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Abstract—As an effective method for copyright protection of
digital products against illegal usage, watermarking in wavelet
domain has recently received considerable attention due to the
desirable multiresolution property of wavelet transform. In gen-
eral, images can be represented with different resolutions by the
wavelet decomposition, analogous to the human visual system
(HVS). Usually, human eyes are insensitive to image singularities
revealed by different high frequency subbands of wavelet decom-
posed images. Hence, adding watermarks into these singularities
will improve the imperceptibility that is a desired property of
a watermarking scheme. That is, the capability for revealing
singularities of images plays a key role in designing wavelet-based
watermarking algorithms. Unfortunately, the existing wavelets
have a limited ability in revealing singularities in different di-
rections. This motivates us to construct new wavelet filter banks
that can reveal singularities in all directions. In this paper, we
utilize special symmetric matrices to construct the new nontensor
product wavelet filter banks, which can capture the singularities
in all directions. Empirical studies will show their advantages of
revealing singularities in comparison with the existing wavelets.
Based upon these new wavelet filter banks, we, therefore, propose
a modified significant difference watermarking algorithm. Exper-
imental results show its promising results.

Index Terms—Nontensor product wavelet filter, singularities,
watermarking.

I. INTRODUCTION

W
ITH the rapid development of Internet and multimedia

technology, how to protect the copyright of products

from the illegal usage has been becoming a crucial issue. In gen-

eral, digital watermarking plays an important role in copyright

protection. In the literature, one major kind of watermarking is

to embed a watermark imperceptibly into a host image. Since

digital products may suffer from a variety of distortions, e.g.,
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JPEG compression, additive noise, cropping, and so on, wa-

termarking algorithms should be robust against these distor-

tions. The robustness means that watermark should be well pre-

served even if the host image is distorted. Researchers have

made the great efforts in developing robust watermarking al-

gorithms [1]–[5]. Basically, the watermark can be embedded in

either the spatial domain, or the transform domain. The former

embeds a watermark into the host image by directly modifying

the pixel value of the host image [6], [7]. In contrast, the latter

firstly performs the domain transformation and then embeds a

watermarking by modifying the coefficients in transform do-

main. In general, watermarking in transform domain is more

robust than the one in spatial domain. In the past decade, a lot

of watermarking algorithms have been developed in transform

domain, e.g., discrete cosine transform (DCT) [8].

Besides the DCT, an increasing number of watermarking al-

gorithms [9]–[24] in wavelet domain have been proposed in the

literature. For example, Kundur et al. [9] employs multiresolu-

tion fusion techniques and incorporates a model of the human

visual system (HVS) for watermark embedding. It is well known

that a watermarking algorithm should largely exploit the nature

of HVS. That is, the way that wavelet transform gives a mul-

tiresolution representation of images should resemble the pro-

cedure of image processing by the human eyes. Nevertheless,

the watermarking in [9] is a nonblind watermarking scheme, in

which the original image is needed in the watermark extraction

phase. In [10], wavelet coefficients of all subbands in the same

level are modified according to their relative values. Barni et

al. [11] utilized the pixel-wise masking in watermark embed-

ding. This method well exploits the similarity between wavelet

transform and HVS. Furthermore, as the high frequency sub-

bands of wavelet decomposed images reflect image singularities

(e.g., edges and textures), in which a small change is hardly per-

ceptible by human being. Hence, the significant coefficients in

high frequency subbands are quite suitable for watermark em-

bedding [13]. For instance, Xia et al. [12] added the pseudo-

random codes to the large coefficients at high and middle fre-

quency subbands of wavelet decomposed image. Dugad et al.

[13] embedded the watermarks in wavelet coefficients above a

given threshold . Then, another threshold is

utilized for watermark detection. Along this line, it is evidently

that the wavelet transform should reveal more singularities so

that watermarking in singularities can make a good tradeoff

between the two desirable properties of watermarking: robust-

ness and imperceptibility, as stated before. Hence, it is conjec-

tured that the capability of revealing singularities for wavelet

determines the performance of the corresponding wavelet-based

watermarking.

1057-7149/$26.00 © 2010 IEEE
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More recently, some sophisticated wavelet domain water-

marking schemes have been proposed. For instance, Wang et

al. [19] proposed a watermarking algorithm in wavelet do-

main by adopting different threshold values in different DWT

subimages [i.e., multithreshold wavelet coder (MTWC)]. Since

this approach is compatible with the evolution of the distortion

distribution in each subimage as image data are compressed in

the embedded coding process, its error rate is relatively low.

