
This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg)
Nanyang Technological University, Singapore.

A blind dynamic fingerprinting technique for
sequential circuit intellectual property protection

Zhang, Li; Chang, Chip Hong

2014

Chang, C. H., & Zhang, L. (2014). A Blind Dynamic Fingerprinting Technique for Sequential
Circuit Intellectual Property Protection. IEEE Transactions on Computer‑Aided Design of
Integrated Circuits and Systems, 33(1), 76‑89.

https://hdl.handle.net/10356/79485

https://doi.org/10.1109/TCAD.2013.2282282

© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. The published version is available at:
[http://dx.doi.org/10.1109/TCAD.2013.2282282].

Downloaded on 25 Aug 2022 01:21:59 SGT

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

Abstract— Design fingerprinting is a means to trace the illegally

redistributed intellectual property (IP) by creating a unique IP

instance with a different signature for each user. Existing

fingerprinting techniques for hardware IP protection focus on

lowering the design effort to create a large number of different IP

instances without paying much attention on the ease of fingerprint

detection upon IP integration. This paper presents the first

dynamic fingerprinting technique on sequential circuit IPs to

enable both the owner and legal buyers of an IP embedded in a

chip to be readily identified in the field. The proposed fingerprint

is an oblivious ownership watermark independently endorsed by

each user through a blind signature protocol. Thus the authorship

can also be proved through the detection of different user’s

fingerprints without the need to separately embed an identical IP

owner’s signature in all fingerprinted instances. The proposed

technique is applicable to both application-specific integrated

circuit (ASIC) and field-programmable gate array (FPGA) IPs.

Our analyses show that the fingerprint is immune to collusion

attack and can withstand all perceivable attacks, with a lower

probability of removal than state-of-the-art FSM watermarking

schemes. The probability of coincidence of a 32-bit fingerprint is in

the order of 1010 and up to 1035 32-bit fingerprinted instances can

be generated for a small design of 100 flip-flops.

Index Terms— VLSI IPP, fingerprinting, watermarking, field

authentication, system-on-chip, synthesis-for-testability

I. INTRODUCTION

Over the last decade and for many years to come, IP-based

design methodology has been and will remain a key enabler to

improving integrated circuit (IC) design productivity at

advanced design processes. According to a recent market

research: “The semiconductor IP market is growing in both the

IC IP and System-on-Chip (SoC) IP sub-sectors, but the

revenues from the SoC IP segment are expected to grow faster at

an estimated compound annual growth rate of 19.16% from

2012 to 2017” [1]. This design paradigm has over years

dramatically increased the organizational complexity of IC

design and pushes for a vertical specialization of organization

where stages of IC design are disintegrated, and outsourced to

firms and relocated across national boundaries that possess the

tacit knowledge and expertise at lower cost. A rising concern of

Manuscript received March 22, 2013, revised 15 July 2013

The authors are with the School of Electrical and Electronic Engineering,

Nanyang Technological University, Singapore 639798 (e-mail:

echchang@ntu.edu.sg, lzhang2@e.ntu.edu.sg).

Copyright (c) 2013 IEEE. Personal use of this material is permitted.

However, permission to use this material for any other purposes must be

obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

this geographical dispersion of chip design activities is the

contaminated chip supply due to the infiltration of counterfeit

chips. Electronics Resellers Association International (ERAI), a

private group that tracks and fights counterfeit electronics

reported that dubious chips are increasing year by year [2]. The

perils are alarming when thousands of fake chips from brand

names such as Motorola, Intel, Cypress, Altera and National

Semiconductors had been sold by a counterfeit-chip broker

VisionTech before it was prosecuted in 2010 [3].

Prevailing means of IP protection includes external

communications of legal protection, such as patents, copyrights

and contracts, to deter illegal IP infringement, and licensing

agreement and encryption to deter unauthorized use of IPs. Such

approaches, while effective against the benign users, are

inadequate to suppress misappropriation of IPs by aggressors,

malicious clients, competitors and curious contractors. Owing

to the easily accessible, easily integratable and uncommitted

physical manifestation nature of reusable IPs, the fraudsters can

easily dispute or challenge the validity of the patent or copyright

behind an IP, especially if it is not broad, fundamental, or strong

with regards to the obviousness test, novelty of idea, or prior art.

The lengthy and costly legal process, together with the high

degree of uncertainty over the outcome of IP litigation tends to

discourage the pursuit of IP infringements. As cases of IP

violations by customers are more difficult to prove, IP vendors

usually do not take legal action against their customers,

resulting in the buoyant IP theft.

 As long as infringement remains easy and perpetration is

difficult to prove, sizeable portion of the investment in IP

development will be extorted. IP providers are in dire need of an

effective mechanism to protect not only their ownership rights,

but also the legitimacy of the usage of their IPs. Existing

watermarking schemes [4-13], though capable of identifying the

legal ownership of an IP in case of piracy, is unable to trace the

guilty buyer from the unauthorized resold copies of his legally

owned IP. This is because the distributed IP instances to

different buyers are identical and carry the same mark. This

problem can be solved by fingerprinting, which makes the IP

instance distributed to each system integrator unique and

distinguishable. In this way, when some user illegally

redistributes his legally owned IP instance to another party for

use in an unauthorized application, the fingerprint embedded in

it can be extracted and used to identify the source of misuse.

 IP fingerprinting shares much of the desiderata and

challenges as IP watermarking, like functionality preservation,

high credibility of ownership proof, low design overheads,

robustness against removal attacks, transparency to existing

design flow and ease of ownership verification. In addition, it

A Blind Dynamic Fingerprinting Technique for

Sequential Circuit Intellectual Property Protection

Chip-Hong Chang, Senior Member, IEEE and Li Zhang, Student Member, IEEE

mailto:echchang@ntu.edu.sg

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

must be able to generate many different high-quality instances

with reasonably low design effort. Thus, the intuitive way to

fingerprint a design by repeating the entire optimization process

of a typical constraint-based watermarking technique [5] to

embed a different mark for each user is unacceptable. Very few

proposals [14-17] can avoid the complexity of generating a

sufficiently large number of quality fingerprinted instances.

The technique proposed in [14, 15] protects FPGA IPs at the

physical design level. Fingerprint bits are embedded into the

unused logic blocks in unique locations of different tile

instances, and FPGA design tiling and partitioning are used to

lower the cost of generating many different functionally

equivalent circuit instances. As the logic blocks that host the

marks are not the only differences between different

fingerprinted instances, it is unlikely that tile comparison

collusion will succeed in removing a large portion of the

fingerprint. To facilitate the recovery of the recipient

fingerprint, the owner signature and the recipient fingerprint are

always placed in a constant location relative to one another. The

reliance on the identification of the locations of ownership

marks for the extraction of the correct instance recipient

fingerprint may escalate the risk of common ownership mark

locations as targets of attack. After all, marks hidden in unused

logic blocks can be easily removed without altering the

functionality. Moreover, the retrieval of FPGA configuration

for mark validation restricts its applicability to mainly static

memory based devices. On the other hand, the fingerprinting

technique in [16] creates a large solution space by solving the

problem only once. The problem solved is not the original

problem, but a modified one. From the generated solution,

different solutions are derived for the original problem. The

general technique is proved by an NP-complete graph coloring

problem. For specific IPs, finding the modification to obtain

different solutions can be a challenge. The method in [17]

solves the problem once to create a seed solution, from which

smaller problems are generated. Fingerprinted solutions are

then created by re-solving these smaller problems. While the

design effort has been greatly reduced, the overhead is still

unacceptable when the required number of different IP

instances is large. All the above mentioned methods validate the

fingerprint by indirect detection. Depending on the method and

the level of abstraction where the mark was applied, non-trivial

effort may be needed to check if the constraints generated by the

fingerprint are satisfied from a deeply integrated IP. In short,

none of the existing schemes are able to conveniently detect the

embedded fingerprint off-chip after the IP is integrated and

packaged as in the dynamic watermarking schemes of [7, 8].

 In this paper, a new fingerprinting technique for the

protection of sequential circuit IPs is proposed. The method is

unique in many ways. It is the first dynamic fingerprinting

scheme in which the embedded ownership and buyer‟s identity

of an embedded IP can be conveniently detected off-chip by

injecting a specific input sequence. A single fused signature that

carries the watermark for ownership proof and fingerprint for

buyer identification, as opposed to the concatenation of two

separate and independent signatures, is generated through a

message exchange in a blind signature protocol. Both the

watermark and fingerprint can be detected by running the

fingerprinted design or the IC that contains the fingerprinted

instance with a specific sequence of input bound to a buyer. The

IP provider can easily identify the buyer without divulging any

sensitive information about the fingerprint yet the buyer‟s

endorsement of the detected fingerprint is indisputable. These

are in stark contrast to other fingerprinting techniques and are

made possible by recoding the state variables through the

embedding of a test machine into the sequential circuit to be

fingerprinted. To the best of our knowledge, this is also the first

work that exploits state encoding for fingerprinting sequential

circuit IPs. Unlike finite state machine (FSM) watermarking on

state transitions or topologies [9-12], which have a tendency to

introduce obtrusive dummy inputs, replicated states or

redundant transitions, state encoding modifies the state values

without introducing new input variable or new state variable and

have a global influence on the circuit structure. The fingerprint

is thus inherently collusion-resilient as the signatures encoded

into the state variables form an integral part of the solution

space, and the marked and unmarked circuit components cannot

be discriminated by the structural disparities between different

fingerprinted instances. To reduce the effort of generating a

large number of fingerprinted instances, variable chaining

heuristic and dependency-directed partitioning are proposed to

break a large sequential circuit into multiple smaller

interconnected segments for test machine embedding. The

optimized testable segmented circuits are used as seed design

for state recoding by the signature. The overheads of different

fingerprinted instances have been greatly reduced by the fusion

of watermark and fingerprint, the state variable dependency

minimization and the pre-optimization of partitioned seed

designs. Our method is applicable to sequential circuit IPs

targeted for both ASIC and FPGA implementations. As there is

no prerequisite of specialized scan flip-flops (FFs) or specific

FPGA configuration fabrics, our scheme is transparent and

applicable to different technology families of FPGAs. With

additional locking and activation mechanism, our fingerprinting

technique can also be devised to perform active hardware

metering like [18-21]. These schemes can effectively prevent

instead of passively confirming IC piracy and chip

overproduction by controlling the access to part of the chip‟s

functionality with a specific input sequence. Although schemes

[18, 19] embed a watermark into the added obfuscation FSM,

the watermark can only authenticate the IP author but not its

buyer, and cannot be easily detected off-chip. By combining the

active metering technique with our scheme, even if the locking

function is cracked, the IP authorship and the buyer responsible

for the fraudulent IP instance can still be traced by the

fingerprint.

