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A Blackboard-style decision-making system for multi-tier craft control and its 

evaluation 

Jeremy Straub &Hassan Reza 

 

Abstract 

This article presents an approach for decision-making in support of the control of an autonomous 

system of multiple tiers of robots (e.g., satellite, aerial and ground) based on the Blackboard 

architectural style. Under the proposed approach, the system evaluates prospective approaches 

for goal satisfaction (identified by user selected final rules), identifies the lowest-cost solution 

and determines the best path to achieving the goal, via the analysis of the Blackboard rule and 

action set. Two different approaches to this rule and action path generation are discussed. This 

article presents the proposed Blackboard-style architecture for autonomous multi-tier control and 

describes its implementation. The benefits and drawbacks of the Blackboard-style approach are 

analysed, its extrapolation to the control of multiple heterogeneous craft is presented and the 

tradeoffs between the two approaches to rule-path generation are assessed. 

Keywords: autonomous control, multi-tier control, blackboard architecture, robotic control 

 

1. Introduction 

The control of multiple robots with heterogeneous capabilities – both in terms of functionality 

and movement – is required for certain applications, such as planetary exploration, and beneficial 

for numerous others (e.g., persistent surveillance for defence and homeland security 

applications). The utility of these robots can be increased when they are able to collaborate, 

without direct controller involvement, to achieve their scientific or other goals. This autonomous 

control and collaboration, at a minimum, frees communications links to be used for data 

transmission (instead of control transmissions and the data required for decision-making). In 

some cases, it can provide synergistic value and allow faster performance of the mission 

objectives. 

Prior work (Straub, 2012a; Straub & Fevig, 2012) has discussed how an autonomously 

controlled multi-tier system consisting of orbital, aerial and ground craft can be utilised to 

facilitate planetary exploration. The use of a Blackboard-style decision-making architecture 

(based on the Blackboard architecture developed by Hayes-Roth (Hayes-Roth, 1985)) has 

previously (Straub, 2013c) been discussed. This article presents a refined version of the concept 

presented in (Straub, 2013c) and discusses its implementation. The performance of two 

approaches for Blackboard solving in support of decision-making are presented. Finally, the 

extrapolation of this approach to distributed control is briefly discussed. 

2. Background  



The proposed approach draws from significant prior work in the two areas. First, prior work in 

the control of multiple heterogeneous (in terms of craft movement and other capabilities) craft is 

discussed. Then, prior work related to the Blackboard architecture is reviewed. 

2.1 Control of multiple heterogeneous craft  

Several approaches for the control of an autonomous system of multiple craft with heterogeneous 

capabilities have been proposed. Fink, Dohm, Tarbell, Hare, and Baker (2005) and Fink et al. 

(2007, 2011) have proposed a “tier-scalable” system where craft are controlled from a central 

decision making orbital node. This approach benefits from the comparatively greater 

computational resources available at this craft. However, the approach may yield suboptimal 

performance when regional conditions (for the various areas that system component craft are 

operating in) vary or communications are intermittent.  

Corke, Peterson, and Rus (2005) looked at what is effectively a two-tier network. They 

utilised a network of sensors to guide an autonomous unmanned aerial vehicle (UAV). Their 

network can autonomously generate/re-generate paths and will also create transitional paths to 

guide the UAV from one path to the newly created one. The communications difficulties 

experienced in their field testing demonstrate a key problem with centralised control, network 

unreliability. Boano et al. (2010) characterised these communications problems and the 

resiliency of common protocols to them. They found that communications can be traded against 

latency, with a more latency-tolerant approach utilising only one-twentieth of the power of a less 

latency-tolerant one. Fairbairn, Bate, and Stankovic (2013) consider other impediments to system 

operations, concluding that environmental conditions pose the biggest threat to a system meeting 

its objectives.  