Nevertheless, this method is not desirable because it is nonblind

watermarking [19]. In [16]–[18], and [20], watermarks are

embedded according to the wavelet tree structure. Specifically,

Hsieh et al. [17] embedded watermark based upon the qualified

significant wavelet tree (QSWT), in which watermark was

embedded in Level 2 and Level 3 high-frequency subimages.

Wang and Lin [20] have made use of the wavelet trees in such

a way that they selectively discarded the least significant bits

(LSB) of wavelet trees. In this method, an original image is

decomposed into the three levels and then each two so-called

super trees are utilized to embedded one watermark bit. By

comparing values of LSB bits of each super tree group, wa-

termark can be extracted. Nevertheless, the inconsistence of

error accumulation between encoder and decoder may aggra-

vate the watermark distinction [18]. Furthermore, [16] has

applied the idea of DEW [25], a methodology derived from

DCT domain watermarking, to design robust watermarking

algorithm in wavelet domain, in which watermark is embedded

by differentiating the energy of cross blinding wavelet trees

(CBWT). Compared with [20], CBWT has the smaller energy

rate which is more suitable for differentiation (i.e., suitable to

create energy differences). By setting a threshold to ensure

the fidelity of watermarked image, paper [16] has achieved a

good tradeoff between the fidelity and robustness. However,

a large number of wavelet coefficients are not suitable for

watermark embedding [16], thus, the corresponding capacity is

very limited. Lin et al. [21] have developed a wavelet domain

watermarking scheme by embedding watermarks blockwise, in

which every seven nonoverlapped wavelet coefficients of host

image are grouped into a block by analyzing the distribution

of wavelet coefficients with the consideration of watermarking

capacity. Then, the difference of the two largest wavelet coef-

ficients (i.e., significant coefficients) in each group is modified

according to the watermark bit to be embedded. In the ex-

tracting phase, the extracting threshold is adaptively selected

based upon the distribution of all significant differences of

a watermarked image. Experimental results show that this

algorithm is quite robust against the distortions. Evidently, the

performance of this scheme is closely related to the significant

difference. Unfortunately, significant difference in this scheme

is not so desirable because of traditional wavelet’s limitations

on revealing singularities. Subsequently, it makes the scheme

vulnerable to the attacks like noising.

Those algorithms stated previously [9]–[24] are carried out

in the domain of tensor wavelet. In general, 2-D tensor wavelet

filter banks are simply the tensor product of 1-D wavelet filter

banks [26]. Although 1-D wavelet filter banks are proved to be

compact supported, its tensor product can reveal the singular-

ities in the three directions (i.e., horizontal, vertical, and diag-

onal) only [27]. In fact, a natural image contains the singulari-

ties in all directions. Tensor wavelets are unable to reveal them.

Consequently, tensor wavelet filter banks cannot meet the wa-

termarking requirements as follows [28], [29].

• Significant coefficients: considering the capacity of a

watermarking scheme, the number of wavelet coefficients

with large absolute values (i.e., significant coefficients) is

of great importance [12], [13], [30].

• Invariances toward attacks: as watermarked images may

encounter different kinds of distortions, the invariant

property of wavelet transform, e.g., rotation invariance

and scaling invariance, are quite meaningful [31].

• Abilities in revealing singularities: imperceptivity is an im-

portant requirement of a watermarking scheme. Consid-

ering the characteristics of HVS, singulary areas like edges

and textural areas are suitable for watermark embedding.

Thus, wavelet filter banks capable of capturing singulari-

ties are always desirable [32].

Further, according to [28], tensor wavelets suffer from the

four shortcomings: 1) oscillations, 2) shift variance, 3) aliasing,

and 4) lack of directionality.

In contrast, following the seminal work of Jelena Kovačević,

nontensor product wavelets featuring revealing the singularities

in all directions have been received much attention in the lit-

erature. In general, the high-frequency subbands of nontensor

product wavelet transform can reveal more features than that of

commonly used tensor wavelet one. Actually, the discrete non-

tensor product wavelet transform (DNWT) [33] has been used

widely in the past decade. Nevertheless, the nontensor product

wavelets within the framework of DNWT are problem-oriented.