 The rest of this paper is organized as follows. Section II

introduces the property of test machine and the fundamentals of

test machine embedding. The fingerprint generation,

embedding and detection of the proposed fingerprinting method

are presented in Section III. Section IV analyzes the security of

the proposed scheme with respect to its credibility, robustness

and feasibility. Experimental results are presented in Section V.

The paper is concluded in Section VI.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

II. PRELIMINARIES ON TEST MACHINE INSERTION

Our fingerprinting method is founded on the test machine

embedding problem of synchronous sequential circuits [22-25].

This section presents the construction of a n-FF test machine

and explains how its test property can be embedded into an n-FF

sequential function to synthesize a testable design.

A. Test Machine Fundamentals

An FSM is a quintuple),,,,(OISM , where S is a finite

set of N states },,{ 1 NSS , I is a finite set of p primary inputs

},,{ 1 pyy , O is a finite set of q primary outputs },,{ 1 qzz ,

SIS : is the state transition function and OIS :

is the output function [26].

M can be represented by a state transition graph (STG), which

is a directed graph whose vertices and edges correspond to the

states and state transitions of M respectively; each edge is

labeled with the input and output associated with the transition.

An FSM can be tested by checking if its transitions

),/;,(zySSt jiij ,, SSS ji ,Iy ,Oz),(ySS ij and

),,(ySz i are implemented as specified by its STG. This

simple conformance test requires a sequence of inputs y I to

bring the physical FSM from any state to Si and a sequence of

inputs to verify that the FSM reaches the designated state Sj after

the stimulating transition tij.

A synchronizing sequence (SS) is defined as an input

sequence which, when applied to any initial state of M, will

drive M to a single specific state [27]. Likewise, a

distinguishing sequence (DS) can also be defined as a sequence

of inputs such that for any state of M, the sequence of outputs

generated in executing that sequence uniquely identifies the

state. The output response that uniquely identifies the state is

called the distinguishing response (DR) of the state.

An n-FF test machine is a special FSM, denoted by

),',',',','(' OISM with nN 2 states, one input y' and one

output z'. Any states],1,0[,' NiSSi of it can be set by

applying an n-bit SS and be distinguished at the output by

applying an n-bit DS. It can be constructed as follows:

2

2

2 1

2 1

if 2
(,)

otherwise

if 2 1
(,)

otherwise

i

i

i N

i

i

i N

S i N
S y a

S

S i N
S y a

S

 (1)

if / 2

(,)
otherwise

i

b i N
S y

b

 (2)

where }1,0{, ba are the arbitrary constants assigned to the

input and output of M'.

Fig. 1 shows the STG for a 3-FF test machine. Let SS(Si) be

the binary representation of SS of state Si. By convention, the

least significant bit (LSB) of SS(Si) is input first. One important

property of the test machine is that the output response is

different from each initial state Si regardless of the input

sequence. Hence, any 3-bit sequence can be used as the DS. Let

DR(Si) denotes the binary representation of DR of state Si such

that the LSB of DR(Si) is output first. The binary representations

of SS and DR for the 3-FF machine in Fig. 1 are shown in Table

I. If ,0 ba then SS(Si) and DR(Si) will be equal to the bit

reversal of the binary index i of Si.

S0 S1

S4 S2 S5 S3

a/b
a/b

S6 S7

a/b
a/b

a/b a/b

a/b
a/b

a/b
a/b

a/b

a/b

a/b
a/b

a/b
a/b

Fig. 1. STG of a 3-FF test machine.

TABLE I

Synchronizing sequences and distinguishing responses of 3-FF test machine

SS
To

state

DR

S0 S1 S2 S3 S4 S5 S6 S7

aaa S0 bbb bbb bbb b bb bbb bbb bb b b b b

aaa S1 bbb bbb bbb b bb bbb bbb bb b b b b

aaa S2 bbb bbb bbb b bb bbb bbb bb b b b b

a aa S3 bbb bbb bbb b bb bbb bbb bb b b b b

aaa S4 bbb bbb bbb b bb bbb bbb bb b b b b

aaa S5 bbb bbb bbb b bb bbb bbb bb b b b b

aa a S6 bbb bbb bbb b bb bbb bbb bb b b b b

a a a S7 bbb bbb bbb b bb bbb bbb bb b b b b

B. Test machine Insertion

For an arbitrary FSM, due to the limited controllability and

observability, it is not always possible to obtain the SS and DS

for all the states. These limitations are usually overcome by

replacing the FFs of FSM by specialized scan FFs and chaining

them to two externally added serial scan input and serial scan

output pins. However, such scan insertion procedure is not a

useful platform for fingerprinting a sequential design as it is

difficult to keep the embedded signature stealthy due to the

obtrusive and easily traceable scan FFs and scan IOs. Without

introducing specialized scan FFs and additional IO pins, an

alternative approach is to insert the test function into the

gate-level design of M before logic synthesis by test machine

insertion [25].

An n-FF test machine),',',',','(' OISM can be

embedded into an arbitrary n-FF FSM),,,,(OISM by

isomorphic mapping of the states and IO symbols of M to those

of M'. The input y' and output z' of M' can be shared with an

input y I and an output z O of M, respectively by using

multiplexers. To share the same set of FFs for multiplexing the

next state functions, '(S', y') and (S, y), and the output

functions, (,)S y and (S, y), of M' and M, respectively, the

state variables,
1 2, , , nx x x , of M' must be mapped to the state

variables,
1 2, , , nx x x , of M. The mapping can be performed in

polynomial time for completely specified function without

adding new transition to M [24]. If M has unspecified transitions

for input y at some state in S, M' may not be compatible to M. To

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

obtain an isomorphic mapping, a minimum number of

additional transitions may have to be introduced into M to

implicitly specify the responses of some of these unspecified

transitions. A new test-enable (TE) input can then be introduced

into M to select between the normal function and the test

function.

Let XX ': be the mapping of the set of variables from

{ }jX x to }{ ixX such that]1,0[,),(njixx ji

and)).'((' XSS Then the next state and output equations of

M will be modified to

 , ,X S X y TE S y TE (3)

 , ,O S X y TE S y TE (4)

where and ' are the next state equations of X and X' of M and

M', respectively.

The complexity of the merged next state and output decoders

can be reduced by keeping its state variable dependency low in

state variable mapping, with the help of a dependency graph

(DG). A DG is a directed graph with each vertex representing a

FF and each arc representing the signal flow from a FF‟s output

to the same or a different FF‟s input by abstracting away the

combinational logic between them. DG of the object machine M

can be obtained by tracing the netlist, but DG of the test machine

M' cannot be obtained before state assignment.

A two-block partition [26] on the state set S of M divides S

into two disjoint subsets, i.e.,
1 2B B S and

1 2B B ;

Each subset of states,
1 2,B B S , is called a block. Let

i js s

denote that states si and sj are in the same block of partition. A

partition for M is said to be closed if (,) (,)i js y s y for all

i js s and y I , where ,i js s S .

To obtain a state assignment for M', a two-block partition is

induced by each state variable such that it is assigned the same

value for all states in the same block of the partition. As there

are n two-block partitions and each block of a partition can be

assigned either a „0‟ or „1‟ value for its state variable, there are

2
n
 different state encodings. The dependency of state variables

is minimized if the n two-block partitions of M' are closed [26].

Fig. 2 shows the DG with the least state-variable dependency

for the 3-FF test machine with the following state assignment:

FF1': {(S0, S2, S4, S6), (S1, S3, S5, S7)},

FF2': {(S0, S1, S4, S5), (S2, S3, S6, S7)},

FF3': {(S0, S1, S2, S3), (S4, S5, S6, S7)}.
FF1 FF2

FF3

FF1' FF2' FF3'

Fig. 2. Minimum dependency graph of 3-FF test machine.

FF1

FF2FF3CK
G1

G2

G0

G3

OUT

Fig. 3. Gate-level schematic of S27.

As an example, consider the insertion of the 3-FF test

machine into the ISCAS'89 benchmark circuit S27 shown in

Fig. 3, with its DG extracted in Fig. 4. If (FF1', FF2', FF3') of the

test machine is mapped to (FF3, FF1, FF2) or (FF3, FF2, FF1)

of S27, there is no increase in dependencies among the state

variables.

FF1 FF2

FF3

FF1' FF2' FF3'

Fig. 4. State variable dependency graph of S27.

 Let 0 ba and)(' 321 xxxS of M' be encoded as:

),101(0S),100(1S),111(2S),110(3S),001(4S),000(5S

6 (011)S and).010(7S From Fig. 1, the next state and output

equations of M' are given by:
1x y ,

2 1x x ,
3 2x x and

3z x , where
ix denotes the next state value of

ix .

If
1 2 3(, ,)x x x are mapped to),,(123 xxx of M, its state are

encoded as:),101(0S),001(1S),111(2S),011(3S),100(4S

),000(5S),110(6S and).010(7S From Fig. 3, the next state and

output equations of M are given by:
1 0 1x G f ,

2 1x f ,

3 2 2x G f and OUT =
1f , where

1 1 3 4f x f f ,

2 1 3f G x ,
3 3 0 2f G G x and

4 0 2 2f G x f .

As M has four input pins, if G0 is arbitrarily selected to share

with the input y' of M', then the next state and output equations

after test insertion are given by:

3 0 2 2x G TE G f TE (5)

2 3 1x x TE f TE (6)

1 2 0 1x x TE G f TE (7)

1 1OUT x TE f TE (8)

The circuit S27 after test insertion is shown in Fig. 5.

FF3

FF1 FF2

CK

TE

G0

G1

G3

G2

OUT

Fig. 5. Schematic of S27 after test machine insertion.

