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Results from Blind Test Series 1, part of the Collaborative Computational Project in Wave Structure Interaction (CCP-

WSI), are presented. Participants, with a range of numerical methods, simulate blindly the interaction between a fixed

structure and focused waves ranging in steepness and direction. Numerical results are compared against corresponding

physical data. The predictive capability of each method is assessed based on pressure and runup measurements. In general,

all methods perform well in the cases considered; however, there is notable variation in the results (even between similar

methods). Recommendations are made for appropriate considerations and analysis in future comparative studies.

INTRODUCTION

Numerical modelling has become an important process in the

design of offshore structures and a vast number of tools have been

developed as a consequence. The complete range of model fidelity

is now available with the trade-off between computational effi-

ciency and model complexity, i.e., the level of simplification made

to the physics being solved, being a key driver when selecting

a numerical tool for a particular application. Despite this, results

from the 1st Collaborative Computational Project in Wave Struc-

ture Interaction (CCP-WSI) Focus Group Workshop demonstrate

that there still remain considerable uncertainties in the required

level of model fidelity when using numerical methods to simu-

late the interaction of waves with offshore structures (CCP-WSI,

2016). Some progress, towards selecting a tool, can be made

ahead of time by considering key parameters of the problem,

such as the wave and geometric nonlinearity and corresponding

dimensionless numbers. However, to promote the routine practical

application of numerical tools, particularly high-fidelity methods,

in industrial development processes, greater confidence in their

applicability needs to be established.

The CCP-WSI Blind Test Workshops were devised to improve

the understanding of this issue and provide information for future

development of numerical modelling standards. These workshops

bring together numerical modellers from the wave–structure inter-

action (WSI) community and assess the numerical codes currently

in use by inviting participants to simulate a series of specific
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problems covering a range of relevant complexities, without prior

access to the physical measurements. The proposed test cases in

each Blind Test Series are introduced at an introductory event,

providing a forum for participants to discuss the cases and the

validation process. All required information to reproduce a set of

bespoke physical validation experiments is then made available in

a release event. Participants are then invited to submit simulation

results for each case before a showcase event, in which the results

from the test and present recommendations are shared with the

community.

Comparative studies over a broad range of test cases are essen-

tial in gaining a parametric understanding of the required model

fidelity. The type of blind comparison discussed here is partic-

ularly valuable in assessing the various strengths of numerical

methods, as participants cannot manipulate their results in light

of the physical measurements. This encourages the observation of

best practices and offers a true representation of the capabilities

of the method, allowing for development of standard practices

and certification of numerical models (crucial in encouraging sig-

nificant uptake and mitigating the risk of their use by industry).

Despite this, the process of performing a comparative study, with

potentially vast numbers of multivariant data submissions, is chal-

lenging (Hong et al., 2018), and established groups from similar

fields (Larsson et al., 2014) still rely on qualitative comparisons

of specific cases, with few offering a parametric understanding

of predictive capability or consistent analysis methods between

cases. Therefore, producing evidence for best practices in com-

parative studies and making recommendations relevant to future

parametric certification protocols are still valuable.

CCP-WSI Blind Test Workshops – Series 1

There will be a number of series within the CCP-WSI Blind

Test Workshops; Series 1 (the subject of this paper) was held in

conjunction with the International Society of Offshore and Polar
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Engineering (ISOPE) conference, in collaboration with the Inter-

national Hydrodynamics Committee (IHC); the introductory pro-

posal was presented at the (ISOPE) conference in San Francisco,

USA, on June 28th, 2017; the release of the Series 1 test cases was

made on October 12th, 2017; and the showcase event was held

over a series of special sessions at the 2018 (ISOPE) conference

in Sapporo, Japan (June 10-15th, 2018). For more information on

the CCP-WSI Blind Tests, please visit the CCP-WSI website at

http://www.ccp-wsi.ac.uk/blind_test_workshops where supporting

material is available, including complimentary references, pho-

tographs from the experiments, and other related resources.

TEST CASES

The CCP-WSI Blind Test Series 1 test cases consist of a fixed,

scale-model, floating production storage and offloading (FPSO)

vessel known as M3 (Mai et al., 2016) subject to six focused wave

events, with a range of steepness kA = 0013−0021 and incident

angle �= 0�110�, and 20�, where k is the wave number associ-

ated with the peak period Tp of the underlying energy spectrum

of the wave, and A is the crest amplitude of the crest focused

wave assuming linear superposition of the underlying wave com-

ponents. All cases are free from violent flow features and cor-

respond to non-breaking waves with no overturning of the free-

surface or green-water effects. The purpose of these particular test

cases is to provide a parametric understanding, based on wave

steepness and incident wave angle, of the predictive capabilities

of a wide range of numerical (WSI) codes when assessing criti-

cal design factors, such as the pressure and runup on FPSO hulls,

and to evaluate the predictive capability as a function of the code

complexity/execution time.

The structure M3 has vertical sides, and each end is semicircu-

lar with the same radius (0.15m). The full height of the structure

is 0.303m, the length is 1.2m, and the draft is 0.153m (Fig. 1).

The Blind Test Series 1 test cases are split into two parts:

• Part 1 considers waves of increasing steepness but constant

angle of incidence (�= 0�);

• Part 2 considers waves with increasing angle of incidence, �,

but constant steepness (kA= 0017).

In each experiment, measurements of the pressure on the bow

are recorded by an array of pressure transducers (sample fre-

quency fs = 1024Hz). The runup at various positions on the

hull’s surface and the free-surface elevation in the vicinity of

the structure are recorded by an array of resistive wave gauges

(fs = 128Hz).

Experimental Setup

Basin Geometry. The experiments were performed in the

Coastal, Ocean And Sediment Transport (COAST) Laboratory
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Fig. 1 Structure (M3) dimensions

Fig. 2 Schematic of the COAST Laboratory Ocean Basin

Fig. 3 Structure positioning and wave gauge layout for Part 1, for

both the empty tank tests and with the structure in place. Positions

highlighted with a red circle are those used for the comparative

analysis.

Ocean Basin (35m long × 15.5m wide) at the University of Ply-

mouth, UK. The basin has 24 flap-type, force-feedback-controlled

wavemakers (hinge depth of 2m). The water depth at the wave-

makers is 4m, and there is a linear slope to the working area

where the water depth h was set to 2.93m. At the far end of the

basin there is a parabolic absorbing beach (Fig. 2).

