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Abstract— Design fingerprinting is a means to trace the illegally 

redistributed intellectual property (IP) by creating a unique IP 

instance with a different signature for each user. Existing 

fingerprinting techniques for hardware IP protection focus on 

lowering the design effort to create a large number of different IP 

instances without paying much attention on the ease of fingerprint 

detection upon IP integration. This paper presents the first 

dynamic fingerprinting technique on sequential circuit IPs to 

enable both the owner and legal buyers of an IP embedded in a 

chip to be readily identified in the field. The proposed fingerprint 

is an oblivious ownership watermark independently endorsed by 

each user through a blind signature protocol. Thus the authorship 

can also be proved through the detection of different user’s 

fingerprints without the need to separately embed an identical IP 

owner’s signature in all fingerprinted instances. The proposed 

technique is applicable to both application-specific integrated 

circuit (ASIC) and field-programmable gate array (FPGA) IPs. 

Our analyses show that the fingerprint is immune to collusion 

attack and can withstand all perceivable attacks, with a lower 

probability of removal than state-of-the-art FSM watermarking 

schemes. The probability of coincidence of a 32-bit fingerprint is in 

the order of 1010 and up to 1035 32-bit fingerprinted instances can 

be generated for a small design of 100 flip-flops.   

 
Index Terms— VLSI IPP, fingerprinting, watermarking, field 

authentication, system-on-chip, synthesis-for-testability 

I. INTRODUCTION 

Over the last decade and for many years to come, IP-based 

design methodology has been and will remain a key enabler to 

improving integrated circuit (IC) design productivity at 

advanced design processes. According to a recent market 

research: “The semiconductor IP market is growing in both the 

IC IP and System-on-Chip (SoC) IP sub-sectors, but the 

revenues from the SoC IP segment are expected to grow faster at 

an estimated compound annual growth rate of 19.16% from 

2012 to 2017” [1]. This design paradigm has over years 

dramatically increased the organizational complexity of IC 

design and pushes for a vertical specialization of organization 

where stages of IC design are disintegrated, and outsourced to 

firms and relocated across national boundaries that possess the 

tacit knowledge and expertise at lower cost. A rising concern of 
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this geographical dispersion of chip design activities is the 

contaminated chip supply due to the infiltration of counterfeit 

chips. Electronics Resellers Association International (ERAI), a 

private group that tracks and fights counterfeit electronics 

reported that dubious chips are increasing year by year [2]. The 

perils are alarming when thousands of fake chips from brand 

names such as Motorola, Intel, Cypress, Altera and National 

Semiconductors had been sold by a counterfeit-chip broker 

VisionTech before it was prosecuted in 2010 [3].  

Prevailing means of IP protection includes external 

communications of legal protection, such as patents, copyrights 

and contracts, to deter illegal IP infringement, and licensing 

agreement and encryption to deter unauthorized use of IPs. Such 

approaches, while effective against the benign users, are 

inadequate to suppress misappropriation of IPs by aggressors, 

malicious clients, competitors and curious contractors. Owing 

to the easily accessible, easily integratable and uncommitted 

physical manifestation nature of reusable IPs, the fraudsters can 

easily dispute or challenge the validity of the patent or copyright 

behind an IP, especially if it is not broad, fundamental, or strong 

with regards to the obviousness test, novelty of idea, or prior art. 

The lengthy and costly legal process, together with the high 

degree of uncertainty over the outcome of IP litigation tends to 

discourage the pursuit of IP infringements. As cases of IP 

violations by customers are more difficult to prove, IP vendors 

usually do not take legal action against their customers, 

resulting in the buoyant IP theft.  

     As long as infringement remains easy and perpetration is 

difficult to prove, sizeable portion of the investment in IP 

development will be extorted. IP providers are in dire need of an 

effective mechanism to protect not only their ownership rights, 

but also the legitimacy of the usage of their IPs. Existing 

watermarking schemes [4-13], though capable of identifying the 

legal ownership of an IP in case of piracy, is unable to trace the 

guilty buyer from the unauthorized resold copies of his legally 

owned IP. This is because the distributed IP instances to 

different buyers are identical and carry the same mark. This 

problem can be solved by fingerprinting, which makes the IP 

instance distributed to each system integrator unique and 

distinguishable. In this way, when some user illegally 

redistributes his legally owned IP instance to another party for 

use in an unauthorized application, the fingerprint embedded in 

it can be extracted and used to identify the source of misuse. 

 IP fingerprinting shares much of the desiderata and 

challenges as IP watermarking, like functionality preservation, 

high credibility of ownership proof, low design overheads, 

robustness against removal attacks, transparency to existing 

design flow and ease of ownership verification. In addition, it 
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must be able to generate many different high-quality instances 

with reasonably low design effort. Thus, the intuitive way to 

fingerprint a design by repeating the entire optimization process 

of a typical constraint-based watermarking technique [5] to 

embed a different mark for each user is unacceptable. Very few 

proposals [14-17] can avoid the complexity of generating a 

sufficiently large number of quality fingerprinted instances. 

The technique proposed in [14, 15] protects FPGA IPs at the 

physical design level. Fingerprint bits are embedded into the 

unused logic blocks in unique locations of different tile 

instances, and FPGA design tiling and partitioning are used to 

lower the cost of generating many different functionally 

equivalent circuit instances. As the logic blocks that host the 

marks are not the only differences between different 

fingerprinted instances, it is unlikely that tile comparison 

collusion will succeed in removing a large portion of the 

fingerprint. To facilitate the recovery of the recipient 

fingerprint, the owner signature and the recipient fingerprint are 

always placed in a constant location relative to one another. The 

reliance on the identification of the locations of ownership 

marks for the extraction of the correct instance recipient 

fingerprint may escalate the risk of common ownership mark 

locations as targets of attack. After all, marks hidden in unused 

logic blocks can be easily removed without altering the 

functionality. Moreover, the retrieval of FPGA configuration 

for mark validation restricts its applicability to mainly static 

memory based devices. On the other hand, the fingerprinting 

technique in [16] creates a large solution space by solving the 

problem only once. The problem solved is not the original 

problem, but a modified one. From the generated solution, 

different solutions are derived for the original problem. The 

general technique is proved by an NP-complete graph coloring 

problem. For specific IPs, finding the modification to obtain 

different solutions can be a challenge. The method in [17] 

solves the problem once to create a seed solution, from which 

smaller problems are generated. Fingerprinted solutions are 

then created by re-solving these smaller problems. While the 

design effort has been greatly reduced, the overhead is still 

unacceptable when the required number of different IP 

instances is large. All the above mentioned methods validate the 

fingerprint by indirect detection. Depending on the method and 

the level of abstraction where the mark was applied, non-trivial 

effort may be needed to check if the constraints generated by the 

fingerprint are satisfied from a deeply integrated IP. In short, 

none of the existing schemes are able to conveniently detect the 

embedded fingerprint off-chip after the IP is integrated and 

packaged as in the dynamic watermarking schemes of [7, 8].  

     In this paper, a new fingerprinting technique for the 

protection of sequential circuit IPs is proposed. The method is 

unique in many ways. It is the first dynamic fingerprinting 

scheme in which the embedded ownership and buyer‟s identity 

of an embedded IP can be conveniently detected off-chip by 

injecting a specific input sequence. A single fused signature that 

carries the watermark for ownership proof and fingerprint for 

buyer identification, as opposed to the concatenation of two 

separate and independent signatures, is generated through a 

message exchange in a blind signature protocol. Both the 

watermark and fingerprint can be detected by running the 

fingerprinted design or the IC that contains the fingerprinted 

instance with a specific sequence of input bound to a buyer. The 

IP provider can easily identify the buyer without divulging any 

sensitive information about the fingerprint yet the buyer‟s 

endorsement of the detected fingerprint is indisputable. These 

are in stark contrast to other fingerprinting techniques and are 

made possible by recoding the state variables through the 

embedding of a test machine into the sequential circuit to be 

fingerprinted. To the best of our knowledge, this is also the first 

work that exploits state encoding for fingerprinting sequential 

circuit IPs. Unlike finite state machine (FSM) watermarking on 

state transitions or topologies [9-12], which have a tendency to 

introduce obtrusive dummy inputs, replicated states or 

redundant transitions, state encoding modifies the state values 

without introducing new input variable or new state variable and 

have a global influence on the circuit structure. The fingerprint 

is thus inherently collusion-resilient as the signatures encoded 

into the state variables form an integral part of the solution 

space, and the marked and unmarked circuit components cannot 

be discriminated by the structural disparities between different 

fingerprinted instances.  To reduce the effort of generating a 

large number of fingerprinted instances, variable chaining 

heuristic and dependency-directed partitioning are proposed to 

break a large sequential circuit into multiple smaller 

interconnected segments for test machine embedding. The 

optimized testable segmented circuits are used as seed design 

for state recoding by the signature. The overheads of different 

fingerprinted instances have been greatly reduced by the fusion 

of watermark and fingerprint, the state variable dependency 

minimization and the pre-optimization of partitioned seed 

designs. Our method is applicable to sequential circuit IPs 

targeted for both ASIC and FPGA implementations. As there is 

no prerequisite of specialized scan flip-flops (FFs) or specific 

FPGA configuration fabrics, our scheme is transparent and 

applicable to different technology families of FPGAs. With 

additional locking and activation mechanism, our fingerprinting 

technique can also be devised to perform active hardware 

metering like [18-21]. These schemes can effectively prevent 

instead of passively confirming IC piracy and chip 

overproduction by controlling the access to part of the chip‟s 

functionality with a specific input sequence. Although schemes 

[18, 19]  embed a watermark into the added obfuscation FSM, 

the watermark can only authenticate the IP author but not its 

buyer, and cannot be easily detected off-chip. By combining the 

active metering technique with our scheme, even if the locking 

function is cracked, the IP authorship and the buyer responsible 

for the fraudulent IP instance can still be traced by the 

fingerprint. 

