb 
would be wrongly considered as concurrent and the existence 
of links from ta to pab and from tb to pba would be missed. 

However, the obtained model would be still capable to 
reproduce the sequence S. 

It is well known that in practice, the sequence w is not 
complete, since in the general case, the observed systems do 
not show all their possible behavior during a finite time of data 
collection. In fact, it is not possible to assure that the whole 
behavior of a system has been observed. The consideration of 
Proposition 5 is then very restrictive, since it demands the 
observation of all possible behavior; it could lead to the 
construction of incorrect models in case of incomplete 
sequences. Then, some less constraining rules to find 
concurrence must be considered. Next, we present several 
properties which allow us to identify couples of transitions 
which must be concurrent in the identified net N. 

First, we will introduce the notion of Sequential 
Independence, which is a characteristic of concurrent 
transitions. Later, the propositions to find concurrency will be 
introduced.   

Definition 12. Two transitions ta and tb are Sequentially 

Independent if ta∉SP(tb) and tb∉SP(ta). 

From the SP sets of Example 2 (see Definition 8) we 
compute the set of Sequentially Independent transitions: 
{(t1,t5), (t1,t6), (t1,t7), (t2,t5), (t2,t6), (t2,t7), (t3,t4), (t3,t5), (t3,t6)}. 

Observe the net in Fig. 16 which is composed by two 
independent t-components X1 and X2 with supports <X1>= {ta, 
ti} and <X2>= {tb, tk} respectively. In a sequence belonging to 
the language of such a net, transitions belonging to different t-
components are sequentially independent. In fact, SP sets of 
this net correspond exactly to t-components of the net. 

 

 

Proposition 6. Let ta and tb be two transitions in S which 
have been observed consecutively in both orders (ta<tb and 

tb<ta). If: 
a) (ta,tb) ∉ CausalR and (tb,ta) ∉ CausalR, 
b) and |SP(ta)| >1 and |SP(tb)| >1, 
then ta||tb. 

Proof. Suppose that ta and tb are not concurrent. Without 
loss of generality, we suppose there is a place pab from ta to tb. 
Since tb<ta has been observed, there must be also a place pba 
from tb to ta (and as consequence N contains a two-transition 
cycle); otherwise, ta could be enabled simultaneously with tb to 
allow tb<ta and ta may be fired, yielding to the presence of two 
tokens in the place pab and breaking the safeness condition. 
Since tb∉SP(ta), there must be at least one path leading from 
pab to pba not including tb. Since |SP(ta)| >1, there must be at 
least one circuit including ta and not including pab, pba nor tb. 
Since ta∉SP(tb), there must be at least one path leading from 

ta ti tb tk

 
Fig. 16. A net with two t-components 
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Fig. 15. Structure where (ta, tb)∈Seq and (tb, ta)∈Seq but (ta,tb)∉ConcR 
 



 
 

pba to pab not including ta. Consider the first transition tx of this 
path. The free-choice conditions are not satisfied, since tx and 
ta share pba as input place, but ta has at least one different input 
place. ▄ 

We may observe that for Example 2, (t3, t4) are sequentially 
independent (see Definition 12), however, |SP(t4)| =1 and thus 
we cannot infer any concurrence. 

When SP(tj) is a singleton, it means that it belongs to several 
elementary circuits and then Proposition 6 does not allow to 
find concurrent transitions to tj. But if tj is included in the SP 
of other transitions, we may find some concurrence relations, 
as shown in the next proposition. 

Proposition 7. Let ta and tb be two transitions in S that have 
been observed consecutively in both orders (ta < tb and tb < ta). 
If ta and tb  

a) are Sequentially Independent and  
b) there exists a transition tk such that ta∠tk (ta∈SP(tk)) 

and tb∠tk (tb∈SP(tk)) 
then ta||tb. 

