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ABSTRACT Denoising convolutional neural networks (DnCNNs), initially developed for Gaussian noise

removal, are powerful nonlinear mapping models in image processing. After changes in training data, they

can be used for suppression of random-valued impulse noise (RVIN) with excellent results. To achieve

favorable denoising performance, however, it is necessary to have an accurate perception of the noise ratio

so that the most suitable DnCNN can be chosen for denoising. Thus, this model is severely limited in

flexibility. To address this problem, we propose a blind CNN model for RVIN denoising with a flexible

noise ratio predictor (NRP) as an indicator. Some patches are randomly selected from the RVIN-corrupted

test image, and feature vectors that indicate whether the center pixel is contaminated or not are extracted by

the predictor. These feature vectors are composed of multiple statistics, namely, the multiple rank-ordered

absolute differences (ROADs), the clean pixel median deviation (CPMD), and the edge pixel difference

(EPD). They are rapidly mapped to noise/clean (1 for noise, 0 for clean) labels by the pre-trained noise

detector (the key component of our NRP). According to the ratio of the obtained noisy labels to the total

number of selected patches, the predictor provides the noise ratio of the whole image. From the output of

the NRP, i.e., the predicted noise ratio, the most appropriate DnCNN specifically trained for this noise ratio

is exploited for denoising. Under the guidance of the NRP, the proposed method has the ability to handle

unknown noise ratios. Simulation results indicate that our blind denoising CNNmodel achieves state-of-the-

art performance in terms of both execution efficiency and restoration results.

INDEX TERMS Image denoising, random-valued impulse noise, noise ratio prediction, convolutional neural

networks.

I. INTRODUCTION

Noisy camera sensors or imperfect transmission frequently

lead to the introduction of impulse noise (IN) into digital

images. Impulse noise can be divided into two categories:

fixed-valued impulse noise (FVIN) and random-valued

impulse noise (RVIN). FVIN takes the minimum (0 or black

dots) or the maximum (255 or white dots) grayscale value

with equal probabilities in the corrupted gray-level image.

For an RVIN-contaminated image, noise pixels are randomly

valued in the range [0–255]. Therefore, removal of RVIN is

muchmore difficult than that of FVIN. In this paper, we focus

mainly on RVIN denoising.

The associate editor coordinating the review of this article and approving
it for publication was Alexandros Iosifidis.

To suppress RVIN, a number of techniques have been pro-

posed over the last few decades. These include nonlinear fil-

ters such as the median (MED) filter [1], the center-weighted

median (CWM) filter [2], and the lower upper median (LUM)

filter [3]. These methods are simple and of low computational

cost, however, they process all pixels without identifying

whether each pixel is corrupted or not, which leads to blurring

of the image details and edges. To solve this problem, and thus

avoid changing clean pixels, several filters that are integrated

with noise detectors have been proposed [4]–[9], such as the

adaptive switching median (ASWM) filter [4] and the ROR

nonlocal mean (ROR-NLM) [8]. Garnett et al. [10] found

that the information pixels have a strong relationship with

their surrounding pixels in natural images. The rank-ordered

absolute difference (ROAD) was then proposed to describe

noise pixels. Also based on this strategy, the rank-ordered
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logarithmic difference (ROLD) [11] can amplify the differ-

ence between clean and noise pixels by using a logarith-

mic function. As a noise-detecting statistic, ROLD is always

combined with edge-preserving regularization (EPR) [12] for

RVIN removal. Executing iteratively, ROLD-EPR performs

well both in noise detection and image restoration, but at the

expense of a long execution time.

In the last few years, neural networks and fuzzy sys-

tems, with their powerful data processing capabilities, have

gradually been introduced into image processing. In [13],

an impulse noise filter using fuzzy logic to process the

RVIN-contaminated images was presented, which outper-

forms conventional methods in its powerful noise suppression

ability as well as in its ability to preserve image details.

In [14], a neural detector trained by an artificial neural net-

work was proposed for RVIN detection. This method has

two different input training parameters: a pixel-wise median

of the absolute deviations from the median (MAD) [15]

and the ROAD statistics [10]. However, as a component

of improved adaptive impulsive noise suppression (IAINS),

the detector is only suitable for low-level noise detection.

To solve this problem, an improved neural detector was

introduced in [16]. Taking ROAD and ROLD statistics as

training inputs, the noise detector proposed in [16] can detect

noise at higher ratios, but it cannot distinguish between edge

pixels well, and its detection efficiency is not good enough.

Based on similar standard median filters, an extension was

introduced in [17]. By utilizing a modified hybrid median

algorithm, the improved filter replaces the current pixel in

the filtering process. Although it has better performance

than standard median filters, it is only effective at low noise

ratios. In [18], amultilayer neural-network-based noise detec-

tor with five training parameters was proposed for RVIN

suppression.

