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A Blind Source Separation Framework for Ego-Noise

Reduction on Multi-Rotor Drones
Lin Wang and Andrea Cavallaro

Abstract—Acoustic sensing from a multi-rotor drone is heavily
degraded by the strong ego-noise produced by the rotating motors
and propellers. To address this problem, we propose a blind source
separation (BSS) framework that extracts a target sound from noisy
multi-channel signals captured by a microphone array mounted on
a drone. The proposed method addresses the challenging problem
of permutation alignment, in extremely low signal-to-noise-ratio
scenarios (e.g. SNR < −15 dB), by performing clustering on the
time activities of the separated signals across frequencies. Since
initialization plays an important role to the success of clustering,
we propose a pre-processing algorithm which uses time-frequency
spatial filtering (TFS) to generate a reference to pre-align the
permutation. The pre-alignment not only improves the perfor-
mance of clustering and permutation alignment, but also solves the
target-channel selection problem for BSS. The proposed method
integrates the advantages of both TFS and BSS. Experimental
results with real-recorded data show that the proposed method is
capable of processing the audio stream continuously in a blockwise
manner and also remarkably outperforms the state-of-the-art.

Index Terms—Acoustic sensing, ego-noise reduction,
microphone array, multi-rotor drone.

I. INTRODUCTION

M
ULTI-ROTOR drones equipped with audio interfaces

have been increasingly attracting interest for acoustic

sensing in search and rescue, wildlife monitoring, broadcasting,

and human-robot interaction [1]–[6]. However, the rotating mo-

tors and propellers generate strong ego-noise, which degrades

acoustic sensing [7]. Since the microphones embedded on the

drones are much closer to the motors and propellers than target

sound sources, the target sound is heavily masked by the ego-

noise and the signal-to-noise ratio is extremely low (e.g. SNR

lower than −15 dB) [8]. Sound enhancement and ego-noise

reduction are therefore necessary to extract the target sound

before further processing.

Microphone arrays have been widely used for sound enhance-

ment and source localization [9], [10], but most algorithms are

designed for indoor settings with relatively high SNR at the
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microphones, and thus are unsuitable for drone-based applica-

tions [11], [12]. Several microphone-array drone sound datasets

have been made publicly available recently [13], [14]. The

acoustic sensing performance of traditional microphone-array

algorithms usually drops significantly due to the extremely

low SNR, the time-frequency dynamics of the ego-noise, and

additional natural wind noise [8].

Time-frequency spatial filtering (TFS) [15]–[17] and blind

source separation (BSS) [8], [16] represent the state of the art for

ego-noise reduction on drones. Assuming the direction of arrival

(DOA) of the target sound to be known, TFS works robustly in

low-SNR scenarios by exploiting the time-frequency sparsity of

the acoustic signals. A drawback of TFS is its remarkable drop

in performance when the DOA of the target sound is close to

that of the source of ego-noise [17]. The application of BSS to

ego-noise reduction is straightforward as most BSS algorithms

are based on independent component analysis (ICA) and thus do

not require the knowledge of the locations of the microphones

and the target sound source [18], [19]. One study suggested that

ICA can better separate the ego-noise and the target sound than

TFS at individual frequency bins [16]. However, the inherent

permutation ambiguity [18] is a very challenging problem in

case of extremely low SNRs.

In this paper, we propose an ego-noise reduction framework

that combines blind source separation, time-frequency spatial

filtering, and single-channel spectral post-filtering to jointly

enhance a target sound. Specifically, we employ ICA to sep-

arate the target sound and the ego-noise at individual frequency

bins and then solve the permutation ambiguity problem with a

two-stage permutation alignment scheme. Finally, we employ

single-channel post-filtering to further enhance the target sound

by suppressing the residual stationary noise. The main novelty of

the framework is the two-stage permutation alignment scheme

that takes advantage of the spatial filtering capability of the

TFS algorithm. In the first stage, we employ TFS to enhance

the sound from a target DOA, outputting a full-band signal.

In the second stage, we use the TFS output as a reference to

pre-align the ICA outputs across frequencies, and further im-

prove the permutation with a clustering algorithm, which groups

the separated frequency components based on their temporal

activities.

The proposed framework, which is robust in low-SNR sce-

narios by integrating the advantages of TFS and BSS while

compensating their weaknesses, has two main benefits. First,

the TFS algorithm can already enhance the microphone signal

remarkably with a full-band output that is free of ambiguities.
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TABLE I
ALGORITHMS FOR DRONE EGO-NOISE REDUCTION

This provides a desirable initialization for the subsequent clus-

tering algorithm, leading to improved permutation alignment

performance. Second, by aligning to this TFS reference, the

proposed method can extract the target sound to a desired

channel (e.g. the first output channel), which naturally solves the

target-channel selection problem. This is an important benefit

when employing a blockwise scheme for processing signals

continuously in practice. After solving the permutation ambigu-

ity and the target-channel selection problems, BSS outperforms

TFS in noise suppression.

II. RELATED WORK

A. Ego-Noise Reduction

The ego-noise reduction literature can be separated into su-

pervised and unsupervised approaches (Table I).

Among the supervised approaches, template-based methods

build a noise template database from which the spectrum [20]

or the correlation matrix [21] of the ego-noise can be estimated

by monitoring, using for example a motor-speed sensor, the

flight status of the drone. The estimated ego-noise information

(the fundamental frequency of the harmonic component of the

ego-noise is proportional to the rotating speed of the motor)

can be used to design single-channel spectral filters [20] for

ego-noise reduction, and can be used for noise-robust source

localization [21]. Template-based methods are also applied to

ground-robot ego-noise suppression [22]–[25]. To avoid using

monitoring sensors, non-negative matrix factorization can be

employed to learn noise bases from pre-recorded training data

and to estimate, online, the noise spectrum from the noisy

recording. This approach was applied to ground robots [26],

[27], but its application for drone ego-noise, which is much

stronger, has not been reported yet. Reference-based methods

use (reference) microphones close to motors to pick up the ego-

noise and then cancel it adaptively from the signals captured by

the microphone array [3], [28], [29]. While effective, the need for

dedicated monitoring sensors limits the versatility of supervised

approaches. Deep learning approaches are also being applied

to ego-noise reduction on drones, but are still in a preliminary

stage [30]–[32]. A comprehensive survey on ego-noise reduction

on both ground and drone robots was presented in [33].

Unsupervised approaches reduce the ego-noise using only

the microphone array through beamforming [34]–[39], time-

frequency spatial filtering [16], [17], or blind source separa-

tion [8], [16]. Delay-and-sum fixed beamforming has limited

performance in improving the SNR [34], [35]. Adaptive beam-

forming performs better, but requires the knowledge of the corre-

lation matrix of the ego-noise, which is difficult to estimate when

the noise is nonstationary [36]–[39]. Time-frequency spatial

filtering (TFS) performs ego-noise reduction by exploiting the

time-frequency sparsity of audio signals to estimate the DOA of

the sound at each time-frequency bin and then formulate a spatial

filter based on these instantaneous DOA estimations [16]. This

approach is suitable for drone sound processing as the harmonic

components of the ego-noise have concentrated energy peaks at

isolated harmonic frequencies, and likewise, target sounds such

as human speech or emergency whistles also consist mainly of

harmonic components [40]. However, there are several issues

to be addressed when deploying this approach in practice. First,

TFS requires the knowledge of the target sound direction and the

location of the microphones to estimate the DOA of the sound

at each time-frequency bin and calculate the correlation matrix

of the target sound. Recently, several sound source localization

algorithms were proposed for the drone platform [14], [15],

[41]–[45]. Second, TFS is sensitive to the direction of the target

sound. If the target sound comes from a direction close to

that of the ego-noise, the time-frequency bins belonging to the

ego-noise might be erroneously detected as target sound, thus

degrading the noise suppression performance [17].