Table II shows the synthesis results of S27 after it has been

embedded with each of the 2
3
 different encodings of M' and

resynthesized by Synopsys Design Compiler (DC) using TSMC

0.18 µm technology. Different state encodings of the test

machine results in different instances of varying implementation

cost. The largest instance is 4.7% larger than the smallest one,

the slowest instance is 11.5% slower than the fastest one, and

the most power hungry instance consumes 5.1% more power

than the least one.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

TABLE II

Synthesis results for S27 after test machine insertion

Design Test machine encoding
Area

(μm2)

Delay

(ns)

Power

(mW)

1
S0 (000), S1 (001), S2 (010), S3 (011)

S4 (100), S5 (101), S6 (110), S7 (111)
292.7 0.81 0.267

2
S0 (100), S1 (101), S2 (110), S3 (111)

S4 (000), S5 (001), S6 (010), S7 (011)
296.1 0.87 0.256

3
 S0 (010), S1 (011), S2 (000), S3 (001)

S4 (110), S5 (111), S6 (100), S7 (101)
286.1 0.81 0.254

4
S0 (110), S1(111), S2 (100), S3 (101)

S4 (010), S5 (011), S6(000), S7 (001)
289.4 0.82 0.264

5
S0 (001), S1 (000), S2 (011), S3 (010)

S4 (101), S5 (100), S6 (111), S7 (110)
292.7 0.82 0.266

6
S0 (101), S1 (100), S2 (111), S3 (110)

S4 (001), S5 (000), S6 (011), S7 (010)
282.7 0.81 0.255

7
S0 (011), S1 (010), S2 (001), S3 (000)

S4 (111), S5 (110), S6 (101), S7 (100)
289.4 0.78 0.261

8
S0 (111), S1 (110), S2 (101), S3 (100)

S4 (011), S5 (010), S6 (001), S7 (000)
292.7 0.79 0.265

III. PROPOSED FINGERPRINTING SCHEME

 One unique challenge of IP fingerprinting over IP

watermarking is the design effort required to derive a large

number of distinct high-quality solutions of the same

functionality for different buyers. Another challenge is the ease

of recovering the signature of the embedded IP core off-chip

without compromising its security against erasure and collusion

attacks. Last but not least is the difficulty to lower the area and

timing overheads of embedding both the authorship proof and

IP buyer‟s identification in the same design instance. The latter

can be addressed by merging the watermark and fingerprint into

one single signature but an associated problem is on keeping

this signature unobtrusive without losing the non-repudiability

of the authorship proof and origin of misappropriation. This

section presents a fingerprinting method based on the test

machine insertion problem. For ease of exposition, we refer to

the original sequential circuit as object design M and the

sequential circuit after the test machine insertion as testable

design MT. The testable design with the best synthesis result in

terms of area or timing is chosen as the seed design MS for

fingerprinting.

A. Fingerprint Generation

 Instead of routinely generating the watermark and fingerprint

as two independent signatures, our scheme uses a unitary

signature to provide an undeniable proof of IP ownership and

for traceability of illegal IP distribution. This signature is

generated through a blind signature protocol [28] to preserve

the anonymity of the IP authorship information endorsed by the

buyer. The blind signature protocol requires a digital signature

mechanism and a commuting function. For simplicity, we

consider Chaum‟s blind signature protocol based on RSA. Let

(nA, eA) and dA be the certified RSA public and private keys of

Buyer A, where AAA qpn is the product of two large

random primes. The fingerprint F to be embedded into the IP

instance for Buyer A can be generated through the following

message exchange between the IP provider and Buyer A.

1. Watermark generation: The IP provider selects a message to

convey its ownership information. The ASCII encoded

message is converted into a binary string and reduced by a

message digest (MD) such as SHA-2 [29] to an integer W,

where 0 W < nA.

2. Blinding phase: When Buyer A makes a purchase request,

the IP provider randomly selects a secret integer kA

satisfying 0 kA < nA and gcd(nA, kA) = 1 to compute

A
e

AA nkWW A mod)(. This concealed watermark WA is

then sent to Buyer A.

3. Signing phase: To endorse the purchase, Buyer A signs WA

with his secret key dA and returns his blinded signature

A
d

AA nWF A mod)(to the IP provider.

4. Unblinding phase: By computing AAA nkFF mod
1

 , the

IP provider obtains the signature of Buyer A on his

watermark W

 , which is the fingerprint to be inserted into the

IP instance sold to Buyer A.

The IP provider can verify if the fingerprint F is genuine by

decrypting it with Buyer A‟s public key. Since F is the digital

signature of Buyer A on the IP provider‟s watermark W, it

provides an undeniable proof for tracing the redistribution of the

copies of IP bought by him. Meantime, as W is concealed in WA,

Buyer A has no knowledge of the IP provider‟s watermark W

and his own signature on W. The blindness of F increases the

deterrent effect of uncertainty.

B. Fingerprint Insertion

 By applying automatic test pattern generation on the seed

design, a set of combinational test vectors can be obtained. Each

test vector is then converted to a test sequence which includes an

SS to excite a testable design to a specific state Ss at test mode

(i.e., TE = „1‟) and a parallel input stimulus to produce the

output of a transition from Ss to some destination state Sd at

capture mode (i.e., TE = „0‟). Irrespective of the input stimulus,

the destination state Sd from any starting state Ss can always be

identified by its DR based on the test machine property. As

demonstrated in Table I for n = 3, the DR of any destination

state can be observed from the primary output z by applying an

arbitrary input sequence of length n through the primary input y

at test mode.

To insert the fingerprint
1

0

m

i i
F f

 into an object design, a

test vector V for the seed design MS is randomly selected. Let Ss

and Sd be the initial and destination states of MS for the test

vector V. To randomly modulate m out of n (nm) binary

bits of DR(Sd) by F, a keyed one-way pseudorandom number

generator (PNG) is used to generate an order set
1

0

m

i i
L l

 , of

m unique integers between 0 and nsuch that],1,0[nli

1,,0 mi and ., jill ji li corresponds to the

location of fi, where f0 is the LSB of F. The keyed one-way PNG

can be realized by SHA-2 or any other cryptographically secure

hash function, as long as it is computationally infeasible to find

a collision of the same group of numbers without the knowledge

of the secret key.

According to L, a fingerprint-compatible 1
0

* }{
 n

jjrDR is

generated by setting ij fr if ilj for all 1,,0 mi and

''jr otherwise, where '' denotes a don‟t-care value.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

A binary ({0, 1}) sequence A is said to be compatible to a

ternary ({0, 1, }) sequence B of the same length, denoted as

,BA if all but the don‟t care values of A and B in the same bit

positions are matched, i.e., BbAaba iiii ,, and '.'ib

If DR(Sd) is compatible with DR
*
, MS will be used as the

fingerprinted instance M
*
. Otherwise, a subset

S
*
 = {Su S | DR(Su) DR

*
} is extracted from the state set S of

MS such that the DRs of all its members are compatible with

DR
*
. The fingerprinted instance can then be generated by

modifying the state encoding of MS by

,,,1,: nixx ii where or ,i i ix x x such that the

encoded value of one of its states ** SSd is equal to the

encoded value of Sd, i.e.,).(*
dd SS This recoding of state

variables can be performed through the embedded test machine

of MS. If there are more than one state encodings that satisfy this

requirement, the testable design instance with the least overhead

is selected as the fingerprinted design M
*
. A fingerprint

verification code V
*
 can then be derived from V by replacing its

SS(Ss) by),(*
sSSS where).(*

ss SS The fingerprint insertion

process is depicted in Fig. 6.

fingerprint(M_seed, F, L, V)

{

M_seed: Seed design of n FFs;

 F: Fingerprint to be inserted, binary vector of length m;

 L: List of m location indices;

V: Randomly selected combinational test vector;

r: Ternary vector of length n

 for (j = 0; j < n; j++) {

 r[j] = '';

for (i = 0; i < m; i++)

 if (j == L[i]) {

 r[j] = F[i];

 break;

 }

 } // end for loop to obtain r

 if (DR(Sd) r) return (M_seed, V); // if DR is compatible with r

 CS = ; // create an empty list of DR-compatible states

for (i = 0; i < 2n; i++) // search for DR-compatible states

if (DR(Si) r) CS += Si;

 min_overhead = MAX_VALUE; // initialize minimum overhead

 for each(2n state encoding of M) {

 if ((Sd) CS) {

fingerprint_M = resynthesize(M_seed,);

overhead = overhead(fingerprint_M, criteria)

if (overhead min_overhead) {

 min_overhead = overhead;

 opt_M = fingerprint_M;

 opt_V = modified_SS(V, (Ss)); // modify SS of V

}

 }

 } // end search for optimal fingerprinted instance

 return (opt_M, opt_V);

}

Fig. 6. Fingerprint insertion algorithm.

As an example, consider the insertion of a one-bit signature

'1'0 f into the 3-FF testable design of S27. If design area is

the prime concern, the smallest Design 6 in Table II is selected

as the seed design MS. Let ";0100;110" V be a randomly

selected test vector. The first 3-bit vector is SS(S3), the 4-bit

vector is applied to the primary inputs "G0G1G2G3" at capture

mode to bring Ss = S3 to Sd = S4 and the 3-bit don‟t care vector is

the DS to obtain DR(S4). For ,0 ba "001")(4 SDR from

Table I. If L = {1}, then ".1"* DR Since DR(S4) is not

compatible with DR
*
, a search for all states Si with

*)(DRSDR i is performed. From Table I, the compatible

states are S
*
 = {S2, S3, S6, S7}. From Table II, it can be observed

that the encoded values of S2 in Design 7, S3 in Design 3, S6 in

Design 8 and S7 in Design 4 are mapped to the encoded value of

S4 = "001" of MS. Among them, Design 3 has the least area and

is selected as the fingerprinted design M
*
, with

,: ii xx 43
*)(SSSs and .)(34

* SSSd From Table

I, *()sSS S = "001" and *()dDR S = "110". Thus,

* "001;0100; ".V By applying V
*
 to M

*
, f0 = '1' can be

detected from the second bit (i.e., l0 = 1) of DR
*
.

C. Partitioning for Efficient Fingerprinting

It is difficult to obtain an optimized seed design for

fingerprinting by resynthesis when the number of FFs n is large.

The resynthesis can be made more efficient by partitioning the

object design into smaller interconnected segments. If each

segment contains only c FFs, it becomes affordable to

synthesize all the 2
c
 testable design instances to obtain an

optimized seed design for each segment if c << n. The total

number of resynthesis processes is reduced to

/ 2 2 c
nc

c
n c n , where • is the floor function and |a|b

denotes the remainder of a divided by b, and only a very small

part of the design is resynthesized in each process.