In contrast to the traditional iterative-based methods, these

training-based methods possess high execution efficiency,

since they avoid multiple iterative computations. However,

they still suffer from several drawbacks. For instance, for

complex images, even if the model is well trained, the detec-

tion accuracy will suffer somewhat of a loss. In other words,

these noise detectors are not completely free from false

detections and missed detections. False detections lead to

blurring of the image, whilemissed detections lead to residual

noise pixels, both of which will degrade image quality. Fur-

thermore, filtering by traditional RVIN denoisers is affected

by imperfect detection results and the processing only of

noise-detected pixels, leading to ineffective restoration.

In recent years, convolutional neural networks (CNNs)

have attracted much attention owing to their powerful pro-

cessing ability. They show much potential for use in image

feature extraction, which can benefit from their deep archi-

tecture. The development of CNNs, in particular with regard

to improvements in their denoising performance, has greatly

benefited from the emergence of new techniques such as the

rectified linear unit (ReLU) [19], residual learning [20]–[22],

batch normalization [23], parameter initialization [24],

tradeoff between depth and width [25], and gradient-based

optimization algorithms [26]–[28]. In addition, the advent

of powerful graphics processing units (GPUs) has greatly

reduced the execution time of CNNs. Simonyan et al. [29]

proposed an ImageNet classification based on a CNN with

very deep architecture. Zhang et al. [30] introduced a CNN

denoiser with seven dilated convolution layers [31], which

gives a good tradeoff between denoising ability and execution

efficiency. On the basis of residual learning [20], a residual

network can easily learn an accurate residual mapping for

a few stacked layers. Extremely deep CNNs can be easily

trained, and favorable accuracy can been achieved for image

denoising when the image likelihood is known. As long as

a DnCNN model is well trained, it can achieve state-of-the-

art performance for noise ratios that are close to its train-

ing noise ratio; however, this is also a limitation. In [32],

a deep CNN for natural image denoisingwas proposed, which

gives a favorable restoration result in terms of both quanti-

tative measures and visual effect. In contrast to most of the

traditional denoising methods that remove noise pixel-by-

pixel, which leads to inefficient restoration, the CNN-based

technique completes denoising rapidly and effectively owing

to its powerful denoising ability, which benefits from the

deep architecture. In [33], a discriminative DnCNN model

for Gaussian denoising was proposed, which has outstanding

performance in terms of both noise suppression and compu-

tational efficiency. Considering the favorable performance of

DnCNN models, we can use this technique in RVIN denois-

ing. However, this model is severely limited in flexibility,

i.e., to produce a satisfactory performance, a DnCNN model

needs to know the severity of corruption of the noisy image.

For RVIN denoising, the noise ratio is a good metric to

represent this severity.

To overcome this drawback, in this paper, we propose

an adaptive blind CNN-based model for RVIN denoising

with a noise ratio predictor that can measure the severity

of corruption (i.e., the noise ratio) of the image rapidly and

efficiently. Under the guidance of the noise ratio predictor

(NRP), the most suitable DnCNN model is exploited for

image restoration. By randomly selecting some patches from

the test image and extracting noise feature vectors for the

corresponding center pixels with these patches, our noise

detector (the key component of our NRP) is able to iden-

tify whether the center pixel is noise or not, based on the

knowledge acquired in the training phase. To strengthen

the detection accuracy, our proposed neural noise detector

adopts a feature vector consisting of multiple robust statistics,

the multiple rank-ordered absolute differences (ROADs), the

clean pixel median deviation (CPMD), which describes how

likely the investigated pixel is to be a noise pixel, and the

edge pixel difference (EPD), which can distinguish the edge

pixels and the noise pixels. After calculating the ratio of

the identified noise pixels to the total number of selected

patches, the predictor rapidly gives the predictive noise ratio

of the test image, and the most appropriate DnCNN, which

is trained by provided training image patches obtained from
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RVIN-contaminated images, is then exploited for denoising.

Compared with traditional switching denoising algorithms,

the proposed model avoids image degradation resulting from

the dependence on imperfect detection, and restores images

by utilizing prior knowledge obtained from the training

phase. The use of an NRP allows the proposed model to

overcome the limitations on flexibility fromwhich traditional

CNN denoising methods suffer.

The remainder of this paper is organized as follows: related

work is described in Section II, the proposed method is

introduced in Section III, simulation results are compared in

Section IV, and conclusions are presented in Section V.