In this paper, we construct the new nontensor product wavelets

for watermarking with linear phase that is constructed from

the special symmetric matrices. This method provides a gen-

eral way to construct wavelets. Actually, the proposed nontensor

product wavelet filter banks are a general method for image

processing and representation. It can be applied to image re-

trieval [34], [35], face recognition [36], [37], image quality as-

sessment [38], and object categorization [39]. Tensor wavelets

could be regarded as a special case of it by taking some spe-

cific parameters (see Section II-C for an example). With these

new wavelets, more singularities can be utilized to embed wa-

termark than that of discrete tensor wavelet transform (DWT).

Moreover, the imperceptibility and robustness requirements of

watermarking are fulfilled and optimized. Based upon the newly

constructed nontensor product wavelet banks, we propose a wa-

termarking scheme based upon significant differences in DNWT

(SD-DNWT). In our previous work [40], we have partially ex-

ploited the new wavelet filter banks. However, [40] is a nonblind

watermarking, in which the original image is need for water-

marking extraction. In contrast, the proposed SD-DNWT wa-

termarking is a blind watermarking. Experiments have shown

that the performance of SD-DNWT watermarking outperforms

the existing ones in tensor wavelet domain.

The rest of this paper is organized as follows. In Section II,

the construction of new nontensor product wavelet filter banks

is presented. Also, some examples and experimental results are

shown. The detailed watermarking scheme is given in Section III.

InSection IV, experiments are conducted to compareSD-DNWT

with theexistingones.Finally,wedrawaconclusion inSectionV.



YOU et al.: A BLIND WATERMARKING SCHEME USING NEW NONTENSOR PRODUCT WAVELET FILTER BANKS 3273

II. CONSTRUCTION OF NONTENSOR WAVELET FILTER BANKS

A. Wavelet Construction Survey

The signal can be recovered from these subsampled signals

by cancelling the aliasing terms with a particular class of fil-

ters called conjugate mirror filters (CMF) [41]. Design of the

filter bank is still an active research topic in both signal and

image processing. The sufficient and necessary conditions for

decomposing a signal in subsampled components with a fil-

tering scheme, and recovering the same signal with an inverse

transform, were established in [42], [43].

Filter banks are closely associated with wavelets. The mul-

tiresolution theory shows that conjugate mirror filters and or-

thonormal wavelet basis of are intimately linked. In

fact, continuous-time wavelet basis can be obtained by the it-

erated filter banks, and filter banks can be considered as a dis-

crete wavelet transform. The equivalence between the contin-

uous time wavelet theory and discrete filter banks leads to a

new fruitful interface between digital signal processing and har-

monic analysis.

Multiresolution analysis (MRA) theory provides a natural

framework for understanding wavelets and filter banks. Ac-

cording to MRA, refinable functions (scaling functions) and

wavelets are completely determined by a low-pass filter and

high-pass filters, respectively. In subband code schemes, a

low-pass filter and high-pass filters are used, respectively,

as analysis filter and synthesis filters which form perfect re-

construction filter banks. Daubechies [44] designed univariate

two-channel perfect reconstruction filter banks having finite im-

pulse response (FIR) corresponding to a univariate orthonormal

wavelet having a compact support and vanishing moments. It

is well known that there does not exist an orthonormal sym-

metric wavelet with a compact support in the univariate dyadic

dilation case. That is, two-channel perfect reconstruction FIR

banks having a linear phase are not available in the univariate

case. Historically, this led to an intense interest in univariate

multichannel, high-dimensional and vector-valued filter banks

which correspond to M-band wavelets, multivariate wavelets

and multiwavelets, respectively.

This paper concentrates on the multivariate filter banks [43].

Indeed, the study of the 2-D case is crucial for digital image

processing. A commonly used method builds multivariate filter

banks by the tensor products of univariate filters. This construc-

tion of filter banks focuses excessively on the coordinate direc-

tion. Therefore, nontensor product approaches for construction

of multivariate filter banks or wavelets are desirable. Much in-

terest has been given to the study of nontensor product wavelets

in [33], [45], [46] as well as to multiwavelets and cor-

responding vector-valued filter banks [47], [48].

However, it is not easy to design multivariate filter banks.