De Poorter, Moerman, and Demeester (2009) consider inter-node communications in the 

context of designing sensornets with heterogeneous node capabilities. They concluded that 

autonomous selection of communications approaches is required to maximise system 

performance. An alternate mechanism for increasing system performance (considering the level 

of power draw imposed by radio communications) has been suggested by Tate, Bate, and 

Poulding (2008). They found that an optimal communications protocol could reduce energy 

usage by 45%, allowing this power to be devoted to other activities (or reducing the level of 

generation capabilities required, in the context of a planetary mission, reducing mission mass and 

launch costs). Reducing the level of data transmission needed by increasing the value of data (as 

discussed in (Straub, 2012b, 2012c, 2013a, 2013b, 2013d)) can be used in addition to this for 

further optimisation. An approach featuring approximation of data, suggested by Gupta and 

Uthra (2013), would similarly reduce transmission and thus power needs; however, the accuracy 

of (level of error in) the data produced by this approach is unknown to system users, making it 

unsuitable for many applications.  

Colby and Tumer (2013) looked at the training of distributed multi-agent systems. They 

proffer that the use of “shaped rewards” in conjunction with a learning algorithm can produce as 

much as a two order-of-magnitude increase in system performance. Zhang and Lesser (2013) 

noted, however, that training can be problematic from a communications standpoint. They 



proposed an approach to training that is robust with regards to coordination issues, requiring less 

bandwidth and increasing scalability. Hamzi, Koudil, Jamont, and Occello (2013) presented a 

prospective framework for controlling a network of nodes utilising a multi-agent approach; 

however, it lacks quantitative assessment leaving the approach’s value unknown. Chun et al. 

(2005) and Haghighi (2014) both proposed the methods for making control decisions based on 
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generalisation of these approaches, leaving their utility for other applications, similarly, 

unknown. 

2.2 Blackboard architecture  

Hayes-Roth (1985), presented the blackboard architecture based upon the Hearsay-II system 

(Erman, Hayes-Roth, Lesser, & Reddy, 1980) for robotic control. The Blackboard approach 

largely functions like an expert system (e.g., (Buchanan et al., 1983; Clancey, 1983; 

Feigenbaum, Buchanan, & Lederberg, 1970; O’Keefe, Balci, & Smith, 1986; Shortliffe et al., 

1975; Waterman, 1986)); it differs in that it can trigger actions in addition to rules (expanding it 

from an recommendation generation system to a control system). The architecture is comprised 

of two blackboards: one is used for solving domain problems, while the other deals with control 

problems. These problems are solved via the invocation of rules on the blackboards (based on 

preconditions being met, placing it on the invokable list and its selection from this list). The 

initial paper (Hayes-Roth, 1985) failed to present any analytic data; however, Johnson and 

Hayes-Roth argued that applications such as the PROTEAN system (Johnson & Hayes-Roth, 

1987) have demonstrated the architecture’s efficacy.  

Hayes-Roth’s Blackboard system is not alone in solving problems in this way. Georgeff 

and Ingrand (1989) presented the similar SRI procedural reasoning system. This system, from 

their limited description, appears conceptually similar to the Blackboard approach, but not as 

robust (though this may be due to description and not system limitations). They note Hayes-

Roth’s paper (Hayes-Roth, 1985), published four years earlier; however, they utilise alternate 

terminology to describe the SRI system.  

Several different enhancements to the architecture have been presented. Rice (1986), for 

example, developed Poligon, which is a language for implementing Blackboard problemsolving 

approach applications. It is designed to be used to encapsulate and represent the problem-solving 

behaviour of human experts. Le Mentec and Brunessaux (1992) created the Lisp-based Atome-tr 

system that is designed to produce Blackboard reactions in an acceptable timeframe for real-

world control. They used a custom interrupt approach, dynamic planning and parallel processing 

to achieve this. Hewett and Hewett (1993) solved the problem that they identified while creating 

a common language for Blackboard solutions. It defines both syntax and mechanisms for 

maintaining the task list and for task activation. 

A variety of different uses of the Blackboard architecture have been demonstrated. 