Structure Position and Wave Gauge Layout, Part 1. In Part 1

the same wave gauge layout was utilised for both a series of empty

tank tests and those with the structure in place (Fig. 3).

Structure Position and Wave Gauge Layout, Part 2. In Part 2,

two different arrays of wave gauges were used for the empty tank

tests (Fig. 4a) and those with the structure present (Fig. 4b).

Pressure Sensor Layout, Part 1. For the cases in Part 1, an

array of six pressure transducers were positioned on the bow of

the FPSO on the centre line (P1, P2, and P3) and at 45� to the

port (P4, P5, and P6) side at the still water level and at depths of

±0.05m (Fig. 5a).

Pressure Sensor Layout, Part 2. In Part 2, an array of nine

pressure transducers were positioned on the bow of the FPSO on

the centre line (P1, P2, and P3) and at 45� to the port (P7, P8,

and P9) and starboard (P4, P5, and P6) sides at the still water

level and at depths of ±0.05m (Fig. 5b).

Test Program

For each test case, the incident waves were generated in the

COAST Laboratory Ocean Basin (Fig. 1) using the EDL pad-

dle control software. The software is designed to reproduce the

desired free-surface elevation by applying various corrections to

account for the change in water depth in front of the wave pad-

dles and the nonlinear propagation of the wave fronts. In this

case, each wave was created using linear superposition of 244

wave fronts with frequencies evenly spaced between 0.101563Hz

http://www.ccp-wsi.ac.uk/blind_test_workshops
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Fig. 4 Structure positioning and wave gauge layout for Part 2,

(a) for the empty tank tests and (b) with the structure. Positions

highlighted with a red circle are those used for the comparative

analysis.

Fig. 5 Pressure probe layout on the bow of the FPSO for (a) Part 1

and (b) Part 2. Positions highlighted with a red circle are those used

for the comparative analysis.

and 2Hz. All waves in this study are nonbreaking and trough

focused; i.e., each of the contributing wave components has a

phase of � at a theoretical focus location x0. The amplitudes of

the frequency components are derived by applying the NewWave

theory (Tromans et al., 1991) to a JONSWAP spectrum with the

parameters given in Table 1. Each wave front is then transformed

back to the position of the wave paddles by the control software,

and x0 is iteratively adjusted (as described by Hann et al., 2015)

to pragmatically ensure focusing (i.e., a symmetric event) at the

position coincident with the bow of the (FPSO).

Wave Parameters, Part 1. In Part 1, the three waves are all

generated with an incident wave angle � = 0�. Two wave cases

(11BT1 and 12BT1) differ only by Hs , and so 12BT1 is essen-

tially a steeper version of 11BT1 with the same relative frequency

contributions; two cases (12BT1 and 13BT1) differ only by peak

frequency Tp, so 13BT1 is essentially a steeper version of 12BT1

with the same Hs (Table 1).

Case kA � Hs Tp

Part 1

11BT1 0.13 0� 0.077m 1.456 s

12BT1 0.18 0� 0.103m 1.456 s

13BT1 0.21 0� 0.103m 1.362 s

Part 2

21BT1 0.17 0� 0.103m 1.456 s

22BT1 0.17 10� 0.103m 1.456 s

23BT1 0.17 20� 0.103m 1.456 s

Table 1 Wave conditions used in the CCP-WSI Blind Test

Series 1

Wave Parameters, Part 2. In Part 2, all three waves have the

same steepness (kA = 0017). The waves differ only by incident

angle � (Table 1).

Released Data

The CCP-WSI Blind Test Series 1 is a blind validation of

numerical (WSI) codes. Consequently, the only physical measure-

ment data released to participants before submission were sur-

face elevation data from the wave gauges in the empty tank tests

(see Figs. 3 and 4a for the wave gauge positions). These data are

deemed sufficient to reproduce the incident waves in each of the

cases including the FPSO, for which the same wavemaker sig-

nals were used. The remaining physical measurements were not

released until after all participants had submitted their final results,

and these blind results are reported in this paper.

Physical Measurement Errors and Experimental Limitations

As the predictive capability of the numerical submissions is

judged on their ability to reproduce the physical results, it is abso-

lutely necessary to also consider the errors present in the physical

measurements. This is particularly pertinent in the cases presented

here, as not only are the numerical results compared against the

physical measurements but also all of the numerical simulations

are initiated (in some way) by using values derived from the phys-

ical measurements in the empty tank tests.

Typically, the main source of random error, in experiments such

as these, is due to reflected waves from the side walls and end

of the wave basin. However, by utilising a compact wave group,

such as a focused wave, the influence of reflected waves is less of

an issue and occurs after the time of interest. Furthermore, limit-

ing the wave cases to those without breaking helps to reduce the

sources of random error associated with phenomena such as tur-

bulence and aeration. Consequently, the repeatability of the wave

cases in this test is very good. In fact, there are negligible differ-

ences in terms of phase between five repeated cases of the steep-

est wave. The only noticeable difference, between the repeats, is

in the amplitude of the surface elevation at the time of focus-

ing for which a relative standard deviation of 2.6% is observed.

This is considered to be the maximum level of random error in

the physical surface elevation measurements in this test, and thus

a maximum confidence interval of ±7.8% in the runup has been

assumed; i.e., 99.7% of data values can be considered to be within

three standard deviations.

Confidence in the pressure measurements is significantly lower.

Because of the intermittent wetting of the pressure probes, some

of the pressure records are effected by thermal shock. This results

in nonphysical fluctuations in the pressure measurements at fre-

quencies similar to those of the physical signal. Consequently,

traditional filtering, based on frequency-space methods, cannot

remove this effect, and so a bespoke "thermal shock filter" has
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been designed to remove the unwanted signal. This new method is

still under development and as yet is not capable of distinguishing

the smallest peaks in pressure from the background noise; there-

fore, these have been removed from the filtered data. However,

once applied, the pressure measurements from three experiments

demonstrate excellent repeatability with the variation between the

tests being lower than the noise in the signal (≈ 0.005 Pa).

Systematic errors in the physical measurements are considered

to be negligible in the cases considered here. The wavelength of

the waves is sufficient that minor inaccuracies in the probe posi-

tions (on the order of 10mm) are not important. The triggering

of the various data acquisition systems is a potential source of

issues. In these cases, because the numerical codes use the sur-

face elevation measurements in the empty tank tests to initialise

their models, the only issue is the triggering of the pressure probe

measurements relative to the surface elevation measurements. The

delay in the triggering is well understood in the COAST Labora-

tory and has been accounted for precisely in the results reported

here.