 As the DG of the test machine has a chain-like structure as

shown in Fig. 2, multiple c-FF test machines can be easily

cascaded to form a linear chain of state variables. To minimize

the dependencies added in the DGs of the partitioned design, the

longest chain removal technique [24] is used to chain the state

variables of the object design before it is partitioned into smaller

interconnected segments. The result is an ordered list of FFs that

can be used to direct the partitioning of an n-FF object design M.

The following procedure outlines the state variable chaining

heuristic.

(1) Extract the DG of M by omitting the self-dependencies of

the FFs.

(2) Compute strongly connected components (SCCs)
1
 of the

DG and replace each SCC in the DG with a single vertex to

form a directed acyclic graph (DAG).

(3) Obtain the longest chain of the DAG.

(4) Obtain the longest chain in each SCC.

(5) Replace the vertices representing the SCCs in the chain

obtained in Step (3) with the chains obtained in Step (4) to

form the longest chain of the DG.

1 A SCC of a directed graph G(V, E) is a maximal set of vertices C V such

that for every pair of vertices {u, v} C, there is a directed path from u to v and

a directed path from v to u.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

(6) Remove the vertices in the current longest chain and their

associated edges from the DG. Repeat Steps (1) to (5) for the

new DG. The newly extracted longest chain obtained in Step

(5) is then prefixed to the existing longest chain.

(7) Repeat Step (6) until there is no vertex left in the DG.

 To find the longest chain for a directed graph containing

loops is an NP-complete problem [30]. Therefore, loops are

removed in Step (2) to simplify the DG to DAG so that dynamic

programming [31] with linear computational complexity can be

used to extract the longest chain from the DAG. Finding the

longest chain in a SCC is also an NP-complete problem. This

problem in Step (4) is simplified by determining the longest

chain from the spanning tree of SCC. The DG is reduced by

pruning its longest chain in Step (6). The process repeats until

no vertex is left in the DG. A linear chain of state variables for

the object design is obtained with dependencies added merely

for the connections from the tail of a newly extracted longest

chain to the head of an existing chain between two iterations.

The algorithm for the partitioning of the object design into

c-FF segments is shown in Fig. 7. The output list of each

segment after the partitioning is recorded. The output list of

segment i contains the outputs of FFs or gates in segment i that

are either primary outputs or inputs to FFs or gates in other

segments.

dependency_directed_partitioning(M, FF, c)

{

M: Sequential design to be partitioned;

 FF: List of FFs of M ordered according to state variable chain;

 Gate: List of gates of M;

 IO: List of primary inputs and primary outputs of M;

 c: Predefined maximum number of FFs in each partition;

Gate[i].used = 0; FF[i].used = 0; // Initialize all gates and FFs of M

j = 0;

 while (FF is not empty) {

 Partition[j] = create_partition(); //create a new partition

 if (number of unused FFs in FF > c)

 Partition[j].FF += last c unused FFs of FF;

 else

 Partition[j].FF += all unused FFs of FF;

 mark_used_FFs(); // mark those FFs added to Partition as used;

 for each (Partition[j].element) { // element can be Gate or FF

 Predecessor = get_predecessor(Partition[j].element);

 if (Predecessor == FF[k] and FF[k] Partition[j].FF)

 Partition[j].input += FF[k].output;

 else if (Predecessor == Gate[k])

 if (Gate[k].used == 0){ // Gate[k] is unused

 Partition[j].gate += Gate[k];

 Gate[k].used = 1;

 } else // Gate[k] is used

 if (Gate[k] Partition[j].Gate)

 Partition[j].input += Gate[k].output;

 else Partition[j].input += IO[k]; // Predecessor is IO[k]

 } //end for loop

 j++;

 } //end while loop

 return Partition;

}
Fig. 7. Dependency-directed partitioning algorithm.

The object design M is partitioned into t smaller

interconnected segments, M0, M1, ..., Mt1, each with ni FFs,

where i[0, t1] and M0 denotes the segment that is nearest to

the output z. Then an ni-FF test machine is inserted into each Mi

independently as described in Section II with in2 possible state

encodings. These in2 different testable designs for Mi are

resynthesized and the most optimized testable design is selected

as the seed design MSi for Mi.

To disperse the fingerprint 1
0}{

 m
jjfF with

1

0

m

i i
L l

location indices into the partitioned seed design, the

fingerprint-compatible DR
*
 is divided into t ternary strings,

1
*

, 0

in

i i j j
DR r

 for i = 0, …, t1 and ri,j {0, 1, ''}. *

iDR can

be generated by setting ri,j = fk if ,
1

0
k

i

b
b ljn

1,,0 mk and ri,j = '' otherwise. If all bits of *

iDR are

don‟t cares, no fingerprint bit needs to be inserted into MSi and

the fingerprinted instance .*
Sii MM Otherwise, the

fingerprinting algorithm in Fig. 6 is used to insert the fingerprint

bits in *

iDR to produce the fingerprinted instance *

iM . All

fingerprinted instances *

iM are then cascaded back together

and resynthesized to produce the final fingerprinted design M
*
.

As an example, consider the ISCAS benchmark S344. Its DG

after removing the self-dependencies is shown in Fig. 8, where

the FF dependencies are represented by solid directed edges.

Using the state variable chaining heuristic, the existing longest

FF chain FF1 → FF2 → FF3 → FF15 → FF4 → FF5 → FF6

→ FF7 → FF8 → FF9 → FF10 → FF11 is first extracted.

After removing the FFs in the longest chain from the DG, FF14,

FF13 and FF12 are individually extracted as the longest chains

in the subsequent iterations. By appending the existing chain to

the newly extracted longest chains, the final chain of FFs is

given by FF12 → FF13 → FF14 → FF1 → FF2 → FF3 →

FF15 → FF4 → FF5 → FF6 → FF7 → FF8 → FF9 → FF10

→ FF11. New dependencies are added to form this FF chain,

which are indicated by dashed directed edges in Fig. 8.

FF15

FF1

FF4

FF5

FF9

FF3

FF2

FF6

FF7

FF8

FF14 FF13

FF12

FF11

FF10

Fig. 8. Dependency graph of S344 excluding self-dependencies. Solid

edges are the existing dependencies; dark and dashed edges are

respectively the selected and added dependencies of the final FF chain.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

Assume the maximum number of FFs per segment is 3, the

algorithm in Fig. 7 returns the following partitions:

M0 with {x3(FF11), x2(FF10), x1(FF9)},

M1 with {x3(FF8), x2(FF7), x1(FF6)},

M2 with {x3(FF5), x2(FF4), x1(FF15)},

M3 with {x3(FF3), x2(FF2), x1(FF1)},

M4 with {x3(FF14), x2(FF13), x1(FF12)}.

Table III shows the synthesized areas for each partitioned

testable design MTi. Designs 1 to 8 correspond to the 8 different

state encodings of the embedded 3-FF test machine in the

second column of Table II. The embedding is performed by

mapping (
1x , 2x ,

3x) of the test machine to (x1, x2, x3) of each

segment Mi. The best designs, Design 6 for MS0, Design 3 for

MS1, Design 5 for MS2, Design 1 for MS3 and MS4 are selected as

the seed designs for fingerprinting.

TABLE III

 Synthesis results (area in μm2) for test machine embedded components of S344

Design M0 M1 M2 M3 M4

1 439.1 575.5 459.0 319.3 282.7

2 415.8 595.4 485.7 349.3 316.0

3 439.1 568.8 452.4 319.3 292.7

4 415.8 602.1 479.0 349.3 312.7

5 439.1 575.5 445.7 319.3 282.7

6 409.1 595.4 472.3 342.6 316.0

7 439.1 568.8 452.4 319.3 292.7

8 415.8 602.1 479.0 349.3 312.7

 Assume a fingerprint F = "110001" and its location indices

L = {5, 11, 9, 2, 4, 0}. Then * " 1 0 10 0 1"DR

is the fingerprint compatible DR. It can be partitioned into

"10"*
0 DR , *

1DR = "10", *

2DR = "", *

3DR = "1" and

*

4DR = "". Since *

2DR = *

4DR

= "", MS2 and MS4 can be

used as fingerprinted instances *

2M and *

4M , respectively. Let

V = "011110001011001; 001010111;"

be the test vector selected for the interconnected seed designs

MS4 → MS3 → MS2 → MS1 → MS0 with Ss = "S6-S3-S4-S6-S4",

Sd = "S7-S2-S7-S7-S4" and DR(Sd) = "111010111111001". The

underlined bits of DR(Sd) are incompatible with DR
*
. Since

DR0 = "001" "0", MS0 can be used as the fingerprinted

instance *

0M . DR1 = "111" "10". From Table I, for a = b = 0,

DR(S1) = "100" and DR(S5) = "101" are compatible with "10".

From Table II, the encoded value of S5 in Design 1 and S1 in

Design 2 can be mapped to the encoded value of Sd = S7 = "101"

of MS1. Design 1 has lower area than Design 2 of M1, and is

selected as *

1M , then),,,(),,(: 321321 xxxxxx and

*

sS = (S6) = S4 and *

dS = (S7) = S5. From Table I,

SS(S4) = "001" and DR(S5) = "101". Similarly,

DR3 = "010" "1". DR(S1) = "100" and DR(S3) = "110" are

compatible with "1". The encoded value of S1 in Design 7 and

S3 in Design 5 can be mapped to the encoded value of

Sd = S2 = "010" of MS3. Both designs have the same cost and

either of them can be selected as the fingerprinted instance *

3M .

If Design 7 is selected, then : (x1, x2, x3)(x1, 2x , 3x), and

*

sS = (S3) = S0 and *

dS = (S2) = S1. From Table I,

SS(S0) = "000" and DR(S1) = "100". The fingerprinted instances

can be chained to form MS4 → *

3M → MS2 → *

1M → MS0 and

resynthesized to produce the fingerprinted design M
*
. Hence,

V
*
 = "011000001001001; 001010111; "

and DR = "111100111101001", where the underlined bits are

the modified values of *

sS and *

dS of *

1M and *

3M after

fingerprinting. The area, delay and power consumption of the

seed and final fingerprinted instances are (1616.6 m
2
, 1.19 ns,

1.13 mW) and (1623.3 m
2
, 1.18 ns, 1.18 mW), respectively.