Brzykcy, Martinek, Meissner, and Skrzypczynski (2001), for example, used it for updating a 

perception network that is used for controlling autonomous robots. Fayek, Liscano, and Karam 

(1993) demonstrated its use for travelling through a passage and navigating across an irregularly 



configured surface. Fox, Evans, Pearson, and Prescott (2012) consider how it can be used for 

mapping for robots with tactical sensing capabilities, while Yang, Tian, and Mei (2007) showed 

how the Blackboard architecture can facilitate learning. They used Q learning (a 

reinforcementstyle learning mechanism) to learn and share the learned behaviour for performing 

tasks. Shahbazian, Duquet, and Valin (1998) demonstrated the architecture’s utility for a naval 

command system and a surveillance system.  

de Campos and Monteiro de Macedo (1992) demonstrated, during the PANDORA 

project, how the Blackboard approach could be used to aid the autonomous navigation and 

control of vehicles in industrial and agricultural applications. Michael, Stump, and Mohta (2011) 

showed how it can be used for controlling micro-aerial vehicles, while Carroll, Boyd, and 

Denzinger (2008) demonstrated its use for controlling a group of UAVs and Goldin and 

Chesnokov (Goldin, 2011) demonstrated its use in controlling a spacecraft. Rubin, Smith, and 
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demonstrated how it can be utilised to detect prospective terrorist threats. Ronchi, Butera, 

Frascari, and Scaruffi (1987) and Rissland, Daniels, Rubinstein, and Skalak (1993) discussed 

how it can be used to help diagnose system problems. Tait, Schaefer, Hopgood, and Nolle (2005) 

showed how it can be used to detect problems with manufactured goods.  

Numerous uses outside of robotics, for the Blackboard architecture, also exist. Plumbley 

et al. (2002) has demonstrated its utility for transcription. Dong, Shan, Ruan, Zhou, and Zuo 

(2013) have shown that it can help make apparel selections. McDonald, Gokhman, and Zachry 

(2012) have shown its utility for making inferences about social translucence, Wu, Peng, Zhu, 

and Zhang (2012) have demonstrated that it can be used for monitoring the elderly, Eldrandaly & 

Naguib (2013) demonstrated its effectiveness for aiding geographic information software 

selection, while Sanchez and Acquesta (2012) have even demonstrated its utility for risk 

management. 

3. A Blackboard control system for multi-tier control  

An approach to craft goal-setting was presented in (Straub, 2013c) is based on the Blackboard 

architecture. In this implementation, facts represent various pieces of information about the area 

of interest that are relevant to the decision-making process. Facts have multiple levels of scope. 

For example, a single fact (at the lowest level) may indicate a positive result for a particular test 

in a particular area. The next level up of fact (asserted, perhaps by a rule triggered because of the 

foregoing fact and other supporting details) might indicate that water existed at a given location. 

Finally, the detection of water at multiple locations in a region may support its classification as a 

dried up stream bed. Rules, thus, interconnect the facts in logically sound ways. Actions can 

trigger facts as well, but require a real-world or computational sequence to occur as part of the 

process (e.g., move to and collect data at a given location). Facts can be asserted by any tier craft 

and rules may combine facts which must be collected/asserted by craft of different tiers.  

Under this approach, one or more rules are identified as final rules which, if triggered, 

indicate that the given goal has been met. Note that, under this approach, each identified final 

rule is taken to represent complete satisfaction of the goal (thus if multiple rules are required to 



be triggered for completion, a rule that requires these rules as a prerequisite should be created 

and identified as a final rule). The identification of these final rules as well as the prerequisite 

relationships between rules (and the facts they assert/require) allows a network of rules to be 

created. This is shown in Figure 1.  

Rules, however, are not the only part of a Blackboard architecture. Actions can be 

triggered; however, actions do not assert facts directly. Instead, they perform some task (e.g., 

triggering data collection) that may, indirectly, assert one or more facts. While some actions may 

have deterministic results, many (such as data collection activities) will not. Moreover, once an 

action is asserted, the Blackboard must continue operating with no immediate change in state 

(other than storing that the action has been triggered to prevent repetitive re-triggering of the 

same action). This more complex relationship is shown in Figure 2.  

