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A BLOB METHOD FOR THE AGGREGATION EQUATION

KATY CRAIG AND ANDREA L. BERTOZZI

Abstract. Motivated by classical vortex blob methods for the Euler equa-
tions, we develop a numerical blob method for the aggregation equation. This

provides a counterpoint to existing literature on particle methods. By regu-
larizing the velocity field with a mollifier or “blob function”, the blob method

has a faster rate of convergence and allows a wider range of admissible kernels.
In fact, we prove arbitrarily high polynomial rates of convergence to classical
solutions, depending on the choice of mollifier. The blob method conserves
mass and the corresponding particle system is both energy decreasing for a
regularized free energy functional and preserves the Wasserstein gradient flow
structure. We consider numerical examples that validate our predicted rate of
convergence and illustrate qualitative properties of the method.

1. Introduction

The aggregation equation describes the evolution of a nonnegative density ρ
according a velocity field which is obtained by convolving the density with the
gradient of a kernel K : Rd → R,

{

ρt +∇ · (~vρ) = 0 , ~v = −∇K ∗ ρ ,
ρ(x, 0) = ρ0(x) .

(1.1)

The dynamics governed by this equation arise in a range of problems, including
biological swarming [54,55,65,66], robotic swarming [26,58], molecular self-assembly
[29,61,67], and the evolution of vortex densities in superconductors [2,30,49,53,59,
68]. For swarming and molecular self-assembly, common choices of kernel include
the repulsive-attractive Morse potential and power law potential,

K(x) = Cre
−|x|/lr − Cac

−|x|/la , K(x) = |x|a/a− |x|b/b , a > b .(1.2)

To model the evolution of vortex densities in superconductors, K is chosen to be
the two dimensional Newtonian potential,

K(x) =
1

2π
log |x| .(1.3)

In addition to utility in a range of applications, the aggregation equation pos-
sesses several features of current mathematical interest. It is non-local—the motion
of the density at any point depends on the value of the density at every point—
and when K is symmetric it is formally a gradient flow in the Wasserstein metric.
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2 KATY CRAIG AND ANDREA L. BERTOZZI

When K has low regularity at the origin, solutions may blow up in finite time or
form rich patterns as they approach a steady state. In recent years, there has been
substantial interest in these structures from both analytic and numerical perspec-
tives [4–6,10–14,21,23,28,33–36,43–45,48,59,60,64,65]. For example, Kolokolnikov,
Sun, Uminsky, and Bertozzi studied steady states for repulsive-attractive power law
kernels using linear stability analysis, complemented with numerical examples com-
puted by a particle method [48]. Particle methods have also been used in purely
analytic work, due to the close relationship between particle approximations and
weak measure solutions from the perspective of Wasserstein gradient flow [18,20,21].

In spite of the significant activity investigating qualitative properties of solutions,
much of it presented alongside numerical examples, analysis of numerical methods
has begun only recently. Carrillo, Choi, and Hauray proved that a particle method
converges to a weak measure solution when the kernel has power law growth |x|a,
2−d < a ≤ 2 [24]. Carrillo, Chertock, and Huang developed a finite volume method
for a wide class of nonlinear, nonlocal equations, including the aggregation equation,
and proved the existence of a related discrete free energy which is dissipated along
the scheme [22]. Most recently, James and Vauchelet developed a finite difference
method for a generalization of the one dimensional aggregation equation and proved
its convergence to weak measure solutions [46].

In this paper, we develop a new numerical method for the multidimensional
aggregation equation for a wide range of kernels, including the Newtonian potential,
repulsive-attractive Morse potentials, and repulsive-attractive power law potentials.
In Section 2.1, we define the numerical method, which is a particle method in which
the kernel is regularized by convolution with a smooth, rapidly decreasing mollifier
or blob function. In Section 2.2, we show that the numerical solutions conserve
mass and the corresponding particle system is energy decreasing for a regularized
free energy functional and preserves the formal Wasserstein gradient flow structure.
In Section 3, we prove that our numerical solutions converge to classical solutions
of the aggregation equation. In Section 4, we provide numerical examples which
validate our theoretically predicted rate of convergence and illustrate qualitative
properties of the method. In Section 5, we describe directions for future work.

Our numerical method is inspired by classical vortex blob methods for the vor-
ticity formulation of the Euler equations, which is structurally similar to the ag-
gregation equation, particularly when the kernel is the Newtonian potential, K =
(−∆)−1 [3,8,9,25,27,40,41]. This equation describes the evolution of the vorticity
ω according to a velocity field obtained by convolving the vorticity with the two or
three dimensional Biot-Savart kernel Kd,

{

ωt + ~v · ∇ω = (∇~v)ω , ~v = ~Kd ∗ ω ,

ω(x, 0) = ω0(x) .
(1.4)

The velocity field for (1.4) may be rewritten as v = ∇⊥∆−1ω, and when K =
(−∆)−1, the velocity field for the aggregation equation is v = ∇∆−1ρ. Due to
these similarities, there has also been interest in behavior of equations for which
the velocity field is a combination of ∇⊥∆−1ρ and ∇∆−1ρ [30, 63].