NUMERICAL METHODS

Participating Codes

The CCP-WSI Blind Test Series 1 involved 33 participants from

15 academic institutions and industry collaborators. Submissions

include 10 different numerical codes/methods ranging from fully

nonlinear potential theory (FNPT) to Navier-Stokes (NS) solvers,

including hybrid (coupled) methods, partially particle methods,

finite element methods, finite volume methods, both open-source

and in-house codes, and both low-order accurate and high-order

accurate codes. Each method is described below, and their main

characteristics are summarised in Table 2.

Particle-in-Cell (PIC) Method. This solver utilises the hybrid

Eulerian-Lagrangian Particle-in-Cell (PIC) method to solve the

incompressible NS equations for single-phase free-surface flows,

Code ref. Discret.

scheme

Theory Free-surface

treatment

Turbulence

treatment

PIC meshless

&FVM

NS MAC+ laminar

In-house

NS 1

FVM NS VOF LES

(dynamic)

In-house

NS 2

FVM NS VOF laminar

FNPT

(FEM)

FEM FNPT single-phase —

Hybrid 1 FEM

&FVM

FNPT

&NS

single-phase

&VOF

laminar

FNPT

(SEM)

SEM FNPT single-phase —

SWENSE FVM NS level set laminar

OpenFOAM

(IHFOAM)

FVM NS VOF laminar

Hybrid 2 Lagrangian

&FVM

Inviscid

&NS

Dynamic

FS&VOF

laminar

OpenFOAM

(waves2Foam)

FVM NS VOF laminar

Table 2 Summary of numerical methods used by participants

incorporating a Cartesian cut cell-based, two-way, strong cou-

pling algorithm for fluid-structure interaction (Chen et al., 2018;

Chen and Zang, 2018). In this method, the Lagrangian particles

are used to solve the nonlinear advection terms and track the

free-surface (using an adapted marker-and-cell method (MAC+)),

while the Eulerian grid is employed for solving the non-advection

terms with robustness and efficiency. The focused wave is gen-

erated using a piston-type wave paddle whose velocity and posi-

tion are determined according to the NewWave theory and first-

order wavemaker theory. Wave absorption is achieved through

the relaxation zone approach. The computational domain is 24m

long, 3.025m wide and 3.5m high and is discretised by a uni-

form grid of size 0.025m with eight particles being seeded in

each cell accommodating the fluid area (which results in approx-

imately 16million grid cells and 105million particles). The solu-

tion in time is first-order accurate and the time step is controlled

by a Courant number of 0.5. No turbulence modelling is included,

i.e. laminar flow is assumed. Computations are performed using

72 cores (6 Intel Xeon Gold 6126 CPUs) of an in-house high-

performance computing (HPC) facility.

In-house NS Solver 1. This method utilises a two-phase flow

model to solve the filtered NS equations using the finite volume

method (FVM) and the high-resolution volume of fluid (VOF)

scheme, CICSAM (compressive interface capturing scheme for

arbitrary meshes), on a staggered Cartesian grid. The partial cell

treatment in 3D is used to allow for complex geometries in the

domain (Xie, 2015). The advection terms are discretised by a

high-resolution scheme which combines the high order accuracy

with monotonicity (Xie, 2012). The gradients in pressure and

diffusion terms are obtained by central difference schemes. An

expression-based boundary condition, based on the superposition

of linear wave components derived from the empty tank tests, is

used to define the time history of wave elevations and veloci-

ties at the inlet. For wave absoption, a radiation outlet boundary

condition is used. In this study, the computational domain is 6m

long, 3m wide, and 3.3m high; it has a uniform mesh with size

0.01875m in the horizontal and 0.01m in the vertical (total num-

ber of mesh cells ≈16.4million). The SIMPLE algorithm for the

pressure-velocity coupling is employed and a backward finite dif-

ference discretisation is used for the time derivative (Xie et al.,

2018). Large-eddy simulation (LES) is employed for the turbu-

lence modelling with the dynamic Smagorinsky model. The com-

putation of the test cases was performed using 512 × 206GHz

cores of an in-house HPC cluster.

In-house NS Solver 2. naoe-FOAM-SJTU is an in-house solver

based on OpenFOAM’s default interDyMFoam, which solves the

RANS equations for two, incompressible, isothermal and immisci-

ble fluids using a VOF interface capturing scheme, with additional

wave generation and absorption capabilities (Shen et al., 2014).

Wave generation is achieved using expression based boundary

conditions based on linear superposition of wave components

derived from the same theoretical wave conditions as those used

in the physical experiment. Wave absorption is achieved via an

artificial viscous term in the momentum equation, i.e., a sponge

layer. In this study, the computational domain is 23m long and

4m wide. The mesh is unstructured with a free-surface refine-

ment layer consisting of >40 cells over the wave height and

>80 cells over the characteristic wavelength; further refinement

is present around the FPSO (≈5.7million cells in total). A fixed

time step of dt = 0001 s is used throughout. No turbulence mod-

elling is included; i.e., laminar flow is assumed. The computation

of the test cases was performed using 64 × 2.8GHz cores (IBM

NeXtScale nx360 m4 model) (Li, Zhuang, et al., 2018).
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FNPT Solver (Using FEM). In the quasi-arbitrary Lagrangian–

Eulerian finite element method (QALE-FEM), the flow is gov-

erned by the FNPT model where a boundary value problem for

velocity potential is solved using the FEM. A similar boundary

value problem is solved to find the time derivative of the velocity

potential in the Bernoulli equation, which is used to find the force

acting on floating structures. The fully nonlinear free-surface con-

ditions are written in arbitrary Lagrangian–Eulerian forms (Ma

and Yan, 2006; Yan and Ma, 2010). Wave generation and absorp-

tion is achieved using self-adaptive wavemakers. In this study, as

the incident waves are unidirectional, a quasi 2-D domain is com-

bined with a 3-D domain using weak zonal coupling. The 2-D

domain has the same dimensions as the experimental wave basin

(Fig. 2) but is very coarse in the direction normal to the wave

propagation (i.e., 5 cells wide), whereas the 3-D domain consists

of a cylindrical domain (radius 3.5m) centered on the FPSO. The

3-D domain has a graded mesh with a characteristic mesh size

of 0.03m near the free surface and 0.02m on the surface of the

FPSO (≈3.45million mesh cells total). The time discretisation

scheme is a second-order finite difference scheme, and the time-

step is fixed at 128Hz to be consistent with the physical data. The

computation of the test cases was performed using 4× 209GHz

cores (Xie et al., 2018).