 The rest of this paper is organized as follows. Section II 

introduces the property of test machine and the fundamentals of 

test machine embedding. The fingerprint generation, 

embedding and detection of the proposed fingerprinting method 

are presented in Section III.  Section IV analyzes the security of 

the proposed scheme with respect to its credibility, robustness 

and feasibility. Experimental results are presented in Section V. 

The paper is concluded in Section VI.     
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II. PRELIMINARIES ON TEST MACHINE INSERTION  

Our fingerprinting method is founded on the test machine 

embedding problem of synchronous sequential circuits [22-25]. 

This section presents the construction of a n-FF test machine 

and explains how its test property can be embedded into an n-FF  

sequential function to synthesize a testable design.  

A. Test Machine Fundamentals 

An FSM is a quintuple ),,,,(  OISM , where S is a finite 

set of N states },,{ 1 NSS  , I is a finite set of p primary inputs 

},,{ 1 pyy  , O is a finite set of q primary outputs },,{ 1 qzz  , 

SIS  :  is the state transition function and OIS  :  

is the output function [26].  

M can be represented by a state transition graph (STG), which 

is a directed graph whose vertices and edges correspond to the 

states and state transitions of M respectively; each edge is 

labeled with the input and output associated with the transition.  

An FSM can be tested by checking if its transitions 

),/;,( zySSt jiij  ,, SSS ji  ,Iy ,Oz ),( ySS ij  and 

),,( ySz i are implemented as specified by its STG. This 

simple conformance test requires a sequence of inputs y  I to 

bring the physical FSM from any state to Si and a sequence of 

inputs to verify that the FSM reaches the designated state Sj after 

the stimulating transition tij. 

A synchronizing sequence (SS) is defined as an input 

sequence which, when applied to any initial state of M, will 

drive M to a single specific state [27]. Likewise, a 

distinguishing sequence (DS) can also be defined as a sequence 

of inputs such that for any state of M, the sequence of outputs 

generated in executing that sequence uniquely identifies the 

state. The output response that uniquely identifies the state is 

called the distinguishing response (DR) of the state. 

An n-FF test machine is a special FSM, denoted by 

),',',',','('  OISM with nN 2 states, one input y' and one 

output z'. Any states ],1,0[,'  NiSSi of it can be set by 

applying an n-bit SS and be distinguished at the output by 

applying an n-bit DS. It can be constructed as follows:  
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where }1,0{, ba are the arbitrary constants assigned to the 

input and output of M'. 

Fig. 1 shows the STG for a 3-FF test machine. Let SS(Si) be 

the binary representation of SS of state Si. By convention, the 

least significant bit (LSB) of SS(Si) is input first. One important 

property of the test machine is that the output response is 

different from each initial state Si regardless of the input 

sequence. Hence, any 3-bit sequence can be used as the DS. Let 

DR(Si) denotes the binary representation of DR of state Si such 

that the LSB of DR(Si) is output first. The binary representations 

of SS and DR for the 3-FF machine in Fig. 1 are shown in Table 

I. If ,0 ba then SS(Si) and DR(Si) will be equal to the bit 

reversal of the binary index i of  Si.  

S0 S1

S4 S2 S5 S3

a/b
a/b

S6 S7

a/b
a/b

a/b a/b

a/b
a/b

a/b
a/b

a/b

a/b

a/b
a/b

a/b
a/b

 
Fig. 1.  STG of a 3-FF test machine. 

 

TABLE I 

Synchronizing sequences and distinguishing responses of 3-FF test machine 

SS 
To 

state 

DR 

S0 S1 S2 S3 S4 S5 S6 S7 

aaa  S0 bbb  bbb  bbb  b bb  bbb  bbb  bb b  b b b  

aaa  S1 bbb  bbb  bbb  b bb  bbb  bbb  bb b  b b b  

aaa  S2 bbb  bbb  bbb  b bb  bbb  bbb  bb b  b b b  

a aa  S3 bbb  bbb  bbb  b bb  bbb  bbb  bb b  b b b  

aaa  S4 bbb  bbb  bbb  b bb  bbb  bbb  bb b  b b b  

aaa  S5 bbb  bbb  bbb  b bb  bbb  bbb  bb b  b b b  

aa a  S6 bbb  bbb  bbb  b bb  bbb  bbb  bb b  b b b  

a a a  S7 bbb  bbb  bbb  b bb  bbb  bbb  bb b  b b b  

B. Test machine Insertion    

For an arbitrary FSM, due to the limited controllability and 

observability, it is not always possible to obtain the SS and DS 

for all the states. These limitations are usually overcome by 

replacing the FFs of FSM by specialized scan FFs and chaining 

them to two externally added serial scan input and serial scan 

output pins. However, such scan insertion procedure is not a 

useful platform for fingerprinting a sequential design as it is 

difficult to keep the embedded signature stealthy due to the 

obtrusive and easily traceable scan FFs and scan IOs. Without 

introducing specialized scan FFs and additional IO pins, an 

alternative approach is to insert the test function into the 

gate-level design of M before logic synthesis by test machine 

insertion [25].  

An n-FF test machine ),',',',','('  OISM can be 

embedded into an arbitrary n-FF FSM ),,,,(  OISM by 

isomorphic mapping of the states and IO symbols of M to those 

of M'. The input y' and output z' of M' can be shared with an 

input y  I and an output z  O of M, respectively by using 

multiplexers. To share the same set of FFs for multiplexing the 

next state functions, '(S', y') and (S, y), and the output 

functions, ( , )S y    and (S, y), of M' and M, respectively, the 

state variables,
1 2, , , nx x x   , of M' must be mapped to the state 

variables, 
1 2, , , nx x x , of M. The mapping can be performed in 

polynomial time for completely specified function without 

adding new transition to M [24]. If M has unspecified transitions 

for input y at some state in S, M' may not be compatible to M. To 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

4 

obtain an isomorphic mapping, a minimum number of 

additional transitions may have to be introduced into M to 

implicitly specify the responses of some of these unspecified 

transitions. A new test-enable (TE) input  can then be introduced 

into M to select between the normal function and the test 

function.  

Let XX ': be the mapping of the set of variables from 

{ }jX x   to }{ ixX  such that ]1,0[,),(  njixx ji   

and )).'((' XSS  Then the next state and output equations of 

M will be modified to 

      , ,X S X y TE S y TE         (3) 

      , ,O S X y TE S y TE        (4) 

where  and ' are the next state equations of X and X' of M and 

M', respectively. 

The complexity of the merged next state and output decoders 

can be reduced by keeping its state variable dependency low in 

state variable mapping, with the help of a dependency graph 

(DG). A DG is a directed graph with each vertex representing a 

FF and each arc representing the signal flow from a FF‟s output 

to the same or a different FF‟s input by abstracting away the 

combinational logic between them. DG of the object machine M 

can be obtained by tracing the netlist, but DG of the test machine 

M' cannot be obtained before state assignment.  

A two-block partition [26] on the state set S of M divides S 

into two disjoint subsets, i.e., 
1 2B B S   and 

1 2B B  ; 

Each subset of states,
1 2,B B S , is called a block. Let 

i js s  

denote that states si and sj are in the same block of partition. A 

partition for M is said to be closed if ( , ) ( , )i js y s y    for all 

i js s  and y I , where ,i js s S .  

To obtain a state assignment for M', a two-block partition is 

induced by each state variable such that it is assigned the same 

value for all states in the same block of the partition. As there 

are n two-block partitions and each block of a partition can be 

assigned either a „0‟ or „1‟ value for its state variable, there are 

2
n
 different state encodings. The dependency of state variables 

is minimized if the n two-block partitions of M' are closed [26]. 

Fig. 2 shows the DG with the least state-variable dependency 

for the 3-FF test machine with the following state assignment:  

FF1': {(S0, S2, S4, S6), (S1, S3, S5, S7)}, 

FF2': {(S0, S1, S4, S5), (S2, S3, S6, S7)}, 

FF3': {(S0, S1, S2, S3), (S4, S5, S6, S7)}. 
FF1 FF2

FF3

FF1' FF2' FF3'

 
Fig. 2.  Minimum dependency graph of 3-FF test machine. 

FF1

FF2FF3CK
G1

G2

G0

G3

OUT

Fig. 3.  Gate-level schematic of S27. 

As an example, consider the insertion of the 3-FF test 

machine into the ISCAS'89 benchmark circuit S27 shown in 

Fig. 3, with its DG extracted in Fig. 4. If (FF1', FF2', FF3') of the 

test machine is mapped to (FF3, FF1, FF2) or (FF3, FF2, FF1) 

of S27, there is no increase in dependencies among the state 

variables.  

FF1 FF2

FF3

FF1' FF2' FF3'

  
Fig. 4.  State variable dependency graph of S27. 

 Let 0 ba and )(' 321 xxxS  of M' be encoded as: 

),101(0S ),100(1S ),111(2S ),110(3S ),001(4S ),000(5S

6 (011)S  and ).010(7S From Fig. 1, the next state and output 

equations of M' are given by: 
1x y  , 

2 1x x  , 
3 2x x   and 

3z x  , where 
ix  denotes the next state value of 

ix . 