While the main features of our method are analogous to vortex blob methods
for the Euler equations, there are a few key differences. First of all, we consider the
equation in dimensions d ≥ 1, and we allow both singular and non-singular kernels.
Also, in spite of the structural similarity between the aggregation equation and the
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Euler equations, an important difference from the perspective of particle methods
is that the velocity field in the aggregation equation is not divergence free, but is
instead a gradient flow. Adapting blob methods to the compressible case is rela-
tively new, building on Eldredge’s results for compressible fluids in the engineering
literature [32] and Duan and Liu’s results for the b-equation [31]. For our purposes,
conservation of mass proves to be a sufficient substitute for incompressibility.

The Lagrangian nature of our method offers three main benefits over a finite
difference or finite element method. First, it allows us to avoid the main form
of numerical diffusion. Second, it only requires computational elements in regions
where the density is nonzero. Third, it ensures that the method is inherently adap-
tive, concentrating computational elements in areas where particles accumulate and
thereby increasing resolution near singularities. Our method has further benefits
over a particle method since, instead of removing a singularity of the kernel at zero
by redefining ∇K(0) = 0, we regularize the kernel by convolution with a mollifier.
Because of this, we are able to obtain arbitrarily high orders of convergence O(hmq),
depending on m ≥ 4, 1

2 < q < 1, which describe the structure of the mollifier. On

the other hand, particle methods for the Euler equations only attain O(h2−ǫ) rate
of convergence [39, 42], and our numerical simulations indicate that the same rate
of convergence holds for the aggregation equation as well.

Though we are the first to prove quantitative rates of convergence a numeri-
cal method for the aggregation equation and we are the first to implement a blob
method numerically, we are not the first to consider regularized methods for aggre-
gation and aggregation-like equations. Lin and Zhang [49] used blob methods to
prove the existence of weak solutions to the two dimensional aggregation equation
when the kernel is the Newtonian potential. Bhat and Fetecau [15–17] and Norgard
and Mohseni [56,57] studied a similar regularization for Burger’s equation, which is
related to the aggregation equation when K is the Newtonian potential [12, Section
4]. Bhat and Fetecau compute several exact solutions to the regularized problem
and observe similar phenomena near blowup time to our simulations [17].

2. Blob Method

We begin by recalling some basic properties of the aggregation equation. It is a
continuity equation, describing the evolution of a density ρ according to a velocity
field ~v so that the mass of ρ is conserved. Conservation of mass is the key property
which allows us to adapt vortex blob methods from the classical fluids case, playing
the same role that incompressibility plays for the Euler equations.

Let Xt(α) be the particle trajectory map induced by the velocity ~v = −∇K ∗ ρ,
d

dt
Xt(α) = −∇K ∗ ρ(Xt(α), t) , X0(α) = α .

Rewriting the aggregation equation in terms of the material derivative gives

Dρ

Dt
= −(∇ · ~v)ρ .

Thus, ρ evolves along particle trajectories according to
{

d
dtρ(X

t(α), t) = (∆K ∗ ρ(Xt(α), t)) ρ(Xt(α), t) ,

ρ(X0(α), 0) = ρ0(α) .
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If J(α, t) = det(∇αX
t(α)) is the Jacobian determinant of the particle trajectories,

conservation of mass implies

ρ(Xt(α), t)|J t(α)| = ρ(α, 0) .

This allows us to formally rewrite the velocity field and the divergence of the velocity
field in terms of integration in the Lagrangian coordinates,

v(x, t) = −∇K ∗ ρ(x, t) = −
∫

Rd

∇K(x−Xt(α))ρ0(α)dα ,(2.1)

∇ · v(x, t) = −∆K ∗ ρ(x, t) = −
∫

Rd

∆K(x−Xt(α))ρ0(α)dα .

2.1. Definition of blob method. Let hZd be a d-dimensional integer grid with
spacing h. Suppose that for t ∈ [0, T ], the density ρ(x, t) is compactly supported.
Our blob method provides a way to compute approximate particle trajectories
starting at the grid points ih ∈ hZd and then compute the approximate density
and velocity along these particle trajectories. We write Xi(t) for X(ih, t), and in
general we use a subscript i to denote a quantity transported along the particle
trajectory beginning at ih, e.g. vi(t) for v(Xi(t), t) and ∇ · vi(t) for ∇ · v(Xi(t), t).