II. RELATED WORK

A. REVIEW OF RVIN DENOISING ALGORITHMS

To address RVIN denoising problems, many techniques have

been proposed over the last few decades. PSMF [34], ROLD-

EPR [11], ASWM [4], and ROR-NLM [8] are commonly

used switching-based algorithms, whose denoising process

relies heavily on the detection results. To achieve higher

detection accuracy and better denoising performance, these

algorithms are implemented in an iterative manner, lead-

ing to long execution times. The training-based denoising

algorithms, such as ANN [16], possess high execution effi-

ciency and favorable performance. However, their detection

accuracy is still unsatisfactory, which may lead to image

degradation in the subsequent denoising process. Recently,

RVIN denoising algorithms based on matrix completion have

been proposed [35]–[39]. Ongie et al. [35] proposed an image

inpaintingmethod called the generic iterative reweighed anni-

hilation filter (GIRAF) algorithm, whichworks in the original

unlifted domain by exploiting the convolutional structure of

the lifted matrix. However, GIRAF removes only the detected

noise pixel-by-pixel, which means that the quality of restored

image is still limited by the detection accuracy. Jin et al. [39]

noted that an image corrupted by RVIN has intact pixels

and proposed to use low-rank Hankel structured matrix to

model the underlying image. Although GIRAF [35] and

ALOHA [39] can achieve promising denoising performance,

they require long execution times.

B. REVIEW OF ROAD

The ROAD statistic proposed in [10] is effective for detecting

pixels corrupted with RVIN. It can be briefly summarized as

follows. Let xi,j be the intensity value of the pixel located at

(i, j); then a (2N + 1) × (2N + 1) window containing the set

of coordinates centered at (i, j) can be defined as

�i,j = {xi+s,j+t} (1)

where −N ≤ s, t ≤ N . The absolute difference of each pixel

in this window is calculated as

di,j(s, t) = |xi+s,j+t − xi,j|. (2)

FIGURE 1. Comparison of ROAD statistics of two different center pixels.

Then, all the di,j values are sorted in ascending order, and the

nth smallest di,j are selected to calculate ROAD as

ROADn(xi,j) =

n
∑

k=1

rk (xi,j) (3)

where rk (xi,j) is the kth smallest di,j.

C. WEAKNESS OF ROAD

According to [10], larger ROAD values indicate noise pix-

els, while smaller values indicate clean pixels. The ROAD

strategy identifies noise pixels by only comparing the ROAD

value of the investigated center pixel with a predefined thresh-

old, which has limited detection capability. In Fig. 1, two

5×5 patches are extracted from the Lena image corrupted by

20% RVIN. Patches a2 and b2 are extracted from a smooth

area and a detailed region, respectively. As shown in Fig. 1,

the ROAD statistics of patches a2 and b2 are 339 and 347,

respectively, which are very close. Hence, if we use only

one threshold, these two center pixels will both be identified

as noise pixels and consequently will be changed in the

subsequent filtering procedure. However, the center pixels

of patches a2 and b2 are actually noise and clean pixels,

respectively. This reveals the weak detection capability of the

conventional ROAD strategy. As shown in Table 1, the dif-

ference between patches a2 and b2, ranging from ROAD1

to ROADn, is obvious. As the center pixel of patch a2 is

corrupted by RVIN, its intensity is quite different from those

of its surrounding pixels. Thus, the ROADn statistics of patch

a2 increase rapidly when n is small, while this would not be

the case for clean one. Hence, we adopt multiple different

ROADn statistics to better identify noise and clean pixels.

Furthermore, to enhance the description capability of our

NRP, we also adopt another two features (namely, CPMD and

EPD), which will be described in detail in Section III.
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TABLE 1. Comparison of ROADn values of the center pixels in Fig. 1.

FIGURE 2. The overview of the proposed noise ratio predictor.

III. PROPOSED METHOD

To handle denoising problems with unknown noise ratio,

a good blind denoising algorithm is expected to have the

following desirable properties: (1) it should be able to handle

unknown noise ratios in a flexible manner; (2) it should

possess state-of-the-art execution efficiency and denoising

performance. To achieve this goal, we propose an NRP

and combine it with CNN models for RVIN denoising. To

improve the performance of the training-based RVIN pre-

dictor in terms of both execution efficiency and detection

accuracy, we train our noise detector (the key component of

our NRP) with multiple statistics, including ROADs, CPMD,

and EPD, which are able to provide good descriptions of

the characteristics of noise pixels and edge pixels. For RVIN

denoising, we adopt a CNN model, since it can achieve fast

and effective denoising performance, benefiting from its deep

architecture. Our blind denoising model provides fast yet

accurate prediction at a wide range of noise ratios, indepen-

dent of any parameters (without using predefined thresholds)

and, based on the knowledge acquired during the training

phase, it then adaptively adopts the most appropriate CNN

model for denoising.

A. NOISE RATIO PREDICTOR

Fig. 2 shows the framework of the proposed NRP. A test

noisy image was first decomposed into overlapping patches

by raster scanning in a pixel-by-pixel sliding window man-

ner. Then, some patches were randomly selected for extract-

ing feature vectors that were fed forward to the pre-trained

noise detector. Based on a large number of training samples,

the pre-trained noise detector quickly assigned a noise/clean

label to the center pixel of each selected patch. Finally,

the noise ratio of the identified noise pixels to the total number

of selected patches was calculated as the predictive noise ratio

for the test noisy image.