Blind source separation (BSS) performs sound enhancement

by treating the target and noise signals equally and by separating

the sources from the mixed signals captured by the array of

microphones [18]. The application of BSS to ego-noise reduc-

tion is straightforward as the locations of the microphones and

the target source are not needed [8], [16]. BSS consists of two

key components: independent component analysis (ICA) and

permutation alignment. ICA, which is applied per frequency bin,

exploits the statistical independence between source signals to

estimate a demixing matrix [19]. This demixing matrix can be

interpreted as the inverse of the acoustic mixing network and can

recover the source signals up to permutation ambiguities: each

source can be extracted individually from the observed mixture

but with a random order in the output channels. A subsequent

permutation alignment procedure is needed to group the individ-

ual signals that belong to the same source so that the separated

frequency-domain signals can be correctly transformed back

to the time domain. In general, three strategies exist to tackle

the permutation ambiguity problem, based on inter-frequency

dependency [46]–[49], sound source locations [50]–[53], and

independent vector analysis [54], [55], respectively.

While ICA-based BSS can suppress directional ego-noise ef-

fectively, there are still several issues that remain unsolved when

using BSS in practice. First, permutation ambiguity becomes a

crucial and challenging problem in low-SNR scenarios, espe-

cially when the microphones outnumber the sources, leading to

an over-determined mixture [56], [57]. Second, BSS typically

works as a batch process and thus requires the acoustic mixing

network to remain stationary for a certain interval, i.e. with

physically static sound sources and microphones. In order to pro-

cess the data continuously and adapt to dynamic environments,

blockwise processing is usually required [10]. How to improve

the performance with a short processing block is still an open
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TABLE II
APPROACHES THAT USE THE DIRECTIONS OF THE SOUND SOURCES

TO IMPROVE BLIND SOURCE SEPARATION

problem. Third, the target sound is extracted randomly into one

of the output channels, leading to the target-channel selection

problem. This problem is also referred to as the outer (channel-

wise) permutation ambiguity, in contrast to the inner (bin-wise)

permutation ambiguity. While the inner permutation problem

has been investigated intensively, the outer permutation problem

has been relatively less addressed. While several algorithms

have been proposed, e.g. by exploiting prior knowledge on the

target sound location [58], [59], target-channel selection is still

challenging in adverse acoustic scenarios where the reliability

of the above-mentioned information is significantly degraded.

In [8], [16], the authors skipped this problem by assuming the

target channel to be known, which is not feasible in practice.

In summary, BSS using ICA provides better noise suppression

performance at individual frequency bins, but has a severe per-

mutation ambiguity problem in the case of low SNR and the case

of over-determined source separation. How to select the target

channel is also a challenging problem. TFS does not have the

permutation ambiguity problem, but has relatively worse noise

suppression performance, and the performance is sensitive to

the DOA of the incoming sound.

B. BSS With Known Sound-Source Directions

Approaches that improve source separation by exploiting the

direction of the sound sources are based on pre-processing, ini-

tialization, informed permutation alignment, geometrical con-

straints, or post-processing (Table II).

Pre-processing approaches formulate a set of beamformers,

pointing at the sound sources, as a pre-processor of BSS by

enhancing the sound sources and reduce reverberation in the

mixture [61]–[63]. Initialization approaches formulate a set

of null beamformers, each pointing at the sound sources, as

an initialization of ICA [52], [53], [64]. This can accelerate

the convergence of ICA and can partly solve the permutation

ambiguity problem. The location of the sound sources can be

used for informed permutation alignment as frequency-wise

contributions from the same source are likely to come from

the same direction. Geometrically constrained BSS imposes a

geometrical constraint on the ICA cost function to help solve the

permutation ambiguity problem and to extract the sound from

a desired direction only [70]–[74]. Post-processing approaches

use time-frequency masks to further improve the ICA outputs,

but produce artifical musical noise [75], [76].

Unlike the above approaches, the proposed method solves

the bin-wise permutation ambiguity and target-channel selection

problem jointly by combining TFS and BSS. We formulate

Fig. 1. Setup for acoustic sensing from a multi-rotor drone. (a) Illustration
of a hovering multi-rotor drone equipped with a microphone array capturing a
target sound. (b) Side and (c) top view of the platform consisting of a circular
microphone array mounted on the drone.

a spatially-informed filter to enhance the target sound and to

provide a reference for permutation alignment. The reference

provides a better initialization to the clustering-based permu-

tation alignment algorithm, thus supporting the improvement

of the alignment results. Moreover, by aligning to this refer-

ence, the proposed method naturally solves, as a by-product,

the target-channel selection problem. The idea of permutation

alignment using a reference was presented in [60], which is

based on a fixed-beamformer output as a reference to align the

permutation. We differ from previous works in how we generate

the reference signal with a time-frequency spatial filter and

the way we align permutations, by cascading reference-based

and clustering-based schemes. In fact, the performance of a

fixed-beamformer is very limited for ego-noise reduction (e.g.

only few dB SNR improvement with eight microphones [16])

and is not a good reference in extremely-low SNR scenarios. The

proposed method is a semi-blind approach as it assumes the tar-

get DOA to be known. Compared to geometrically constrained

BSS [70]–[74], which incorporates the DOA information in the

ICA procedure to solve the permutation ambiguity problem, we

decompose the task into multiple stages (i.e. ICA and permuta-

tion alignment) that offer more flexibility to optimize individual

components and improve the performance in challenging acous-

tic scenarios.

III. PROPOSED ALGORITHM

A. Problem Definition

Let a circular array with M microphones mounted on a

multi-rotor drone capture the sound emitted by a target (Fig. 1).

The locations of the microphones in a 2D coordinate system

are R = [r1, . . . , rM ], where rm = [rmx, rmy]
T is the location

of the m-th microphone and the superscript (·)T denotes the

transpose operator. The target sound source is assumed to be

in the far field and emit sound with DOA θd. The microphone

signals, x(n) = [x1(n), . . . , xM (n)]T, contain both the target
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Fig. 2. Block diagram of the proposed framework for ego-noise reduction, which consists of three main processing steps: time-frequency spatial filtering, blind
source separation, and single-channel spectral post-filtering, which are highlighted with orange, blue and green shadows, respectively. The time-frequency spatial
filtering block enhances the target sound preliminarily assuming its DOA to be known. The output of the time-frequency spatial filtering provides a reference to help
solve the permutation ambiguity problem of the blind source separation block, which can better enhance the target sound. The single-channel spectral post-filtering
block further reduces stationary noise, whose PSD can be estimated with a single-channel noise tracker.

sound, s(n) = [s1(n), . . . , sM (n)]T, and the ego-noise, v(n) =
[v1(n), . . . , vM (n)]T, i.e.

x(n) = s(n) + v(n), (1)

or, written in the short-time Fourier transform (STFT) domain:

X(k, l) = S(k, l) + V (k, l), (2)

whereX(k, l)= [X1(k, l), . . . , XM (k, l)]T,S(k, l)= [S1(k, l)
, . . . , SM (k, l)]T, V (k, l) = [V1(k, l), . . . , VM (k, l)]T; k and l

are the frequency and frame indices, respectively. Let K and

L be the total number of frequency bins and time frames in a

processing segment, respectively.