Hybrid Method 1. The hybrid FNPT-NS solver, qaleFOAM,

combines QALE-FEM (see above) and OpenFOAM’s multiphase

NS solver interDyMFoam using a domain decomposition method

and a coupling boundary (Li, Yan, et al., 2018). Wave genera-

tion and absorption are achieved using self-adaptive wavemakers

on the inlet and outlet of the the FNPT region, which covers the

whole computational domain with the same size as the experi-

mental wave basin (Fig. 2). The mesh in the FNPT domain has

a characteristic size of 0.04m. The NS domain is confined to

a small region (5.4m × 3m × 3.53m) surrounding the struc-

ture and is bounded by the coupling boundary upon which the

velocity, pressure, and wave elevation values for the NS solver

are provided by the QALE-FEM. The mesh in the NS region

is graded with approximately 50 cells over the maximum wave

height and 180 cells per peak wavelength in the free-surface

region, and a characteristic cell size of 0.005m on the FPSO sur-

face (≈1.96million mesh cells total). The time-stepping is first-

order accurate (implicit Euler) and dynamic, based on a Courant–

Friedrichs–Lewy CFL condition of 0.5. No turbulence modelling

is included; i.e., laminar flow is assumed. Computation of the test

cases was performed using 8 × 2.6GHz cores.

FNPT Solver (Using Spectral Element Method (SEM)). This

method is based on a stabilised spectral element method (SEM)

using a Galerkin spatial discretization and an explicit Runge–

Kutta method for the temporal integration of a Eulerian for-

mulation of the fully nonlinear potential flow (FNPF) equations

(Engsig-Karup et al., 2016; Engsig-Karup and Eskilsson, 2018).

The FNPF-SEM solver is high-order accurate and represents the

solution variables on an unstructured mesh through the globally

continuous piece-wise polynomial basis functions. Wave genera-

tion and wave absorption are done using a standard embedded

penalty method (Engsig-Karup et al., 2013). Incident waves are

generated using superposition of first-order linear wave compo-

nents derived from the empty tank data using a discrete Fourier

transform. The computation domain is 12m long and 8m wide.

The grid is relatively coarse, consisting of two vertical layers

and a total number of prism elements on the order of 10,000

(≈500,000 nodes (degrees of freedom) in the fluid volume dis-

cretisation). The FPSO is captured to high accuracy using curvi-

linear faces in the top layer that also account for the curvilin-

ear free-surface representation. The time-stepping is based on a

fourth-order explicit Runge–Kutta method with time-step sizes of

dt = 00025 s in all simulations. The computations of the test cases

were performed in MATLAB R2017a and executed sequentially

(i.e., no code parallelisation).

Spectral Wave Explicit Navier-Stokes Equations (SWENSE)

Solver. The Naval Hydro Pack is a specialised software library

based on the foam-extend, collocated finite volume computational

fluid dynamics (CFD) software. In this method the spectral wave

explicit Navier-Stokes equations (SWENSE) method is used to

couple the incident wave field and the CFD solution (Vukčević

et al., 2016). A two-phase flow model is used with the level set

method for interface capturing; the ghost fluid method is used

to take into account the discontinuities in fields across the inter-

face (Vukčević et al., 2017). Waves are generated using implicit

relaxation zones (Jasak et al., 2015) that are positioned along

the edge of the computational domain, which, in the cases stud-

ied here, is 20.7m long, 7m wide and 3.53m high. The mesh

is graded towards the structure, with a resolution corresponding

to ãx = 0001m, ãy = 0002m, and ãz = 00005m in the vicinity

of the hull surface, resulting in approximately 4.1million cells

in total. The time-step is controlled to maintain a CFL number

below 1, resulting in time-steps ranging from 0.005 to 0.015 s. An

implicit second order backward time marching scheme is used.

No turbulence models are used; instead laminar flow is assumed.

Simulations are performed using 21 cores of the Intel Xeon Pro-

cessor E5-2637 v3 (15M Cache, 3.50 GHz) (Gatin et al., 2018).

Open-Source NS Solver (OpenFOAM Using IHFOAM). This

method utilises OpenFOAM (ESI version 1706), an open-source

CFD software based on finite volume discretisation. The stan-

dard interFoam solver is used to solve the RANS equations for

two incompressible, isothermal, and immiscible fluids using a

VOF interface-capturing scheme. The IHFOAM toolbox provides

the functionality of wave generation and active wave absorption

(Higuera et al., 2013). A member function has been added to gen-

erate phase-focused waves based on second-order irregular wave

theory and wave components derived from the given wave con-

ditions and spectra. The computational domain is 10m long, 4m

wide, and 3.43m high. The spatial discretisation takes the form

of an unstructured mesh, consisting mostly of hexes, with a typ-

ical resolution of 0.0085m in the region of the free surface and

0.00425m around the structure. The total number of mesh cells

used in each case is approximately 3.1million. The time-stepping

is first-order accurate (implicit Euler) and dynamic, based on a

CFL condition of 0.35. No turbulence modelling is included; i.e.,

laminar flow is assumed. The computations were performed using

48 × 1.7GHz cores of an in-house HPC facility.

Hybrid Method 2. This hybrid method utilises a Lagrangian

wave model (Buldakov, 2013) to provide the inlet boundary con-

ditions for the two-phase, incompressible RANS solver, olaFlow

(developed in the OpenFOAM framework) (Higuera, 2017). The

Lagrangian model reproduces the shape of the physical wave

basin (Fig. 2) in 2-D and, utilising the iterative methodology of

Buldakov et al. (2017), reconstructs the flap wavemaker motion

required to generate the experimental surface elevation signal.