At present, no general method is available for designing multi-

variate filter banks and vector-valued filter banks. There are two

fundamental difficulties that one encounters in the design of the

low-pass filters and high-pass filters which are used for the con-

struction of refinable functions and wavelets, respectively. The

first challenge lies in finding trigonometric polynomials that sat-

isfy the perfect reconstruction condition, and the second is met

when we extend a block unit vector of trigonometric polyno-

mials to a unitary matrix. Most of the current studies in mul-

tivariate wavelets are given to a dilation matrix with the deter-

minant two [33], [43]. In this case, only one high-pass filter is

needed to be constructed and the matrix extension is the same

as the univariate two-channel case [45].

Often, one seeks filter banks leading to smooth wavelets.

However, in the application of filter banks to watermarking,

experiments show that “smooth” filter banks are not suitable

because images are not always smooth. Here, we describe a

general construction of bivariate nontensor product wavelet

filter banks with linear phase by using special symmetric ma-

trices. The family of filter banks given in this paper is suitable

in this context although it is difficult to achieve smoothness.

These filter banks have a matrix factorization. It could reveal

more singularities of image. This makes it more suitable for

watermarking to optimize its performance in terms of imper-

ceptibility and robustness.

B. Construction of Nontensor Wavelet Filter Banks

In this subsection, we describe a general construction of non-

tensor bivariate wavelet filter banks with a linear phase.

To construct two channel filter banks suitable for revealing

image singularities at the whole orientations, we consider a spe-

cial kind of symmetric orthogonal matrix of order 4

(1)

where

and and both of order 2 2 are orthogonal matrices. It is

easily found that orthogonal matrices B has the following form:

(2)

with real numbers satisfying

The parametrization solutions of the previously shown equa-

tions for these real numbers are , ,

, , and , for any

real numbers and . Therefore, any of the previously shown

special symmetric orthogonal matrix has the more simple

parametrization representation, i.e.,

(3)

for some real number and .
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It can be written as

(4)

where , , , .

Letting , , we define a bivariate trigono-

metric polynomials as follows:

where , . Its polyphase

factors are the bivariate trigonometric polynomials defined

for 0, 1, 2, and 3 as

Reversing the process, we can construct the bivariate trigono-

metric polynomials from its polyphase factors , 0, 1,

2, and 3 by the formula

The construction of bivariate compactly supported or-

thonormal multiwavelets using multiresolution analysis (MRA)

is equivalent to the design of orthogonal FIR and QMF filter

banks, which leads to the following two problems:

1) find the low-pass filter satisfying the orthogonal

condition

2) find three high-pass filters such that the matrix

is unitary. Given the orthogonal filter banks , 0, 1, 2, 3

at hand, one can use Pyramid algorithm [49] to decompose and

reconstruct the signal (i.e., image). It will benefit us from the

point view of polyphase to understand the conditions in Problem

1) and 2).

a) Find a bivariate trigonometric polynomials such that

its polyphase factors , 0, 1, 2, 3, satisfy

(5)

where is a 1 4 matrix defined by

and is the identity matrix of order .

b) Find three bivariate trigonometric polynomials

such that the 4 4 matrix composed of their polyphase

factors given by

(6)

has the property that is a unitary matrix. Here,

for fixed , , with 0, 1, 2, 3 denotes the

polyphase factors of .

Both of Problems 1) and 2) [equivalently a) and b)] are non-

linear and, essentially, quadratic algebraic equations with mul-

tiple variables. There is no general solution for such a problem

presently. Now we will offer a class of solutions of Problem 1)

and 2) starting from special symmetric matrix.

Let

(7)

and denote the matrix of trigonometric polynomial by

with

(8)

For any fixed positive integer , we arbitrarily choose real

number pairs , (for ,

may equal to ). The low-pass filter is defined

as follows:

(9)

where is a special symmetric orthogonal matrix de-

fined in (4). It is easy to see that , which means that

is a low-pass filter. We will show that satisfies the condi-

tion (5) and has the uniform linear phase. Here we say has a

uniform linear phase if there exists two integers and such

that

(10)

Next, we will construct the three high-pass filters , 1, 2,

3 with respect to the previously shown low-pass filter

and show that they form perfect reconstructional filter banks.

Let

(11)
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with defined in (7). It is easy to find that , 1,

2, 3. That is, , 1, 2, 3 are the high-pass filters.

Theorem: The low-pass filter defined in (9) has a linear

phase and defined in (9) and (11) form the per-

fect reconstructional FIR orthogonal filter banks.