The Blackboard Solver is tasked with determining what to invoke during each cycle of 

Blackboard operations. The solver seeks to reach an end condition within a minimum amount of 

time and cost. It attempts to locate the lowest total-cost path, based on estimating costs for each 

rule or action to run and the value that is produced (in terms of moving the system towards an 

end condition). Two weight parameters are used to control the system’s posture towards 

combined cost and value assessment. This, thus, can be determined by: 

 

 

Figure 1. Network of rules showing end conditions and paths to arriving at these end conditions (modified from 

(Straub, 2013c)). 

where a and b are the weight parameters and Vx and Cx are the value and cost of a given 

node. The selection metric, Gx, is a goodness value that is used for comparison purposes. As the 

cost of running a rule will generally be significantly (an order of magnitude or more) less than 

triggering 



 

Figure 2. Addition of actions to the fact/rule network. 

an action, rules that are invokable will generally be run before actions are triggered (however, if 

some rules are computationally intensive and thus have a higher cost, this may not always be 

true).  

Several factors are considered in this cost and value determination process. Also, 

complexifying this is the fact that actions may have a single outcome with an associated 

uncertainty as to whether it occurs (which must be estimated) or multiple prospective outcomes 

(each with a given level of uncertainty). The cost of nodes (rules or actions) that are not currently 

invokable (i.e., which have unsatisfied prerequisites) is determined by their own cost plus the 

cost of the lowest cost projected way to satisfy their prerequisites. Figure 3 depicts the factors 

that are considered in the determination of the goodness metric for each node. The path with the 

lowest cost for the final rule is selected and the next nodes (that are part of the low-cost chain) 

are invoked.  

During each operating cycle, the Blackboard, thus (presuming a case where high-cost 

rules are not present), looks for rules that are invokable and selects the best rule (based on the 

previously discussed criteria). Failing this, it will look for (higher-cost) actions that can generate 

data required for rules that are the next node in the lowest-cost chain and select the best action 

that is invokable. Once an action is invoked, the next cycle starts and (presuming no changes 

have occurred during this short period of time) another action to invoke may be identified. 

Parameters determine the number of actions that can be invoked at any given time and whether 

additional actions that will generate tasks for craft that have already received tasks from another 

action’s invocation can be triggered. Figure 4 depicts this decision-making process.  

In a change to the approach presented in (Straub, 2013c), final facts are selected for the 

work herein as it aided in the efficiency of system operations. The approach is functionally 

similar, as a rule that would previously have been a final rule can now simply assert a final fact. 

This change 



 

Figure 3. Determination of value, cost and goodness metric (modified from (Straub, 2013c)). 

 

Figure 4. Diagram of system operations (modified from (Straub, 2013c)). 

also facilitates actions being involved in the final aspect of solving a Blackboard problem, 

without requiring another rule evaluation.  

4. Characterisation of performance and comparison of solver approaches  

This section presents the results of comparative tests that were performed to assess the relative 

performance of a Blackboard-style best-path solver approach and a naïve solver, which operates 

in the manner described by Hayes-Roth (1985). First, a brief overview of the naïve solver is 

provided, for comparative purposes. Next, the methodology for the comparative testing is 

described. Then, the data collected is presented and discussed. Finally, analysis of this data is 

conducted. 

4.1 Overview of naïve solver  



The naïve solver works through operating the Blackboard’s rules and actions in a forward (rule/ 

action execution) manner without prior knowledge of what rules and actions are part of the best 

path. It runs all rules and actions that are invokable (i.e., whose prerequisites are satisfied) based 

on their numerical order. Rules are invoked and mark applicable facts as asserted and trigger 

actions. Actions are invoked recursively, as an action may assert one or more facts and/or trigger 

Controller-Supplied High-Level Goals Identify ‘Final’ Rules Required for Goals Data on 

Blackboard Are rules triggered? Choose ‘Best’ Rule Determine What Data is Needed for ‘Best’ 

Rule Yes No Run Rule No Can This Data Be Obtained? Task Data Collection Yes Choose Next 

Best Rule No End Has ‘End’ Rule Run? End Yes Rule Identified No More Rules Figure 4. 

Diagram of system operations (modified from (Straub, 2013c)). Journal of Experimental & 

Theoretical Artificial Intelligence 7697 one or more additional actions. After each invocation, the 

Blackboard is checked to determine whether a final condition has occurred.  