If 
1 2 3( , , )x x x    are mapped to ),,( 123 xxx  of M, its state are 

encoded as: ),101(0S ),001(1S ),111(2S  ),011(3S ),100(4S   

),000(5S  ),110(6S and ).010(7S From Fig. 3, the next state and 

output equations of M are given by: 
1 0 1x G f   , 

2 1x f  , 

3 2 2x G f    and OUT = 
1f , where 

1 1 3 4f x f f   , 

2 1 3f G x  , 
3 3 0 2f G G x    and 

4 0 2 2f G x f   . 

As M has four input pins, if G0 is arbitrarily selected to share 

with the input y' of M', then the next state and output equations 

after test insertion are given by: 

               
3 0 2 2x G TE G f TE                               (5) 

             
2 3 1x x TE f TE                                 (6) 

       
1 2 0 1x x TE G f TE                               (7) 

          
1 1OUT x TE f TE                              (8) 

The circuit S27 after test insertion is shown in Fig. 5. 

FF3

FF1 FF2

CK

TE

G0

G1

G3

G2

OUT

 
Fig. 5.  Schematic of S27 after test machine insertion. 

Table II shows the synthesis results of S27 after it has been 

embedded with each of the 2
3
 different encodings of M' and 

resynthesized by Synopsys Design Compiler (DC) using TSMC 

0.18 µm technology. Different state encodings of the test 

machine results in different instances of varying implementation 

cost. The largest instance is 4.7% larger than the smallest one, 

the slowest instance is 11.5% slower than the fastest one, and 

the most power hungry instance consumes 5.1% more power 

than the least one.   
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TABLE II 

Synthesis results for S27 after test machine insertion 

Design Test machine encoding 
Area 

(μm2) 

Delay 

(ns) 

Power 

(mW) 

1 
S0 (000), S1 (001), S2 (010), S3 (011) 

S4 (100), S5 (101), S6 (110), S7 (111) 
292.7 0.81 0.267 

2 
S0 (100), S1 (101), S2 (110), S3 (111) 

S4 (000), S5 (001), S6 (010), S7 (011) 
296.1 0.87 0.256 

3 
   S0 (010), S1 (011), S2 (000), S3 (001) 

S4 (110), S5 (111), S6 (100), S7 (101) 
286.1 0.81 0.254 

4 
S0 (110), S1(111), S2 (100), S3 (101) 

S4 (010), S5 (011), S6(000), S7 (001) 
289.4 0.82 0.264 

5 
S0 (001), S1 (000), S2 (011), S3 (010) 

S4 (101), S5 (100), S6 (111), S7 (110) 
292.7 0.82 0.266 

6 
S0 (101), S1 (100), S2 (111), S3 (110) 

S4 (001), S5 (000), S6 (011), S7 (010) 
282.7 0.81 0.255 

7 
S0 (011), S1 (010), S2 (001), S3 (000) 

S4 (111), S5 (110), S6 (101), S7 (100) 
289.4 0.78 0.261 

8 
S0 (111), S1 (110), S2 (101), S3 (100) 

S4 (011), S5 (010), S6 (001), S7 (000) 
292.7 0.79 0.265 

III. PROPOSED FINGERPRINTING SCHEME 

     One unique challenge of IP fingerprinting over IP 

watermarking is the design effort required to derive a large 

number of distinct high-quality solutions of the same 

functionality for different buyers. Another challenge is the ease 

of recovering the signature of the embedded IP core off-chip 

without compromising its security against erasure and collusion 

attacks. Last but not least is the difficulty to lower the area and 

timing overheads of embedding both the authorship proof and 

IP buyer‟s identification in the same design instance. The latter 

can be addressed by merging the watermark and fingerprint into 

one single signature but an associated problem is on keeping 

this signature unobtrusive without losing the non-repudiability 

of the authorship proof and origin of misappropriation. This 

section presents a fingerprinting method based on the test 

machine insertion problem. For ease of exposition, we refer to 

the original sequential circuit as object design M and the 

sequential circuit after the test machine insertion as testable 

design MT. The testable design with the best synthesis result in 

terms of area or timing is chosen as the seed design MS for 

fingerprinting. 

A. Fingerprint Generation 

    Instead of routinely generating the watermark and fingerprint 

as two independent signatures, our scheme uses a unitary 

signature to provide an undeniable proof of IP ownership and 

for traceability of illegal IP distribution. This signature is 

generated through a blind signature protocol [28] to preserve 

the anonymity of the IP authorship information endorsed by the 

buyer.  The blind signature protocol requires a digital signature 

mechanism and a commuting function. For simplicity, we 

consider Chaum‟s blind signature protocol based on RSA. Let 

(nA, eA) and dA be the certified RSA public and private keys of 

Buyer A, where AAA qpn   is the product of two large 

random primes. The fingerprint F to be embedded into the IP 

instance for Buyer A can be generated through the following 

message exchange between the IP provider and Buyer A. 

1. Watermark generation: The IP provider selects a message to 

convey its ownership information. The ASCII encoded 

message is converted into a binary string  and reduced by a 

message digest (MD) such as SHA-2 [29] to an integer W, 

where 0  W < nA.  

2.   Blinding phase: When Buyer A makes a purchase request, 

the IP provider randomly selects a secret integer kA 

satisfying 0  kA < nA and gcd(nA, kA) = 1 to compute 

A
e

AA nkWW A mod)( . This concealed watermark WA is 

then sent to Buyer A. 

3.  Signing phase: To endorse the purchase, Buyer A signs WA
 

with his secret key dA and returns his blinded signature 

A
d

AA nWF A mod)( to the IP provider. 

4.  Unblinding phase: By computing AAA nkFF mod
1

 , the 

IP provider obtains the signature of Buyer A on his 

watermark W
 
 , which is the fingerprint to be inserted into the 

IP instance sold to Buyer A. 

The IP provider can verify if the fingerprint F is genuine by 

decrypting it with Buyer A‟s public key. Since F is the digital 

signature of Buyer A on the IP provider‟s watermark W, it 

provides an undeniable proof for tracing the redistribution of the 

copies of IP bought by him. Meantime, as W is concealed in WA, 

Buyer A has no knowledge of the IP provider‟s watermark W 

and his own signature on W. The blindness of F increases the 

deterrent effect of uncertainty. 

B. Fingerprint Insertion 

    By applying automatic test pattern generation on the seed 

design, a set of combinational test vectors can be obtained. Each 

test vector is then converted to a test sequence which includes an 

SS to excite a testable design to a specific state Ss at test mode 

(i.e., TE = „1‟) and a parallel input stimulus to produce the 

output of a transition from Ss to some destination state Sd at 

capture mode (i.e., TE = „0‟).  Irrespective of the input stimulus, 

the destination state Sd from any starting state Ss can always be 

identified by its DR based on the test machine property. As 

demonstrated in Table I for n = 3, the DR of any destination 

state can be observed from the primary output z by applying an 

arbitrary input sequence of length n through the primary input y 

at test mode.  

To insert the fingerprint  
1

0

m

i i
F f




  into an object design, a 

test vector V for the seed design MS is randomly selected. Let Ss 

and Sd be the initial and destination states of MS for the test 

vector V. To randomly modulate m out of n ( nm  ) binary 

bits of DR(Sd) by F, a keyed one-way pseudorandom number 

generator (PNG) is used to generate an order set  
1

0

m

i i
L l




 , of 

m unique integers between 0 and nsuch that ],1,0[  nli  

1,,0  mi  and ., jill ji   li corresponds to the 

location of fi, where f0 is the LSB of F. The keyed one-way PNG 

can be realized by SHA-2 or any other cryptographically secure 

hash function, as long as it is computationally infeasible to find 

a collision of the same group of numbers without the knowledge 

of the secret key.  

According to L, a fingerprint-compatible 1
0

* }{ 
 n

jjrDR  is 

generated by setting ij fr   if ilj   for all 1,,0  mi   and 

''jr  otherwise, where ''  denotes a don‟t-care value.  
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A binary ({0, 1}) sequence A is said to be compatible to a 

ternary ({0, 1, }) sequence B of the same length, denoted as 

,BA if all but the don‟t care values of A and B in the same bit 

positions are matched, i.e., BbAaba iiii  ,,  and '.'ib  

If DR(Sd) is compatible with DR
*
, MS will be used as the 

fingerprinted instance M
*
. Otherwise, a subset                                  

S
*
 = {Su  S | DR(Su)  DR

*
} is extracted from the state set S of 

MS such that the DRs of all its members are compatible with 

DR
*
. The fingerprinted instance can then be generated by 

modifying the state encoding of MS by 

,,,1,: nixx ii   where  or ,i i ix x x such that the 

encoded value of one of its states ** SSd  is equal to the 

encoded value of Sd, i.e., ).(*
dd SS   This recoding of state 

variables can be performed through  the embedded test machine 

of MS. If there are more than one state encodings that satisfy this 

requirement, the testable design instance with the least overhead 

is selected as the fingerprinted design M
*
. A fingerprint 

verification code V
*
 can then be derived from V by replacing its 

SS(Ss) by ),( *
sSSS  where ).(*

ss SS  The fingerprint insertion 

process is depicted in Fig. 6.  

 
fingerprint(M_seed, F, L, V) 

{  

M_seed: Seed design of n FFs; 

   F: Fingerprint to be inserted, binary vector of length m; 

   L: List of m location indices;  

V: Randomly selected combinational test vector; 

r: Ternary vector of length n  

   for (j = 0; j < n; j++) { 

  r[j] = '';   

for (i = 0; i < m; i++)   

        if (j == L[i])  { 

    r[j] = F[i]; 

    break; 

   }        

 } // end for loop to obtain r 

   if (DR(Sd)  r) return (M_seed, V);  // if DR is compatible with r 

 CS = ; // create an empty list of DR-compatible states 

for (i = 0; i < 2n; i++)  // search for DR-compatible states 

if (DR(Si)  r) CS += Si; 

  min_overhead = MAX_VALUE; // initialize minimum overhead  

 for  each( 2n state encoding  of M) { 

 if ((Sd)  CS)  { 

fingerprint_M = resynthesize(M_seed, ); 

overhead = overhead(fingerprint_M, criteria)    

if (overhead  min_overhead)  { 

  min_overhead = overhead; 

  opt_M = fingerprint_M; 

  opt_V = modified_SS(V, (Ss)); // modify SS of V 

} 

      } 

 } // end search for optimal fingerprinted instance 

 return (opt_M, opt_V); 

} 

Fig. 6.  Fingerprint insertion algorithm.       