Proof: To prove satisfies the perfect

reconstructional conditions, it is sufficient to show that the

polyphase matrix generated from , 0, 1, 2, 3

satisfies

It follows from (9) and (11) that the polyphase matrix

is of the form

Since all the matrices , , and are

unitary and the matrix is orthogonal, we

conclude that the matrix is unitary as well.

Now we turn to prove has a uniform linear phase. By the

definition of , we have

By using the equations

and

where

We conclude that

from which it follows that:

Combining this equation with the facts

we conclude that

The proof of this theorem is completed.

These filter banks have a matrix factorization and can be used

in image. In signal processing, a linear phase is a central prop-

erty of filters. Under this condition, if an input signal has energy

confined to the pass-band of the filter, the out signal is approxi-

mately equal to the input. It is well known that, in the univariate

case, the only two channel CMF and FIR filter banks with a

linear phase are the Haar filters.

C. Examples of Nontensor Bivariate Wavelet Filter

Next we will give several concrete examples of filter banks

obtained by the proposed method.

Example 1: Let , , by (4), we can lead to the

important special symmetric orthogonal matrix

Further, setting , the previous matrix leads to the

following filter banks:

The filter banks can be represented in matrix form as follows:

(12)

(13)

In fact, these filters are tensors. They are tensor products of two

1-D filter and . In other

words, a tensor filter can be generated by taking some special ,
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. Thus, the tensor filter bank can be regarded as a special case

of the proposed nontensor filter banks.

Example 1 is a simple and special implementation of our

method. A more complicated and general example are shown

as follows.

Example 2: According to (9) and (11), the filter size grows

with (i.e., ). This means that

the filter banks could be constructed adaptively to the image size

by changing . Meanwhile, pairs of parameters ,

, could be selected to reveal singularities in var-

ious directions. Let , ( , ), ( ,

), respectively, from (4), (9), and (11). We will have

the nontensor filter banks shown in (14)–(17) at the bottom of

the page.

The size of nontensor product wavelet filter grows with pa-

rameter . The size of each filter is . Fig. 1

shows a nontensor product wavelet filter banks with , in

which the size of these filters is 26 26.

Thus far, we have presented a method for constructing non-

tensor wavelet filter banks.

D. Evaluation of Nontensor Filter Banks Based Upon

Experimental Realization

In this subsection, we will show the improvement of revealing

singularities achieved by nontensor product wavelet filter banks

in contract with tensor wavelets. For nontensor product wavelet

construction, parameters , and were set at 1, 0.78, and

1.05, respectively, by a rule of thumb. Meanwhile, wavelet

Fig. 1. Nontensor product wavelet filter bank with � � ��.

filter banks were selected as a representative of tensor wavelet

banks.

Firstly, we utilized the newly constructed wavelet filter banks

to decompose image “window”(see Fig. 2). It contains various

directional singularities which cannot be revealed by conven-

tional wavelet banks (see Fig. 4). The result is shown in Fig. 5.

It can be seen that much more singularities are revealed in the

three subimages.

(14)

(15)

(16)

(17)
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Fig. 2. Original image “window.”

Fig. 3. “db4” wavelet decomposed the image of “window:” The upper left
subimage is the approximation subimage. The upper right subimage reveals the
singularities in the horizontal direction. The left bottom subimage reveals the
singularities in the vertical direction. The right bottom subimage reveals the
singularities in the diagonal direction. Singularities orienting at the other direc-
tions are unable to be revealed by the tensor wavelet.

The comparisons of the number of significant coefficients

are shown from Fig. 6 to Fig. 9, where the vertical coordi-

nate means the natural logarithms of the number of coefficients.

It clearly shows that there are much more significant coeffi-

cients in nontensor product wavelet high frequency subbands

than both “haar” and “db4” wavelets. Significant coefficients

indicate the singularities of images. Larger number of signif-

icant coefficients means the higher ability in revealing image

singularities.

Then we utilized the standard image “fishing boat” (see

Fig. 10) for further analysis. Nontensor product wavelet trans-

form and tensor wavelet transform were applied to “boat,”

respectively (see Fig. 11). In the high-frequency subimages of

nontensor product wavelet decomposition, more features are

revealed than that of tensor wavelet decomposition.