Given x(n), R and θd, we aim to design a spatial filter

that extracts the target sound from the noisy recording. To this

end, we propose a framework that combines time-frequency

spatial filtering (TFS), blind source separation (BSS) and spec-

tral post-filtering (Post) to suppress the ego-noise (Fig. 2). In

this framework, ICA blindly separates the target sound and the

ego-noise at individual frequency bins, while TFS enhances the

sound from the target DOA, which is assumed to be known. The

ICA outputs across frequencies are pre-aligned by using the TFS

output as a reference, and then the permutation is improved with

a clustering algorithm. The details of each algorithmic step will

be described in Section. III-B to III-F.

B. Time-Frequency Spatial Filtering

The TFS algorithm works effectively for sound processing

on drones since it can well exploit the time-frequency sparsity

of the speech signal and the ego-noise [16]. It estimates the

instantaneous DOA at each time-frequency bin, which is then

used to estimate - given the target DOA - the correlation matrix

of the target signal and construct the spatial filter. Since the

algorithm estimates the spatial information at individual time-

frequency bins, we call it time-frequency spatial filtering. We

summarize the algorithm [16] as below.

Given the microphone signals X(k, l) and the microphone

location R, the instantaneous DOA of the sound at each time-

frequency bin can be estimated by building a local generalized

cross correlation (GCC) function [77]

γTF(k, l, θ)

= R

⎧

⎪

⎪

⎨

⎪

⎪

⎩

M
∑

m1,m2=1
m1 �=m2

Xm1
(k, l)X∗

m2
(k, l)

|Xm1
(k, l)Xm2

(k, l)|
ej2πfkτ(m1,m2,θ)

⎫

⎪

⎪

⎬

⎪

⎪

⎭

,
(3)

where fk denotes the frequency at the k-th bin, the super-

script (·)∗ denotes the complex conjugation, and the operator

R{·} denotes the real component of the argument. The term

τ(m1,m2, θ) =
‖rm2

−rθ‖−‖rm1
−rθ‖

c
denotes the delay between

two microphones m1 and m2 with respect to the sound coming

from θ, where c is the velocity of sound and rθ is the location

of the far-field sound source from direction θ (in practice we set

rθ = 10 m to simulate a far-field case). The instantaneous DOA

of the sound at the (k, l)-th bin is determined as

θTF(k, l) = argmax
θ∈(−180◦,180◦]

γTF(k, l, θ). (4)

To formulate a spatial filter pointing at a target direction θd,

we first measure the closeness of each time-frequency bin (k, l)
to θd. Assuming the DOA estimate to be Gaussian-distributed

with mean θd and standard deviation σd, the closeness measure

is defined as

cd(k, l, θd) = exp

(

−
(θTF(k, l)− θd)

2

2σ2
d

)

, (5)

where the scalar cd(·) ∈ [0, 1]. The higher cd(·), the higher the

confidence that the sound at the (k, l)-th bin arrives from the

direction θd.

We calculate the correlation matrix of the target sound as

Φ̂ss(k, l, θd) =
1

L

L
∑

l=1

c2d(k, l, θd)X(k, l)XH(k, l), (6)

where the closeness measure cd(k, l, θd) indicates the contri-

bution of the (k, l)-th bin to the correlation matrix. With the

target correlation matrix, we formulate a standard multichannel

Wiener filter as [78]

wTFS(k, l, θd) = Φ̂
−1

xx(k, l)φ̂ss1(k, l, θd), (7)
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where φ̂ss1(k, l, θd) is the first column of Φ̂ss(k, l, θd),

and Φ̂xx(k, l) =
1
L

∑L
l=1 X(k, l)XH(k, l) is estimated directly

from the microphone signals. Finally, the sound coming from θd
is extracted as

YTFS(k, l, θd) = wH
TFS
(k, l, θd)x(k, l), (8)

where the superscript (·)H denotes the Hermitian transpose.

C. Independent Component Analysis

BSS involves ICA and permutation alignment [18]. ICA is

applied per frequency bin to estimate a demixing matrix, which

can recover the source signals up to permutation ambiguities.

A subsequent permutation alignment procedure is employed to

group the individual signals that belong to the same source so that

the separated signals in the frequency domain can be correctly

transformed back to the time domain.

We apply an M ×M ICA directly to the M -channel input,

assuming an M ×M mixing network with M sources [57].

These M sources contain a target sound source component S̃

and M ′ = M − 1 noise components Ṽ1, . . . , ṼM ′ , consisting

of harmonic noise, diffuse noise and uncorrelated noise.1 The

M -channel microphone signal can thus be written in the time-

frequency domain as

X(k, l) = H(k, l)U (k, l), (9)

where U(k, l) = [S̃(k, l), Ṽ1(k, l), . . . , ṼM ′(k, l)]T is a vector

containing the M sources, and H(k, l) is the M ×M mixing

matrix between the M sources and M microphones.

We choose a widely used algorithm, Infomax [79], for the

separation task, which estimates the demixing matrix iteratively

by using
{

Ỹ (k, l) ← W̃ (k)X(k, l)

W̃ (k) ← W̃ (k) + η
(

I − E{Ψ(Ỹ (k, l))Ỹ
H
(k, l)}

)

W̃ (k)

(10)

where the operator E{·} denotes mathematical expectation

(which in practice can be approximated by sample mean over

time frames), η is a step-size parameter, Ψ(·) is a nonlinear

function that measures the mutual information of the separated

outputs, I is an identity matrix of size M ×M . After conver-

gence, the output Ỹ (k, l) = [Ỹ1(k, l), . . . , ỸM (k, l)]T recovers

the source signals up to scaling and permutation ambiguities,

i.e.

Ỹ (k, l) = Λ(k)D(k)U(k, l), (11)

where D(k) is an M ×M permutation matrix and Λ(k) is an

M ×M scaling matrix at the k-th frequency bin.

D. Reference-Based Permutation Alignment

We use the TFS output YTFS(k, l) as a reference to pre-align

the permutation of ICA outputs Ỹ (k, l). This is achieved by

comparing the similarity between the components in Ỹ (k, l)

1It should be noted that, in practice, the M − 1 noise sources are unknown.
However, this does not affect the processing result since only the target sound-
source is of interest.

and YTFS(k, l). For two sequences Ỹi(k, l) and YTFS(k, l), their

similarity is measured by the correlation coefficient of their

amplitudes, γi, which is defined as [80]

γi(k) =

∑L
l=1 |Ỹi(k, l)||YTFS(k, l)|

√

∑L
l=1 |Ỹi(k, l)|2

√

∑L
l=1 |YTFS(k, l)|2

. (12)

The index of the channel that is closest to the reference is

determined as

ITFS(k) = argmax
i

γi(k). (13)

The permutation is then realigned by swapping the ITFS channel

and the first channel, i.e.