Proof. Suppose that it does not hold that ta||tb. Without loss 
of generality, we suppose that there is a place from ta to tb. 
Since ta ∈SP(tk) and tb ∈SP(tk), after the firing of tk, both ta and 
tb must be fired before the next firing of tk. Since tb < ta may 
happen, the place from ta to tb must be marked. However ta < tb 

may occur too, leading to the presence of two tokens in the 
same place after the firing of ta, and making the net not safe.▄ 

Fig. 17 shows an example of the case characterized by 
Proposition 7. It is the general case of transitions belonging to 
concurrent threads (ta, tc and tb, td, te, tf respectively), which are 
eventually synchronized by one transition (tk). If we make 
several firings to build a transition sequence, eventually the SP 
sets would become: SP(tk) = {tk, ta, tc, tb, td, tf}, SP(ta) = SP(tc) 
= {tk, ta, tc}, SP(tb) = SP(tf) = {tk, tb, td, tf}, SP(te) = {te, td}, 
SP(td) = {td}. Even if SP(td) is a singleton, the synchronization 
point tk help us to find by Proposition 7 several concurrent 
relationships: ta||tb,  ta||td, ta||tf, tc||tb, tc||td, and tc||tf. 

In Example 2, (t3,t4) are Sequentially Independent (see 
Definition 12), and we have determined that t3∠t1 and t4∠t1 

(see Definition 8), thus we can conclude that t3||t4. 

tk ta

te

tc

tb

td tf

 
Fig. 17. Concurrent threads synchronized by a transition 

 
If concurrent transitions do not belong to synchronized 

threads, conditions of the next propositions help us to find a 
subset of concurrent transitions which do not depend from 
another transition tk. 

Proposition 8. Let be two transitions ta and tb which have 

been observed consecutively in both orders (ta < tb and tb < ta). 
If ta and tb are: 

a) Sequentially Independent, and 

b) ∃ tk such that tk∈SP(tb), tk∉SP(ta), and 

c) (ta,tk)∈Seq 
then ta||tb. 

Proof. Suppose there is a place pab from ta to tb. Since tb<ta 
has also been observed, there must be also a place pba from tb 
to ta; otherwise, ta should be enabled simultaneously with tb to 
allow tb<ta and ta may be fired, yielding to the presence of two 
tokens in pab. Since there exists tk such that tk∈SP(tb), then 
there must be a SE circuit containing both tb and tk. If such a 
circuit contains places pba or pba, it is not possible to fire ta<tk 
and thus such a circuit must contain another input place pkb of 
tb and another output place pbk of tb. Now, to accomplish that 
tb∉SP(ta), there must be at least one path leading from pab to 
some input place of ta not including tb. Consider the first 
transition tx of this path. In order to respect the free-choice 
conditions, pkb should be an input place of tx, making the 
occurrence of ta<tk impossible. ▄ 

Definition 13. The Inverse Systematical Precedence set of a 
transition SP-1: T→ 2T contains the transitions which are 
dependent of a common transition to re-enable their firing: 

)}(|{)(1
kjjkkj tPStandttttPS ∈≠=−  (13) 

Proposition 9. Let ta and tb be two transitions which have 
been observed consecutively in both orders (ta < tb and tb < ta). 
If ta and tb are: Sequentially Independent, and SP-1(ta) ≠ ∅, 
∀tj∈SP-1(ta), tj || tb, then ta||tb. 

Proof. Suppose there is a place pab from ta to tb. Since tb<ta 
has also been observed, there must be also a place pba from tb 
to ta; otherwise, ta should be enabled simultaneously with tb to 
allow tb<ta and thus ta may be fired, yielding to the presence of 
two tokens in the place from ta to tb. Since tb∉SP(ta), there 
must be at least one path leading from pab to pba not including 
tb. Similarly, there must be at least one path leading from pba to 
pab not including ta. Since SP-1(ta) ≠ ∅, there is at least one 
transition tj concurrent to tb such that tj∠ta and there must be a 
SE circuit including ta and tj. Such a circuit cannot contain pab 
nor pba otherwise tj may be able to fire without need of firing 
ta. Consider the input place px of ta in this path. The free-
choice conditions are not satisfied between px and pba: they 
share ta as output transition, but pba has at least another output 
transition. ▄ 

An example where Proposition 9 can be used is shown in 
Fig. 18. SP-1(ta) ={tj1, tj2} and tj1||tb, tj2||tb are determined by 
Proposition 6. Consequently, ta || tb. 

Remark. Computing CasualR and ConcR can be executed 
in polynomial time on the size of S. 



 
 

tbtatj2 tj1

 
 

Fig. 18. Concurrence between transitions whose SP is a singleton 

D. Building the non-observable PN 

We will use now the computed data from sequence S to 
infer internal evolutions of the system. We will make an 
analysis of causal and concurrency relations that have been 
found between consecutive transitions in order to compute 
non-observable places of the net.  