(Six to seven iterations were required to achieve the desired con-

vergence level.) Wave kinematics corresponding to the final iter-

ation are used as inlet boundary conditions in the RANS simula-

tions. To ensure that the target waves are generated regardless of

any reflected waves reaching the boundary, a new one-way cou-

pling technique has been developed (Higuera et al., 2018). Inci-

dent waves are also absorbed at the opposite boundary using the

same technique coupled with an enhanced version of the active
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wave absorption presented in Higuera et al. (2013). The spatial

discretisation in the Lagrangian model is 251 × 16, and the time-

step is 0.005 s. The CFD mesh is 15m × 1.7m × 3.16m and

unstructured but hexahedral-cell dominant, with a maximum cell

resolution of 0.01m, adjacent to the FPSO (total number of cells

≈46.5 million). The time-stepping is first-order accurate (implicit

Euler) and dynamic, based on a CFL condition of 0.15. No tur-

bulence modelling is included. The computation of the test cases

was performed using 120 × 2.6GHz cores.

Open-Source NS Solver (OpenFOAM Using waves2Foam).

This method utilises OpenFOAM (Foundation version 4.1), an

open-source CFD software based on finite volume discretisa-

tion (Brown et al., 2018). A modified version of the standard

interFoam solver is used to solve the RANS equations for two

incompressible, isothermal, and immiscible fluids using a VOF

interface-capturing scheme. The waves2Foam toolbox (Jacobsen

et al., 2012) provides wave generation through a linear superposi-

tion of first-order wave components, hierarchically selected based

on a fast Fourier transform (FFT) of the physical empty tank data

(Musiedlak et al., 2017). Wave absorption is achieved using the

relaxation zone functionality provided as part of the waves2Foam

toolbox. The computational domain is 14m long, 6m wide, and

4m high. The spatial discretisation takes the form of an unstruc-

tured mesh, consisting mostly of hexes, with a typical resolu-

tion of 0.025m in the region of the free surface, and 0.00625m

around the structure. The total number of mesh cells used in each

case is approximately 1.9 million. The time-stepping is first-order

accurate (implicit Euler) and dynamic, based on a CFL condition

of 0.25. No turbulence modelling is included; i.e., laminar flow is

assumed. The computation of the test cases was performed using

16 × 2.6GHz cores of an in-house HPC facility.

Submissions

Participation in the CCP-WSI Blind Test Series 1 is purely

voluntary; so, as a consequence, some participants managed to

complete only a selection of the test cases. Table 3 summarises

the test cases that were submitted for each code/method (an ×

signifies a submission).

RESULTS AND DISCUSSION

Time Series Analysis

As highlighted in Figs. 3–5, participants were requested, in

each of the six cases, to submit times series data for five dif-

ferent surface elevation probe positions and six different pressure

Code ref. 11BT1 12BT1 13BT1 21BT1 22BT1 23BT1

PIC × × – × × ×

In-houseNS 1 – × – – – –

In-houseNS 2 × × × – – –

FNPT (FEM) × × × × × ×

Hybrid 1 × × × – – –

FNPT (SEM) × × × × × ×

SWENSE × × × × × ×

OpenFOAM

(IHFOAM)

× × × – – –

Hybrid 2 – × × – – –

OpenFOAM

(waves2Foam)

× × × × × ×

Table 3 Submitted test cases for each of the participating codes

probe positions. As a result, a huge data set is available for the

comparative study. However, the processing of all the data has

been deemed impractical; so, after reviewing all of the data qual-

itatively, a representative sample has been selected and reported

here. In general, the same trends are observed for all of the mea-

surements, and the runup on the bow (probe WG16) and the pres-

sure on the bow, at the still water level (probe P2), have been

considered as arguably the most relevant to design engineers, etc.

Runup on the Bow. Figure 6 shows the physical measurements

(including the 99.7% confidence interval), as well as all of the

numerical submissions, for runup on the bow of the FPSO, for

all three cases in Part 1, i.e., for increasingly steep waves with

zero incident wave angle. The results show that, for the range of

wave steepnesses considered, all of the numerical methods can

well predict the general behaviour, particularly the phasing of the

wave event, and that there is no obvious trend between the pre-

dictive capability of the methods and their underlying complexity;

i.e., for the (non-breaking) cases considered here, there appears to

be no clear advantage in using high-fidelity methods over FNPT.

There is, however, quite a range in the predicted amplitudes of

the crests and troughs, with a distinct tendency for the numeri-

cal simulations to overpredict, particularly the crest immediately

following the main trough. Qualitatively, it is possible that these

discrepancies increase with wave steepness; i.e., there appears

to be significant difficultly in reproducing the crest immediately

before the main trough in the steepest case (Fig. 6c). However,

quantitative analysis is required to provide conclusive evidence

of this (and there is still no evidence that higher-fidelity models

perform better, even for the steepest case considered here). Last,

a few seconds after the main trough, the predictive capability of

the numerical models is greatly reduced, and the variation in the

predictions is large. However, this observation is almost certainly

due to the differing treatment of reflected waves in each of the

numerical methods; as the reflective characteristics of the physical

beach were not released, participants are not expected to be able

to reproduce this part of the time series nor is it used to judge the

submissions.

Figure 7 shows the runup on the front of the FPSO, for all

three cases in Part 2, i.e., for fixed wave steepness and increas-

ing incident wave angle. The same observations can be made as

above: all numerical methods perform reasonably well with well-

reproduced phasing in each of the cases; there is some variation

in the amplitudes with a tendency for overprediction, but again

there is no obvious advantage in using high-fidelity methods for

the cases considered in this study. Last, in the cases considered

here, when considering the runup on the bow of the FPSO, there

does not appear to be any trend between the predictive capability

of the numerical models and the incident wave angle.

Pressure on the Bow. Figures 8 and 9 show the physical mea-

surements as well as all of the numerical submissions for pressure

on the bow of the FPSO at the still water level (SWL) for all

three cases in Part 1 and Part 2, respectively. The pressure results

show similar trends to the runup: all submissions reproduce the

pressure reasonably well, there appears to be a greater spread in

the predicted phasing compared to the surface elevation, and there

is considerable variation in the predicted amplitude of the peaks

(again typically overestimates). Again, the predictive capability of

the numerical models is greatly reduced a few seconds after the

main peaks, but this can again be attributed to the variation in

the treatment of reflected waves. Again, there is no clear relation-

ship between the predictive capability of the models and either

the incident wave angle or the wave steepness. However, in the

steepest case (Fig. 8c), the predictions of the crest immediately
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Fig. 6 Runup on the bow of the FPSO for cases in Part 1 (Probe WG16), i.e., increasing in steepness from (a) 11BT1 (kA= 0013) to

(b) 12BT1 (kA= 0018) to (c) 13BT1 (kA= 0021). Physical measurements were plotted using a black dotted line (including the 99.7%

confidence interval shaded in grey). Numerical submissions, from all participants, are shown using solid lines.

before the main trough do appear to show the greatest variability.