To make this difference more intuitively, we binarized the

upper left high-frequency subimage of Fig. 11(a) and (b). Note

Fig. 4. “Haar” wavelet decomposed the image of “window:” The upper left
subimage is the approximation subimage. The upper right subimage reveals the
singularities in the horizontal direction. The left bottom subimage reveals the
singularities in the vertical direction. The right bottom subimage reveals the
singularities in the diagonal direction. Singularities orienting at the other direc-
tions are unable to be revealed by the tensor wavelet.

Fig. 5. Nontensor product wavelet decomposed the image of “window,” in
which much more singularities are revealed in subimages compared to Fig. 4.

that other subimages were also feasible. The positive coeffi-

cients were set at 1, while the negative coefficients were set at 0

(see Fig. 12). It could be observed clearly that singularities (e.g.,

edges) of the boat are apparent in Fig. 12(a), while its counter-

part in Fig. 12(b) is almost unnoticable.

For the purpose of comparing nontensor product wavelet’s

ability in revealing singularities in various directions with

tensor wavelet, we utilized the image “copper coins” (Fig. 13)

which contains several apparent directional components. From

Figs. 14 and 15, in the high-frequency subimages of nontensor

product wavelet, more singularities in various directions were

revealed. But in the subimages of tensor wavelet, only singu-

larities in a single direction were revealed in each subimage.

In order to quantitatively analyze the ability in revealing

singularities of nontensor product wavelet filter banks, we

applied the DNWT and DWT to 10 images obtained from [50].

All these images were of size 512 512. We computed the
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Fig. 6. Comparison of significant coefficients in all high frequency subbands.

Fig. 7. Comparison of significant coefficients in horizonal high frequency
subbands.

Fig. 8. Comparison of significant coefficients in vertical high frequency
subbands.

absolute values of the upper right high-frequency subimages of

the 10 images. There were in total

Fig. 9. Comparison of significant coefficients in diagonal high frequency
subbands.

Fig. 10. Original image: “boat.”

Fig. 11. Wavelet decomposition. (a) Subimages of DNWT. (b) Subimages of
DWT �����.

elements for ten subimages. We analyzed the cumulative dis-

tribution function (CDF) of these values (see Fig. 16). From

Fig. 16, 91.5% of “ ” wavelet coefficients were smaller than

15, while only 59% of nontensor product wavelet coefficients

were smaller than 15. On the other hand, there were almost no

coefficient greater than 60 in “ ” subimages, while more than
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Fig. 12. Binarized high frequent subimages. (a) Nontensor product wavelet
with � � ����, � � ����, and � � �. (b) Tensor wavelet ����	.

Fig. 13. Original image “copper coin.”

Fig. 14. Nontensor product wavelet subimages of “copper coin.”

5% of nontensor product wavelet coefficients were larger than

60. Due to the high capacity of nontensor product wavelet filter

banks in revealing singularities along the various directions,

there are more significant coefficients in nontensor product

wavelet high-frequency subimages. As significant coefficients

are desirable in watermark embedding, it is naturally necessary

to apply DNWT into watermarking algorithm design. Exper-

imental results show that our algorithm outperforms the ones

proposed in tensor wavelet domain.

Fig. 15. Tensor wavelet subimages of “copper coin.”

Fig. 16. CDF of “db4” and nontensor product wavelet coefficients based upon
ten commonly used images.

From the previously shown analysis, we can find some de-

sirable properties in watermarking. Compared to the traditional

tensor wavelets, nontensor product wavelet filter banks have the

properties suitable for watermarking:

1) larger number of significant coefficients (see Fig. 6, Fig. 7,

Fig. 8, Fig. 9, and Fig. 16);

2) higher ability in revealing image singularities in various

directions (see Fig. 11 and Fig. 12).

These properties, sometimes implicitly, meet the require-

ments arisen in Section I. It is imperative to make good use of

these desirable properties in watermarking scheme design.

III. WATERMARKING BASED UPON NONTENSOR PRODUCT

WAVELET FILTER BANKS

In this section, after analyzing [21] and property of nontensor

product wavelet filters banks, a modified significant difference

watermarking algorithm is developed.

Original image is decomposed using 3-level wavelet trans-

form. Every seven nonoverlap wavelet coefficients in subimage

are grouped into a block. In each block, the largest and
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second largest wavelet coefficients are called significant coef-

ficients and the difference between them is so called significant

difference. The average significant difference value is defined as

(18)

where , , and are the number of watermark bits, the

maximum wavelet and second maximum wavelet coefficient in

each block, respectively, and is the index of block.