D. Fingerprint Detection and Authorship Verification

The IP provider keeps a safe repository of records. Each

record consists of the fingerprint F, the secret integer k used in

the blinding phase, the buyer‟s public key (n, e), the fingerprint

location vector L and the test vectors V
*
 for each fingerprinted

instance. To detect the authorship of a fingerprinted design, the

IP provider can apply the test vector V
*
 to obtain a DR, from

which the fingerprint F can be recovered at the bit locations

specified by L. The buyer‟s public key (n, e) corresponding to F

can then be retrieved from the database. The IP provider‟s

watermark can be detected by W = F
e
 mod n. The IP provider

can prove his ownership of the IP by demonstrating that his

legible ownership message can be hashed to W. Since the IP

provider‟s watermark W can be successfully recovered by

decrypting the fingerprint F with the specific IP buyer‟s public

key, it proves that the fingerprinted design is sold to that buyer.

Thus the buyer of a fingerprinted design can be tracked and held

responsible if the fingerprinted design was found to be illegally

copied and redistributed.

Decrypting F to detect W needs only to be done once but to

detect F from a fingerprinted instance of unknown buyer may

require the application of all the different test vectors V
*
. To aid

the detection of F, the IP provider can store the responses DRa to

a common test vector Va for all fingerprinted instances into the

corresponding entries of the database. With high probability,

DRa for the same test vector Va will be different for different

instances. By applying Va to the instance, the number of test

vectors V
*
 required to detect F will be reduced dramatically to

only those few matching records of DRa.

E. Augmented Fingerprint

 To increase the attackers‟ difficulty to successfully erase the

fingerprint F, error correction code (ECC) can be added to it.

More fingerprint bits will have to be modified in order to

prevent F from being correctly detected by the IP provider.

Owing to the randomized dispersion by L, the ECC bits are

automatically interleaved with the fingerprint bits in DR. If

necessary, F can be compressed by cryptographic hash function

to adapt to the embedding capacity of the design. The IP

provider needs only to demonstrate additionally that F can be

hashed to the embedded bit stream recovered from the sold

design.

IV. SECURITY ANALYSIS OF PROPOSED SCHEME

 No hardware IP protection scheme is complete without an

analysis of its credibility, robustness and feasibility. Credibility

refers to the strength of ownership proof, robustness refers to

the resistance against known and perceivable attacks, and

feasibility refers to the effort in finding the number of quality

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

solutions required for the protection scheme. These attributes

are analyzed below.

A. Fingerprint Credibility

 A common measure to quantify and compare the credibility

or strength of a fingerprinted solution is the probability of

coincidence (Pc), which are the odds that a non-fingerprinted

design carries the fingerprint by coincidence. A lower Pc

implies a stronger proof of ownership and original recipient. In

our scheme, since each bit of DR of a design is equally probable

to be '0' or '1', the probability that m randomly selected bits in

DR match a specific binary string of fingerprint is given by:

1

2
c m

P (9)

 With a 64-bit fingerprint, the Pc of a fingerprinted instance is

as low as 5.4×10
20

. This probability reduces to the order of

10
40

 for a 128-bit fingerprint.

B. Fingerprint Robustness

 The following attack scenarios are analyzed with Alice as the

IP provider using our fingerprinting scheme to protect her IP

core and Bob as a malefactor attempting to steal her IP.

 (1) Collusion attack. This attack requires a coalition of

multiple copies of fingerprinted instances in possession by one

or more malicious users in order to create a forged copy without

the fingerprint for redistribution. Bob may collude with other

buyers to compare multiple protected instances to find out their

structural dissimilarities, with the hope that these dissimilar

parts of the circuits can be modified at an acceptable cost and

effort to remove the fingerprint without losing the usefulness

and correct functionality of the IP. To succeed in such an attack,

the fingerprint must be altered to an extent that none of the users

in the coalition can be identified by Alice.

 While this attack is a biggest threat to data hiding algorithms

on multimedia content in which the hidden signature

(watermark or fingerprint) does not depend on the host data,

several features in our fingerprinted instance make such attack

ineffective. First, the fingerprint bits randomly modulate the

values of state variables that affect the next state and output

decoding logic in both the normal and test functions, making

them inextricable from the functional components of the IP.

This makes it very challenging for Bob to figure out the

functionality of any structural mismatch in order to successfully

remove even a single fingerprint bit. Secondly, the same

segment *

iM of different fingerprinted instances can be

identical (i.e., both equal to MSi) or different irrespective of the

value and number of fingerprint bits embedded in them. Lastly

and most importantly, the entire chain of testable machines is

resynthesized as a whole to obtain M
*
. The domino effect of the

hard optimization problem involved in the resynthesis process

whitens the differences between the fingerprint-modulated and

unmodulated subcircuits, causing the entropy of identifying and

associating the matching or mismatching subcircuits between

any two instances to increase with the number of fingerprinted

instances being compared.

 (2) Combinational logic resynthesis. Bob may attempt to

remove the fingerprint by performing a combinational logic

resynthesis through various approaches [32]. Although this

attack can successfully modify the circuit structure by changing

the combinational logic implementations without affecting the

functionality, the input and output behaviors of the sequential

elements are preserved. Thus, Alice can still recover the

fingerprint F from the DR of the fingerprinted design modified

by Bob. One characteristic of the test machine is that it can be

decomposed into multiple smaller test machines and

independently embedded into a correspondingly partitioned

large machine. Although the original circuit topologies of these

interconnected machines may not be maintained upon global

optimization of the final testable design, the full controllability

and observability of all FFs are not affected. As an example,

consider the STGs of one-FF and two-FF test machines shown

in Fig. 9. If they are interconnected such that the output of the

first test machine is the input of the second test machine, then

the 822 21 combined states can be mapped to the 8 states for

the 3-FF test machine of Fig. 1. Let the state of the final test

machine be represented as (S1,i, S2,j) when the first test machine

is in state S1,i and the second test machine is in state S2,j. If the

bijection maps (S1,i, S2,j) to Sk of the 3-FF test machine, then

SS((S1,i, S2,j)) and DR((S1,i, S2,j)) of the combined machine can

still be determined from SS(Sk) and DR(Sk), respectively in

Table I for the 3-FF test machine. Our method utilizes this

property to efficiently distribute the fingerprint bits and

propagate the embedded fingerprint F to all subsequent stages

of the design flow. The fact that SS(Sk) and DR(Sk) remain intact

after the resynthesis of the final testable design implies that F

will survive all forms of logic synthesis and optimization

performed on the fingerprinted instance.

S2,0

S2,1

S2,2

S2,3S1,0 S1,1a/d

a) b)

a/d

a/d
a/d d/b

d/b

d/b

d/b

d/b

d/b

d/b

d/b

Fig. 9. STGs of (a) 1-FF and (b) 2-FF test machines.

 (3) Circuit retiming. Circuit retiming relocates the FFs of

sequential circuit to improve its performance while preserving

the functionality. Bob may retime the fingerprinted instance. As

retiming may change the STG of the circuit, it seems possible

for Bob to partially remove the fingerprint inserted by Alice if

the altered parts of the STG host the fingerprint bits.

 According to [33], retiming merges two states that are

one-step equivalent or splits one existing state into two new

states that are one-step equivalent. Two states are said to be

one-step equivalent if they have the same output and the same

destination state for any input. Fortunately, each state of the test

machine is distinct and the fingerprinted instance contains no

one-step equivalent state. Hence, none of the states in the

fingerprinted instance can be merged by circuit retiming.

Meantime, as the test machine is fully specified, it is also not

possible to split one state of the fingerprinted instance into two

one-step equivalent states without adding extra sequential

elements. Even if Bob manages to create one-step equivalent

states at the cost of additional circuitry without losing the

usefulness of Alice‟s IP, the states and their associated

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

10

transitions involved in the fingerprint extraction are retained.

Thus Alice can still recover the correct fingerprint from the DR

of the retimed fingerprinted instance redistributed by Bob.

 (4) State recoding. There are two possible ways by which

Bob can recode the state variables of Alice‟s protected design.

The first way is to extract the STG directly from the

fingerprinted design to carry out the state recoding. It has been

proven that extracting the STG from a large sequential circuit

after logic synthesis is computationally intractable [9]. Thus this

approach is infeasible in practice. Alternatively, Bob may

perform a partitioning on the fingerprinted instance to obtain

many smaller segments of the design. With no knowledge of the

design or architecture of Alice‟s IP, Bob may only be able to

extract a limited number of STGs for some segments to recode

their state variables. Since the buyer has no knowledge of the

embedded fingerprint F and input vector V
*
 for its recovery,

Bob can only select the segments by wild guess. Due to the

existence of loops (SCCs) in the dependency graph, the solution

for the chaining of state variables with minimum additional

dependencies is not unique. Various new SCCs have been

formed after the embedding of test machines, and the final

resynthesis of the entire fingerprinted design further masks the

partitioning and chaining of state variables. Hence, it is highly

unlikely that Bob could precisely relate the fingerprint bits to

the corresponding state variables. It is reasonable to assume that

Bob is incapable of extracting the STG for every partition,

recode and re-synthesize the STG to forge a completely new

design as this task incurs no less effort than the complete

redesign of the IP functionality with a high, and almost certain

risk of violating the circuit functionality or performance. Even if

he succeeds in forging a new design, he will not be able to

generate the proper test vectors for the counterfeit design

without knowing the encodings used by the test machines,

which will devalue his design.

 (5) State reduction. IP protection schemes, such as [9], that

leverage on redundancy to mark the states to display some

specific property for authorship proof are susceptible to this

kind of attack. This vulnerability does not exist in our

fingerprinting scheme because the embedded test machine is a

fully specified machine with distinct states. The final

fingerprinted design contains no redundant state as, if any, it

would have been reduced upon the resynthesis performed after

fingerprint insertion. In addition, state reduction is usually

performed on explicit STG [34], which implies a very high cost

of attack on a fingerprinted design instance released at the gate

level or lower level of design abstraction.

C. Fingerprint Feasibility

 Generally, the feasibility of a fingerprinting scheme is

evaluated by three main criteria. First, the solution space

required for the generation of a large number of unique

instances. Second, the additional cost and effort required to

produce a fingerprinted instance. Preferably, the fingerprinting

method is compatible with existing design tools and no new

investment of tool is needed to embed or detect the fingerprint.

The additional effort required should also be substantially lower

than designing the IP from scratch. Finally, the impact on

quality degradation of any fingerprinted instance should be

minimized and kept within a tolerable limit.