[ITFS, . . . , 1, · · · ]
ITFS←−− [1, . . . , ITFS, · · · ]. (14)

The demixing matrix and the output after permutation alignment

are updated similarly as

W̄ (k)
ITFS←−− W̃ (k), (15)

Ȳ (k, l)
ITFS←−− Ỹ (k, l). (16)

In this way, the frequency bins that belong to the target sound

are roughly grouped to the first channel. While this group still

contains many frequency bins from the ego-noise, it provides a

good initialization for the clustering-based permutation align-

ment, which aims to further remove the ego-noise components

from the first channel.

E. Clustering-Based Permutation Alignment

We align the permutation by performing a clustering proce-

dure on the time-activity sequences of the separated signals [49].

Let us interpret A(k) = W̄
−1
(k) = [a1(k), . . . ,aM (k)] as the

mixing matrix, with ai(k) being an M × 1 vector describing

the transfer functions between the separated source Ȳi(k, l) and

the M microphones. We use vk
i
(l) to denote the time-activity

sequence of Ȳi(k, l) at the frequency k [80]. The definition is

vk
i (l) =

∥

∥ai(k)Ȳi(k, l)
∥

∥

2

∑M
j=1

∥

∥aj(k)Ȳj(k, l)
∥

∥

2 , (17)

where ‖ · ‖ denotes the 2-norm operation. Usually vk1
i

and vk2
j

,

the time-activity sequences at two frequencies, tend to show high

dependency if i and j are from the same source.

Let Π denote the permutation of the M outputs, i.e. the

projection from the original order [1, . . . ,M ] to a new order

[Π(1), . . . ,Π(M)], and let Π denote a set of all possible projec-

tions. The permutation is aligned by clustering the time-activity

sequences from all frequency bins and all output channels into

M groups, maximizing the correlation betweenM centroids and

their associated group members. The clustering is implemented

as an iterative expectation maximization procedure, where in

each iteration the centroids and the permutation are updated
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as [49]
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

cm =
1

K

K
∑

k=1

vk
m, m = 1, . . . ,M

Πk = argmax
Π∈Π

N
∑

m=1

{

ρ(vk
i , cm)

∣

∣

i=Π(m)

}

, ∀k

(18)

where Πk denotes the permutation at the frequency k;

c1, . . . , cM denote the estimated centroids; and ρ(v1,v2) de-

fines a correlation measure between the two sequences. After

convergence, the demixing matrix is permutated as

Ŵ (k)
Πk←−− W̄ (k), (19)

Finally, we correct the scaling ambiguity with a back projec-

tion [81]

W (k) = diag
(

Ŵ
−1
(k)

)

Ŵ (k). (20)

where the operator diag(·) retains only the diagonal elements of

a matrix.

The permutation aligned outputs are represented as

Y (k, l) = W (k)X(k, l) = [Y1(k, l), . . . , YM (k, l)]T, (21)

where the first channel contains the target sound.

F. Post-Filter

We apply a spectral post-filter to enhance the first channel,

i.e. the target sound. In the well-known Wiener filter [82], the

target signal is enhanced as

Z(k, l) = G(k, l)Y1(k, l), (22)

where the spectral gain is computed as

G(k, l) = max

(

PY1
(k, l)− PN (k, l)

PY1
(k, l)

, Gmin

)

, (23)

where Gmin is the minimum gain to reduce distortions; PY1
is

the power spectral density (PSD) of Y1; PN is the noise PSD

estimated with a single-channel noise PSD tracker [83].

G. Remarks

While the proposed framework consists of several algorithmic

blocks, the key idea is the two-stage permutation alignment

scheme that combines TFS and BSS to address the permutation

ambiguity problem. ICA can better separate the target sound

and the ego-noise at individual frequency bins, but suffers from

the permutation ambiguity problem. TFS can enhance the noisy

signal through a DOA-informed spatial filter, with a full-band

output, which is free of permutation ambiguity. Using TFS as

a reference can provide a good initialization of the clustering

algorithm, and thus can better solve the permutation ambiguity

problem. The proposed framework tends to outperform TFS and

BSS (which employs a randomly initialized clustering algorithm

for permutation alignment) by integrating the advantages of the

two and complementing their respective weakness.

Due to permutation ambiguities, for a traditional BSS, the

target sound usually appears randomly at one of the M output

channels. How to detect this target sound channel reliably is

still a challenging problem. One possible solution would be

to perform source localization at each output channel [50] and

choose the one with the highest coherence value, i.e. the most

directional one. For the proposed method, the output selection

can be naturally implemented, as the target sound is always

extracted into the first output channel. This is an additional

benefit of the proposed method.

TFS requires the knowledge of the DOA of the target sound,

which can be estimated with sound source localization algo-

rithms [15], [44], or with an onboard camera and an object

detector [14], [43]. While the proposed method considers one

source only, it can be extended to multiple sources as long as

their DOAs are known. For instance, an onboard camera can

be used to localize multiple potential human speakers [43]. For

speech enhancement, we can steer multiple TFS filters towards

each sound source, whose output is then used to initialize the

clustering algorithm for BSS permutation alignment.

While the proposed method assumes a static acoustic envi-

ronment, the drone and the sound sources often move in the

environment. There is a trade-off between the spatial filtering

performance and the robustness to acoustic dynamics when

determining the block size in blockwise processing. The impact

of the block size on performance is discussed in the experiments

(e.g. Fig. 8 and Fig. 10).

The proposed method assumes that the microphones M out-

number the sources N , which include the target sound sources

and the ego-noise sources. This over-determined case can be

treated as a pseudo-determined case [57], where anM ×M ICA

is applied to separate the sources in the mixture. In practice, an

under-determined case (N > M ) may occur and the proposed

method might not be able to deal with this scenario robustly,

as the condition of formulation an M ×M ICA does no longer

hold. However, we expect the algorithm to be able to extract

the target sound if it is stronger than other noise sources. An

in-depth investigation on this issue is left for future work.

IV. EXPERIMENTAL RESULTS

In this section we present the evaluation setup, the datasets,

the evaluation measures, the results of the proposed algorithm

and its ability to perform continuous processing, as well as the

performance for permutation alignment, global speech enhance-

ment and robustness under DOA estimation errors.

A. Evaluation Setup

We compare blind source separation (BSS) [49], time-

frequency spatial filtering (TFS) [16], the proposed combination

of the two methods (TFBSS), and post-filtering (Post). We in-

clude in the comparison two additional algorithms as reference:

the BSS algorithm that assumes that permutation ambiguities

are perfectly solved by referring to the original source signals

(BSSnp) [16] and the BSS algorithm with the permutation ambi-

guities solved via pre-alignment (RefBSS), cf. Eq. (14). We also

compare with two traditional beamforming algorithms: fixed

delay-and-sum beamformer (FBF) and adaptive beamformer

(ABF). FBF is implemented assuming the target DOA to be
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Fig. 3. Spatial likelihood of the ego noise and the direction of arrival (DOA)
of the target sounds, θ1 and θ2, in Scenario S1.

known. ABF is implemented as a multichannel Wiener filter

with the noise correlation matrix assumed to remain constant

and estimated in advance from a segment of ego-noise of 20

seconds [16].