There is, again, no obvious benefit in using higher-fidelity meth-

ods for the (nonviolent) wave cases considered here. Last, it has

been noticed that there is a large variation in the prediction of

hydrostatic pressure between the numerical methods.

Quantitative Analysis

Comparisons of time series are valuable in that all the data are

present without manipulation or the introduction of bias (from

analysis methods that favour one data set over another). However,

only qualitative comparisons can be drawn directly, and, with so



120 A Blind Comparative Study of Focused Wave Interactions with a Fixed FPSO-like Structure (CCP-WSI Blind Test Series 1)

55 56 57 58 59 60 61 62 63 64 65

Time (s)

-0.1

-0.05

0

0.05

0.1
S

u
rf

ac
e 

el
ev

at
io

n
 (

m
)

experimental

PIC

FNPT (FEM)

FNPT (SEM)

SWENSE

OpenFOAM (waves2Foam)

(a)

55 56 57 58 59 60 61 62 63 64 65

Time (s)

-0.1

-0.05

0

0.05

0.1

S
u

rf
ac

e 
el

ev
at

io
n

 (
m

)

experimental

PIC

FNPT (FEM)

FNPT (SEM)

SWENSE

OpenFOAM (waves2Foam)

(b)

55 56 57 58 59 60 61 62 63 64 65

Time (s)

-0.1

-0.05

0

0.05

0.1

S
u

rf
ac

e 
el

ev
at

io
n

 (
m

)

experimental

PIC

FNPT (FEM)

FNPT (SEM)

SWENSE

OpenFOAM (waves2Foam)

(c)

Fig. 7 Runup on the bow of the FPSO for cases in Part 2 (Probe WG16), i.e., increasing angle of incidence from (a) 21BT1 (�= 0�)

to (b) 22BT1 (� = 10�) to (c) 23BT1 (� = 20�). Physical measurements were plotted using a black dotted line (including the 99.7%

confidence interval shaded in grey). Numerical submissions, from all participants, are shown using solid lines.

many participants and with multiple cases to analyse, it is not

possible to ascertain conclusive evidence of any parametric trends

in the data. Therefore, a series of strategies are investigated here

in order to quantify the predictive capability of the numerical

methods into a limited number of discrete values and allow for

more simplified visualisation of any trends in the data.

Root Mean Squared (RMS) Error. A root mean squared (RMS)

error calculation is perhaps the simplest estimation of the "error"

associated with any particular reproduction of a time series. An

RMS error, in these cases, is defined as the square root of the

arithmetic mean of the squares of the differences between the

reproduction (numerical submission) and the original (the phys-
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Fig. 8 Pressure on the bow of the FPSO, at the still water level (probe P2), for cases in Part 1; i.e., increasing in steepness from (a)

11BT1 (kA= 0013) to (b) 12BT1 (kA= 0018) to (c) 13BT1 (kA= 0021). Physical measurements were plotted using a black dotted line.

Numerical submissions, from all participants, are shown using solid lines.

ical data). This then returns a single-number representation of

the predictive capability of the numerical method. However, in

the general case, the time vector of the original time series does

not match that of the reproduction (particularly when the numer-

ical method uses adaptive time-stepping), and so some form of

interpolation is typically required before an RMS can be calcu-

lated, adding an additional layer of uncertainty around the pre-

diction. Furthermore, although convenient for analysis of many

multivariant data sets, reducing the measure of predictive capa-

bility to a single number removes large amounts of (potentially

valuable) information about the reproduction and can lead to

a significant bias in the results. For example, in an otherwise
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Fig. 9 Pressure on the bow of the FPSO, at the still water level (probe P2), for cases in Part 2; i.e., increasing angle of incidence from

(a) 21BT1 (� = 0�) to (b) 22BT1 (� = 10�) to (c) 23BT1 (� = 20�). Physical measurements were plotted using a black dotted line.

Numerical submissions, from all participants, are shown using solid lines.

perfect reproduction of the original time series, a small phase shift

in the prediction can result in a very large RMS error, particu-

larly in cases with steep gradients in the measured quantity, and

so this form of analysis favours those methods that predict the

phases well. Therefore, in cases in which the timings of events

are less critical (compared to the amplitude), an RMS is not an

appropriate measure of the quality of the prediction. Despite this,

the RMS in the predicted runup on the bow of the FPSO has

been calculated (for a window of time starting 5 seconds before

the main trough in the physical data and ending 5 seconds after)

and plotted against both the wave steepness (Fig. 10) and the

incident wave angle (Fig. 11). Also plotted is the RMS error
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Fig. 10 RMS vs. wave steepness for numerical predictions of

runup on the bow of the FPSO (WG16) in Part 1
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Fig. 11 RMS vs. incident wave angle for numerical predictions

of runup on the bow of the FPSO (WG16) in Part 2
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Fig. 12 RMS vs. execution time for numerical predictions of

runup on the bow of the FPSO (WG16) (both Parts 1 and 2)

in each submission against the CPU effort for each simulation

(Fig. 12). CPU effort has been estimated as the execution time,

multiplied by the number of cores used, divided by the simulated

time. (Note that this estimation does not account for the different

hardware used by each of the participants, nor were participants

asked to minimise the CPU effort in their submissions.) In each

figure, the data have been colour-coded according to the underly-

ing theory/method; i.e., red symbolises NS solvers, blue symbol-

ises FNPT solvers, cyan symbolises hybrid methods, and magenta

symbolises the PIC method.

There is significant scatter in the RMS values calculated and

so low confidence in any trends observed. There appears to be

a reduction in the RMS as the incident wave angle increases

and potentially an increase in the RMS as the wave steepness

increases. However, the amplitude of the runup on the centre of

the bow is also seen to reduce with incident wave angle, and the

most significant increase in RMS occurs between cases 11BT1

and 12BT1 (0013 < kA < 0018), i.e., a rise in steepness due to

an increase in wave amplitude. Therefore, it is suspected that any

increase in RMS is likely due to an increase in wave amplitude

and that steepness and direction do not have a dominant effect

in these cases. Furthermore, as observed in the qualitative analy-

sis of the time series data, the FNPT methods have performed as

well as the high-fidelity methods; it could be argued that the NS

solvers achieve the lowest RMS values but NS solvers are also

responsible for the greatest RMS values, highlighting a potential

concern over the apparently high variability in the results pro-

duced when solving fundamentally the same set of equations.