 The first criterion can be evaluated by the number of possible

solutions to fingerprint an IP. The number of combinations to

select m state variables from a design of n FFs to host the m

fingerprint bits is given by:

!

!()!

n

m

n
C

m n m

 (10)

 As each state variable can be assigned either a value of „0‟ or

„1‟, the number of different fingerprinted instances that can be

generated by our scheme is:

2 !

2
!()!

m
m n

m

n
C

m n m

 (11)

 For n = 100 and m = 32, the solution space has exceeded

6×10
35

.

 For the second criterion, the fingerprint embedding process

of our scheme is completely transparent and can be used with

existing design tools and standard cell libraries for ASIC

implementation. As no specialized scan FF is required, the

scheme is also applicable to fingerprint IPs for different

configuration technologies of FPGAs, including the antifuse- or

flash-memory based FPGAs for which [15] may not be

applicable. The additional design effort to generate each

fingerprinted design instance is marginal after the seed design is

obtained. Only those segments that are not compatible with its

corresponding fingerprinted sequence DR
*
 at the fingerprint

locations specified by L need to be remapped and a final

re-synthesis is needed to globally optimize the entire

fingerprinted design after the segments have been restitched.

 Lastly, our fingerprinting scheme incurs insignificant

overhead on the design quality. This is attributed to the efficient

dependency-directed partitioning algorithm and the utilization

of seed designs, which are optimized for each partitioned

testable machine. The low fingerprinting overhead will be

demonstrated by experiments on different benchmark circuits in

the next section.

V. EXPERIMENTAL RESULTS

 Sequential circuits from ISCAS'89 benchmark suite are used

to analyze the quality of the fingerprinted instances of our

scheme. Depending on the circuit size, the first 16, 32, 64, 128

or 256 bits of the keyed SHA-2 hash value of the fingerprint F

were inserted. The location integers L were generated with a

SHA-2 based PNG. The design partitioning, test machine

embedding as well as the fingerprint insertion algorithms were

coded in C++. Combinational test generation on the seed design

was carried out with DfT tool DFTadvisor and ATPG tool

Fastscan from Mentor Graphics. As part of the fingerprint

insertion algorithm, the selected combinational test pattern is

converted into a sequential test pattern of the form {SS; test

vector; DR}. The synthesis was performed using Synopsis DC

with TSMC 0.18 µm technology library, with C-Shell scripts

written to automate the synthesis processes for the encoding

instances of each segment as well as the whole design.

The synthesis results are shown in Table IV. The area and

delay were simulated by Synopsys DC, and the power by

Synopsys PrimeTime PX with back annotation. The area, delay

and power overheads due to fingerprint insertion are on average

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

11

1.6%, 1.2% and 3.4% respectively, and below 2.5%, 5.0% and

5.0% respectively for most circuits.

TABLE IV

Fingerprinting overheads with state-encoding for area reduction. #FF is the

number of FFs; As and Am, Ds and Dm, and Ps and Pm are areas in µm2, delays in

ns and powers in mW of the non-fingerprinted optimized seed design and

fingerprinted design, respectively; ΔA, ΔD and ΔP are the respective

percentage increases.

Circuit #FF As Ds Ps m Am Dm Pm
ΔA

(%)

ΔD

(%)

ΔP

(%)

S382 21 2212 1.35 1.26 16 2229 1.42 1.33 0.77 5.19 5.32

S838 32 3323 3.60 1.82 16 3453 3.31 1.71 3.91 8.06 6.04

S1423 74 8452 5.39 5.10
16 8472 5.38 5.42 0.24 0.19 6.28

32 8482 5.03 5.34 0.35 6.68 4.67

S5378 179 17347 1.68 12.0
32 17414 1.65 12.5 0.39 1.79 4.17

64 17540 1.78 12.6 1.11 5.95 5.00

S9234 211 24143 2.67 14.3
32 24462 2.22 15.0 1.32 16.85 4.90

64 24702 2.8 14.2 2.32 4.87 0.70

S15850 534 54151 4.04 34.5
64 54862 3.96 38.8 1.31 1.98 12.46

128 55473 4.04 35.3 2.44 0.00 2.32

S13207 638 56496 3.18 35.5
64 57068 3.76 36.2 1.01 18.24 1.97

128 57633 3.16 36.1 2.01 0.63 1.69

S35854 1426 159274 3.44 95.5
128 161234 3.57 98.1 1.23 3.78 2.72

256 163206 3.60 103.8 2.47 4.65 8.69

S38417 1636 166097 3.40 67.7
128 167677 3.78 67.7 0.95 11.18 0.00

256 168625 3.67 68.8 1.52 7.94 1.62

S35932 1728 150506 1.49 112
128 153370 1.51 110.5 1.90 1.34 1.34

256 155752 1.52 120.9 3.49 2.01 7.95

Let RF = m/n represents the fingerprinting ratio, which is the

number of fingerprint bits to the number of bits in DR. The area

overhead increases with RF for all designs. This is expected as

the originally optimized encoding instance will have to be

recoded in more segments as RF increases. However, the

overhead of fingerprinting one design with a smaller RF may not

necessarily be lower than that of another design with a larger RF.

This could be due to the design and topology dependent

merging of functional and test logic of different encoding

instances. For some circuits, the differences in area, delay and

power among different encoding instances are very small. The

fingerprinting overheads of these designs may only increase

mildly with RF as opposed to those that have a large quality gap

between a suboptimal and the most optimized encoding

instances.

As area is used as the selection criterion for the seed design,

the delay and power overheads have wider spreads than the area

overhead among different designs. For instance, some

fingerprinted designs are more than 18% slower than their seed

designs while some other could be about 17% faster. This

inconsistency is because a smaller instance may not necessarily

be faster or consume less power. Hence, the fingerprinted

segment that uses a suboptimal encoding instance may have

shorter delay or consumes less power than the optimal encoding

instance. This explains why the delays or power consumptions

of some fingerprinted designs in Table IV are smaller than their

seed designs.

The choice of state encoding influences the complexity of the

logic functions of the FSM and hence the area, timing and power

dissipation of the synthesis results. Thus, the policy for selecting

the optimal state encoding can be adapted to the optimization

target. Table V shows the synthesis results using area-delay

product as the selection criterion if the area and delay of the

fingerprinted design are equally important. This selection policy

reduces the delays of fingerprinted instances from those of

Table IV by 0.17% on average but their areas are also

correspondingly increased by 0.12% on average.

TABLE V

Fingerprinting overheads with state encoding for area-delay product reduction.

The definitions and units of all notations are the same as those in Table IV.

Circuit #FF As Ds Ps m Am Dm Pm
ΔA

(%)

ΔD

(%)

ΔP

(%)

S382 21 2202 1.42 1.27 16 2265 1.49 1.37 2.86 4.93 8.21

S838 32 3400 3.32 1.93 16 3463 3.42 1.89 1.85 3.01 1.92

S1423 74 8436 5.23 5.01
16 8416 4.80 5.10 0.24 8.22 1.86

32 8422 4.84 5.46 0.17 7.46 9.05

S5378 179 17064 1.68 12.4
32 17114 1.69 12.6 0.29 0.60 1.61

64 17264 1.64 12.8 1.17 2.38 3.23

S9234 211 24160 2.51 15.2
32 24409 2.32 15.8 1.03 7.57 3.95

64 24868 2.33 15.8 2.93 7.17 3.95

S15850 534 54217 4.17 35.9
64 54736 4.06 37.3 0.96 2.64 3.90

128 55071 4.07 38.6 1.58 2.40 7.52

S13207 638 57074 3.62 36.9
64 57869 3.41 38.5 1.39 5.80 4.34

128 57909 3.67 38.0 1.46 1.38 2.98

S35854 1426 160306 3.61 97.0
128 161686 3.70 98.0 0.86 2.49 1.03

256 163523 3.60 97.0 2.01 0.28 0.00

S38417 1636 166184 3.79 71.6
128 168017 3.46 72.7 0.80 8.71 1.54

256 169430 3.93 72.0 1.65 3.69 0.56

S35932 1728 152559 1.56 120
128 155473 1.58 120 1.91 1.28 0.58

256 157339 1.58 125 3.13 1.28 3.99

 In order to evaluate the area and timing overheads of our

fingerprinted circuits on FPGA, designs in Table IV are

implemented on Xilinx XC6VCX240T device. The results are

shown in Table VI. The number of slice registers used by each

design is the same as #FF in Table IV. For most designs, similar

trend of increasing overhead with RF is observed. On average,

the area and delay overheads are 1.8% and 1.4% respectively.

Unlike the fingerprinted solutions of [15], the area and delay of

our fingerprinted solutions can be improved as manifested by

the negative ΔA and ΔD values in Table VI. This is possible

because the resynthesis after state recoding may perturb the

optimization heuristic to the FPGA fabric mapping, placement

and routing problems to escape the local minima. The

fingerprinted design may be easier to be placed and routed than

the seed design, leading to the use of less logic slices or shorter

interconnections for nearly half of the fingerprinted solutions. In

addition, our technique can also be applied to IPs targeting

antifuse and flash memory based FPGA technologies, which are

not feasible for [15]. Due to the dissimilar approaches to logic

minimization, the optimal encodings for FPGA may be different

from ASIC. The impact of encoding and decoding logic on

power consumption is usually higher in FPGA than in ASIC,

particularly for large FSMs. Among the 2
n
 different minimal-bit

encodings, Gray encoding and those with reduced hamming

distance of the most probable state transitions are more likely to

lead to lower resource utilization and power consumption.

Reported experimental results of fingerprinting methods

[14-17] based on only one or a few fingerprint instances for

each design are inadequate to demonstrate their capability to

generate a large number of reasonably high-quality

fingerprinted designs. To evaluate this capability, the same

experimental settings for obtaining the data in Table IV were

used to synthesize 100 different fingerprinted instances with

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

12

randomly generated fingerprints and location integers for each

design. The minimum, maximum and average areas and delays

of the 100 fingerprinted designs for each circuit are listed in

Table VII. The minute margin of error percentages, %Aerr and

%Derr, indicate that different fingerprinted instances of the same

IP produced by our technique have consistent quality. By

comparing the mean area and mean delay in Table VII with the

seed design area As and delay Ds in Table IV, a more

informative group average fingerprinting overheads, ΔA and

ΔD, of 1.4% and 2.3% respectively are obtained.