We set the STFT frame length as 512, with half overlap, for

all the algorithms. For TFS, we assume the DOA of the target

sound to be known. We set σd = 10◦ in (5), as suggested in

[16], which determined this value as a trade-off between spatial

discriminability and robustness to DOA estimation errors. BSS

employs the clustering algorithm, as presented in Section. III-E,

alone for permutation alignment. Since BSS has multichannel

outputs, we solve the channel selection problem assuming the

source signal to be known (which however is not feasible in

practice). For Post, we set Gmin = 0.1 in (23).

B. Datasets

To validate and compare the proposed method, we use three

self-collected datasets and DREGON [13], an external dataset.

To collect data we used a hardware prototype (Fig. 1) com-

posed of a circular microphone array with eight omnidirectional

lapel microphones mounted on a 3DR IRIS quadcopter [8]. The

diameter of the array is 20 cm and its distance from the top

side of the drone is 15 cm. The specific mounting position of

the array helps to avoid the influence of the self-generated wind

blowing downwards from the propellers. The signals are sam-

pled simultaneously at 44.1 kHz (downsampled to 8 kHz before

processing) with a Zoom R24 multichannel audio recorder. A

tripod holds the quadcopter at a height of 1.8 m.

We consider three setups: S1, S2 and S3. S1 is a

6 m × 5 m × 3 m room with a reverberation time of around

200 ms. A loudspeaker is 3 m away from the drone and at

a height of 1.3 m, playing speech signals as the target sound.

The drone and the loudspeaker are physically static during the

recording. The ego-noise and the speech are recorded separately.

The speed of the motors varies randomly during the recording

of the ego-noise. The speech is recorded at two directions with

DOAs θ1 = 160◦ and θ2 = 20◦. The noise and the speech are

mixed at a varying input SNR from −25 dB to −5 dB, with an

interval of 5 dB. Fig. 3 depicts the spatial likelihood function for

a 15-second segment of ego-noise and indicates the locations

of the two target sounds, where θ1 is close to the DOA of

one ego-noise while θ2 is far from the ego-noise. The spatial

likelihood is computed from the histogram of the DOA estimates

at local time-frequency bins (cf. Eq. (4)), normalized with the

Fig. 4. Visualisation of S2 (a) and S3 (b), and processing results obtained by
Post (Section. IV-D). In both scenarios, the speech is not visible in the input
spectrograms but can be identified in the output spectrograms.

highest frequency count [17]. We can observe four peaks of

the spatial likelihood, corresponding to the locations of the four

motors (ego-noise sources). The shape of the spatial likelihood

function is time-varying and the amplitudes of the four peaks

also vary with the power applied to each motor [17]. The peaks

at ±150◦ are weaker than the other two because the two front

motors are closer to the microphones than the two back motors,

and thus the time-frequency bins are dominated by the ego-noise

from the front side.

The top two panels in Fig. 4 depict S2 and S3. In S2 and

S3 the sound from the drone and the human are simultaneously

recorded. S2 is an office environment with reverberation time

400 ms. The drone operates at hovering status (i.e. with a power

that keeps the drone hovering) and the speaker stands at a 4 m

distance. S3 is outdoors, with a low reverberation density. The

drone operates at hovering status and the speaker talks at a 6 m

distance.

The DREGON dataset [13] was collected with a hovering or

flying drone with an 8-microphone cubic array (whose side is

about 10 cm) mounted below the body of the drone. The array

thus received a stronger wind noise from the propellers. The ego-

noise in the DREGON dataset is different from our own datasets

and it is useful to evaluate the performance of the algorithms.

The cubic array allows dealing with sound sources in 3D. The

locations of the sound sources relative to the microphone array

are also provided.

C. Performance Measures

We quantify the permutation alignment and sound enhance-

ment performance. We evaluate the success of permutation
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alignment with the permutation error ratio, Ep, defined as

Ep =
Ke

K
, (24)

whereKe is the number of bins with erroneous permutation. The

correct permutation is obtained by assuming the clean speech

and clean ego-noise at the microphones to be known [49].

We evaluate the target-sound enhancement in terms of noise

reduction, target speech distortion and global perception. We use

signal-to-noise ratio (SNR) to measure the noise reduction per-

formance, assuming the speech s(n) and the noise component

v(n) at the microphones to be known [82]. Given a spatial filter

w(n), which is a time-domain version of w(k, l), the spatial

filtering procedure is written as

y(n) = w(n) ∗ x(n) =

Lw−1
∑

p=0

w(p)x(n− p)

= ys(n) + yv(n) = w(n) ∗ s(n) +w(n) ∗ v(n),

(25)

where ‘∗’ denotes the convolutive filtering procedure and Lw is

the length of the filter w(n); ys(n) and yv(n) are, respectively,

the speech and noise components at the spatial filtering output.

The SNR is calculated in speech-active periods Ns as

SNR = 10 log10

∑

n∈Ns
y2s(n)

∑

n∈Ns
y2v(n)

. (26)

Given the input and output SNR of a spatial filter being SNRin

and SNRout, the SNR improvement is defined as

SNRimp = SNRout − SNRin. (27)

For the target speech distortion introduced by spatial filtering,

we compute the cepstral distance between the speech component

ys(n) at the spatial filtering output and the reference clean speech

sr(n) (e.g. the speech component at the first microphone). We

refer to this measure as speech cepstral distortion (SCD), which

is defined as [85]

SCD = cd(ys, sr), (28)

where cd(·) computes the cepstral distance (a non-negative

value). The lower SCD, the lower the distortion.

For global perception, we compute the short-time objective

intelligibility (STOI) of the processed output y(n), with refer-

ence to the clean speech sr(n) [84]:

STOI = stoi(y, sr), (29)

where stoi(·) computes the intelligibility, which lies in [0, 1].

The higher STOI, the better the intelligibility of the speech.

D. Contribution of Each Step and Continuous Processing

1) Intermediate Processing Results: Fig. 5 shows the spec-

trograms of the intermediate processing results of the proposed

method for a 6-second recording with an input SNR −10 dB

from S1, with the target sound coming from θ1 (close to the

ego-noise source). Table III lists the corresponding results ob-

tained by the five algorithms involved: spatial filtering (TFS,

BSS, RefBSS and TFBSS) and post-filtering (Post).

Fig. 5. Intermediate processing results by the proposed method. The blue
arrows indicate the signal flow: RefBSS combines BSS and TFS results for
permutation pre-alignment; TFBSS improves the permutation of RefBSS with
a clustering algorithm; Post applies a post-filter to further enhance the target
sound.