For noise detection, the input feature vector Fi of the

pre-trained noise detector is composed of multiple ROAD

statistics, the CPMD statistic, and the EPD statistic. The

ROAD statistic has already been reviewed in Section II, and

we will describe the other two features in the following two

subsections.

1) CPMD

Although the ROAD statistic can efficiently identify noise

pixels, it does not on its own provide good enough per-

formance. The detection performance of a noisy window is

always far worse than that of a clean window. Therefore,

a CPMD strategy based on the ROAD statistic is adopted

to boost the noise detection capability. This strategy can be

described as follows:

1) Calculate the ROAD statistics of the sliding window

�i,j using (3), then sort ROADn(xi,j) in ascending order

and denote this by

R(xi,j) =
{

r1, r2, . . . , rk , . . . , r(2N+1)2
}

(4)

where rk is the ascending sorted value of rk (xi,j).

2) Calculate the absolute difference between the two adja-

cent rk for all the elements in R(xi,j), defined as

Ui,j={uk |uk =|rk+1−rk |, k=1, 2, . . . , (2N+1)2−1}.

(5)

3) Find a uk in Ui,j, let ug ≤ T for g < k , and uk > T ,

where T is the average of the set U . Then we get the

k + 1 minimum ROAD statistics, denoted by

R̃(xi,j) = {r1, r2, . . . , rk+1}. (6)
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FIGURE 3. Example of a CPMD calculation.

4) Those pixels with ROAD statistics that correspond to

R̃(xi,j) are picked as clean-like pixels, defined as

CPi,j = {x̃k |R(x̃k ) = rk , rk ∈ R̃(xi,j)}. (7)

5) The median of CPi,j of the inner or outer circle is

computed by

CPMi,j = median{CPi,j}. (8)

Here, taking a 5 × 5 window as an example, the inner

(outer) median is calculated in Fig. 3.

6) Calculate the deviation between xi,j and its correspond-

ing inner and outer medians, and select the smaller one

as the CPMD:

CPMDi,j = min{|CPMinner
i,j − xi,j|, |CPM

outer
i,j − xi,j|}

(9)

where CPMinner
i,j and CPMouter

i,j represent the corre-

sponding inner and outer medians, respectively.

This feature reflects the difference between the investi-

gated pixel and ‘‘clean’’ pixels; in other words, if xi,j is a noise

pixel, its corresponding CPMD should be large.

2) EPD

Edge detection has always been a tricky problem in noise

detection. Some information pixels in the edges can easily

be falsely identified as noise pixels. Therefore, we propose

a third feature, namely, the edge pixel difference (EPD),

to better distinguish between noise pixels and edge pixels.

If the current pixel is on the edge, its derivative in the edge

direction should be small, i.e., the intensity values between

edge pixels should be very close, whereas this is not the case

for noise pixels. The concrete steps in determining the EPD

are as follows:

1) Calculate the following datasets for four directions in

the sliding window �i,j, i.e., horizontal, vertical, left

diagonal, and right diagonal, respectively:

e
p
i,j = {dpn |d

p
n = |x

p
h,l − xi,j|} (10)

where p represents the different directions, and

xh,l represents the edge pixels on the four direc-

tions passing through the center pixel, i.e., xh,l =

xi,j−N+n for horizontal, xh,l = xi−N+n,j for vertical,

xh,l = xi−N+n,j−N+n for left diagonal, and xh,l =

xi−N+n,j+N−n for right diagonal, where 0 ≤ n ≤

2N , n 6= N .

2) A logarithmic function is employed to amplify the

difference between pixels while keeping the original

small difference from growing too much. It is defined

as

ẽ
p
i,j =

{

d̃
p
n

∣

∣

∣

∣

d̃
p
n = 1 +

max{loga(d
p
n ), −b}

b

}

(11)

where a and b are suggested to take the values 2 and 5,

respectively, after trials.

3) To further distinguish noise and other pixels, each set

is summed, and the minimum is selected and defined

as the EPD:

EPDi,j = min

{

Dpn

∣

∣

∣

∣

Dpn =

2N
∑

n=1

d̃
p
n

}

. (12)

After trials, we suggest that our noise detector should be

trained with the following feature vector:

Fi = {ROAD1, . . . ,ROADn,CPMD, EPD} (13)

where n = (2N+1)2−1
2

and ROAD, CPMD, and EPD are

calculated using (3), (9), and (12), respectively. It is worth

noting that if the center pixel of a patch is noisy, then all

the features to which it corresponds will be large. For a

clean center pixel, the ROADn (n = 1, . . . , (2N+1)2−1
2

) values

of this pixel are not all large, whereas this is not the case

for noise pixels, which indicates that our multiple ROAD

statistics scheme possesses a stronger description capabil-

ity than the single ROAD scheme. Moreover, this ROADn

(n = 1, . . . , (2N+1)2−1
2

) scheme takes full advantage of the

cumulative summation procedure, which does not require any

extra execution time. In this paper, we have adopted a 5 × 5

sliding window, i.e., N = 2, ROADn (n = 1, . . . , 12).