4.2 Experimental methodology  

The Blackboard-based decision-making approach and naïve solver were implemented in a single 

application. This application creates a random network of rules, facts and actions (including 

random selection of pre-conditions and selection of initially asserted facts). A configurable 

number of rules, facts and actions can be utilised. For the testing conducted herein, 1000 facts, 

1000 rules and 1000 actions were created. Approximately 30% of the facts were initially marked 

as asserted. For each rule, between 1 and 7 facts are randomly selected to serve as preconditions 

(both the number of facts utilised as preconditions and the actual facts are selected randomly). 

Between 0 and 7 facts are selected randomly (again, both the number and actual facts are 

randomly selected) to serve as assertions that are made when the rule is invoked. Actions, 

similarly have between 0 and 7 randomly selected (both the number and actual facts) facts as 

assertions that are made when the action is triggered. Each action is randomly assigned a cost of 

between 0 and 25.  

One-hundred runs of the network generation and solving process were conducted. During 

each run, a new random network was created and a target node (representing a single final 

condition) was selected, randomly. The best-path solver was then used to identify the lowestcost 

path and the naïve solver was used to generate its path. The data collected during this process is 

presented in the subsequent section. 

4.3 Data collected  

The data collected by the process presented in Section 4.2 is presented in Table 1. This table 

presents the average values across the 100 runs conducted. The first two fields (solver iterations 

and path length) relate to the best-path solver and the latter two (number of rules and actions run) 

relate to the naïve solver.  

The number of solver iterations value indicates the number of times that propagation 

routine had to process the blackboard’s node-network to propagate the aggregate cost values 

through it. The solver continues running (iterating) until a run is completed without any changes 

being made. The path length is the number of executions that are required by the path identified 

by the best-path solver.  



For the naïve solver, the number of both rules and actions run was tracked. The naïve 

solver stops when the user-designated final condition is identified as having occurred (or after a 

configurable number of runs without a solution being found. Out of the 100 test runs, four were 

excluded from the data presented in Table 1 because no solution was found (in this case the 

numbers of rules/actions run are significantly higher to the extent that it noticeably increases the 

average number of runs). 

 

 

Figure 5. Solver iterations. 

The data collected is also visually depicted. The graphs (Figures 5 – 7) show the level of 

variability across the trial runs. Figure 5 depicts the number of iterations of the solver run. Figure 

6 shows the path length of the best-path solution. Finally, Figure 7 indicates the number of rule 

and action executions required by the naïve solver. There is very limited correlation between 

these three values across the set of trial runs.  

4.4 Analysis of collected data  

The collected data, presented in Table 1, requires additional details to assess. Two different 

metrics relevant to the analysis of this data exist. The first is the computational time required 



 

Figure 6. Solution hops. 

 

Figure 7. Number of rules and actions run. 

and the second is the cost of actions run (rules only incur computational time and thus have no 

cost).  

 The average amount of time required for the 100 runs of the solver is presented in Table 

2. An average of 8.3 iterations were run requiring an average of 1413.8 ticks each. The solver, 

thus, requires, on average, approximately 170.3 ticks per iteration.  

Because of the recursive nature of action invocation, the time required to run a single 

action cannot be directly characterised. Instead, the duration (in ticks) is collected for running a 

set of actions and rules. This is presented in Table 3. Because the amount of computational time 

required for processing a single rule and action is not significantly different (compared with the 

ticks metric) it will be presumed that they require the same amount of time for the purposes of 

comparison (however, this is not always accurate).  

 



Table 2. Characterisation of solver computational time requirements 

 

Table 3. Characterisation of time required for running actions and rules. 

 

As shown in Table 3, an average of 850.5 rules and 1135.8 actions (1986.3 executions 

per run) were run during each of the 100 trials. This required 337.7 ticks, on average. From this, 

it is computed that each rule or action requires 0.17 ticks to run, on average.  

Using this data, the average computational performance of the two can be assessed. 

Comparing the time values in Tables 2 and 3, it is clear that the naïve solver is much faster than 

the best path solver. The best-path solver takes, on average, 4.19 times as long to find a path as 

the naïve solver. It is, thus, considerably lower in computational cost. The impact of the lower 

computational cost, however, is relatively small compared with the difference in the number of 

actions that are must be executed. The naïve solver executes, on average 1135.8 actions while the 

best-path approach executes below 10, on average. The exact cost of these actions requires 

knowledge of the particular application, environment and task set that the software is being used 

in; however, given that many actions will involve robot movement and interaction with the real 

world, it will be significantly slower. Using the arbitrary (and overly optimistic) average value of 

12.5, the naïve approach requires ten times as long (and this is presuming that actions take on 

average only 12.5 ticks – in the real world this could be orders of magnitude higher). Future 

work will assess the real-world, application-specific significance of these differences.  