TABLE III
OBJECTIVE EVALUATION MEASURES CORRESPONDING TO FIG. 5

It can be observed in Fig. 5 that the target sound is masked by

the ego-noise in the input. TFS improves the target sound but

still with residual noise at many frequency bins, thus achieving

the second-lowest SNR (5.2 dB) and second-highest distortion

(SCD 4.5) among the four spatial filtering algorithms (see

Table III). BSS achieves slightly higher SNR than TFS, but

suffers from severe permutation ambiguities. In this example,

only the sound in the low-frequency band is recovered, with

permutation error as high as 63.0%. As a result, BSS achieves

the highest distortion (SCD 5.2). RefBSS uses the full-band

output from TFS to pre-align the permutation across frequen-

cies and can recover the target sound in both low and high

frequency bands, thus achieving much lower distortion (SCD

4.0) thanBSS. However, the pre-alignment procedure introduces

additional harmonic noise, which remains in the TFS output,

into the permutation result. Consequently,RefBSS achieves the

lowest SNR (1.4 dB) among the four spatial filtering algorithms.

TFBSS employs a clustering algorithm to further improve the

permutation of RefBSS, leading to the highest SNR (9.4 dB)

and the lowest distortion (SCD 3.5) among the four spatial

filtering algorithms. The residual noise in RefBSS is effec-

tively removed by TFBSS. For instance, some harmonic noise
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Fig. 6. Processing a long segment of signal continuously in a blockwise
manner. The block size is 6 seconds. The SNR and STOI of the input and output
(Post) are compared for each processing block.

residuals presented in RefBSS spectrogram, as indicated with

a black eclipse, disappear in the TFBSS spectrogram.

The permutation error of BSS, 63.0%, is reduced to 13.2% by

RefBSS and further to 10.8% by TFBSS (Table III). Finally,

Post applies single-channel noise reduction to further suppress

stationary noise, improving the SNR of TFBSS by 5.7 dB, at the

cost of a increased SCD from 3.5 to 4.2. For global perception,

Post achieves the highest STOI (0.73), followed by TFBSS

(0.72), RefBSS (0.68) and TFS (0.66), whereas BSS achieves

the lowest STOI (0.57).

2) Continuous Processing: TFBSS extracts the target sound

to the first channel and thus naturally solves the channel se-

lection problem, which is essential for processing long signals

continuously in a blockwise manner.

To verify this, we generate a testing signal of 290 seconds

using the data fromS1with the target sound from θ1, and process

the signal continuously in a blockwise manner, with block size 6

seconds and step size 6 seconds. Fig. 6 compares the input SNR

at the microphone and the output SNR achieved by Post at

each processing block: while the input SNR is time-varying, the

proposed algorithm can always improve the SNR. The average

input and output SNRs across all blocks are −11.8 dB and

9.6 dB, respectively. The average input and output STOIs are

0.38 and 0.62, respectively.

We further take the signals recorded inS2 and S3 and process

them in a blockwise manner, with block size 6 seconds and step

size 6 seconds. Since the human speech and the ego-noise are

recorded simultaneously, the SNR measure cannot be computed.

Fig. 4 shows sample input and Post output waveforms and

10-second long spectrograms. The time-domain waveform and

the time-frequency spectrum suggest that the ego-noise is sup-

pressed and the speech is extracted. A demo corresponding to

Fig. 4 and Fig. 6 is available online.2

E. Permutation Alignment Performance

We compare the permutation alignment performance of BSS

and TFBSS for a varying input SNR and signal length. We use

the same 290-second signal as in Fig. 6 and process the signal

in a blockwise manner. The block size varies from 2 seconds

to 10 seconds, with the stepping size being the minimum value

2[Online]. Available: http://www.eecs.qmul.ac.uk/∼linwang/tfbss.html

Fig. 7. Boxplots of the permutation alignment performance for BSS (Algo-
rithm A) and TFBSS (Algorithm B) for various input SNRs and processing
block sizes. TFBSS achieves much lower permutation error than BSS in most
testing scenarios.

between half-block size and 3 seconds. The input SNR varies

from −25 dB to −5 dB, with an interval of 5 dB. For each

block, we perform blind source separation and compute the

permutation error ratio achieved by the two algorithms.

Fig. 7 boxplots the permutation alignment performance by

BSS and TFBSS for various input SNRs and processing block

lengths. For extremely low input SNR−25 dB, BSS andTFBSS

both show large permutation errors while TFBSS performs

slightly better. When the input SNR varies between −20 dB

and −15 dB, the advantage of TFBSS becomes evident. This is

because TFS performs better at high input SNRs thus providing

a better reference for TFBSS. For both BSS and TFBSS, the

permutation error drops when the processing block size is in-

creased. This is because the additional temporal information in

the longer signal helps permutation alignment. When the input

SNR varies between −10 dB and −5 dB, TFBSS outperforms

BSS significantly and the advantage increases with the block

size. In summary, even with high SNRs and large block sizes

BSS still suffers from severe permutation errors, whereas TF-

BSS improves monotonically.

Fig. 8 shows the median of the permutation error ratio corre-

sponding to the boxplots in Fig. 7 . In all testing scenariosTFBSS

performs best, confirming the previous analysis. For input SNR

−10 dB and −5 dB, the gap between TFBSS and BSS widens

remarkably with the processing block size.

F. Speech Enhancement Performance

We compare the speech enhancement of seven algorithms,

BSS, TFS, TFBSS, Post, BSSnp, FBF and ABF using the

http://www.eecs.qmul.ac.uk/~linwang/tfbss.html
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Fig. 8. Median value of the permutation alignment performance for BSS and
TFBSS for various input SNRs and processing block sizes. For both algorithms,
the permutation error decreases when increasing the block size.

Fig. 9. Boxplots of the SNR, SCD and STOI achieved by the considered
algorithms for input SNR −15 dB and processing block size 6 seconds. BSSnp
sets the benchmark. TFBSS outperforms TFS and BSS in both measures. Post
improves the SNR of TFBSS at the cost of a higher SCD. FBF and ABF improve
the SNR of the input very limitedly.

same data as in Section. IV-E and the same blockwise processing

strategy. Note that BSSnp assumes the permutation ambiguities

can be perfectly solved and thus provides benchmark perfor-

mance. For each block size, we compute the speech enhancement

performance at individual blocks, and then the median SNR,

SCD and STOI across all blocks.

Fig. 9 boxplots the SNR, SCD and STOI of the considered

algorithms for input SNR −15 dB and block size 6 seconds.

Among the first four spatial filtering algorithms (BSSnp, BSS,

TFS, TFBSS), BSSnp benchmarks the best performance in

terms of the three measures. BSS outperforms TFS in terms of

both SNR and SCD, but achieves slightly lower STOI than TFS.

TFS performs the worst in terms of the SCD measure. TFBSS

performs better thanTFS andBSS in terms of the three measures

by integrating their advantages. Post can further improve the

SNR of TFBSS at the cost of a higher SCD. TFBSS and Post

achieve similar STOIs. FBF and ABF can only improve the SNR

limitedly by only several dB, and thus achieves the least STOIs.

ABF assumes a constant noise correlation matrix, which does not

hold in practice for the drone ego-noise, thus leading to limited

Fig. 10. The variation of the median SNR improvement, median SCD and
median STOI with respect to the block size by the four spatial filtering algorithms
for various input SNRs. TFBSS achieves higher SNRimp, lower SCD and higher
STOI than TFS and BSS in most testing scenarios. The performance of TFBSS
improves when the block size increases.