B. NOISE DETECTOR TRAINING

To improve our noise detector in terms of both flexibility

and accuracy, we corrupted 200 images in the Berkeley seg-

mentation dataset (BSD300) [40] from 10% to 70% RVIN in

increments of 2%. Then, we randomly selected 50 patches

for each image at each noise ratio, from which we extracted

the proposed feature vector, i.e., (13), and the corresponding

noise label indicating whether the center pixel is noise or not.

About 300 000 training data pairs were eventually obtained

and used for training.

To achieve fast yet accurate noise detection, we adopt a

back-propagation (BP) neural network to train our detector,

owing to its fast learning ability. To establish the most appro-

priate network architecture, we vary the number of neurons

from three to twelve, and the number of hidden layers from

one to four, with the results shown in Figs. 4 and 5. Fig. 4

reveals that the accuracy rate of the noise detectors with

five neurons is the best; however, from Fig.5, the accuracy

rates of the noise detectors with two, three, and four hidden

layers are very close. To make a tradeoff between detection

accuracy and execution efficiency, we eventually modeled

a noise detector on the basis of a BP neural network with
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FIGURE 4. Average precision rate of the proposed noise detector with
different numbers of neurons.

FIGURE 5. Average precision rate of the proposed noise detector with
different numbers of hidden layers (five neurons each).

FIGURE 6. Architecture of the proposed noise detector.

two hidden layers, each with five neurons. The architecture

adopted for the proposed noise detector is shown in Fig. 6.

C. DnCNN Model

After completing the training of the noise detector, we next

establish the DnCNN model. From a residual learning strat-

egy, deep CNN models can be easily implemented and can

achieve favorable denoising performance. We adopt the same

network architecture as proposed by Zhang et al. [33], with

‘‘Conv + ReLU’’ being adopted for the first layer, ‘‘Conv +

BN+ReLU’’ for the middle layers, and ‘‘Conv+ReLU’’ for

the last layer. At the same time, we extend the DnCNNmodel

by providing an RVIN-corrupted image patch pair to enable

it to handle RVIN denoising. The noisy observation y = x+v

is employed as the input of DnCNN, where x and v denote the

clean image and random-valued impulse noise, respectively.

Simultaneously, a residual learning formulation is used to

obtain a residual mapping R(y) ≈ v. During the training

process, the desired parameters 2 are learned in the deep

architecture of the CNN and represent the averaged mean

square error between the residual images and the investigated

ones from the noisy input, which can be expressed as follows:

Ŵ(2) =

{

1

2M

M
∑

m=1

‖R(ym; 2) − (ym − xm)‖
2
F

}

(14)

where ym and xm denote the mth corresponding RVIN-

corrupted and clean image training patch pair, respectively.

Zhang et al. [33] noted that the CNN models are capable

of handling RVIN denoising after changing the training pairs.

They adopted a residual learning formulation [20] and batch

normalization [23] in their CNN models, since these are

mutually beneficial, and, even in a deep network structure,

they can still provide fast convergence and good restoration

results. Hence, we adopt these two techniques in our DnCNN

model to speed up the training phase as well as to boost

the denoising performance. In this paper, we adopt the same

parameter settings as in [33], which are as follows: a receptive

field of 40×40 with a corresponding depth of 17, a batch size

of 128, a weight decay of 0.0005, and a momentum of 0.9.

We find that our DnCNN models can achieve state-of-the-art

RVIN denoising performance with these parameter settings.

To train a CNNmodel for RVIN denoising, 256 000 patches

were extracted from the Berkeley segmentation dataset

(BSD) [40]. We trained six CNN denoising models, setting

RVIN ratios at 10%, 20%, 30%, 40%, 50%, and 60%, respec-

tively, and each DnCNN model was effective over a small

range of corresponding noise ratios.

IV. RESULTS AND DISCUSSION

To illustrate the excellent noise suppression capability of the

proposed method, we compared it with some state-of-the-art

methods, such as PSMF [34], ROLD-EPR [11], ASWM [4],

ROR-NLM [8], ANN [16], GIRAF [35], and ALOHA [39].