The approximate particle trajectories, densities, and velocities are prescribed by
a finite system of ordinary differential equations. Solutions of this system may be
computed numerically by a variety of methods to a high degree of accuracy, so that
the dominant error of the blob method comes from the reduction of the original
aggregation equation to the system of ODEs. This reduction has two steps. First,
to avoid a possible singularity of ∇K, we regularize ∇K by convolution with a
smooth, radial, rapidly decreasing mollifier or “blob function” ψ. For δ > 0, we
write ψδ(x) = δ−dψ(x/δ) andKδ = K∗ψδ. Second, we use a particle approximation
for the initial density. Specifically, we place a Dirac mass of weight ρ0jh

d at each

point of the grid hZd,

ρparticle0 (α) =
∑

j

δ(α− jh)ρ0jh
d .

Combining this regularization and discretization with the integral form for the
velocity (2.1) leads to the following approximate velocity.

Definition 2.1 (approximate velocity along exact particle trajectories).

vh(x, t) = −
∫

Rd

∇Kδ(x−Xt(α))ρparticle0 (α)dα = −
∑

j

∇Kδ(x−Xj(t))ρ0jh
d .

We now turn to the definition of the blob method. Following the fluids literature,
we use tildes to distinguish approximate quantities from their exact counterparts.

Definition 2.2 (blob method).

Approximate particle trajectories:

{

d
dtX̃i(t) = −∑

j ∇Kδ(X̃i(t)− X̃j(t))ρ0jh
d

X̃i(0) = ih

Approximate velocity field: ṽi(t) = −∑

j ∇Kδ(X̃i(t)− X̃j(t))ρ0jh
d

Approximate divergence of velocity field: ∇·ṽi(t) = −∑

j ∆Kδ(X̃i(t)−X̃j(t))ρ0jh
d

Approximate density:

{

d
dt ρ̃i(t) = −∇ · ṽi(t)ρ̃i(t)
ρ̃i(0) = ρ0i
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Due to the regularization of the kernel, ∇Kδ and ∆Kδ are locally Lipschitz.
Thus, for any δ > 0, there exists a unique solution to this system of ODEs on some
time interval [0, T0]. It is part of our result that this time interval [0, T0] must be
at least as large as the interval of existence for the corresponding classical solution
to the aggregation equation.

When K is the Newtonian potential (∆)−1, there is a simple heuristic interpre-
tation of the blob method: it approximates the density by a sum of blobs that
follow particle trajectories. This follows by taking the divergence of the velocity, so
ρ = ∆K ∗ ρ = −∇ ·~v. Using this relationship we define an alternative approximate
density

ρ̃(x, t) =
∑

j

∆Kδ(x− X̃j(t))ρ0jh
d =

∑

j

ψδ(x− X̃j(t))ρ0jh
d .

This is the analogue of two dimensional vortex blob methods for the Euler equations.
However, as the purpose of this paper is to devise a numerical method for a variety
of kernels, we will focus on the more general method of computing the approximate
density from Definition 2.2.

2.2. Conserved Quantities. For computational purposes, we only calculate the
blob method along particle trajectories originating at grid points hZd. Still, a simple
extension of the method allows one to compute approximate particle trajectories,
velocity, and density starting from anywhere in Euclidean space.

Definition 2.3 (blob method: off the grid).

Approximate particle trajectories:

{

d
dtX̃(α, t) = −

∑

j ∇Kδ(X̃(α, t)− X̃j(t))ρ0jh
d

X̃(α, 0) = α

Approximate velocity field: ṽ(x, t) = −∑

j ∇Kδ(x− X̃j(t))ρ0jh
d

Approximate density:

{

d
dt ρ̃(X̃(α, t), t) = −∇ · ṽ(X̃(α, t), t)ρ̃(X̃(α, t), t)

ρ̃(X̃(α, 0), 0) = ρ0(α)

From this perspective, the blob method preserves the continuity equation struc-
ture of the aggregation equation and consequently conservation of mass,

D

Dt
ρ̃ = −(∇ · ṽ)ρ̃ =⇒ d

dt

∫

X̃(Ω,t)

ρdx = 0 .(2.2)

For the remainder of the section, we suppose K and Kδ are even. In this context,
the particle system corresponding to the blob method

ρ̂(x, t) =
∑

j

δ(x− X̃j(t))ρ0jh
d(2.3)

preserves the aggregation equation’s Wasserstein gradient flow structure and is en-
ergy decreasing for a regularized free energy functional. Recall that the aggregation
equation is formally the gradient flow of the interaction energy,

E(ρ) =
1

2

∫

Rd×Rd

ρ(x)K(x− y)ρ(y)dxdy .