As an example, consider the insertion of a one-bit signature 

'1'0 f  into the 3-FF testable design of S27. If design area is 

the prime concern, the smallest Design 6 in Table II is selected 

as the seed design MS. Let ";0100;110" V  be a randomly 

selected test vector. The first 3-bit vector is SS(S3), the 4-bit 

vector is applied to the primary inputs "G0G1G2G3" at capture 

mode to bring Ss = S3 to Sd = S4 and the 3-bit don‟t care vector is 

the DS to obtain DR(S4). For ,0 ba  "001")( 4 SDR  from 

Table I. If L = {1}, then ".1"* DR Since DR(S4) is not 

compatible with DR
*
, a search for all states Si with 

*)( DRSDR i  is performed. From Table I, the compatible 

states are S
*
 = {S2, S3, S6, S7}. From Table II, it can be observed 

that the encoded values of S2 in Design 7, S3 in Design 3, S6 in 

Design 8 and S7 in Design 4 are mapped to the encoded value of 

S4 =  "001" of MS.  Among them, Design 3 has the least area and 

is selected as the fingerprinted design M
*
, with 

,: ii xx  43
* )( SSSs   and .)( 34

* SSSd  From Table 

I, *( )sSS S = "001" and *( )dDR S = "110". Thus, 

* "001;0100; ".V    By applying V
*
 to M

*
, f0 = '1' can be 

detected from the second bit (i.e., l0 = 1) of DR
*
.   

C. Partitioning for Efficient Fingerprinting 

It is difficult to obtain an optimized seed design for 

fingerprinting by resynthesis when the number of FFs n is large. 

The resynthesis can be made more efficient by partitioning the 

object design into smaller interconnected segments. If each 

segment contains only c FFs, it becomes affordable to 

synthesize all the 2
c
 testable design instances to obtain an 

optimized seed design for each segment if c << n.  The total 

number of resynthesis processes is reduced to 

/ 2 2 c
nc

c
n c n     , where  • is the floor function and |a|b 

denotes the remainder of a divided by b, and only a very small 

part of the design is resynthesized in each process.  

 As the DG of the test machine has a chain-like structure as 

shown in Fig. 2, multiple c-FF test machines can be easily 

cascaded to form a linear chain of state variables. To minimize 

the dependencies added in the DGs of the partitioned design, the 

longest chain removal technique [24] is used to chain the state 

variables of the object design before it is partitioned into smaller 

interconnected segments. The result is an ordered list of FFs that 

can be used to direct the partitioning of an n-FF object design M. 

The following procedure outlines the state variable chaining 

heuristic.  

(1) Extract the DG of M by omitting the self-dependencies of 

the FFs.  

(2) Compute strongly connected components (SCCs)
1
 of the 

DG and replace each SCC in the DG with a single vertex to 

form a directed acyclic graph (DAG). 

(3) Obtain the longest chain of the DAG. 

(4) Obtain the longest chain in each SCC. 

(5) Replace the vertices representing the SCCs in the chain 

obtained in Step (3) with the chains obtained in Step (4) to 

form the longest chain of the DG.  

 
 
1 A SCC of a directed graph G(V, E) is a maximal set of vertices C  V such 

that for every pair of vertices {u, v}  C, there is a directed path from u to v and 

a directed path from v to u.   
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(6) Remove the vertices in the current longest chain and their 

associated edges from the DG. Repeat Steps (1) to (5) for the 

new DG. The newly extracted longest chain obtained in Step 

(5) is then prefixed to the existing longest chain. 

(7) Repeat Step (6) until there is no vertex left in the DG.  

    To find the longest chain for a directed graph containing 

loops is an NP-complete problem [30]. Therefore, loops are 

removed in Step (2) to simplify the DG to DAG so that dynamic 

programming [31] with linear computational complexity can be 

used to extract the longest chain from the DAG. Finding the 

longest chain in a SCC is also an NP-complete problem. This 

problem in Step (4) is simplified by determining the longest 

chain from the spanning tree of SCC. The DG is reduced by 

pruning its longest chain in Step (6). The process repeats until 

no vertex is left in the DG. A linear chain of state variables for 

the object design is obtained with dependencies added merely 

for the connections from the tail of a newly extracted longest 

chain to the head of an existing chain between two iterations.       

The algorithm for the partitioning of the object design into 

c-FF segments is shown in Fig. 7. The output list of each 

segment after the partitioning is recorded. The output list of 

segment i contains the outputs of FFs or gates in segment i that 

are either primary outputs or inputs to FFs or gates in other 

segments.   

dependency_directed_partitioning(M, FF, c) 

{    

M: Sequential design to be partitioned;  

 FF: List of FFs of M ordered according to state variable chain; 

 Gate: List of gates of M; 

 IO: List of primary inputs and primary outputs of M; 

 c: Predefined maximum number of FFs in each partition; 

Gate[i].used = 0; FF[i].used = 0; // Initialize all gates and FFs of M  

j = 0;   

    while (FF is not empty) { 

   Partition[j] = create_partition(); //create a new partition 

         if (number of unused FFs in FF > c) 

             Partition[j].FF += last c unused FFs of FF; 

         else  

             Partition[j].FF += all unused FFs of FF; 

         mark_used_FFs(); // mark those FFs added to Partition as used; 

         for each (Partition[j].element) { // element can be Gate or FF 

   Predecessor = get_predecessor(Partition[j].element); 

          if (Predecessor == FF[k] and FF[k]  Partition[j].FF)  

            Partition[j].input += FF[k].output; 

         else if (Predecessor == Gate[k]) 

                  if (Gate[k].used == 0){  // Gate[k] is unused 

           Partition[j].gate += Gate[k]; 

                       Gate[k].used = 1; 

         } else  // Gate[k] is used 

           if (Gate[k]  Partition[j].Gate) 

                          Partition[j].input += Gate[k].output;  

             else  Partition[j].input += IO[k]; // Predecessor is IO[k]         

  }  //end for loop   

  j++;        

     }   //end while loop 

 return Partition; 

}  
Fig. 7.  Dependency-directed partitioning algorithm. 

The object design M is partitioned into t smaller 

interconnected segments, M0, M1, ..., Mt1, each with ni FFs, 

where i[0, t1] and M0 denotes the segment that is nearest to 

the output z. Then an ni-FF test machine is inserted into each Mi 

independently as described in Section II with in2 possible state 

encodings. These in2 different testable designs for Mi are 

resynthesized and the most optimized testable design is selected 

as the seed design MSi for Mi.  

To disperse the fingerprint 1
0}{ 

 m
jjfF with  

1

0

m

i i
L l




  

location indices into the partitioned seed design, the 

fingerprint-compatible DR
*
 is divided into t ternary strings,

 
 

1
*

, 0

in

i i j j
DR r




   for i = 0, …, t1 and  ri,j  {0, 1, ''}. *

iDR can 

be generated by setting ri,j = fk if ,
1

0
k

i

b
b ljn 




 

1,,0  mk  and ri,j = '' otherwise. If all bits of *

iDR  are 

don‟t cares, no fingerprint bit needs to be inserted into MSi and 

the fingerprinted instance .*
Sii MM   Otherwise, the 

fingerprinting algorithm in Fig. 6 is used to insert the fingerprint 

bits in *

iDR to produce the fingerprinted instance *

iM . All 

fingerprinted instances *

iM  are then cascaded back together 

and resynthesized to produce the final fingerprinted design M
*
. 

As an example, consider the ISCAS benchmark S344. Its DG 

after removing the self-dependencies is shown in Fig. 8, where 

the FF dependencies are represented by solid directed edges. 

Using the state variable chaining heuristic, the existing longest 

FF chain  FF1 → FF2 → FF3 → FF15 → FF4 → FF5 → FF6 

→ FF7 → FF8 → FF9 → FF10 → FF11 is first extracted. 

After removing the FFs in the longest chain from the DG, FF14, 

FF13 and FF12 are individually extracted as the longest chains 

in the subsequent iterations. By appending the existing chain to 

the newly extracted longest chains, the final chain of FFs is 

given by FF12 → FF13 → FF14 → FF1 → FF2 → FF3 → 

FF15 → FF4 → FF5 → FF6 → FF7 → FF8 → FF9 → FF10 

→ FF11. New dependencies are added to form this FF chain, 

which are indicated by dashed directed edges in Fig. 8.  