The number of block is equal to the number of watermark bits.

In the th block, if the watermark bit , we quantize

with threshold as

if maximum

if maximum
(19)

Otherwise, if the watermark bit , is quantized as

(20)

By repeating these procedures, all watermark bits will be em-

bedded. Concerning the extracting phase, the adaptive threshold

is set at

(21)

where is the scale parameter that determines the number of the

significant differences which can be averaged. is the vector

which contains all the significant differences in an ascending

order.

Watermark extracting method is the inverse process of water-

mark embedding and rather straightforward. Watermark bits are

extracted according to

if

otherwise.
(22)

This algorithm well exploits significant coefficients in

wavelet domain. As we stated previously, significant coef-

ficients in the high frequency wavelet subbands reveal the

singularities which are suitable for watermark embedding.

However, its performance at the same time might be un-

dermined by inability in revealing singularities in various

directions of tensor wavelet coefficients. It is well known that

the existing wavelet subbands can only reveal singularities in

the three directions (i.e., horizonal, vertical, and diagonal).

Significant difference plays a key role of the algorithm. It

directly determines the watermarking strength. Large signifi-

cant difference can tolerate large coefficient modification, i.e.,

watermarking strength. As shown in Table I, significant differ-

ences in the nontensor product wavelet domain are obviously

larger than its counterpart in tensor wavelet domain.

Based upon the previous analysis, we propose a significant

difference watermarking scheme in nontensor product wavelet

domain. Different from [21], all the three high frequency

subbands are used to embed watermarks. This implies that we

can embed more watermark bits and simultaneously achieve

good imperceptibility and robustness. This is benefit from

nontensor product wavelet filter banks’ superior ability in

TABLE I
COMPARISONS OF SIGNIFICANT DIFFERENCES IN TENSOR WAVELET AND

NONTENSOR PRODUCT WAVELET DOMAIN, WHERE THE BLOCK SIZE IS 7

revealing image singularities along all direction rather than the

three directions only revealed by a traditional tensor product

wavelet. For example, paper [21] utilizes the horizonal high

frequency subband only. Since image singularities may

orient at various directions, only the horizonal high frequency

subband cannot optimally meet the imperceptibility require-

ment. It misses many useful singularities. In contrast, the use of

nontensor product wavelet filter banks can make the algorithm

more flexible. More subbands and more coefficients can be

used to embed watermarks.

The proposed algorithm can be summarized as follows.

Step 1) Preprocessing of Watermarks

The 2-D binary watermark

is reshaped into 1-D

vector . We then

encrypt and scramble it by a private key for

security and the relativity reduction of cropping.

Step 2) Nontensor Product Wavelet Decomposition

Apply 3 level nontensor product wavelet

decomposition to the original image using our

wavelet filter banks constructed in Section II. As

the size of filter banks grows with , parameter

should be selected according to the size of the

original image.

Step 3) Preprocessing of Blocks

Every seven nonoverlap wavelet coefficients in

the high frequency subbands are grouped into a

block. The blocks are randomly shuffled by another

private key .

Step 4) Computation of Average Significant Differences

Compute the average significant differences for all

blocks using (18).

Step 5) Watermark Embedding

Search and of each block. Compute

their difference (i.e., significant difference). If

the watermark bit to be embedded is 1, quantize

according to (19). Otherwise, quantize

according to (20) if the watermark bit to be

embedded is 0.

Step 6) Inverse Nontensor Product Wavelet Transform

Reshuffle all the blocks by . Apply inverse

nontensor product wavelet transform to the

modified coefficients. Then, the watermarked

image is obtained.

Figs. 17 and 18 show a general frame of the embedding

scheme and the way of coefficients modification, respectively.
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Fig. 17. Process of watermark embedding.

Fig. 18. Fashion of nontensor product wavelet coefficient modifying.

Watermark extracting is the inverse procedure of watermark

embedding. The steps of watermark extraction are listed as

follows:

Step 1) Apply 3 level nontensor product wavelet decompo-

sition to the watermarked image using our wavelet

filter banks constructed in Section II.

Step 2) Every seven nonoverlap coefficients in all high fre-

quency subimages are grouped into a block. These

blocks are shuffled according to the private key .