SNR improvement. Since FBF and ABF perform significantly

worse than other algorithms, we discard them from the rest of

the experiments.

Fig. 10 depicts the variation of the median SNR improvement,

median SCD, and median STOI with respect to the block size

obtained by the four spatial filtering algorithms (BSSnp, BSS,

TFS, TFBSS) for various input SNRs. BSSnp, as the bench-

mark, always performs the best among the four. For the SNRimp

measure, TFS performs the worst and the performance does not

vary much with the block size. BSS outperforms TFS in most

testing scenarios except at block size 2 seconds. The SNRimp

performance of BSS and TFBSS improves with the increasing

block size, although the improvement slows down when the

block size is larger than 6 seconds. TFBSS outperforms BSS

especially for low input SNR −15 dB. For the SCD measure,

BSSnp achieves the lowest distortion while TFS the highest

distortion.TFBSS andBSS achieve similar SCDs when the input

SNR < −10 dB, while TFBSS achieves lower SCD for input

SNR −5 dB. The SCD performance of all the four algorithms

does not vary much with the block size. One exception isTFBSS,

whose SCD decreases with the increasing block size at input

SNR −5 dB. For STOI, BSSnp achieves the highest STOI and

its performance does not vary much with the block size. The

performance of TFS also remains constant for the varying block

size. The performance of TFBSS and BSS improves with the in-

creasing block size, although the rate of improvement decreases

after a 6-second block size. The STOI of TFBSS is higher than

that of BSS in all testing scenarios. TFBSS outperforms TFS in

most testing scenarios with a block size larger than 2 seconds. In

summary, a block size of 4 or 6 seconds is desirable, as it strikes

a balance between spatial filtering performance and robustness

to acoustic dynamics.
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Fig. 11. The variation of the median SNR improvement, median SCD and
median STOI with respect to input SNR by the four spatial filtering algorithms
for the block size 6 seconds. TFBSS achieves higher SNRimp, lower SCD and
higher STOI than TFS and BSS in most testing scenarios. The performance of
TFBSS tends to increase when increasing the input SNR.

Fig. 11 shows the variation of the median SNR improvement,

median SCD, and median STOI with respect to the input SNR

obtained by the four spatial filtering algorithms for block size

6 seconds. The performance of all the algorithms improves

with the increasing input SNR. For SNRimp, the performance

of all the four algorithms improves with increasing input SNR.

BSSnp performs the best among the four algorithms. TFBSS

and BSS show similar variation trends, where SNRimp improves

quickly for input SNR < −15 dB and then the improvement

slows down for input SNR > −15 dB. TFBSS outperforms

BSS in all SNR scenarios. The SNRimp of TFS shows a much

slower increase than TFBSS and BSS. TFS shows a higher

SNRimp than TFBSS when the input SNR < −20 dB, while

TFBSS shows a higher SNRimp when the input SNR >−20 dB.

For SCD, BSSnp and TFS achieve the lowest and the highest

distortion, respectively, and TFBSS achieves lower distortion

than BSS in all SNR scenarios. The SCD of BSSnp decreases

monotonically with increasing input SNR; the SCDs of TFS,

BSS and TFBSS increase firstly at low input SNR and then

decrease at higher input SNR. For STOI, the performance of

all the four algorithms improves with increasing input SNR.

BSSnp performs the best, followed by TFBSS and TFS, and

BSS performs the worst.TFBSS achieves higher STOI thanTFS

for input SNR > −15 dB, while TFS achieves higher STOI for

input SNR < −15 dB.

Fig. 12 compares the median SNR improvement, SCD, STOI

for TFBSS and Post at various input SNRs, and with block

size 6 seconds. Post suppresses the residual stationary noise

in the TFBSS output, leading to higher SNRimp but also higher

distortion. As a result, TFBSS achieves very similar STOI for

all SNR scenarios. In addition, Post improves SNR more

effectively for input SNR > −15 dB.

G. Robustness to DOA Estimation Errors

AsTFS andTFBSS assume the DOA of the target sound to be

known, we evaluate their performance under errors of the DOA

estimation from the microphone signal. If B is the total number

Fig. 12. The variation of the median SNR improvement, median SCD and
median STOI with respect to input SNR by TFBSS and Post for block size 6
seconds. Post improves the SNR of TFBSS at the cost of a higher SCD.

Fig. 13. Boxplots of the SNR and SCD by the considered algorithms for input
SNR −15 dB and processing block size 6 seconds. TFS and TFBSS assume the
target DOA to be known. TFS2 and TFBSS2 use the DOA estimated from the
microphone signals. TFBSS and TFBSS2 outperform TFS and TFS2 in both
measures.

of processing blocks, then the DOA estimation error ratio, De,

is

De =
Be

B
× 100, (30)

where Be is the number of blocks whose DOA estimation error

is larger than 10◦.

We consider two sets of algorithms: TFS and TFBSS assume

the DOA of the target sound to be known; whereas TFS2 and

TFBSS2 estimate the DOA of the target sound with the algo-

rithm presented in [15]. We use the same data as in Section. IV-

E and the same blockwise processing strategy. We compute

the DOA estimation and speech enhancement performance at

individual blocks, and then compute the median performance

across all blocks. Fig. 13 boxplots the SNR and SCD for input

SNR −15 dB, and block size 6 seconds. For the SNR measure,

TFS2 performs much worse than TFS due to DOA estimation

errors. TFBSS2 has similar median values as TFBSS, but with

lower box bottoms. For the SCD measure, TFS and TFS2

perform similarly; TFBSS and TFBSS2 also perform similarly.

However, TFBSS and TFBSS2 achieve much lower SCD than

TFS and TFS2. This suggests that the TFBSS is more robust to

DOA estimation errors than TFS.

Fig. 14 depicts the variation of the median DOA estimation

error, median SNR improvement and median SCD with respect

to the input SNR for block size 6 seconds. The DOA estimation

error drops significantly when the input SNR is increased from

−25 dB to −15 dB. For the SNR measure, TFS outperforms
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Fig. 14. Median DOA estimation error, median SNR improvement and median
SCD by the considered algorithms for various input SNRs and block size 6
seconds. TFS and TFBSS assume the DOA of the target sound to be known.
TFS2 and TFBSS2 use the DOA estimated from the microphone signal. The
DOA estimation error decreases when increasing the input SNR. TFBSS and
TFBSS2 outperform TFS and TFS2 in both measures.

Fig. 15. SNR improvement performance by the considered algorithms for
a target sound from two DOAs (θ1 and θ2), respectively. TFS and TFBSS

assume the DOA of the target sound to be known. TFS2 and TFBSS2 use the
DOA estimated from the microphone signals. When the DOA is known, TFBSS
performs similarly for θ1 and θ2 while TFS performs differently. When the
target DOA is unknown, TFBSS2 performs similarly for θ1 and θ2 while TFS2
performs differently.