FF15

FF1

FF4

FF5

FF9

FF3

FF2

FF6

FF7

FF8

FF14 FF13

FF12

FF11

FF10

 
Fig. 8.  Dependency graph of S344 excluding self-dependencies. Solid 

edges are the existing dependencies; dark and dashed edges are 

respectively the selected and added dependencies of the final FF chain.     
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Assume the maximum number of FFs per segment is 3, the 

algorithm in Fig. 7 returns the following partitions:  

M0 with {x3(FF11), x2(FF10), x1(FF9)},  

M1 with {x3(FF8), x2(FF7), x1(FF6)},  

M2 with {x3(FF5), x2(FF4), x1(FF15)},  

M3 with {x3(FF3), x2(FF2), x1(FF1)},  

M4 with {x3(FF14), x2(FF13), x1(FF12)}.  

Table III shows the synthesized areas for each partitioned 

testable design MTi. Designs 1 to 8 correspond to the 8 different 

state encodings of the embedded 3-FF test machine in the 

second column of Table II. The embedding is performed by 

mapping (
1x , 2x ,

3x ) of the test machine to (x1, x2, x3) of each 

segment Mi. The best designs, Design 6 for MS0, Design 3 for 

MS1, Design 5 for MS2, Design 1 for MS3 and MS4 are selected as 

the seed designs for fingerprinting. 

TABLE III 

 Synthesis results (area in μm2) for test machine embedded components of S344 

Design M0 M1 M2 M3 M4 

1 439.1 575.5 459.0 319.3 282.7 

2 415.8 595.4 485.7 349.3 316.0 

3 439.1 568.8 452.4 319.3 292.7 

4 415.8 602.1 479.0 349.3 312.7 

5 439.1 575.5 445.7 319.3 282.7 

6 409.1 595.4 472.3 342.6 316.0 

7 439.1 568.8 452.4 319.3 292.7 

8 415.8 602.1 479.0 349.3 312.7 

      Assume a fingerprint F = "110001" and its location indices 

L = {5, 11, 9, 2, 4, 0}. Then * " 1 0 10 0 1"DR        

is the fingerprint compatible DR. It can be partitioned into    

"10"*
0 DR ,  *

1DR  = "10",  *

2DR  = "", *

3DR  = "1" and 

*

4DR = "". Since *

2DR = *

4DR
 
= "", MS2 and MS4 can be 

used as fingerprinted instances *

2M  and *

4M , respectively. Let   

V = "011110001011001; 001010111;"   

be the test vector selected for the interconnected seed designs 

MS4 → MS3 → MS2 → MS1 → MS0   with   Ss  =  "S6-S3-S4-S6-S4",  

Sd = "S7-S2-S7-S7-S4" and DR(Sd) = "111010111111001". The 

underlined bits of DR(Sd) are incompatible with DR
*
. Since   

DR0 = "001"  "0", MS0 can be used as the fingerprinted 

instance *

0M . DR1 = "111"  "10". From Table I, for a = b = 0, 

DR(S1) =  "100" and DR(S5) = "101" are compatible with "10". 

From Table II, the encoded value of S5 in Design 1 and S1 in 

Design 2 can be mapped to the encoded value of Sd = S7 = "101" 

of MS1. Design 1 has lower area than Design 2 of M1, and is 

selected as *

1M , then ),,,(),,(: 321321 xxxxxx   and              

*

sS = (S6) = S4 and *

dS = (S7) = S5. From Table I,                   

SS(S4) =  "001" and DR(S5) = "101". Similarly,                            

DR3 = "010"  "1". DR(S1) = "100" and DR(S3) = "110" are 

compatible with "1". The encoded value of S1 in Design 7 and 

S3 in Design 5 can be mapped to the encoded value of                   

Sd = S2 = "010" of MS3. Both designs have the same cost and 

either of them can be selected as the fingerprinted instance *

3M . 

If Design 7 is selected, then  : (x1, x2, x3)( x1, 2x , 3x ), and  

*

sS  = (S3) = S0 and *

dS  = (S2) = S1. From Table I,               

SS(S0) = "000" and DR(S1) = "100". The fingerprinted instances 

can be chained to form MS4 → *

3M → MS2 → *

1M  → MS0 and 

resynthesized to produce the fingerprinted design M
*
. Hence,     

V
*
 = "011000001001001; 001010111; " 

and DR = "111100111101001", where the underlined bits are 

the modified values of *

sS  and *

dS  of *

1M  and *

3M  after 

fingerprinting. The area, delay and power consumption of the 

seed and final fingerprinted instances are (1616.6 m
2
, 1.19 ns, 

1.13 mW) and (1623.3 m
2
, 1.18 ns, 1.18 mW), respectively.   

D. Fingerprint Detection and Authorship Verification 

The IP provider keeps a safe repository of records. Each 

record consists of the fingerprint F, the secret integer k used in 

the blinding phase, the buyer‟s public key (n, e), the fingerprint 

location vector L and the test vectors V
*
 for each fingerprinted 

instance. To detect the authorship of a fingerprinted design, the 

IP provider can apply the test vector V
*
 to obtain a DR, from 

which the fingerprint F can be recovered at the bit locations 

specified by L. The buyer‟s public key (n, e) corresponding to F 

can then be retrieved from the database. The IP provider‟s 

watermark can be detected by W = F
e
 mod n. The IP provider 

can prove his ownership of the IP by demonstrating that his 

legible ownership message can be hashed to W. Since the IP 

provider‟s watermark W can be successfully recovered by 

decrypting the fingerprint F with the specific IP buyer‟s public 

key, it proves that the fingerprinted design is sold to that buyer. 

Thus the buyer of a fingerprinted design can be tracked and held 

responsible if the fingerprinted design was found to be illegally 

copied and redistributed.  

Decrypting F to detect W needs only to be done once but to 

detect F from a fingerprinted instance of unknown buyer may 

require the application of all the different test vectors V
*
. To aid 

the detection of F, the IP provider can store the responses DRa to 

a common test vector Va for all fingerprinted instances into the 

corresponding entries of the database. With high probability, 

DRa for the same test vector Va will be different for different 

instances. By applying Va to the instance, the number of test 

vectors V
*
 required to detect F will be reduced dramatically to 

only those few matching records of DRa. 

E. Augmented Fingerprint  

    To increase the attackers‟ difficulty to successfully erase the 

fingerprint F, error correction code (ECC) can be added to it. 

More fingerprint bits will have to be modified in order to 

prevent F from being correctly detected by the IP provider. 

Owing to the randomized dispersion by L, the ECC bits are 

automatically interleaved with the fingerprint bits in DR. If 

necessary, F can be compressed by cryptographic hash function 

to adapt to the embedding capacity of the design. The IP 

provider needs only to demonstrate additionally that F can be 

hashed to the embedded bit stream recovered from the sold 

design.    

IV. SECURITY ANALYSIS OF PROPOSED SCHEME 

     No hardware IP protection scheme is complete without an 

analysis of its credibility, robustness and feasibility. Credibility 

refers to the strength of ownership proof, robustness refers to 

the resistance against known and perceivable attacks, and 

feasibility refers to the effort in finding the number of quality 
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solutions required for the protection scheme. These attributes 

are analyzed below. 

A.  Fingerprint Credibility 

     A common measure to quantify and compare the credibility 

or strength of a fingerprinted solution is the probability of 

coincidence (Pc), which are the odds that a non-fingerprinted 

design carries the fingerprint by coincidence. A lower Pc 

implies a stronger proof of ownership and original recipient. In 

our scheme, since each bit of DR of a design is equally probable 

to be '0' or '1', the probability that m randomly selected bits in 

DR match a specific binary string of fingerprint is given by: 

                                  
1

2
c m

P                                          (9) 

     With a 64-bit fingerprint, the Pc of a fingerprinted instance is 

as low as 5.4×10
20

. This probability reduces to the order of 

10
40

 for a 128-bit fingerprint.   

B. Fingerprint Robustness 

    The following attack scenarios are analyzed with Alice as the 

IP provider using our fingerprinting scheme to protect her IP 

core and Bob as a malefactor attempting to steal her IP.  

  (1) Collusion attack. This attack requires a coalition of 

multiple copies of fingerprinted instances in possession by one 

or more malicious users in order to create a forged copy without 

the fingerprint for redistribution. Bob may collude with other 

buyers to compare multiple protected instances to find out their 

structural dissimilarities, with the hope that these dissimilar 

parts of the circuits can be modified at an acceptable cost and 

effort to remove the fingerprint without losing the usefulness 

and correct functionality of the IP. To succeed in such an attack, 

the fingerprint must be altered to an extent that none of the users 

in the coalition can be identified by Alice.  

     While this attack is a biggest threat to data hiding algorithms 

on multimedia content in which the hidden signature 

(watermark or fingerprint) does not depend on the host data, 

several features in our fingerprinted instance make such attack 

ineffective. First, the fingerprint bits randomly modulate the 

values of state variables that affect the next state and output 

decoding logic in both the normal and test functions, making 

them inextricable from the functional components of the IP. 