Definition 14. The set Seq’= (Seq - CausalR) - ConcR 
contains the set of transition pairs (ta,tb) which have been 
observed consecutively, but are not in a causal relation or in a 
concurrency relation.  

Until now, we have computed for Example 2 that Seq = {(t1, 
t2), (t2, t3), (t3, t4), (t4, t1), (t2, t4), (t4, t3), (t3, t5), (t5, t6), (t6, t7), 
(t7, t4), (t4, t5), (t3, t1)}, CausalR={(t1, t2), (t2, t3), (t4, t1), (t4, t5), 
(t5, t6), (t6, t7), (t7, t4), (t2, t4), (t3, t1)} and ConcR = 
{(t3,t4)(t4,t3)}. Thus, Seq’ = {(t3, t5)}. This means that there is a 
relationship which has not been explained. 

If Seq’ ≠ ∅, then there are two possibilities for the 
remaining transition pairs (ta,tb) in Seq’: 

b) They are both input and output transitions of a place with 
several input and output transitions 

c) They are concurrent, but w (thus, S) is not complete 
enough to find such a relationship 

Since our goal is to approximate as much as possible the 
language generated by identified IPN, to the observed 
sequence S, we assume that if we have observed two 
transitions consecutively (ta<tb) but by none of the previous 
propositions we have determined that they are concurrent, thus 
the firing of ta has enabled tb. This is made in order to preserve 
in the PN the firing order observed in S. Then, a place will be 
added from ta to tb; this denoted by [ta, tb]. 

When it is found that [ta, tc] and [tb, tc], and the involved 
transitions are related by a single place, this is represented as 
[tatb, tc]. In general, a place p can be denoted as [ta1 ta2… tal, tb1 
tb2… tbh], where tai are the input transitions of p and tbi are the 
output transitions of p, and l=|•p|, h=|p•|, as illustrated in Fig. 
19. 

 

The same place could be used to relate several consecutive 
transitions. If a transition tk has been observed followed by two 
transitions tai, taj in S (tk<tai and tk<taj), there are two cases to 
represent such observations into the PN model: the case of 
selection, where they are represented with the same place [tk, 
tai taj] (Fig. 20a) or the case of concurrence, where they are 
represented with different places [tk,tai] [tk, taj] (Fig. 20b). 

 
In a generalized form, for every set tk<ta1,…, tk<taw of non-

concurrent consecutive transition pairs with the same first 
transition tk, we can thus merge all tk<ta1,…, tk<tax whose 
second transitions ta1…taw are non-concurrent nor consecutive 
and represent them into a single place [tk, ta1…taw], as 
illustrated in Fig. 21. 

 
Once we have made the first merging, all places [tk1, 

ta1…taw], [tk2, ta1…taw],…, [tkz, ta1…taw] whose input transitions 
are non-concurrent nor consecutive and whose output 
transitions are the same, can be merged into a single place as 
illustrated in Fig. 22. 

Remark. Building the non-observable PN can be executed 
in polynomial time on the size of Seq. 

 

E. Initial marking 

 Once the structure of the net is built, the initial marking can 
be computed by allowing the firing of S. All transitions are 
processed, from the last transition till the first one. The 
processing of a transition is as follows: 
• If its output places are unmarked, the tokens in such places 

are retired, 
• Tokens are added to its unmarked input places. 

 

Example 2 (Cont.). By considering the couples of 
consecutive non-concurrent transitions in Seq’(which in this 
example is only (t3, t5) – see Definition 14), the places: [t1, t2] 

tk

ta1 tawta2
… tb1 tbxtb2

… tc1 tcytc2
…

…

Fig. 21. A PN place p = [ta1 ta2…tal, tb1 tb2… tbh] 
 

tk

tai taj  

tk

tai taj  
a) b) 

Fig. 20. Selection and parallelism representation. a)Shows the case where tai, 
taj are not concurrent and have not been observed consecutively whereas b) 
shows the case where tai, taj are concurrent or have been observed 
consecutively. 

tb1 tb2
…

ta1 talta2 …

tbh  
Fig. 19. A PN place p = [ta1 ta2…tal, tb1 tb2… tbh] 

 

ta1 tawta2
…

tk1 tkztk2
… tk1 tkztk2

…

Fig. 22. Selection and concurrence between pre-transitions 
 



 
 