To see this, recall that theWasserstein gradient is defined by∇WE(ρ) = −∇ · (ρ∇∂E
∂ρ ),

where ∂E
∂ρ is the functional derivative of E at ρ. Applying this to E, we recover the

aggregation equation as the gradient flow,

ρt = −∇WE(ρ) = ∇ · (ρ(∇K ∗ ρ)) .
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This gradient flow structure may be made rigorous given sufficient convexity, reg-
ularity, and decay of the kernel [1, 20, 21].

In analogy with the aggregation equation, the particle system corresponding to
the blob method is formally the Wasserstein gradient flow of the regularized energy

Eδ(ρ) =
1

2

∫

Rd×Rd

ρ(x)Kδ(x− y)ρ(y)dxdy .(2.4)

In particular, the particle system (2.3) is a weak measure solution of d
dt ρ̂+∇ · (ṽρ̂) = 0,

where the velocity may be rewritten as

ṽ(x, t) = −
∑

j

∇Kδ(x− X̃j(t))ρ0jh
d = −∇Kδ ∗ ρ̂(x, t) = ∇∂Eδ

∂ρ̂
.

Though the gradient flow structure may be purely formal, the regularized energy
(2.4) always decreases along particle solutions corresponding to the blob method.
Rewriting the regularized energy in Lagrangian coordinates,

Eδ(ρ̂(t)) =
1

2

∫

Rd×Rd

ρ̂(α, 0)Kδ(X̃(α, t)− X̃(β, t)ρ̂(β, 0)dαdβ ,

=
1

2

∑

i,j

Kδ(X̃i(t)− X̃j(t))ρ0iρ0jh
dhd .

Differentiating with respect to time,

d

dt
Eδ(ρ̂(t)) =

1

2

∑

i,j

∇Kδ(X̃i(t)− X̃j(t)) ·
(

d

dt
X̃i(t)−

d

dt
X̃j(t)

)

ρ0iρ0jh
dhd .

The terms of the sum are the dot product between two d dimensional vectors. For
l = 1, . . . , d, define

M l = {M l
ij} =

{[

∇Kδ(X̃i(t)− X̃j(t))
]

l

}

, v = {vi} = {ρ0ihd} ,

where [·]l denotes the lth component of the vector, l = 1, . . . , d. By definition of the

particle trajectories, [ ddtX̃i(t)]l = [−M lv]i, and by the symmetry ofK,M l
ij = −M l

ji.
Letting ⋄ denote the element-wise product of vectors, we have

d

dt
Eδ(ρ̂(t)) =

d
∑

l=1

vtM l(−M lv ⋄ v) = −
d

∑

l=1

(M lv) · (M lv ⋄ v) = −
d

∑

l=1

∑

i

[M lv]2i ρ0ih
d .

Since ρ0i ≥ 0, the regularized energy Eδ decreases along the particle system asso-
ciated to the blob method.

Remark 2.4 (ρ̂ versus ρ̃). Blob methods for the Euler equations often only consider
approximate particle trajectories, setting aside the approximate density [3,8,9]. For
our purpose of numerically approximating classical solutions, we follow Beale [7] and
define the approximate density along particle trajectories as a function ρ̃ : hZd →
R (Definition 2.2). However, from the perspective of Wasserstein gradient flow,

given the approximate particle trajectories X̃, the natural choice of approximate
density would be the particle system ρ̂ (2.3). This is also likely the best choice
for approximating weak measure solutions to the aggregation equation, though we
leave the topic to future work. (See Lin and Zhang [49].)
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3. Lp Convergence of blob method to smooth solutions

We now prove the convergence of the blob method to classical solutions of the
aggregation equation. Our approach is strongly influenced by results on the con-
vergence of vortex blob methods for the Euler equations [3, 7–9], though our proof
has different features due to the gradient flow structure of our problem and the fact
that we allow a wider range of kernels.

Let D+
j denote the forward difference operator in the jth coordinate direction.

For 1 ≤ p < +∞, we consider the following discrete Lp and Sobolev norms of grid
functions u : hZd → R:

‖u‖Lp
h
=





∑

i∈Zd

|ui|phd




1/p

, ‖u‖W 1,p
h

=



‖u‖p
Lp

h
+

d
∑

j=1

‖D+
j u‖

p
Lp

h





1/p

.

Likewise, we define an L∞
h norm and inner product by

‖u‖L∞

h
= sup

i∈Zd

|ui| , (u, g)h =
∑

i∈Zd

uigih
d .