This makes it very challenging for Bob to figure out the 

functionality of any structural mismatch in order to successfully 

remove even a single fingerprint bit. Secondly, the same 

segment *

iM of different fingerprinted instances can be 

identical (i.e., both equal to MSi) or different irrespective of the 

value and number of fingerprint bits embedded in them. Lastly 

and most importantly, the entire chain of testable machines is 

resynthesized as a whole to obtain M
*
. The domino effect of the 

hard optimization problem involved in the resynthesis process 

whitens the differences between the fingerprint-modulated and 

unmodulated subcircuits, causing the entropy of identifying and 

associating the matching or mismatching subcircuits between 

any two instances to increase with the number of fingerprinted 

instances being compared.  

    (2) Combinational logic resynthesis. Bob may attempt to 

remove the fingerprint by performing a combinational logic 

resynthesis through various approaches [32]. Although this 

attack can successfully modify the circuit structure by changing 

the combinational logic implementations without affecting the 

functionality, the input and output behaviors of the sequential 

elements are preserved. Thus, Alice can still recover the 

fingerprint F from the DR of the fingerprinted design modified 

by Bob. One characteristic of the test machine is that it can be 

decomposed into multiple smaller test machines and 

independently embedded into a correspondingly partitioned 

large machine. Although the original circuit topologies of these 

interconnected machines may not be maintained upon global 

optimization of the final testable design, the full controllability 

and observability of all FFs are not affected. As an example, 

consider the STGs of one-FF and two-FF test machines shown 

in Fig. 9. If they are interconnected such that the output of the 

first test machine is the input of the second test machine, then 

the 822 21  combined states can be mapped to the 8 states for 

the 3-FF test machine of Fig. 1. Let the state of the final test 

machine be represented as (S1,i, S2,j) when the first test machine 

is in state S1,i and the second test machine is in state S2,j. If the 

bijection maps (S1,i, S2,j) to Sk of the 3-FF test machine, then 

SS((S1,i, S2,j)) and DR((S1,i, S2,j)) of the combined machine can 

still be determined from SS(Sk) and DR(Sk), respectively in 

Table I for the 3-FF test machine. Our method utilizes this 

property to efficiently distribute the fingerprint bits and 

propagate the embedded fingerprint F to all subsequent stages 

of the design flow. The fact that SS(Sk) and DR(Sk) remain intact 

after the resynthesis of the final testable design implies that F 

will survive all forms of logic synthesis and optimization 

performed on the fingerprinted instance.  

S2,0

S2,1

S2,2

S2,3S1,0 S1,1a/d

a) b) 

a/d

a/d
a/d d/b

d/b

d/b

d/b

d/b

d/b

d/b

d/b

Fig. 9.  STGs of (a) 1-FF and (b) 2-FF test machines. 

     (3) Circuit retiming. Circuit retiming relocates the FFs of 

sequential circuit to improve its performance while preserving 

the functionality. Bob may retime the fingerprinted instance. As 

retiming may change the STG of the circuit, it seems possible 

for Bob to partially remove the fingerprint inserted by Alice if 

the altered parts of the STG host the fingerprint bits.  

      According to [33], retiming merges two states that are 

one-step equivalent or splits one existing state into two new 

states that are one-step equivalent. Two states are said to be 

one-step equivalent if they have the same output and the same 

destination state for any input. Fortunately, each state of the test 

machine is distinct and the fingerprinted instance contains no 

one-step equivalent state. Hence, none of the states in the 

fingerprinted instance can be merged by circuit retiming. 

Meantime, as the test machine is fully specified, it is also not 

possible to split one state of the fingerprinted instance into two 

one-step equivalent states without adding extra sequential 

elements. Even if Bob manages to create one-step equivalent 

states at the cost of additional circuitry without losing the 

usefulness of Alice‟s IP, the states and their associated 
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transitions involved in the fingerprint extraction are retained. 

Thus Alice can still recover the correct fingerprint from the DR 

of the retimed fingerprinted instance redistributed by Bob.   

     (4) State recoding. There are two possible ways by which 

Bob can recode the state variables of Alice‟s protected design. 

The first way is to extract the STG directly from the 

fingerprinted design to carry out the state recoding. It has been 

proven that extracting the STG from a large sequential circuit 

after logic synthesis is computationally intractable [9]. Thus this 

approach is infeasible in practice. Alternatively, Bob may 

perform a partitioning on the fingerprinted instance to obtain 

many smaller segments of the design. With no knowledge of the 

design or architecture of Alice‟s IP, Bob may only be able to 

extract a limited number of STGs for some segments to recode 

their state variables. Since the buyer has no knowledge of the 

embedded fingerprint F and input vector V
*
 for its recovery, 

Bob can only select the segments by wild guess. Due to the 

existence of loops (SCCs) in the dependency graph, the solution 

for the chaining of state variables with minimum additional 

dependencies is not unique. Various new SCCs have been 

formed after the embedding of test machines, and the final 

resynthesis of the entire fingerprinted design further masks the 

partitioning and chaining of state variables. Hence, it is highly 

unlikely that Bob could precisely relate the fingerprint bits to 

the corresponding state variables. It is reasonable to assume that 

Bob is incapable of extracting the STG for every partition, 

recode and re-synthesize the STG to forge a completely new 

design as this task incurs no less effort than the complete 

redesign of the IP functionality with a high, and almost certain 

risk of violating the circuit functionality or performance. Even if 

he succeeds in forging a new design, he will not be able to 

generate the proper test vectors for the counterfeit design 

without knowing the encodings used by the test machines, 

which will devalue his design.              

  (5) State reduction. IP protection schemes, such as [9], that 

leverage on redundancy to mark the states to display some 

specific property for authorship proof are susceptible to this 

kind of attack. This vulnerability does not exist in our 

fingerprinting scheme because the embedded test machine is a 

fully specified machine with distinct states. The final 

fingerprinted design contains no redundant state as, if any, it 

would have been reduced upon the resynthesis performed after 

fingerprint insertion. In addition, state reduction is usually 

performed on explicit STG [34], which implies a very high cost 

of attack on a fingerprinted design instance released at the gate 

level or lower level of design abstraction.   

C. Fingerprint Feasibility 

  Generally, the feasibility of a fingerprinting scheme is 

evaluated by three main criteria. First, the solution space 

required for the generation of a large number of unique 

instances. Second, the additional cost and effort required to 

produce a fingerprinted instance. Preferably, the fingerprinting 

method is compatible with existing design tools and no new 

investment of tool is needed to embed or detect the fingerprint. 

The additional effort required should also be substantially lower 

than designing the IP from scratch. Finally, the impact on 

quality degradation of any fingerprinted instance should be 

minimized and kept within a tolerable limit.  

    The first criterion can be evaluated by the number of possible 

solutions to fingerprint an IP. The number of combinations to 

select m state variables from a design of n FFs to host the m 

fingerprint bits is given by: 
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                                 (10) 

     As each state variable can be assigned either a value of „0‟ or 

„1‟, the number of different fingerprinted instances that can be 

generated by our scheme is: 
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     For n = 100 and m = 32, the solution space has exceeded 

6×10
35

.   

     For the second criterion, the fingerprint embedding process 

of our scheme is completely transparent and can be used with 

existing design tools and standard cell libraries for ASIC 

implementation. As no specialized scan FF is required, the 

scheme is also applicable to fingerprint IPs for different 

configuration technologies of FPGAs, including the antifuse- or 

flash-memory based FPGAs for which [15] may not be 

applicable. The additional design effort to generate each 

fingerprinted design instance is marginal after the seed design is 

obtained. Only those segments that are not compatible with its 

corresponding fingerprinted sequence DR
*
 at the fingerprint 

locations specified by L need to be remapped and a final 

re-synthesis is needed to globally optimize the entire 

fingerprinted design after the segments have been restitched. 

  Lastly, our fingerprinting scheme incurs insignificant 

overhead on the design quality. This is attributed to the efficient 

dependency-directed partitioning algorithm and the utilization 

of seed designs, which are optimized for each partitioned 

testable machine. The low fingerprinting overhead will be 

demonstrated by experiments on different benchmark circuits in 

the next section. 

V. EXPERIMENTAL RESULTS 

     Sequential circuits from ISCAS'89 benchmark suite are used 

to analyze the quality of the fingerprinted instances of our 

scheme. Depending on the circuit size, the first 16, 32, 64, 128 

or 256 bits of the keyed SHA-2 hash value of the fingerprint F 

were inserted. The location integers L were generated with a 

SHA-2 based PNG. The design partitioning, test machine 

embedding as well as the fingerprint insertion algorithms were 

coded in C++. Combinational test generation on the seed design 

was carried out with DfT tool DFTadvisor and ATPG tool 

Fastscan from Mentor Graphics. As part of the fingerprint 

insertion algorithm, the selected combinational test pattern is 

converted into a sequential test pattern of the form {SS; test 

vector; DR}. The synthesis was performed using Synopsis DC 

with TSMC 0.18 µm technology library, with C-Shell scripts 

written to automate the synthesis processes for the encoding 

instances of each segment as well as the whole design.  

The synthesis results are shown in Table IV. The area and 

delay were simulated by Synopsys DC, and the power by 

Synopsys PrimeTime PX with back annotation. The area, delay 

and power overheads due to fingerprint insertion are on average 
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1.6%, 1.2% and 3.4% respectively, and below 2.5%, 5.0% and 

5.0% respectively for most circuits.  

TABLE IV  

Fingerprinting overheads with state-encoding for area reduction. #FF is the  

number of FFs; As and Am, Ds and Dm, and Ps and Pm are areas in µm2, delays in 

ns and powers in mW of the non-fingerprinted optimized seed design and 

fingerprinted design, respectively; ΔA, ΔD and ΔP are the respective 

percentage increases.  