TABLE VI

Area and timing overheads of fingerprinted designs implemented on FPGA.

As and Am, and Ds and Dm are the areas in number of slice LUTs and delays in ns

of the seed design and fingerprinted design, respectively.

Circuit As Ds m Am Dm ΔA (%) ΔD (%)

S382 43 2.58 16 41 2.34 4.65 9.44

S838 57 2.61 16 60 2.79 5.26 7.18

S1423 174 4.99
16 176 5.60 1.15 12.19

32 166 5.51 4.60 10.85

S5378 223 3.54
32 232 3.79 4.04 7.01

64 230 3.42 3.14 3.25

S9234 422 4.16
32 421 5.24 0.24 25.83

64 422 4.60 0.00 10.48

S15850 784 6.05
64 799 5.43 1.91 10.31

128 853 5.39 8.80 10.89

S13207 709 6.04
64 698 5.68 1.27 5.98

128 718 5.83 1.91 3.48

S35854 2660 6.43
128 2669 6.48 0.34 0.82

256 2674 6.36 0.53 1.09

S38417 2565 6.94
128 2730 6.97 6.43 0.42

256 2720 6.96 6.04 0.27

S35932 1729 3.58
128 1749 3.57 1.16 0.31

256 1775 3.38 2.66 5.67

 TABLE VII

Statistical analysis of synthesis results for 100 different fingerprinted instances

of each circuit. Am and Dm denote area in µm2 and delay in ns, respectively.
%Aerr and %Derr are obtained by calculating the margins of error Aerr and Derr

for the area and delay for 95% confidence interval and normalized them by the

average area and delay, respectively.

Circuit m
Am Dm

%Aerr %Derr
min Ave. max min Ave. max

S382 16 2179 2240 2305 1.32 1.44 1.56 0.26 0.68

S838 16 3320 3388 3473 3.02 3.37 3.78 0.18 0.85

S1423
16 8369 8472 8589 4.71 5.25 5.82 0.12 1.05

32 8363 8473 8575 4.71 5.28 5.85 0.10 0.98

s5378
32 17349 17358 17550 1.61 1.76 2.06 0.08 0.84

64 17361 17395 17653 1.62 1.78 1.98 0.11 0.76

s9234
32 24166 24422 24662 2.22 2.51 2.92 0.09 1.01

64 24266 24579 24915 2.23 2.49 2.87 0.12 0.95

s15850
64 54540 54851 55271 3.42 3.95 4.21 0.05 0.75

128 54999 55327 55674 3.48 3.99 4.45 0.05 0.79

s13207
64 56788 57094 57397 3.00 3.46 3.90 0.04 0.95

128 57227 57529 57936 3.16 3.52 4.01 0.05 0.87

s35854
128 160605 161356 161976 3.12 3.57 4.20 0.03 0.96

256 162122 162880 163729 3.12 3.64 4.11 0.04 1.01

s38417
128 166819 167573 168299 3.41 3.67 4.14 0.03 0.82

256 168199 168859 169430 3.41 3.75 4.32 0.03 0.91

s35932
128 152905 153419 154109 1.43 1.50 1.64 0.03 0.56

256 154980 155678 156743 1.43 1.53 1.64 0.04 0.61

 To the best of our knowledge, no FSM fingerprinting

technique has been reported so far. Among the FSM

watermarking schemes, [8] is the only technique that deals

explicitly with the problem of field authentication (or off-chip

detection) of embedded sequential circuit IP ownership. To

facilitate the comparison of our technique with [8], the same

synthesis tool SIS [35], technology library msu.genlib,

optimization script script.algebraic and ISCAS benchmark

circuits in blif format as [8] are used to produce our

fingerprinted circuit results in Table VIII. In most cases, our

fingerprinted designs have lower area than the watermarked

designs of [8], with an average area reduction of about 2% even

though reduction of hardware overhead has been well

acknowledged as a more challenging problem in fingerprinting

than in watermarking. Fingerprinting by state variable encoding

of the embedded partitioned test machine has not only resulted

in better area optimization but also provided a stronger

integration of test and functional logic than the scan-chain based

synthesis-for-testability technique. The delay comparison is

inconclusive however. Due to the cost function used by the

algebraic script from SIS, its metaheuristic tends to create a

larger delay discrepancy between the originally optimized cost

surface and the alternate cost surfaces than Synopsys design

compiler.

TABLE VIII

Comparison of synthesis results with FSM watermarking [8]. As and Am, and Ds

and Dm are the areas in µm2 and delays in ns of the seed design and

fingerprinted design, respectively.

Circuit #FF m As Ds
Am Dm

Prop. [8] Prop. [8]

S3330 132
32

29696 45
30024 33504 49.8 46.4

64 30088 33496 54.2 47

S3384 183
32

42704 69.6
42920 47736 85 83.2

64 43440 46160 88 83.6

S9234 228
32

57824 67.6
58752 59528 74.2 65.6

64 58944 59520 73.8 65.2

S6669 239
32

69720 142.8
70728 75136 126.2 134.6

64 72608 75312 127 134.2

S15850 597
64

129184 132.6
130568 130928 157.2 123

128 132280 130880 170.4 123.6

S13207 669
64

118632 128.4
120904 126024 143.8 140.2

128 123920 123456 154.6 131

S38584 1452
64

338816 469.8
343424 345872 484.2 400.6

128 346608 342520 490.6 401.6

S38417 1636
64

389320 387
391768 372288 404.4 354

128 393776 373696 423.4 356.4

S35932 1728
64

330968 354.8
333712 366528 361.2 348.2

128 335328 366920 363 347

B14 245
32

137512 143.6
137896 139664 171.8 142.4

64 138296 139176 175.4 142.4

B15_1 449
64

220610 132.4
222208 219152 139.4 147.6

128 223112 218208 148 148

B21 490
64

287080 154.2
288184 298464 196.6 155.2

128 288880 298720 207.6 155.2

B22 735
64

428008 215.4
429448 429832 274.4 210.2

128 430760 430168 272.4 209.6

B17 1415
64

710784 374.4
710960 690296 382.4 404.6

128 712160 689840 403.4 403

We also compared the areas and delays of our fingerprinted

circuits from Table V with those of [9] for the same signature

lengths of 64 and 128 bits. The percentage area and delay

overheads for each circuit are shown in Table IX. Overall, our

scheme incurs smaller area and delay overheads. Moreover,

being essentially a watermarking scheme, [8] and [9] are

incapable of generating many high-quality topologically

different designs (for different marks) of the same IP.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

13

Table IX

Comparison of area and delay overhead with [9]

Circuit m
ΔA (%) ΔD (%)

proposed [9] proposed [9]

S5378 64 1.17 2.50 2.38 7.50

S9234 64 2.93 2.97 7.17 1.50

S15850
64 0.96 0.86 2.64 3.70

128 1.58 2.06 2.40 2.28

S13207
64 1.39 3.40 5.80 3.38

128 1.46 5.15 1.38 3.38

S38584 128 0.86 0.75 2.49 4.76

S38417 128 0.80 5.17 8.71 2.99

S35932 128 1.91 5.02 1.28 2.35

 The probability of successful removal of fingerprint bits by

state recoding is also analyzed. Based on the resilience analysis

of Section IV.B, Bob is able to recode only a small number r

(r n) of state variables from a few randomly created

partitions. The probability that the r state variables he recoded

had already been embedded with exactly j fingerprint bits is

given by m n m n

j r j rC C C

 , and the probability of modifying

exactly i bit values by recoding a j-bit binary code is given

by 1 1 1
2 2 2

i j i jj j

i iC C

 . Thus, the probability of

successfully removing k (k m) or more fingerprint bits by

randomly recoding r out of n state variables is given by:

 ()
2

m n m jjm
j r j i

r n j
j k i kr

C C C
P E k

C

 (12)

Table X compares the robustness of the proposed method

with [8] by the probability of successfully erasing a quarter of

the mark, assuming conservatively that the attacker is able to

recode r = m state variables for our method and randomly

derange r = m FFs for [8]. It can be seen that the proposed

method is generally more robust against removal attacks than

[8]. As we assume r = m, Pr is relatively high when RF is large.

When RF is around 0.1, Pr reduces drastically to the order of

10
8

. The probability of removal is expected to be reduced

across-the-board if r < m. This observation suggests that it is

unlikely for state recoding attack to succeed in altering a large

fraction of the fingerprint bits even with a moderate RF. With

ECC, it is highly improbable to remove even a single bit of

fingerprint for a reasonable-size design. Given a minimum

fingerprint length mmin for an allowable probability of

coincidence and an empirically determined RFmax for an

allowable probability of erasure, the smallest IPs should contain

no less than nmax FFs, where

max

min

max

F

m
n

R
 (13)

VI. CONCLUSION

 A new and robust fingerprinting technique on sequential

circuits that offers a convenient way to identify the legal IP

owner and users has been proposed. A large number of high

quality fingerprinted instances can be created from an originally

optimized seed design of the IP with incremental design effort.

The overheads incurred by different instances have been

effectively bounded to a reasonably low level by our method

due to its state variable chaining heuristic, dependency based

partitioning algorithm and the use of a single blind signature to

double as IP ownership and buyer identity marks. Our security

analysis shows that the fingerprint credibility increases

exponentially with fingerprint length and is immune to collusion

attack, circuit resynthesis, retiming and state reduction attacks.

The risk of fingerprint removal by state recoding attack is

significantly reduced with the augmentation of ECC or by

keeping the ratio of fingerprint length to state variable number

low. From 100 fingerprinted instances for each of the ten ISCAS

benchmark circuits tested, the average area and delay overheads

were found to be 1.4% and 2.3% respectively with negligible

margins of error for 95% confident interval.

Table X

Comparison of mark robustness with [8]

Circuit #FF m
Pr(E ≥ m/4)

proposed [8]

S3330 132 32 2.6E02 3.1E02

S3384 183 32 3.5E03 3.1E02

S9234 228 32 8.1E04 3.3E02

S6669 239 32 5.8E04 3.9E02

S15850 597 64 5.2E08 5.6E08

S13207 669 64 1.0E08 1.1E08

S38584 1452 64 9.8E14 1.0E13

S38417 1636 64 1.6E14 1.7E14

S35932 1728 64 6.8E15 7.0E15

B14 245 32 4.9E04 3.3E02

B15_1 449 64 2.7E06 3.4E03

B21 490 64 8.1E07 3.6E03

B22 735 64 2.6E09 2.8E09

B17 1415 64 1.5E13 1.5E13

REFERENCES

[1] Market research report, “Semiconductor (silicon) Intellectual Property

(IP) market (2012 – 2017) global forecasts and analysis by form factor,

design architecture, processor type, applications and geography,”

MarketsandMarkets. [Online]. Available:

 http://www.marketsandmarkets.com/Market-Reports/semiconductor-sili

con-intellectual-property-ip-market-651.html.