Given any function u(x) defined on all of Rd, we may consider it as a function
on hZd by defining ui = u(ih). Thus, we may also consider the size of any function
u(x) in the above discrete norms. We may also define the discrete Lp norm on a
subset Ω ⊆ R

d by ‖u‖Lp
h(Ω) = ‖1Ωu‖Lp

h
, where (1Ω)i = 1 if ih ∈ Ω and 0 otherwise.

We say that u ∈ Lp
h is supported in Ω if u = 1Ωu.

We define the dual Sobolev norm with duality pairing 〈·, ·〉 by

‖u‖W−1,p
h

= sup
g∈W 1,p′

h

|〈ui, gi〉|
‖gi‖W 1,p′

h

,

where 1/p+1/p′ = 1. We may consider any u ∈ Lp
h as a linear functional on W 1,p′

h

by the duality pairing 〈u, g〉 = (u, g)h.
The discrete Lp, Sobolev, and dual Sobolev norms are related by the following

inequalities. See appendix Section 6.1 for proofs and references.

Proposition 3.1. Suppose 1 ≤ q ≤ p ≤ +∞, 0 < h ≤ 1, and u ∈ Lp
h. Define

BR = {x ∈ R
d : |x| < R}.

(a) ‖u‖W−1,p
h

≤ ‖u‖Lp
h
.

(b) ‖u‖Lp
h
≤ (1 + 2d/h)‖u‖W−1,p

h
.

(c) For any Ω ⊆ BR, ‖u‖Lq
h(Ω) ≤ Cp,q,R‖u‖Lp

h(Ω).

(d) If u is supported in BR, ‖u‖W−1,q
h

≤ Cp,q,R‖u‖W−1,p
h

.

(e) Given l ∈ Z
d, let T l denote translation on the grid hZd in the direction l. Any

finite difference operator of the form

∇h
i =

1

h

∑

|l|≤l0

~al(h)T
l

with |~al(h)| ≤ C0 satisfies ‖∇h
i u‖W−1,p

h
≤ C‖u‖Lp

h
.

Measuring the convergence of the particle trajectories and velocity in discrete Lp

norms allows us to apply the classical theory of integral operators, both singular
and otherwise. We measure the convergence of the density in the discrete W−1,p

norm to reflect the fact that, in the most singular case, when K = (∆)−1, the
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velocity v = ∇K ∗ ρ has one more derivative than the density: −∇ · v = ρ. In
general, the velocity may have more regularity with respect to the density, but we
prefer to use the same norms for all kernels and reflect the improved regularity in
better convergence estimates.

We now turn to the assumptions we place on the kernel, mollifier, and exact
solution. These depend on a regularity parameter L ≥ max{d + 2, 4} and an
accuracy parameter m ≥ 4.

Assumption 3.2 (kernel). Suppose that K =
∑N

n=1Kn, where for each Kn, there
exists Sn ≥ 1− d so that

|∂β∇Kn(x)| ≤ C|x|Sn−|β|, ∀x ∈ R
d \ {0}, 0 ≤ |β| ≤ max{L, s+ d− 1} ,

for s = minn Sn and S = maxn Sn. If Sn = 1−d, we require Kn(x) to be a constant
multiple of the Newtonian potential.

The Newtonian potential, repulsive-attractive Morse potential, and repulsive-
attractive power law potential (1.2,1.3) all satisfy this assumption.

Assumption 3.3 (mollifier). ψ is radial,
∫

ψ = 1, and the following hold:

(1) Accuracy:
∫

xγψ(x)dx = 0 for 1 ≤ |γ| ≤ m− 1 and
∫

|x|m|ψ(x)|dx < +∞.

(2) Decay: ∃ ǫ > 0 such that |x|d+ǫ|ψ(x)| ≤ C.
(3) Regularity: ψ ∈ CL and |x|d+|β||∂βψ(x)| ≤ C for all |β| ≤ L.

If S > 0, ∃ ǫ > 0 such that |x|d+S+ǫ|∂βψ(x)| ≤ C for all |β| ≤ L.

If the above holds for L arbitrarily large, we say it holds for L = +∞. If s = 1− d,
we require L = +∞.

Remark 3.4 (accuracy of mollifier). The accuracy assumption on the mollifier en-
sures that for any multiindex γ with |γ| < m,

∫

(x− y)γψ(y)dy =
∑

ν≤γ

(

γ

ν

)

xγ−ν

∫

yνψ(y)dy = xγ
∫

ψ(y)dy = xγ .

Thus, convolution with the mollifier preserves polynomials of order less than m. In
particular, ifK(x) is a polynomial of order at mostm, ∇Kδ = ∇K and ∆Kδ = ∆K.