Circuit #FF As Ds Ps m Am Dm Pm 
ΔA 

(%) 

ΔD 

(%) 

ΔP 

(%) 

S382 21 2212 1.35 1.26 16 2229 1.42 1.33 0.77 5.19 5.32 

S838 32 3323 3.60 1.82 16 3453 3.31 1.71 3.91 8.06 6.04 

S1423 74 8452 5.39 5.10 
16 8472 5.38 5.42 0.24 0.19 6.28 

32 8482 5.03 5.34 0.35 6.68 4.67 

S5378 179 17347 1.68 12.0 
32 17414 1.65 12.5 0.39 1.79 4.17 

64 17540 1.78 12.6 1.11 5.95 5.00 

S9234 211 24143 2.67 14.3 
32 24462 2.22 15.0 1.32 16.85 4.90 

64 24702 2.8 14.2 2.32 4.87 0.70 

S15850 534 54151 4.04 34.5 
64 54862 3.96 38.8 1.31 1.98 12.46 

128 55473 4.04 35.3 2.44 0.00 2.32 

S13207 638 56496 3.18 35.5 
64 57068 3.76 36.2 1.01 18.24 1.97 

128 57633 3.16 36.1 2.01 0.63 1.69 

S35854 1426 159274 3.44 95.5 
128 161234 3.57 98.1 1.23 3.78 2.72 

256 163206 3.60 103.8 2.47 4.65 8.69 

S38417 1636 166097 3.40 67.7 
128 167677 3.78 67.7 0.95 11.18 0.00 

256 168625 3.67 68.8 1.52 7.94 1.62 

S35932 1728 150506 1.49 112 
128 153370 1.51 110.5 1.90 1.34 1.34 

256 155752 1.52 120.9 3.49 2.01 7.95 

 

Let RF = m/n represents the fingerprinting ratio, which is the 

number of fingerprint bits to the number of bits in DR. The area 

overhead increases with RF for all designs. This is expected as 

the originally optimized encoding instance will have to be 

recoded in more segments as RF increases. However, the 

overhead of fingerprinting one design with a smaller RF may not 

necessarily be lower than that of another design with a larger RF. 

This could be due to the design and topology dependent 

merging of functional and test logic of different encoding 

instances. For some circuits, the differences in area, delay and 

power among different encoding instances are very small. The 

fingerprinting overheads of these designs may only increase 

mildly with RF as opposed to those that have a large quality gap 

between a suboptimal and the most optimized encoding 

instances.      

As area is used as the selection criterion for the seed design, 

the delay and power overheads have wider spreads than the area 

overhead among different designs. For instance, some 

fingerprinted designs are more than 18% slower than their seed 

designs while some other could be about 17% faster. This 

inconsistency is because a smaller instance may not necessarily 

be faster or consume less power. Hence, the fingerprinted 

segment that uses a suboptimal encoding instance may have 

shorter delay or consumes less power than the optimal encoding 

instance. This explains why the delays or power consumptions 

of some fingerprinted designs in Table IV are smaller than their 

seed designs.    

The choice of state encoding influences the complexity of the 

logic functions of the FSM and hence the area, timing and power 

dissipation of the synthesis results. Thus, the policy for selecting 

the optimal state encoding can be adapted to the optimization 

target. Table V shows the synthesis results using area-delay 

product as the selection criterion if the area and delay of the 

fingerprinted design are equally important. This selection policy 

reduces the delays of fingerprinted instances from those of 

Table IV by 0.17% on average but their areas are also 

correspondingly increased by 0.12% on average.    

TABLE V  

Fingerprinting overheads with state encoding for area-delay product reduction. 

The definitions and units of all notations are the same as those in Table IV. 

Circuit #FF As Ds Ps m Am Dm Pm 
ΔA 

(%) 

ΔD 

(%) 

ΔP 

(%) 

S382 21 2202 1.42 1.27 16 2265 1.49 1.37 2.86 4.93 8.21 

S838 32 3400 3.32 1.93 16 3463 3.42 1.89 1.85 3.01 1.92 

S1423 74 8436 5.23 5.01 
16 8416 4.80 5.10 0.24 8.22 1.86 

32 8422 4.84 5.46 0.17 7.46 9.05 

S5378 179 17064 1.68 12.4 
32 17114 1.69 12.6 0.29 0.60 1.61 

64 17264 1.64 12.8 1.17 2.38 3.23 

S9234 211 24160 2.51 15.2 
32 24409 2.32 15.8 1.03 7.57 3.95 

64 24868 2.33 15.8 2.93 7.17 3.95 

S15850 534 54217 4.17 35.9 
64 54736 4.06 37.3 0.96 2.64 3.90 

128 55071 4.07 38.6 1.58 2.40 7.52 

S13207 638 57074 3.62 36.9 
64 57869 3.41 38.5 1.39 5.80 4.34 

128 57909 3.67 38.0 1.46 1.38 2.98 

S35854 1426 160306 3.61 97.0 
128 161686 3.70 98.0 0.86 2.49 1.03 

256 163523 3.60 97.0 2.01 0.28 0.00 

S38417 1636 166184 3.79 71.6 
128 168017 3.46 72.7 0.80 8.71 1.54 

256 169430 3.93 72.0 1.65 3.69 0.56 

S35932 1728 152559 1.56 120 
128 155473 1.58 120 1.91 1.28 0.58 

256 157339 1.58 125 3.13 1.28 3.99 

     In order to evaluate the area and timing overheads of our 

fingerprinted circuits on FPGA, designs in Table IV are 

implemented on Xilinx XC6VCX240T device. The results are 

shown in Table VI. The number of slice registers used by each 

design is the same as #FF in Table IV. For most designs, similar 

trend of increasing overhead with RF is observed. On average, 

the area and delay overheads are 1.8% and 1.4% respectively. 

Unlike the fingerprinted solutions of [15], the area and delay of 

our fingerprinted solutions can be improved as manifested by 

the negative ΔA and ΔD values in Table VI. This is possible 

because the resynthesis after state recoding may perturb the 

optimization heuristic to the FPGA fabric mapping, placement 

and routing problems to escape the local minima. The 

fingerprinted design may be easier to be placed and routed than 

the seed design, leading to the use of less logic slices or shorter 

interconnections for nearly half of the fingerprinted solutions. In 

addition, our technique can also be applied to IPs targeting 

antifuse and flash memory based FPGA technologies, which are 

not feasible for [15].  Due to the dissimilar approaches to logic 

minimization, the optimal encodings for FPGA may be different 

from ASIC. The impact of encoding and decoding logic on 

power consumption is usually higher in FPGA than in ASIC, 

particularly for large FSMs. Among the 2
n
 different minimal-bit 

encodings, Gray encoding and those with reduced hamming 

distance of the most probable state transitions are more likely to 

lead to lower resource utilization and power consumption.     

Reported experimental results of fingerprinting methods 

[14-17] based on only one or a few fingerprint instances for 

each design are inadequate to demonstrate their capability to 

generate a large number of reasonably high-quality 

fingerprinted designs. To evaluate this capability, the same 

experimental settings for obtaining the data in Table IV were 

used to synthesize 100 different fingerprinted instances with 
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randomly generated fingerprints and location integers for each 

design. The minimum, maximum and average areas and delays 

of the 100 fingerprinted designs for each circuit are listed in 

Table VII. The minute margin of error percentages, %Aerr and 

%Derr, indicate that different fingerprinted instances of the same 

IP produced by our technique have consistent quality. By 

comparing the mean area and mean delay in Table VII with the 

seed design area As and delay Ds in Table IV, a more 

informative group average fingerprinting overheads, ΔA and 

ΔD, of 1.4% and 2.3% respectively are obtained. 

TABLE VI  

Area and timing overheads of fingerprinted designs implemented on FPGA. 

As and Am, and Ds and Dm are the areas in number of slice LUTs and delays in ns 

of the seed design and fingerprinted design, respectively. 

Circuit As Ds m Am Dm ΔA (%) ΔD (%) 

S382 43 2.58 16 41 2.34 4.65 9.44 

S838 57 2.61 16 60 2.79 5.26 7.18 

S1423 174 4.99 
16 176 5.60 1.15 12.19 

32 166 5.51 4.60 10.85 

S5378 223 3.54 
32 232 3.79 4.04 7.01 

64 230 3.42 3.14 3.25 

S9234 422 4.16 
32 421 5.24 0.24 25.83 

64 422 4.60 0.00 10.48 

S15850 784 6.05 
64 799 5.43 1.91 10.31 

128 853 5.39 8.80 10.89 

S13207 709 6.04 
64 698 5.68 1.27 5.98 

128 718 5.83 1.91 3.48 

S35854 2660 6.43 
128 2669 6.48 0.34 0.82 

256 2674 6.36 0.53 1.09 

S38417 2565 6.94 
128 2730 6.97 6.43 0.42 

256 2720 6.96 6.04 0.27 

S35932 1729 3.58 
128 1749 3.57 1.16 0.31 

256 1775 3.38 2.66 5.67 

     TABLE VII  

Statistical analysis of synthesis results for 100 different fingerprinted instances 

of each circuit. Am and Dm denote area in µm2 and delay in ns, respectively. 
%Aerr and %Derr are obtained by calculating the margins of error Aerr and Derr 

for the area and delay for 95% confidence interval and normalized them by the 

average area and delay, respectively. 