TFS2 when the input SNR < −15 dB, with the DOA estima-

tion error ratio larger than 20%. Similarly, TFBSS outperforms

TFBSS2 when the input SNR < −15 dB, but performs sim-

ilarly when the input SNR > −15 dB. TFBSS and TFBSS2

significantly outperform TFS and TFS2 when the input SNR >

−15 dB. For the SCD measure, TFS achieves lower SCD than

TFS when the input SNR < −15 dB, but performs similarly

when the input SNR > −15 dB. Similar observations can be

made for TFBSS and TFBSS2. In short, the observations made

in Fig. 14 demonstrate that TFBSS is more robust to DOA

estimation errors than TFS.

Fig. 15 compares the performance of TFS and TFBSS when

the target sound comes from the directions θ1 and θ2 (see Fig. 3:

θ1 is closer to and θ2 is farther from the ego-noise sources).

When the target DOA is known, TFBSS does not show big

difference for the two DOAs, although it performs slightly better

for θ2. TFS performs significantly differently for θ1 and θ2,

with much better performance when the target DOA (θ2) is

far from the ego-noise source. TFBSS obviously outperforms

TFS for all input SNRs when the target sound comes from

θ1. For θ2, TFBSS performs slightly worse than TFS when the

input SNR < −20 dB, and much better for higher input SNRs.

When the DOA is unknown and has to be estimated from the

microphone signals, TFBSS2 does not show big difference for

the two DOAs. When the input SNR>−15 dB, the performance

of TFBSS2 improves significantly as the DOA can be better

estimated. TFS2 achieves similar (low) performance for θ1 and

θ2 when the input SNR < −15 dB, as the target DOA can not

be accurately estimated. However, when the target DOA can be

better estimated at higher input SNRs, TFS2 performs much

better for θ2 than for θ1. TFBSS2 significantly outperforms

TFS2 for both target DOAs. In summary, TFBSS is more robust

thanTFS to the variation of the target DOA, and also more robust

to DOA estimation errors.

H. Evaluation on the DREGON Dataset

The original TFS algorithm considers sound sources in 2D

space (i.e. azimuth θ only). We extend it to 3D by including

an addition parameter, elevation ψ. For instance, the local GCC

function (3) can be adapted as

γTF(k, l, θ, ψ)

= R

⎧

⎪

⎪

⎨

⎪
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(31)

We consider two scenarios for the DREGON dataset, namely

a hovering drone and a flying drone. While the proposed method

assumes the target sound source to be static relative to the micro-

phone array, it would be interesting to measure its performance

when the array is moving.

1) Hovering Drone: We generate testing data with sep-

arately recorded speech and ego-noise. The ego-noise is

recorded when the drone is hovering stably (the 18-

30th seconds in ‘DREGON_hovering_nosource_room2’). The

speech is recorded when the drone is fixed on a tri-

pod and muted. The speech comes from the azimuth

75◦, elevation −30◦ and distance 2.4 meters (‘75_-30_2.4’

in ‘DREGON_clean_recordings_speech’). The length of the

speech and the ego-noise are both 12 seconds. The speech and

noise are added at a varying input SNR from −25 to −5 dB with

a step of 5 dB. We compare the speech enhancement of TFS,

TFBSS, and BSSnp with a block size varying from 2 seconds

to 6 seconds. We compute the speech enhancement performance

at individual blocks, and then compute the average SNR, SCD

and STOI across all blocks.

Fig. 16 depicts the average SNR improvement, SCD and STOI

achieved by the considered algorithms for various input SNRs

and block sizes. All three algorithms can improve the SNR and

STOI of the input signal in all testing scenarios. For the SNRimp

measure, the performance of BSSnp and TFBSS improves with

the input SNR while the performance of TFS decreases with

the input SNR. The performance of BSSnp and TFS does

not vary much with the block size while the performance of

TFBSS improves with the increasing block size. For block size

2 seconds,TFS achieves higher SNRimp thanBSSnp andTFBSS

in most SNR scenarios, except at high input SNR −5 dB. For

block size 4 and 6 seconds, BSSnp and TFBSS achieve higher
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Fig. 16. Performance for a hovering-drone recording from the DREGON
dataset: variation of the mean SNR improvement, mean SCD and mean STOI
with respect to the input SNRs by the three spatial filtering algorithms for various
block sizes. TFBSS tends to perform worse than TFS for small block sizes, but
outperforms the latter for larger block sizes. The performance of TFBSS tends
to improve when increasing the block size and input SNR.

SNRimp than TFS in most SNR scenarios, except at low input

SNR −25 dB. TFBSS performs similarly as BSSnp when the

input SNR > −15 dB. For the SCD measure, BSSnp achieves

the lowest distortion, followed by TFBSS and TFS. The SCD of

TFS does not vary much with the input SNR and the block size.

The SCDs of TFBSS and BSSnp do not vary much with the

block size, but decrease with the increasing input SNR. For the

STOI measure, the performance of all the algorithms improves

with the input SNR. The STOI of BSSnp and TFS does not

vary much with the block size, while the STOI of TFS tends to

increase with the block size. BSSnp achieves the highest STOI

among all the algorithms in all testing scenarios. For block size 4

and 6 seconds, TFBSS outperforms TFS in most SNR scenarios

except at input SNR −25 dB. For block size 2 seconds, TFBSS

outperforms TFS when the input SNR >−15 dB, but performs

worse at lower input SNRs.

2) Flying Drone: We consider speech and ego-noise

recorded simultaneously when the drone is flying (‘Free Flight

Speech Source at High Volume (Room 1)’). The average input

SNR is about -12.8 dB. We applied the proposed method (Post)

to the testing signal, employing a blockwise processing strategy

with non-overlapped blocks of 4 seconds. Interestingly, even

if it was not designed for this scenario, the proposed method

still works when the drone is moving slowly. Fig. 17 shows a

processing result for a 10-second segment (second 16 to 26 in

the original recording). The trajectory shows that the azimuth,

elevation and distance of the target sound source are varying

relatively to the drone. The noisy microphone input is dominated

by the ego-noise, making it very difficult to identify the speech

component from the spectrogram. However, after processing,

the speech component can be observed from the spectrogram of

the output (with some distortions). Due to the lack of clean sound

Fig. 17. Processing results by Post on a flying-drone recording from the
DREGON dataset. The human sound is not visible in the input spectrograms but
can be identified in the output spectrograms.

at the microphones, objective measures cannot be computed. A

demo corresponding to Fig. 17 is available online3 and confirms

the enhanced output signals.

V. CONCLUSION

We presented a microphone-array framework that effectively

combines time-frequency spatial filtering (TFS) and blind source

separation (BSS) for ego-noise reduction on a drone. The

proposed method integrates the advantage of TFS and BSS,

while tackling their drawbacks: we use the TFS output as a

reference to better solve the permutation ambiguity problem

in the subsequent BSS stage, thus enabling the selection of

the target sound channel naturally from multiple outputs. We

conducted extensive experiments that show that the proposed

method achieves better speech enhancement performance and

higher robustness to DOA estimation errors than the state of the

art, and also allows processing long signals continuously in a

blockwise manner.

As future work we will port the code on an embedded platform

to comprehensively investigate the performance of the proposed

method when the drone flies in a multi-source environment.
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