The following mollifier satisfies Assumption 3.3 with d = 1, m = 4, L = +∞:

ψ(x) =
4

3
√
π
e−|x|2 − 1

6
√
π
e−|x|2/4 .(3.1)

See Majda and Bertozzi for an algorithm which allows one to construct mollifiers
satisfying Assumption 3.3 for arbitrarily large m [51, Section 6.5].

Assumption 3.5 (exact solution). Suppose ∃ T > 0, r ≥ max{m− (s+ d− 2), L}
so that ρ ∈ C1([0, T ], Cr(Rd)) is a solution to the aggregation equation. Suppose
also that ∃ R0 > 1 so that the support of ρ(x, t) remains bounded in BR0−1 and,
for all α ∈ BR0+2, |Xt(α)| is bounded for t ∈ [0, T ]. If s = 1 − d, for all α ∈ R

d,
|Xt(α)| is bounded for t ∈ [0, T ].

If K is a repulsive-attractive power law kernel,

K(x) =
|x|a
a

− |x|b
b

2− d < b < a ,

and the initial data is smooth, compactly supported, and radially symmetric, there
exists an exact solution satisfying this assumption ∀ T > 0 [5, Theorems 7 and 8].
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The above assumptions guarantee the following regularity of the velocity field
and particle trajectories. We give the proofs of these lemmas in Section 6.2.

Lemma 3.6 (regularity of velocity field). The velocity field ~v = ∇K ∗ ρ and its
divergence ∇ · ~v = ∆K ∗ ρ belong to Cm(Rd) ∩ CL(Rd) and for any |β| ≤ m,

|∂β~v(x, t)| ≤ C(1 + |x|(S−|β|)+) , |∂β∇ · ~v(x, t)| ≤ C(1 + |x|(S−1−|β|)+) .

The constant depends on the kernel, exact solution, dimension, β, T , and R0.

Lemma 3.7 (regularity of particle trajectories). For α ∈ BR0+2, the particle
trajectories Xt(α) and their temporal inverses X−t(α) uniquely exist, are contin-
uously differentiable in time, and are CL in space. The Jacobian determinants
J t(α) = det∇αX

t(α) and their inverses J−t(α) are CL−1 in space and satisfy

|J t(α)|ρ(Xt(α), t) = ρ0(α) , ∀α ∈ BR0+2 .(3.2)

When s = 1− d, the above holds with BR0+2 replaced by R
d.

We now state our main theorem, quantifying the convergence of the blob method.

Theorem 3.8. Suppose that the kernel, mollifier, and exact solution satisfy As-
sumptions 3.2, 3.3, and 3.5 for m ≥ 4 and L ≥ max{d+ 2, 4}. Define

GL(δ) =











1 if L < s+ d ,

| log(δ)| if L = s+ d ,

δ−(L−s−d) if L > s+ d .

(3.3)

Suppose 1 ≤ p < +∞ and for some 1
2 < q < 1, 0 < hq < δ ≤ 1

2 . Then the quantities

(X̃, ṽ,∇ · ṽ, ρ̃) which comprise the blob method exist for all t ∈ [0, T ] and satisfy

‖X(t)− X̃(t)‖Lp
h(BR0

) ≤ C(δm +GL(δ)h
L) ,

‖v(t)− ṽ(t)‖Lp
h(BR0

) ≤ C(δm +GL+1(δ)h
L) ,

‖ρ(t)− ρ̃(t)‖W−1,p
h

≤ C(δm +GL+1(δ)h
L) ,

provided that for some ǫ > 0,

C(1 + 2d)(δm +GL+1(δ)h
L) < δ2h1+ǫ/2 .(3.4)

The constant depends on the exact solution, the kernel, the mollifier, the dimension,
T , R0, q, and p ∈ [1,+∞).

Remark 3.9 (polynomial kernels). By Remark 3.4, if K(x) is a polynomial of order
no more than m, ∇Kδ = ∇K and ∆Kδ = ∆K. Thus, the error due to regular-
izing the kernel is zero, and the error of the blob method consists entirely of the
discretization error. In this case, all error bounds in the theorem become ChL.

If L = +∞, the following corollary shows that the blob method provides arbi-
trarily high order rates of convergence, depending on the accuracy of the mollifier.