Circuit m 
Am Dm 

%Aerr %Derr 
min Ave. max min Ave. max 

S382 16 2179 2240 2305 1.32 1.44 1.56 0.26 0.68 

S838 16 3320 3388 3473 3.02 3.37 3.78 0.18 0.85 

S1423 
16 8369 8472 8589 4.71 5.25 5.82 0.12 1.05 

32 8363 8473 8575 4.71 5.28 5.85 0.10 0.98 

s5378 
32 17349 17358 17550 1.61 1.76 2.06 0.08 0.84 

64 17361 17395 17653 1.62 1.78 1.98 0.11 0.76 

s9234 
32 24166 24422 24662 2.22 2.51 2.92 0.09 1.01 

64 24266 24579 24915 2.23 2.49 2.87 0.12 0.95 

s15850 
64 54540 54851 55271 3.42 3.95 4.21 0.05 0.75 

128 54999 55327 55674 3.48 3.99 4.45 0.05 0.79 

s13207 
64 56788 57094 57397 3.00 3.46 3.90 0.04 0.95 

128 57227 57529 57936 3.16 3.52 4.01 0.05 0.87 

s35854 
128 160605 161356 161976 3.12 3.57 4.20 0.03 0.96 

256 162122 162880 163729 3.12 3.64 4.11 0.04 1.01 

s38417 
128 166819 167573 168299 3.41 3.67 4.14 0.03 0.82 

256 168199 168859 169430 3.41 3.75 4.32 0.03 0.91 

s35932 
128 152905 153419 154109 1.43 1.50 1.64 0.03 0.56 

256 154980 155678 156743 1.43 1.53 1.64 0.04 0.61 

   To the best of our knowledge, no FSM fingerprinting 

technique has been reported so far. Among the FSM 

watermarking schemes, [8] is the only technique that deals 

explicitly with the problem of field authentication (or off-chip 

detection) of embedded sequential circuit IP ownership. To 

facilitate the comparison of our technique with [8], the same 

synthesis tool SIS [35], technology library msu.genlib, 

optimization script script.algebraic and ISCAS benchmark 

circuits in blif format as [8] are used to produce our 

fingerprinted circuit results in Table VIII. In most cases, our 

fingerprinted designs have lower area than the watermarked 

designs of [8], with an average area reduction of about 2% even 

though reduction of hardware overhead has been well 

acknowledged as a more challenging problem in fingerprinting 

than in watermarking. Fingerprinting by state variable encoding 

of the embedded partitioned test machine has not only resulted 

in better area optimization but also provided a stronger 

integration of test and functional logic than the scan-chain based 

synthesis-for-testability technique. The delay comparison is 

inconclusive however. Due to the cost function used by the 

algebraic script from SIS, its metaheuristic tends to create a 

larger delay discrepancy between the originally optimized cost 

surface and the alternate cost surfaces than Synopsys design 

compiler.  

TABLE VIII  

Comparison of synthesis results with FSM watermarking [8]. As and Am, and Ds 

and Dm are the areas in µm2 and delays in ns of the seed design and 

fingerprinted design, respectively. 

Circuit #FF m As Ds 
Am Dm 

Prop. [8] Prop. [8] 

S3330 132 
32 

29696 45 
30024 33504 49.8 46.4 

64 30088 33496 54.2 47 

S3384 183 
32 

42704 69.6 
42920 47736 85 83.2 

64 43440 46160 88 83.6 

S9234 228 
32 

57824 67.6 
58752 59528 74.2 65.6 

64 58944 59520 73.8 65.2 

S6669 239 
32 

69720 142.8 
70728 75136 126.2 134.6 

64 72608 75312 127 134.2 

S15850 597 
64 

129184 132.6 
130568 130928 157.2 123 

128 132280 130880 170.4 123.6 

S13207 669 
64 

118632 128.4 
120904 126024 143.8 140.2 

128 123920 123456 154.6 131 

S38584 1452 
64 

338816 469.8 
343424 345872 484.2 400.6 

128 346608 342520 490.6 401.6 

S38417 1636 
64 

389320 387 
391768 372288 404.4 354 

128 393776 373696 423.4 356.4 

S35932 1728 
64 

330968 354.8 
333712 366528 361.2 348.2 

128 335328 366920 363 347 

B14 245 
32 

137512 143.6 
137896 139664 171.8 142.4 

64 138296 139176 175.4 142.4 

B15_1 449 
64 

220610 132.4 
222208 219152 139.4 147.6 

128 223112 218208 148 148 

B21 490 
64 

287080 154.2 
288184 298464 196.6 155.2 

128 288880 298720 207.6 155.2 

B22 735 
64 

428008 215.4 
429448 429832 274.4 210.2 

128 430760 430168 272.4 209.6 

B17 1415 
64 

710784 374.4 
710960 690296 382.4 404.6 

128 712160 689840 403.4 403 

We also compared the areas and delays of our fingerprinted 

circuits from Table V with those of [9] for the same signature 

lengths of 64 and 128 bits. The percentage area and delay 

overheads for each circuit are shown in Table IX. Overall, our 

scheme incurs smaller area and delay overheads. Moreover, 

being essentially a watermarking scheme, [8] and [9] are 

incapable of generating many high-quality topologically 

different designs (for different marks) of the same IP. 
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Table IX  

Comparison of area and delay overhead with [9] 

Circuit m 
ΔA (%) ΔD (%) 

proposed [9] proposed [9] 

S5378 64 1.17 2.50 2.38 7.50 

S9234 64 2.93 2.97 7.17 1.50 

S15850 
64 0.96 0.86 2.64 3.70 

128 1.58 2.06 2.40 2.28 

S13207 
64 1.39 3.40 5.80 3.38 

128 1.46 5.15 1.38 3.38 

S38584 128 0.86 0.75 2.49 4.76 

S38417 128 0.80 5.17 8.71 2.99 

S35932 128 1.91 5.02 1.28 2.35 

     

  The probability of successful removal of fingerprint bits by 

state recoding is also analyzed. Based on the resilience analysis 

of Section IV.B, Bob is able to recode only a small number r 

( r n ) of state variables from a few randomly created 

partitions. The probability that the r state variables he recoded 

had already been embedded with exactly j fingerprint bits is 

given by  m n m n

j r j rC C C

 , and the probability of modifying 

exactly i bit values by recoding a j-bit binary code is given 

by      1 1 1
2 2 2

i j i jj j

i iC C

 . Thus, the probability of 

successfully removing k (k  m) or more fingerprint bits by 

randomly recoding r out of n state variables is given by:   
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Table X compares the robustness of the proposed method 

with [8] by the probability of successfully erasing a quarter of 

the mark, assuming conservatively that the attacker is able to 

recode r = m state variables for our method and randomly 

derange r = m FFs for [8]. It can be seen that the proposed 

method is generally more robust against removal attacks than 

[8]. As we assume r = m, Pr is relatively high when RF is large. 

When RF is around 0.1, Pr reduces drastically to the order of 

10
8

. The probability of removal is expected to be reduced 

across-the-board if r < m. This observation suggests that it is 

unlikely for state recoding attack to succeed in altering a large 

fraction of the fingerprint bits even with a moderate RF. With 

ECC, it is highly improbable to remove even a single bit of 

fingerprint for a reasonable-size design. Given a minimum 

fingerprint length mmin for an allowable probability of 

coincidence and an empirically determined RFmax for an 

allowable probability of erasure, the smallest IPs should contain 

no less than nmax FFs, where  

                           
max

min

max

F

m
n

R
                          (13) 

VI. CONCLUSION 

  A new and robust fingerprinting technique on sequential 

circuits that offers a convenient way to identify the legal IP 

owner and users has been proposed. A large number of high 

quality fingerprinted instances can be created from an originally 

optimized seed design of the IP with incremental design effort. 

The overheads incurred by different instances have been 

effectively bounded to a reasonably low level by our method 

due to its state variable chaining heuristic, dependency based 

partitioning algorithm and the use of a single blind signature to 

double as IP ownership and buyer identity marks. Our security 

analysis shows that the fingerprint credibility increases 

exponentially with fingerprint length and is immune to collusion 

attack, circuit resynthesis, retiming and state reduction attacks. 

The risk of fingerprint removal by state recoding attack is 

significantly reduced with the augmentation of ECC or by 

keeping the ratio of fingerprint length to state variable number 

low. From 100 fingerprinted instances for each of the ten ISCAS 

benchmark circuits tested, the average area and delay overheads 

were found to be 1.4% and 2.3% respectively with negligible 

margins of error for 95% confident interval.  

Table X  

Comparison of mark robustness with [8] 

Circuit #FF m 
Pr(E ≥ m/4) 

proposed [8] 

S3330 132 32 2.6E02 3.1E02 

S3384 183 32 3.5E03 3.1E02 

S9234 228 32 8.1E04 3.3E02 

S6669 239 32 5.8E04 3.9E02 

S15850 597 64 5.2E08 5.6E08 

S13207 669 64 1.0E08 1.1E08 

S38584 1452 64 9.8E14 1.0E13 

S38417 1636 64 1.6E14 1.7E14 

S35932 1728 64 6.8E15 7.0E15 

B14 245 32 4.9E04 3.3E02 

B15_1 449 64 2.7E06 3.4E03 

B21 490 64 8.1E07 3.6E03 

B22 735 64 2.6E09 2.8E09 

B17 1415 64 1.5E13 1.5E13 
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