Figure 12 shows, perhaps, the most conclusive result: FNPT

solvers are significantly quicker at solving these cases than NS

solvers, without a significant decrease in RMS error. The FEM-

based FNPT method is at least 1.5 orders of magnitude faster

than the quickest NS code and has comparable predictive capa-

bility in these cases. The FNPT method based on SEM is sig-

nificantly slower in comparison and has a slightly greater RMS;

however, this is a relatively new implementation of the method

and with further refinement this method is anticipated to be

be competitive with the more established FNPT (FEM) method.

Again, NS solvers display both the lowest and highest RMS val-

ues, and the spread in CPU effort for NS solvers is also very

large. It is suspected that these variations are due mostly to the

wide range of mesh/domain designs, wave generation/absorption

strategies, and CPU resources used. This highlights that either

best practice procedures for these applications are not known

or participants are not adhering strictly to them. Finally, the

two hybrid methods, although relatively new implementations,

do not display any benefit over the other methods; i.e., in the

cases reported here, there is no saving of CPU effort over NS-

only solvers nor is there any improvement in the prediction over

FNPT methods.

Multi-value Assessment Methods. As mentioned above, al-

though convenient for identifying trends across multiple cases,

the RMS error may not be an appropriate measure of the predic-

tive capability of a code, particularly in some cases where signif-

icant bias is introduced, i.e., cases with high gradients and small

phase discrepancies. Furthermore, as a single-value representation

of accuracy, the RMS does not allow for differentiation between

the errors associated with individual variables in multivariant data

sets, i.e., amplitude, phase, frequency-content, etc. In fact, it is

not possible for a single-value assessment method to provide this

information directly: the method must produce at least the same

number of values as the variables under scrutiny.
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A number of multi-value assessment methods have been con-

sidered here. The cross-correlation can be used to find the simi-

larity between two time series as a function of time shift (phase

shift) of one series relative to the other; the lag associated with

the maximum similarity and the value of the maximum similarity

then give a two-value estimate of the reproduction incorporating

a measure of the phase prediction and the amplitude prediction

without introducing a bias due to a phase discrepancy. (This is

essentially equivalent to shifting the predicted time series in time

to minimise the RMS error and then recording the time shift and

the minimised RMS. This idea is also equivalent to performing

the linear least-squares approach from regression analysis, which

minimises the sum of the squares of the differences between the

physical value and the model data points.) This method, however,

does not provide any information regarding the frequency content

in the reproduction, and a poor similarity could be due to either

a frequency content discrepancy or an amplitude discrepancy. An

alternative assessment method could be to use a dynamic time

warping (DTW) algorithm that determines a measure of similar-

ity independent of nonlinear variations in the time dimension. I.e.,

unlike the cross-correlation, the sequence alignment method or

warping is nonuniform and nonlinear. DTW returns a "distance-

like" quantity, know as the Euclidean distance, describing the

"distance" between the two signals in the time dimension, which

incorporates discrepancies in both phase and frequency content.

A two-value assessment can then be completed by performing an

RMS analysis of the target and the warped time series, giving an

error estimate in the amplitude that is arguably independent of any

inaccuracy in the phase or frequency content. Frequency domain

analysis methods, such as Fourier transforms, offer a multi-valued

assessment method consisting of the power (amplitude) as a func-

tion of frequency. An FFT can also allow for phase comparisons

as a function of frequency. Windowed frequency domain analysis

methods, such as Bartlett’s or Welch’s method, as well as wavelet

transformations also return the power as a function of frequency

with the additional benefit of providing the assessment over a

finite time (and so a series of assessments in time). These meth-

ods can be beneficial for understanding the temporal variation in

the quality of the reproduction. Further strategies, such as time

series of cumulative residuals between the physical and numeri-

cal data, can give the relative error with respect to time and can

provide insight into the reproduction as a function of time.

A problem arises, however, when interpreting the results from

these various analysis methods; the more complex methods, in

particular, tend to generate data sets of comparable sizes to the

original time series. Additionally, when it comes to comparing

multiple participants’ data across multiple cases (i.e., introduc-

ing further variables), the interpretation of these data becomes far

from trivial. Without further processing of the output to reduce

the number of assessment values, it is not even possible to repre-

sent the data in a meaningful way for the benefit of interpretation.

Therefore, some compromise is required over the level of reduc-

tion obtained via the assessment methodology and the detail left

to make the assessment. A single-value assessment method, like

the RMS, is preferable, as many cases covering a key variable

such as incident wave steepness can be represented on a simple

2-D plot, and a trend can then be quantified easily. Two-value

assessment methods may be optimal as, by utilising a 3-D plot,

the two assessment variables can both be represented, along with

the key case variable, and trends can be observed and quantified

easily. However, these methods both result in a drastic reduction

in the information used to make the assessment and are suscepti-

ble to bias as a consequence.

This dilemma highlights possibly the most important question

when designing a comparative study: which variables are most

crucial in the assessment of predictive capability? As well, in the

case of multiple variables, how should each of them be weighted

in terms of importance? If this were well defined, perhaps appro-

priate assessment strategies could be defined, and a weighted sum

of the errors could be used to give a single value for the predic-

tive capability. This could then be described as a function of key

case parameters, and a parametric understanding of the practical

applicability of participating methods could be formed.

Discrete Value Assessment. It is common, in the practical ap-

plication of numerical models, that assessment of predictive capa-

bility over a certain period of time is not necessary and that crit-

ical design parameters are based on single discrete values such

as maxima in the load or runup. For example, in the context of

extreme wave events interacting with an FPSO, design engineers

may only be interested in the maximum pressure or the maxi-

mum runup on the bow to ensure structural integrity and account

for any green-water effects. respectively. Provided that the key

assessment values are well conceived, this kind of reduction in the

data greatly reduces the complexity of any comparative study, and

parametric trends based on key variables can be found trivially.