[t2, t3] [t3, t1t5] [t4, t1t5] [t5, t6] [t6, t7] and [t2t7, t4] are computed. 
The PN structure and the computed initial marking is shown in 
Fig. 23. 
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Fig. 23. (Gnobs, M0) the non-observable IPN of Example 1 

 

F. Token flow verification 

As stated before, with the proposed mechanisms in last 
section, the sequence w may not have shown enough 
combinations which allow us to determine concurrence. If the 
sequence w were complete, all the concurrent and sequential 
behavior could be found and represented, according to 
Proposition 6. However, since we know that w could not be 
complete, in order to approximate the language of the 
identified IPN to S as much as we can, we have considered that 
if two transitions have not been declared as concurrent, they 
must be in a sequential relationship. But if the transitions are 
actually concurrent, the sequential consideration could lead us 
to links or places in the built model which restrict too much the 
behavior of the system and don’t allow the firing of S. Now, 
we present some notions that will help us to verify if added 
places until now do not interfere in the correct reproduction of 
S. 

Proposition 10. If the IPN model has been correctly build, 
every computed non-observable place p in N must fulfill the 
place input/output flow equation: 

1)()( ±= ∑∑
•∈•∈ pt

i
pt

i

ii

tOcctOcc       (16) 

where Occ(tk) is the number of occurrences of tk in S. 

Proof. Equation follows straightforward from the IPN 
transition enabling and firing conditions and from the fact that 
(Gnobs, M0) must be safe. ▄ 

Proposition 11. If there exists a place p such that |•p|=1, 
then ∀tj ∈ p•, tk ∈ SP(tj), SP(tj)≠∅ where tk is the input 
transition of p. Also, if there exists a place p such that |p•|=1, 
then ∀tj ∈ •p, tk ∈ SP(tj), SP(tj)≠∅  where tk is the output 
transition of p. 

Proof. If |•p|=1, for the re-enabling of tj, p must be marked 
and the only way to do so is the firing of tk, and thus tk ∈ 
SP(tj). Similarly, if |p•|=1, for the re-enabling of tj, p must be 
unmarked and the only way to do so is the firing of tk, thus  tk 

∈ SP(tj).▄ 

Correction rule. If the input/output flow equation or the 
conditions in Proposition 11 are not satisfied by some place, 

the arcs relating transitions which are not in CausalR are 
removed. If there are not CausalR represented in such a place, 
it is deleted. 

Example 2 (Cont.). In the model of Figure 23, we verify the 
input/output flow equation for each place. From Example 2, 
we can compute Occ(t1)=12, Occ(t2)=11, Occ(t3)=11, 
Occ(t4)=20, Occ(t5)=9, Occ(t6)=9, and Occ(t7)=9. We check 
also the condition of Proposition 11. 

p1: Occ(t1) = Occ(t2) (±1), t1∈SP(t2), t2∈SP(t1) 
p2: Occ(t2) = Occ(t3) (±1), t2∈SP(t3), t3∈SP(t2) 
p3: Occ(t3) ≠ Occ(t1) + Occ(t5) (±1), t3∈SP(t1), t3∈SP(t5) 
p4: Occ(t4) = Occ(t1) + Occ(t5) (±1), t4∈SP(t1), t4∈SP(t5) 
p5: Occ(t5) = Occ(t6) (±1), t5∈SP(t6), t6∈SP(t5) 
p6: Occ(t6) = Occ(t7) (±1), t6∈SP(t7), t7∈SP(t6) 
p7: Occ(t2) + Occ(t7) = Occ(t4) (±1), t4∈SP(t2), t4∈SP(t7) 
As can be observed, p3 is a wrong place, since Occ(t3)≠ 

Occ(t1)+ Occ(t5)±1. Since (t3, t5)∈Seq’; this means that the 
sequence is not complete, and thus the causal relationship we 
assumed between t3 and t5 is wrong. In order to fix this, we can 
delete the arc going from place p3 to transition t5. After this 
correction, all of the conditions from Proposition 10 and 
Proposition 11 are satisfied. 

Finally, the identified IPN of the sorting system described in 
Example 1 is obtained by merging the observable model in 
Fig. 12 and the non-observable model from Fig. 23 after 
applying the places correction. We can also delete non-
observable implicit places. Then the IPN shown in Fig. 24, 
which reproduces w, is the final result of the model merging. 