[2] C. Gorman, “Counterfeit chips on the rise,” IEEE Spectrum, vol. 49, no.

6, pp. 16-17, June 2012.

[3] B. Rayner, “Chip counterfeiting case exposes defense supply chain flaw,”

EE Times News & Analysis, 24 Oct. 2011.

[4] I. Hong, and M. Potkonjak, “Techniques for intellectual property

protection of DSP designs,” in Proc. IEEE Int. Conf. Acoustics, Speech

and Signal Processing, WA., USA, May 1998, vol. 5, pp. 3133-3136.

 [5] A. B. Kahng et al., “Constraint-based watermarking techniques for

design IP protection,” IEEE Trans. Comput.-Aided Des. Integr. Circuits

and Systs, vol. 20, no. 10, pp. 1236-1252, Oct. 2001.

[6] A. Cui, C. H. Chang, and S. Tahar, “IP watermarking using incremental

technology mapping at logic synthesis level,” IEEE Trans.

Comput.-Aided Des. Integr. Circuits and Systs, vol. 27, no. 9, pp.

1565-1570, Sep. 2008.

[7] Y. C. Fan, “Testing-based watermarking techniques for intellectual-

property identification in SOC design,” IEEE Trans. on Instrumentation

and Measurement, vol. 57, no. 3, pp. 467-479, Mar, 2008.

[8] C. H. Chang, and A. Cui, “Synthesis-for-testability watermarking for

field authentication of VLSI intellectual property,” IEEE Trans. Circuits

Syst. I-Regular Papers, vol. 57, no. 7, pp. 1618-1630, Jul. 2010.

[9] A. L. Oliveira, “Techniques for the creation of digital watermarks in

sequential circuit designs,” IEEE Trans. Comput.-Aided Des. Integr.

Circuits and Systs, vol. 20, no. 9, pp. 1101-1117, Sep. 2001.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

14

[10] I. Torunoglu, and E. Charbon, “Watermarking-based copyright protection

of sequential functions,” IEEE Journal of Solid-State Circuits, vol. 35,

no. 3, pp. 434-440, Mar. 2000.

[11] A. T. Abdel-Hamid, S. Tahar, and E. M. Aboulhamid, “A public-key

watermarking technique for IP designs,” in Proc. Design, Autom. Test

Europe, Munich, Germany, Mar. 2005, vol. 1, pp. 330-335.

[12] A. Cui et al., “A robust FSM watermarking scheme for IP protection of

sequential circuit design,” IEEE Trans. Comput.-Aided Des. Integr.

Circuits and Systs, vol. 30, no. 5, pp. 678-690, May 2011.

[13] L. Zhang, and C. H. Chang, "State encoding watermarking for field

authentication of sequential circuit intellectual property." in Proc. IEEE

Int. Symp. on Circuits and Syst., Seoul, Korea, May 2012, pp. 3013-3016.

[14] J. Lach, W. H. Mangione-Smith, and M. Potkonjak, “FPGA

fingerprinting techniques for protecting intellectual property,” in Proc.

IEEE Custom Integr. Circuits Conf., CA, USA, May 1998, pp. 299-302.

[15] J. Lach, W. H. Mangione-Smith, and M. Potkonjak, “Fingerprinting

techniques for field-programmable gate array intellectual property

protection,” IEEE Trans. Comput.-Aided Des. Integr. Circuits and Systs,

vol. 20, no. 10, pp. 1253-1261, Oct. 2001.

[16] G. Qu, and M. Potkonjak, “Fingerprinting intellectual property using

constraint-addition,” in Proc. Des. Autom. Conf., CA, USA, June 2000,

pp. 587-592.

[17] A. E. Caldwell et al., “Effective iteractive techniques for fingerprinting

design IP,” IEEE Trans. Comput.-Aided Des. Integr. Circuits and Systs,

vol. 23, no. 2, pp. 208-215, Feb. 2004.

[18] R. S. Chakraborty, and S. Bhunia, "Hardware protection and

authentication through netlist level obfuscation," in Proc. IEEE/ACM

Int. Conf. Comput.-Aided Des., CA, USA, Nov. 2008, pp. 674-677.

[19] R. S. Chakraborty, and S. Bhunia, “HARPOON: An obfuscation-based

SoC design methodology for hardware protection,” IEEE Trans.

Comput.-Aided Des. Integr. Circuits and Systs, vol. 28, no. 10, pp.

1493-1502, Oct, 2009.

[20] F. Koushanfar, Y. Alkabani, “Active control and digital rights

management of integrated circuit IP cores,” in Proc. Int. Conf. on

Compilers, architectures, and synthesis for embedded systems., GA,

USA, Oct. 2008, pp. 227-234.

[21] F. Koushanfar, “Provably Secure Active IC Metering Techniques for

Piracy Avoidance and Digital Rights Management,” IEEE Trans. on

Information Forensics and Security, vol. 7, no. 1, pp. 51-63, Feb. 2012.

[22] V. Agrawal, and K.-T. Cheng, “Finite state machine synthesis with

embedded test function,” Journal of Electronic Testing, vol. 1, no. 3, pp.

221-228, Oct. 1990.

[23] S. Kanjilal, S. T. Chakradhar, and V. D. Agrawal, “A test function

architecture for interconnected finite state machines,” in Proc. Int. Conf.

on VLSI Design, Kolkata, India, Jan. 1994, pp. 113-116.

[24] S. Kanjilal, S. T. Chakradhar, and V. D. Agrawal, “Test function

embedding algorithms with application to interconnected finite-state

machines,” IEEE Trans. Comput.-Aided Des. Integr. Circuits and Systs,

vol. 14, no. 9, pp. 1115-1127, Sep. 1995.

[25] S. Kanjilal, S. T. Chakradhar, and V. D. Agrawal, “A partition and

resynthesis approach to testable design of large circuits,” IEEE Trans.

Comput.-Aided Des. Integr. Circuits and Systs, vol. 14, no. 10, pp.

1268-1276, Oct. 1995.

[26] Z. Kohavi, and N. K. Jha, Switching and Finite Automata Theory. 3rd ed.,

New York: Cambridge University Press, 2010.

[27] C. Pixley, S. W. Jeong, and G. D. Hachtel, “Exact calculation of

synchronization sequences based on binary decision diagrams,” in Proc.

ACM/IEEE Des. Autom. Conf., CA, USA, June 1992, pp. 620-623.

[28] D. Chaum, “Blind signatures for untraceable payments,” in Advances in

Cryptology, D. Chaum, R.L. Rivest, & A.T. Sherman Eds., Plenum,

1982, pp. 199-203.
[29] National Institute of Standards and Technology (NIST). Secure Hash

Standard (SHS) (March 2012). [Online]. Available:

 http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf.

[30] M. R. Garey, and D. S. Johnson, Computers and Intractability: A Guide

to the Theory of NP-Completeness. W. H. Freeman, 1990.

[31] T. H. Cormen, Introduction to Algorithms. 3rd ed., Cambridge, Mass.:

MIT Press, 2009.

[32] G. D. Hachtel, and F. Somenzi, Logic Synthesis and Verification

Algorithms, New York: Springer, 2006.

[33] R. K. Ranjan et al., “On the optimization power of retiming and

resynthesis transformations,” in Proc. ACM/IEEE Int. Conf.

Comput.-Aided Des., CA, USA, Nov. 1998, pp. 402-407.

[34] J. K. Rho et al., “Exact and heuristic algorithms for the minimization of

incompletely specified state machines,” IEEE Trans. Comput.-Aided

Des. Integr. Circuits and Systs, vol. 13, no. 2, pp. 167-177, Feb. 1994.

[35] E. M. Sentovich et al., “Sequential circuit design using synthesis and

optimization,” in Proc. IEEE Int. Conf. Comput. Des.: VLSI in Comput.

and Processors, MA, USA, Oct. 1992, pp. 328-333.

Chip-Hong Chang (S‟92–M‟98–SM‟03)

received the B.Eng. (Hons.) degree from the

National University of Singapore in 1989, and

the M. Eng. and Ph.D. degrees from Nanyang

Technological University (NTU), Singapore,

in 1993 and 1998, respectively. He served as a

Technical Consultant in industry prior to

joining the School of Electrical and Electronic

Engineering (EEE), NTU, in 1999, where he

is currently an Associate Professor. He holds

joint appointments with the university as

Assistant Chair of Alumni of the School of

EEE since June 2008, Deputy Director of the

Center for High Performance Embedded Systems from 2000 to 2011, and the

Program Director of the Center for Integrated Circuits and Systems from 2003

to 2009. He has coedited one book, published four book chapters and around

200 research papers in refereed international journals and conferences. His

current research interests include hardware security and trust, low power

arithmetic circuits and digital filter design.

 Dr. Chang has served as Associate Editor of IEEE Access since 2013, IEEE

Transactions on Circuits and Systems-I from 2010-2013, IEEE Transactions

on Very Large Scale Integration (VLSI) Systems since 2011 and Integration,

the VLSI Journal since 2013, and the Editorial Advisory Board Member of

Open Electrical and Electronic Engineering Journal since 2007 and Journal

of Electrical and Computer Engineering since 2008. He also guest edited

several special issues for Journal of Circuits, Systems and Computers, IEEE

Transactions on Circuits and Systems-I, Journal of Electrical and Computer

Engineering and VLSI Design, and served in many international conference

advisory and technical program committees. He is a Fellow of the IET.

Li Zhang (S'11) received the B.Eng. (Hons)

degree in Electrical and Electronics

Engineering from Nanyang Technological

University (NTU), Singapore, in 2010. He is

currently pursuing the Ph.D degree in the

division of Circuits and Systems, School of

EEE, NTU, Singapore.

 His research interests are in hardware

security, including hardware IP watermarking

and fingerprinting, active IC metering, and

hardware Trojan detection and prevention.