For RVIN ratios from 10% to 60% with interval 10%,

we trained six specific CNN denoisingmodels, whose param-

eter settings are the same as in [33]. As shown in Fig. 7, some

commonly used gray-level test images, such as Lena, Boat,

House, Bridge, and Man, were contaminated with RVIN of

various noise ratios for the experiments. We used the root

mean square error (RMSE) to evaluate the performance of

our predictor. For the restoration results, the peak signal-to-

noise ratio (PSNR), structural similarity (SSIM) [41], and

feature similarity (FSIM) [42] were employed for image

quality assessment. All the experiments were carried out in

a MATLAB (R2018a) environment on a PC with Intel Core

i7-6700K CPU at 4.00 GHz, with 16 GB of RAM and an

Nvidia Quadro M4000 GPU.

A. EDGE DETECTION PERFORMANCE

To verify that the EPD strategy can identify edge pixels in

a noisy image, the detection results with and without EPD
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FIGURE 7. Examples of test images. (a) Lena. (b) Boat. (c) Butterfly. (d) Bridge. (e) Couple. (f) Goldhill. (g) House. (h) Man. (i) Plane. (j) Zelda.

FIGURE 8. Comparison of detection results with and without EPD strategy for the Lena image corrupted by 20% noise ratio. (a) Without EPD.
(b) With EPD. (c) Difference.

strategy based on a 20% RVIN-corrupted Lena image are

compared in Fig. 8. Figs. 8(a), 8(b), and 8(c) show the detec-

tion result without EPD strategy, the result with EPD strategy,

and the difference between these two results, respectively.

In Figs. 8(a) and 8(b), the black dots represent pixels iden-

tified as noise, and the white dots represent clean pixels. In

Fig. 8(c), the white dots represent the edge pixels detected by

the EPD strategy. Clearly, Fig. 8(c) contains most of the edge

pixels and a small number of noise pixels, which indicates

that our method can detect edge pixels accurately.

B. NOISE PREDICTION PERFORMANCE OF DIFFERENT

FEATURE COMBINATIONS

In this subsection, to prove the superiority of the pro-

posed feature combination, we compare the noise detection

performances within a 5 × 5 window of four different fea-

ture combinations, whichwe name ‘‘ROAD’’, ‘‘Proposed-0’’,

‘‘Proposed-1’’, and ‘‘Proposed-2’’ (Table 2). For ease of com-

parison, the top two values are shown in bold. From Table 2,

we can easily see that the detection precisions produced by

the single ROAD statistic degrade severely as the the noise

ratio increases. The results produced by Proposed-0 (i.e.,

the ROADn (n = 1, . . . , 12) statistics) were significantly

improved comparedwith those from single ROAD, especially

at high noise ratios. Moreover, the Proposed-1 results had

higher precision than those of Proposed-0, which reveals that

the noise detection performance is indeed improved by com-

bining the CPMD statistic with the ROADn (n = 1, . . . , 12)

statistics. Since the EPD statistic has been proved to be effi-

cient in identifying edge pixels, it is natural to expect that after

integrating the EPD statistic into Proposed-1, Proposed-2

(i.e., the proposed method) can achieve better noise detec-

tion performance than the the other feature combinations

(Table 2).

VOLUME 7, 2019 124653



J. Chen et al.: Blind CNN Denoising Model for RVIN

TABLE 2. Comparison of noise detection precisions of different feature combinations.

C. COMPARISON OF NOISE PREDICTION

In the elimination of RVIN, accurate noise prediction is of

great importance for the subsequent denoising procedure.

To achieve superior restoration results, our proposed pre-

dictor provides a noise ratio prediction for the test image,

and, guided by the noise ratio, a specifically trained DnCNN

model is employed for denoising. In this subsection, our

predictor is evaluated by comparison with some well-known

noise detection methods, including PSMF [34], ROLD-

EPR [11], ASWM [4], ROR-NLM [8], and ANN [16]. Con-

sidering that all these methods were originally developed

for noise pixel detection, we convert their detection results

into noise ratios for a fair comparison. Since GIRAF [35]

and ALOHA [39] remove RVIN directly without an explicit

noise detection process, we did not conduct noise detection

experiments with these two methods. The performances of

the above mentioned methods are assessed by the absolute

deviation of prediction (ADP):

ADPi = |yi − zi| (15)

where yi and zi are the predicted and true noise ratios,

respectively.

Table 3 lists the absolute deviation of prediction results

for the corrupted images Lena, Plane, and Couple. A good

noise ratio predictor should be able to give a prediction that

is close to the true noise ratio, i.e., smaller absolute devi-

ation represents better performance. As shown in Table 3,

although the deviations obtained by our method are slightly

greater than the best ones in a few cases, in general our

predictor comprehensively outperforms the other methods.