Corollary 3.10. Suppose that Assumptions 3.3, 3.2, and that 3.5 hold for m ≥ 4,
L = +∞, and 1

2 < q < 1. Then for 1 ≤ p < +∞ and δ = hq, there exists h0 such
that for all 0 < h ≤ h0,

‖X(t)− X̃(t)‖Lp
h(BR0

) ≤ Chmq , ‖ρ(t)− ρ̃(t)‖W−1,p
h

≤ Chmq .
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Proof. We first verify that condition (3.4) from Theorem 3.8 holds. Since 1
2 < q < 1

and m ≥ 4, there exists ǫ > 0 so that

1

2
+
ǫ

2
< q =⇒ 2q + 1 + ǫ < 4q =⇒ 2q + 1 + ǫ < mq .(3.5)

Likewise, since the mollifier satisfies Assumption 3.3 for all L and the kernel satisfies
Assumption 3.2 for s ≥ 1− d, we may choose L large enough so that L > s+ d and

L− q(L+ 1− s− d) = L(1− q) + q(s+ d− 1) > 2q + 1 + ǫ .(3.6)

Combining (3.5) with (3.6) shows that ∃ h0 so that, for all 0 < h ≤ h0, (3.4) holds.
Finally, choosing L large enough so that

L− q(L+ 1− s− d) = L(1− q) + q(s+ d− 1) > mq ,

we conclude that for all 0 < h < h0,

‖X(t)− X̃(t)‖Lp
h(BR0

) ≤ C(δm +GL(δ)h
L) ≤ Chmq

‖ρ(t)− ρ̃(t)‖W−1,p
h

≤ C(δm +GL+1(δ)h
L) ≤ Chmq.

�

The proof of Theorem 3.8 relies on the following propositions concerning the
consistency and stability of the blob method. All constants depend on the exact
solution, the kernel, the mollifier, the dimension, T , R0, q, and p ∈ (1,+∞).

Proposition 3.11 (consistency). For 0 ≤ t ≤ T and GL(δ) defined by (3.3),

‖v(t)− vh(t)‖L∞

h (BR0
) ≤ C(δm +GL(δ)h

L) ,

‖∇ · v(t)ρ(t)−∇ · vh(t)ρ(t)‖L∞

h
≤ C(δm +GL+1(δ)h

L) .

Proposition 3.12 (stability of velocity). For 0 ≤ t ≤ T , 1 < p < +∞,

if ‖X(t)−X̃(t)‖L∞

h (BR0
) ≤ δ, then ‖vh(t)− ṽ(t)‖Lp

h(BR0
) ≤ C‖X(t)−X̃(t)‖Lp

h(BR0
).

Proposition 3.13 (stability of divergence of velocity). For 0 ≤ t ≤ T , 1 < p < +∞,

if ‖X(t)− X̃(t)‖L∞

h (BR0
) ≤ δ2 and ‖ρ(t)− ρ̃(t)‖L∞

h
≤ δ2, then

‖∇·vh(t)ρ(t)−∇· ṽ(t)ρ̃(t)‖W−1,p
h

≤ C‖X(t)− X̃(t)‖Lp
h(BR0

)+C‖ρ(t)− ρ̃(t)‖W−1,p
h

.

We now show how Theorem 3.8 follows from these propositions.

Proof of Theorem 3.8. By Proposition 3.1, (c) and (d), it suffices to prove the result

for p sufficiently large. Let T0 > 0 be small enough so that the quantities (X̃, ṽ,∇ ·
ṽ, ρ̃) exist for t ∈ [0, T0]. Define the particle error ei(t) = Xi(t)− X̃i(t), the density
error fi(t) = ρi(t)− ρ̃i(t), and

T ∗ = min{T, T0, inf{t : ‖e(t)‖L∞

h (BR0
) ≥ δ2}, inf{t : ‖f(t)‖L∞

h (BR0
) ≥ δ2}} .(3.7)

To bound e(t) and f(t), we first bound their time derivatives and then apply
Gronwall’s inequality. Since the Lp

h(BR0
) norm of e(t) is a finite sum, we may pass

the time derivative under the norm to obtain

d

dt
‖e(t)‖Lp

h(BR0
) ≤

∥

∥

∥

∥

d

dt
e(t)

∥

∥

∥

∥

Lp
h(BR0

)

= ‖v(t)− ṽ(t)‖Lp
h(BR0

) .(3.8)
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By Proposition 3.1 (a) and the fact that bounded support of the density causes the
Lp
h norm below to be a finite sum,

lim
h→0

∥

∥

∥

∥

f(t+ h)− f(t)

h
− d

dt
f(t)

∥

∥

∥

∥

W−1,p
h

≤ lim
h→0

∥

∥

∥

∥

f(t+ h)− f(t)

h
− d

dt
f(t)

∥

∥

∥

∥

Lp
h

= 0 .