Step 3) Compute the extracting threshold according to

(21).

Step 4) In each block, the watermark is extracted according

to (22).

Step 5) These extracted watermark bits are reshuffled by pri-

vate key . Then, we obtain the watermark pattern.

IV. EXPERIMENTS AND EVALUATIONS

This section investigated on the performance of the proposed

algorithm. Several distortion including unintentional attacks

like JPEG compression, filtering and noising as well as the

intentional attacks like cropping, rotation were applied in the

watermarked images. The Stirmark benchmark [50] and Pho-

toImpact 13 software [51] were utilized to attack the images.

The parameters , and for constructing nontensor product

wavelet banks were 0.78, 1.05, and 1, respectively.

Fig. 19. Original image and original watermark pattern.

Fig. 20. Watermarked image with PSNR � �� db and extracted watermark
with NC � �.

From Fig. 19 and 20, we can see that there is no visible degra-

dation in the watermarked image PSNR db and the wa-

termark could be extracted with , where the normaliza-

tion correlation (NC), defined as

NC (23)

is used as a criterion for evaluating watermarking performance,

where is the original watermark, and is the

extracted watermark.

Regarding the JPEG compression attacks, we tested the per-

formances of the 10 standard images listed in Table I, where

the curve of the NC value versus JPEG Quality Factor (QF) is

shown in Fig. 22. NC values are the average normalized corre-

lation values of the 10 images. Fig. 21 shows the watermarked

image “boat” after JPEG compression and ex-

tracted watermark. From Fig. 22, we can see that the watermark

could be kept in a quite low JPEG Quality Factor.

As for the robustness against noising, the distorted water-

marked images with different variances were tested. To show

watermarking’s superiority in nontensor product wavelet do-

main against noising attacks, we also tested the watermarking
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Fig. 21. Watermarked image after JPEG compression �QF � ���� with
PSNR � ���� db and extracted watermark with NC � 	�
���.

Fig. 22. Curve of the extracted watermark NC value versus JPEG Quality
Factor

Fig. 23. Extracted watermark NC value versus noise variances curves.

algorithms in tensor wavelet domain. The NC values are the av-

erage value of the ten standard image as shown in Table I. The

results are shown in Fig. 23.

In addition, the cropping and rotation were also applied to the

watermarked images to test the proposed algorithm’s robust-

ness. For cropping, watermark should cover the entire image

from a cropped image, i.e., some parts of the image are cut away.

TABLE II
PERFORMANCE OF PROPOSED WATERMARKING

ALGORITHM AGAINST ATTACKS

TABLE III
PERFORMANCE COMPARISON BETWEEN OUR METHOD

(SD-DNWT) AND WANG’S [20]

Rotation means that the image rotates a certain degree. The re-

sults measured by are presented in Table II.

Wavelet tree quantization (WTQ) [20] is the state-of-art al-

gorithm which achieves prevailing results. To compare the ro-

bustness with it, some experiments were done. For fair compar-

ison, Lena is used in the experiments. The results are shown in

Table III.

V. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a new method for con-

structing nontensor product wavelet filter banks and applied

them into watermarking scheme design. The new nontensor

product wavelet filter banks are constructed according to

special symmetric matrix. They overcome the drawback of

tensor wavelet banks which can reveal the singularities in the

three directions only. Based upon the nontensor filter banks we

construct, empirical studies have been conducted to show the

capability of nontensor product wavelet filter banks in revealing

the singularities in various directions of image. Accordingly,

we have developed a modified significant difference water-

marking scheme, whose performance shows the superiority of

the nontensor product wavelet-based watermarking in terms of

robustness and imperceptibility. Further, the proposed wavelet

filter banks make the watermarking scheme more flexible

because more subbands and coefficients are suitable for water-

mark embedding.

In addition, a nontensor product wavelet domain water-

marking algorithm has been proposed. Experimental results

have shown that the proposed algorithm is robust against var-

ious attacks. Particularly, regarding Gaussian noising attack,

there is a significant improvement in comparison with the

tensor wavelets.

As the nontensor product wavelet constructed in this paper

can reveal more singularities than the conventional wavelets,

it can be applied in many other fields in computer vision and

pattern recognition, as well as the digital watermarking. This is
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a future direction of our research. In addition, the determination

of parameters of nontensor product wavelet is still unknown. We

will also work on this problem in the future.
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