In the supplementary file [26] several additional examples 
regarding the method for identifying a non observable model 
from a sequence S are included. 

0001:1 cbakt ∧∧∧ 0002:5 cbakt ∧∧∧

1:2 at ↑ 2:6 at ↑

−A

0:4 at ↑

B C

1:3 bt ↑

+A

0:7 ct ↑

 
Fig. 24. Final IPN model for the process in Example 1 

G. Features of the method 

G.1 Reproducibility of S 

Proposition 12. The PN model (Gnobs, M0) built with the 
previous procedures summarized in Algorithm 3 reproduces 
the sequence S. 

Proof. Regard that we have computed the following sets: 
• Seq containing all the consecutive transition couples in S. 

If we represent into a net all couples in Seq, the net will be 
able to reproduce S, 

• CausalR containing transition couples (ta, tb)∈Seq that 
must be related by a place, 



 
 

• ConcR containing transition couples (ta, tb)∈Seq, that must 
not be related by any place. 

If the set Seq’= (Seq - CausalR) - ConcR = ∅, it means that 
all transition couples (ta,tb)∈Seq are correctly represented in N 
and thus the sequence S is reproducible. If Seq’≠∅, it means 
that there are still transition couples that cannot be 
distinguished as concurrent or sequential. Thus, by merging 
several couples in Seq, all couples in Seq’ are considered as 
sequential by creating places with several input and output 
transitions. If they are actually sequential, all the verification 
rules are satisfied. Otherwise, they are actually concurrent and 
they are corrected using the described procedure. Once they 
are corrected, it only remains places relating sequential 
transitions and thus the sequence S is reproducible.▄ 

 

G.2 Performance 
Given that all of the procedures of Algorithm 3 are executed 

in polynomial time on |S|, the construction of (Gnobs, M0)  is 
efficiently performed. 

Note also that the application of Algorithm 3 to a sequence 
S yields always the same PN model, due to that all the 
constructive steps in the procedures are deterministically 
performed, i.e. there are not random selections on the input 
and intermediate data.    

VI. METHOD IMPLEMENTATION AND APPLICATION 

Based on the presented algorithms, a software tool has been 
developed to automate the IPN model synthesis. The 
architecture of the tool is shown in Fig. 25. 

 

 
The user interface allows capturing the input/output 

sequence and shows the obtained model graphically. 
Following input data is provided to the tool: the name of a text 
file containing the I/O sequence (with one line per I/O vector), 
the names of the input and output signals, and the desired 
name for the output file. Additionally it is specified the order 
in which inputs and outputs appear in the txt file (since 
depending on data collection procedure, order could change) 
and the index numbers of the signals to take into account if a 
mask is going to be applied (some inputs or outputs could be 
ignored like indicator lights or push-buttons). 

Later, an input reader component processes the input file 
and transforms the input/output sequence into a vector 

sequence. These vectors are delivered to a component called 
Algorithm in which the identification procedure is 
implemented. The output of this component is an XML file 
that can be opened with the Platform Independent Petri net 
Editor (PIPE [25]), which is an editor for visualization and 
analysis of Petri nets. 

The presented identification tool has been tested on several 
examples of diverse size and complexity. A small size case 
study regarding an actual manufacturing system is described in 
the supplementary files to this article [26] in which the use of 
such a software tool is illustrated.  

VII. CONCLUSION 

The proposed identification method discovers the actual 
input-output relation of PLC controlled discrete event systems. 
The technique allows building a concise IPN model in which 
the transitions are labeled with sufficient conditions on the 
inputs which represent both the input changed and the inputs 
execution context. The obtained structure is remarkably more 
clear and expressive than that synthesized with a previous 
method.  

The technique copes with complex automated DES because 
it takes into account technological characteristics of actual 
controlled systems, and because it is based on efficient 
algorithms. This feature is not still addressed in current 
literature on the matter, in which several features considered in 
the current stated problem have not been dealt.  

The algorithms issued from the present method have been 
implemented as a software tool and tested on experimental 
case studies which are very close to actual industrial discrete 
event processes. The performed tests reveal the efficiency of 
the methods when data including thousands of input-output 
vectors are processed in few seconds.  

Due to this is a black-box approach, the obtained models 
represent the observed behavior; consequently, when the 
observation has been made for a long time, the identified IPN 
approximates closely the actual behavior. Afterwards this 
model can be completed using available knowledge on the 
process. 
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