Furthermore, the predictions obtained by our method deviate

only slightly from the true values, which ensures that we

can match the most appropriate DnCNN model for image

restoration. Conventional noise detection methods, such as

ROLD-EPR [11], always employ a single feature to identify

noise pixels, which limits their ability to describe the char-

acteristics of noise pixels. These methods suffer from three

drawbacks: (1) blurring of edges; (2) fragile noise detection

performance (especially at high noise ratios); (3) low execu-

tion efficiency. It is evident from Table 3 that the absolute
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TABLE 3. Comparison of absolute deviation of predictions of different methods.

FIGURE 9. Examples of images for comparison of noise ratio prediction.

deviation of the prediction results produced by ROLD-EPR

increases rapidly as the noise ratio increases, which means

that ROLD-EPR cannot provide satisfactory prediction at

high noise ratios. Our NRP outperforms the training-based

method, i.e., ANN [14], for the majority of noise ratios. The

reason for this is that our NRP possesses more robust and

reliable features, the ROADn (n = 1, . . . , 12) and CPMD

statistics achieve favorable detection performance, and the

EPD statistic prevents degradation of the edges.

To verify the general applicability of the proposed predic-

tor, we took 50 images for testing and calculated the RMSE

value for each noise ratio. The RMSE can be expressed as

follows:

RMSE =

√

∑K
i=1(ADPi)

2

K
(16)

where ADPi is calculated using (15) andK is the total number

of test images. All the test images were taken from the Berke-

ley segmentation dataset (BSD300) [40] and then corrupted

with noise ratios at 10%, 20%, 30%, 40%, 50%, and 60%,

respectively. Fig. 9 shows some examples of the selected

images. From the results shown in Table 4, it can be seen
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TABLE 4. Comparison of RMSE between predicted values and true values of different methods.

TABLE 5. Comparison of restoration results in terms of PSNR for test images.

that the proposed predictor achieves the best RMSE values

among all the compared methods for almost all the noise

ratios, which means that our method has a comprehensively

more accurate noise prediction capability.

D. COMPARISON OF IMAGE RESTORATION

In this subsection, we evaluate the restoration performance

of our proposed method by comparing it with some state-

of-the-art RVIN denoising algorithms, including PSMF [34],

ROLD-EPR [11], ASWM [4], ROR-NLM [8], ANN [16],

GIRAF [35], andALOHA [39]. Note that as GIRAF [35] is an

inpainting algorithm that only works well under the guidance

of noise detection results, we provide the noise mask obtained

by our noise detector for GIRAF. For the proposed algorithm,

we utilize the noise ratio estimated by our NRP to select

the most appropriate CNN model for denoising. We employ

the peak signal-to-noise ratio (PSNR), structural similarity

(SSIM) [41], and feature similarity (FSIM) [42] as themetrics

of the quality of our restored images. For these three metrics,

larger values indicate better image quality.

Tables 5–7 list the PSNR, SSIM, and FSIM values for the

test images Lena, Plane, Boat, Man, and Couple, with 20%,

40%, and 60% RVIN corruption, respectively. For ease of

comparison, the best values in each table are shown in bold.

Table 5 reveals that the best PSNR values for all the test

images are obtained by our method. Tables 6 and 7 show that,

for SSIM and FSIM, our method achieves the majority of the

best values.

For a fair comparison, the pre-trained DnCNN models are

utilized for RVIN denoising, according to the noise ratios esti-

mated by different methods (Table 8). It is clear from Table 8

that even with the support of DnCNN models, the denoising

results obtained by the conventional methods still cannot

compete with the results obtained by ours. The reason for this

is that our NRP gives predictions that are superior to those

of the compared conventional methods, benefiting from its

robust and reliable noise detector, which ensures that we can

match the most appropriate DnCNN model for denoising.

For a more intuitive comparison, the denoised images of

Plane, Man, and Boat obtained by these methods are shown

in Figs. 10–12. We also provide a magnified view of each

image in order to give a better comparison. Fig. 10 shows the

restored image of Plane corrupted by 20% RVIN. It can be

seen that the proposed method is effective in preserving fine

details, such as the signs on the fuselage of the plane. The

40% RVIN restored results of Man in Fig. 11 illustrate that
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TABLE 6. Comparison of restoration results in terms of SSIM for test images.

TABLE 7. Comparison of restoration results in terms of FSIM for test images.

our DnCNN model preserves the edges well while restoring

the picture. To verify that our method also has excellent

denoising capability at high noise ratios, the restored images

of Boat corrupted by 60% RVIN are compared in Fig. 12.

It is evident that the other denoising methods cannot suppress

noise completely. In the images restored by PSMF, ASWM,

and ROR-NLM, not only have a large number of noise pixels

not been removed, but there has been extensive loss of detail

in the images. For ANN and ROLD-EPR, there still exist

some visible noise pixels that may result from the use of

an imperfect noise detector. ALOHA produces over-smooth

edges and textures, which leads to image blurring. As can be

seen, there are still some noise pixels remaining in the result

from GIRAF. The reason for this is that the denoising process

of GIRAF relies on a noise mask, which means that only the

identified noise pixels are processed, while the unidentified
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TABLE 8. Comparison of restoration results of PSNR produced by using DnCNN models according to the noise ratios estimated by different methods.