However, this kind of reduction inevitably reduces the understand-

ing of the prediction and, without a much greater number of test

cases, the confidence in any trends observed, i.e., by ignoring any

other inaccuracies in the prediction. How can one be confident

that the prediction would be equally good in cases with differ-

ent conditions? (It could be mere coincidence that the prediction

is good at that particularly moment.) It is perhaps arguable that

reducing the comparison to the prediction of a single number, like

a maximum, returns the analysis to one that is again case-specific

and does little to provide a parametric understanding of the pre-

dictive capability of a method and thus its routine application by

industry. It seems that, once again, generalising the understanding

of the predictive capability of numerical models requires a well-

conceived comparative process.

In this study, Figs. 13–15 display the normalised peak height

(defined as the difference between the numerical prediction and

the physical measurement �n − �e over the physical result �e)

against the normalised time shift (defined as the difference

between the numerical prediction and the physical measurement

�n − �e over the peak period of the incident wave spectrum Tp)

of peaks in the runup on the bow (for Part 1), colour-coded by

the incident wave steepness, underlying theory of the code used,

and the peak number, respectively (where a peak number of zero

corresponds to the peak immediately after the main trough and

increases with time of occurrence). Considerable spread in the

predicted peak heights and timings can be seen. Also, although

the spread in phase discrepancies appears to be even with respect

to the physical data, the numerical reproductions typically over-

estimate the peak heights (as observed in the time series data).

From Fig. 13, there does not appear to be a relationship between

the wave steepness and the quality of the predicted amplitudes,

but there is a suggestion that, in the low steepness case, peaks in

runup lead, whereas in the high steepness case, the peaks lag the

physical data. Figure 14 shows that these trends do not appear to

be a function of the code type but that many of the low-amplitude

predictions are from a single code (In-house NS 2), reinforcing

the apparent overestimation in the predicted amplitudes. Figure 14

also suggests that the two hybrid codes are slightly better at pre-

dicting the phasing of the peaks. Figure 15 shows that the peaks

with the greatest discrepancy in amplitude tend to be those that

occur at least two peaks after the main event (i.e., when reflected
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Fig. 13 Normalised peak height vs. normalised time shift for

peaks in runup on the bow of the FPSO, for all participants and

cases in Part 1 (colour coded by wave steepness)
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Fig. 14 Normalised peak height vs. normalised time shift for

peaks in runup on the bow of the FPSO, for all participants and

cases in Part 1 (colour coded by code type)
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Fig. 15 Normalised peak height vs. normalised time shift for

peaks in runup on the bow of the FPSO, for all participants and

cases in Part 1 (colour coded by peak number)
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Fig. 16 Normalised peak height vs. normalised time shift for

peaks in pressure on the bow, at the SWL, for all participants and

cases in Part 1 (colour coded by wave steepness)
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Fig. 17 Normalised peak height vs. normalised time shift for

peaks in pressure on the bow, at the SWL, for all participants and

cases in Part 1 (colour coded by code type)
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Fig. 18 Normalised peak height vs. normalised time shift for

peaks in pressure on the bow, at the SWL, for all participants and

cases in Part 1 (colour coded by peak number)
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waves begin to be an issue) and could potentially be disregarded

from the assessment.

Figures 16–18 show similar scatter plots for the pressure peaks

on the bow, at the still water level (for Part 1). The same trends

as in the runup are present, with the additional observation of a

wider spread in the phase discrepancies (as noted in qualitative

analysis of the time series data in Figs. 8 and 9).

These scatter diagrams seem like an effective analysis strategy:

they give details of predicted amplitude and phase for multiple

discrete events in each prediction and, with the use of colour-

coding, include key case-specific variables like wave steepness.

However, to include both wave steepness and code type simulta-

neously is not possible, and so further interpretation is required,

particularly to form a quantitative comparison. Also, these plots

do not directly offer any information on the predicted frequency

content, which may be a critical value in some cases.

CONCLUSIONS

The CCP-WSI Blind Test Series 1 consists of a series of test

cases involving focused wave interactions with a fixed FPSO-like

structure. In each case the incident wave remained unbroken and

was varied in steepness (Part 1) or angle of incidence (Part 2). The

aims of the study are to assess the numerical codes currently in

use, provide a better understanding of the required model fidelity

in WSI simulations, and help to inform the development of future

numerical modelling standards, to encourage the practical appli-

cation of these tools by industry.

Ten different codes are used in the test, including a range of

underlying complexities from FNPT to NS solvers, mesh-based

and partially particle methods, high- and low-order methods, and

both in-house and open-source codes. Despite considerable scat-

ter in the predictions from "similar" NS codes (highlighting a real

sensitivity and a need for best practice implementation strategies),

all cases in the test are generally well predicted by all partici-

pating codes. Therefore, in terms of understanding the required

model fidelity, the test is inconclusive; the FNPT methods provide

good solutions for the (nonviolent) cases considered, and there

is no real benefit in using high-fidelity methods, which are con-

siderably more computationally expensive. Furthermore, for the

cases considered here, there is no obvious trend in the predictive

capability of the codes as a function of either wave steepness or

direction. Therefore, in order to find the expected divergence in

predictive capability between FNPT and NS methods, it is sus-

pected that the test cases must cover more violent WSI in which

the underlying assumptions of FNPT methods (i.e., inviscid, irro-

tational flow) are violated. However, it is suspected that including

more violent flow phenomena, such as wave breaking, will greatly

increase the complexity of the comparisons and the uncertainty in

the benchmarking physical data. Despite this, a significant amount

has been learned about the process of performing a comparative

study and the requirements of generating the necessary informa-

tion to establish generalised numerical modelling standards and

certification of numerical codes. A discussion of various data anal-

ysis methods and their suitability is given with a reflection on the

key considerations required when performing such a study.

In conclusion, note that the design of the comparative study is

crucial if the results are to provide conclusive evidence for the

predictive capability of the numerical methods. If a parametric

understanding is sought, the test cases must be very well con-

ceived and the criteria used for comparing the codes should be

understood well and identified in advance. The physical experi-

ments used in the comparison, including any errors/uncertainties,

must be understood well. The analysis strategy used must be well

conceived and any bias introduced, in the reduction of the results,

must beconsidered in the comparison. Variations in implementa-

tion, such as mesh/domain variations, must also be considered, as

these can dominate differences in the predicted results.

It is clear that further work is required to establish effective

practices for blind tests and comparative studies in WSI research

to realise the aims of the CCP-WSI Blind Test Workshops. Con-

sequently, two further CCP-WSI Blind Test Series have been

arranged, utilising the recommendations and the findings made

here.
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