5. Comparing multiple naïve solver runs to single run  

Because of the faster computational speed of the naïve solver, it can be run (on average) four 

times during the time that the best-path solver takes. The value of multiple runs is now 

considered. Table 4 indicates where the best performing run was found (by count) in each of the 

trials run. A total of 150 trials were run; 40 of them were discarded because one or more of the 

naïve solver runs completed without finding a solution (which produces a very high number of 

rule/action runs which impacts the statistics).  

The value of using the lowest-cost (of the four executions) is characterised in Table 5. 

The reduction in the number of rules run saves (as per the previous characterisation in Section 

4.4) 

Table 4. Location of best performing run for rules and actions. 

 



Table 5. Amount of executions saved by using best number of rules and actions versus first run. 

 

approximately 46.57 ticks. Based on the previously used arbitrary value of 12.5 ticks used for 

activation duration, the reduced number of actions saves 4635.8 ticks. Again, depending on the 

nature of the action performed, this could be a dramatic underestimate (12.5 ticks might be 

realistic for running a sub-routine, etc. but would dramatically underestimate any physical action; 

again, this must be assessed in context).  

6. Discussion of the efficacy of the Blackboard approach and extrapolation to a distributed 

Blackboard  

The work presented has shown how the network of Blackboard rules, facts and actions can be 

utilised to formulate plans for robotic decision-making, in support of mission goal completion. 

Other approaches that could be utilised include teleoperation (where controllers command the 

robot on specific actions to perform and figure out what actions best support goals themselves), 

scripted (or swarm-style) exploration where particular (perhaps coverage-optimised) paths are 

taken to explore a region and other decision-making network-based approaches (e.g., an expert 

system that generates suggestions). The ability to ascertain what is required to satisfy a goal 

provides the Blackboard-style (and to a lesser extent the expert system) approach with a 

significant benefit when compared with scripted or swarm-style exploration: it allows 

decisionmaking to avoid collecting unneeded or redundant data. Compared with teleoperation, 

the wait time required for transmission to a human, human review, human command decision-

making and transmission back is eliminated. The expert system-style approach provides part of 

the benefit of the Blackboard styles (as the Blackboard architecture is an extension of an expert 

system); however, this approach must still find another way to turn suggestions into executed 

commands. Thus while similar performance may be attainable, starting from the expert system 

architecture is (likely needlessly) “reinventing the wheel” already demonstrated by the 

Blackboard-style architecture.  

The extrapolation of this work to a distributed Blackboard is a subject for future work; 

however, this will necessitate solving a rule network that spans multiple Blackboards. To 

minimise communications requirements, the network of each node’s Blackboard is not shared 

with other nodes. The cost of sharing this data and the value of making a more informed decision 

must be compared with the (potentially sub-optimal) decision that would be made treating each 

Blackboard’s network as a black box (or requiring each to perform its own solving within its 

scope of influence).  

7. Conclusions and future work  

This article presented a Blackboard-style control architecture for a collection of heterogeneous 

autonomous craft. It described the implementation of this system, including how rules and 

actions are selected for invocation based on a cost/value analysis process. The performance of 

two different approaches to finding the path that will be used for valuing cost and value of rules 



for selection purposes has been evaluated and the tradeoffs (faster computational performance 

versus faster real-world performance) assessed.  

Future work will include adapting the proposed approach to serve as a distributed control 

system, expanding it to allow delegation of selected goals as assigned goals to subordinate craft. 

This more complex system will allow the comparison of a distributed control approach to a 

centralised one (such as the approach proposed by Fink et al. (2005, 2007, 2011)). It will also 

facilitate the comparison of the Blackboard versus non-Blackboard control strategies for this 

distributed control and the assessment of different approaches for the implementation of 

components of these control architectures.  
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