FIGURE 10. Comparison of restoration results of different methods for image Plane corrupted by 20% RVIN. (a) Original image. (b) 20% noise. (c) PSMF,
PSNR = 29.07 dB. (d) ROLD-EPR, PSNR = 29.41 dB. (e) ASWM, PSNR = 29.47 dB. (f) ROR-NLM, PSNR = 28.15 dB. (g) ANN, PSNR = 28.96 dB. (h) GIRAF,
PSNR = 30.47 dB. (i) ALOHA, PSNR = 33.98 dB. (j) Proposed, PSNR = 37.37 dB.

ones remain unchanged. By comparison, the image generated

by the proposed method not only removes almost all the

noise, but also retains image details to the greatest extent,

even at high noise ratios. One reason for this is that our NRP

converts the noise mask into a noise ratio, and, according

to this ratio, we select the most appropriate CNN model

for denoising, rather than restoring image by removing the

detected RVIN noise pixel-by-pixel.

E. COMPARISON OF RUNNING TIME

In the last part of this section, we compare the running

time for noise prediction and image restoration with 512 ×

512 Lena for all of the above algorithms. All the exper-

iments were conducted on the same computing platform.

From Table 9, it is apparent that our proposed method takes

the shortest time for noise prediction. The reason for this

is that the proposed predictor takes image patches from
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FIGURE 11. Comparison of restoration results of different methods for image Man corrupted by 40% RVIN. (a) Original image. (b) 40% noise. (c) PSMF,
PSNR = 24.38 dB. (d) ROLD-EPR, PSNR = 28.81 dB. (e) ASWM, PSNR = 28.84 dB. (f) ROR-NLM, PSNR = 27.60 dB. (g) ANN, PSNR = 28.18 dB. (h) GIRAF,
PSNR = 28.76 dB. (i) ALOHA, PSNR = 26.50 dB. (j) Proposed, PSNR = 30.64 dB.

FIGURE 12. Comparison of restoration results of different methods for image Boat corrupted by 60% RVIN. (a) Original image. (b) 60% noise. (c) PSMF,
PSNR = 19.06 dB. (d) ROLD-EPR, PSNR = 26.70 dB. (e) ASWM, PSNR = 23.69 dB. (f) ROR-NLM, PSNR = 22.58 dB. (g) ANN, PSNR = 25.89 dB. (h) GIRAF,
PSNR = 26.09 dB. (i) ALOHA, PSNR = 21.21 dB. (j) Proposed, PSNR = 27.32 dB.

the test image at random to obtain an overall perception,

thereby avoiding the traditional time-consuming iterative

detection.

As shown in Table 10, our DnCNN model takes less CPU

time for denoising than the majority of methods, except for

PSMF and ANN. Although PSMF takes the shortest time

for restoration, it does not give satisfactory results, which

makes its apparent high efficiency worthless. For iterative

filters, the time consumption grows with noise ratio. For

instance, although ANN has a competitive time consumption

for restoration at low noise ratios, its time consumption

increases rapidly as the noise ratio increases and ends up

higher than ours at 60% noise ratio (Table 10). Benefiting

from parallel computation on the GPU, our DnCNN model

takes much less time for denoising.

In summary, in comparison with other methods, the pro-

posed method maintains a short and stable time consumption

on CPU and a much shorter time consumption on GPU,

as well as providing state-of-the-art denoising performance

at both low and high noise ratios.
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TABLE 9. Comparison of detection time consumption on CPU with Lena (in seconds).

TABLE 10. Comparison of restoration time consumption with Lena (in seconds).

V. CONCLUSION

In this paper, we propose a blind CNN denoising model

with a noise ratio predictor. Taking the NRP output as an

indicator of accurate prediction to adopt the most appropriate

CNN denoising model, we find that our method can achieve

perceptually appealing denoising results. Unlike traditional

CNN denoising models that are tailored for a specific noise

ratio, our adaptive DnCNN model is able to remove RVIN

with unknown noise ratios, owing to its incorporation of the

NRP. By adopting the ROADn (n = 1, . . . , 12) statistics and

a new measure, CPMD, to describe the difference between

noise pixels and clean pixels, as well as an edge-preserving

scheme (EPD), our NRP can provide an accurate noise ratio

for the test image instantly by selecting patches randomly

from this image. It is then possible to utilize the most appro-

priate DnCNNmodel for RVIN denoising. Simulation results

indicate that our adaptive denoising method not only has

strong flexibility in dealing with unknown noise ratios, but

also provides favorable denoising performance effectively

and efficiently.
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