Thus, by the reverse triangle inequality

d

dt
‖f(t)‖W−1,p

h
= lim

h→0

‖f(t+ h)‖W−1,p
h

− ‖f(t)‖W−1,p
h

h
≤ lim

h→0

∥

∥

∥

∥

f(t+ h)− f(t)

h

∥

∥

∥

∥

W−1,p
h

=

∥

∥

∥

∥

d

dt
f(t)

∥

∥

∥

∥

W−1,p
h

= ‖∇ · v(t)ρ(t)−∇ · ṽ(t)ρ̃(t)‖W−1,p
h

.(3.9)

For 0 ≤ t ≤ T ∗, we combine the consistency estimates of Proposition 3.11 with
stability estimates of Propositions 3.12 and 3.13 to obtain for 0 ≤ t ≤ T ∗,

‖v(t)− ṽ(t)‖Lp
h(BR0

) ≤ C1(‖e‖Lp
h(BR0

) + δm +GL(δ)h
L) ,(3.10)

‖∇ · v(t)ρ(t)−∇ · ṽ(t)ρ̃(t)‖W−1,p
h

≤ C1(‖e‖Lp
h(BR0

) + ‖f‖W−1,p
h

+ δm +GL+1(δ)h
L).

(3.11)

Applying Gronwall’s inequality to (3.8) and (3.10), we conclude for 0 ≤ t ≤ T ∗ ≤ T ,

‖e‖Lp
h(BR0

) ≤ C1Te
C1T (δm +GL(δ)h

L) .

Substituting this into (3.10) gives ‖v(t)− ṽ(t)‖Lp
h(BR0

) ≤ C(δm +GL(δ)h
L).

Applying Gronwall’s inequality a second time to (3.9) and (3.11),

‖f‖W−1,p
h

≤ C1Te
C1T (‖e‖Lp

h(BR0
) + δm +GL+1(δ)h

L) ≤ C(δm +GL+1(δ)h
L) .

We now show that, in fact, T0 = T ∗ and T ∗ = T , so the above inequalities hold
on the interval [0, T ]. First, by the bounded support of f and Proposition 3.1 (b),

‖e‖L∞

h (BR0
) ≤ h−d/p‖e‖Lp

h(BR0
) and ‖f‖L∞

h
≤ (1 + 2d)h−1−d/p‖f‖W−1,p

h
.(3.12)

If T0 < T ∗, then at least one of the quantities (X̃, ṽ,∇ · ṽ, ρ̃) becomes unbounded
at t = T0. Both ṽ and ∇ · ṽ remain bounded as long as the approximate particle
trajectories remain bounded, and both X̃ and ρ̃ must remain bounded on [0, T ∗]
by the above inequalities. Thus, T0 = T ∗.

Now, we show T ∗ = T . Fix ǫ > 0 so that (3.4) holds. Let p ≥ 1 be large enough
so that d/p < ǫ. Then,

‖e‖L∞

h (BR0
) < h−ǫ‖e‖Lp

h(BR0
) < δ2h/2 < δ2/2 ,

‖f‖L∞

h
< (1 + 2d)h−1−ǫ‖f‖W−1,p

h
< δ2/2 .

Thus, for all t ∈ [0, T ∗], ‖e(t)‖L∞

h (BR0
), ‖f(t)‖L∞

h
< δ2/2, so by (3.7), T ∗ = T . �

To complete our proof of Theorem 3.8, it remains to show Propositions 3.11,
3.12, and 3.13. We prove these in Sections 3.1 and 3.2. We conclude the current
section with three lemmas that play an important role in the remaining estimates.
The first lemma is a standard result estimating quadrature error.

Lemma 3.14 (quadrature error). Given g ∈ Cl
c(R

d), l > d,
∣

∣

∣

∣

∣

∣

∫

Rd

g(x)dx−
∑

j∈Zd

g(jh)hd

∣

∣

∣

∣

∣

∣

≤ Cl,d‖g‖W l,1(Rd)h
l .
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Proof. See Anderson and Greengard [3, Lemma 2.2]. �

Next, we quantify the regularity of ∇Kδ.

Lemma 3.15 (regularity of ∇Kδ and ∆Kδ). ∇Kδ and ∆Kδ belong to CL(Rd),
and ∂β∇Kδ(x) = ∇K ∗ ∂βψδ(x) for all |β| ≤ L.

The third lemma provides pointwise and L1 estimates on ∇Kδ. For the L1

estimates, we allow an error term g(x) of order δ.

Lemma 3.16 (regularized kernel estimates). Define GL(δ) as in equation (3.3),
and fix C ′ > 0. For |β| ≤ L, |g(x)| ≤ C ′δ, and R > 0, there exists C > 0 depending
on the kernel, mollifier, dimension, β, R, and C ′ so that

‖∂β∇Kδ(x+ g(x))‖L1(BR) ≤ CG|β|(δ) .

See appendix Section 6.3 for the proof of Lemmas 3.15 and 3.16.

3.1. Consistency. To prove the consistency estimate of Proposition 3.11, we de-
compose the consistency error into a regularization error, due to the convolution
with a mollifier, and a discretization error, due to the quadrature of the integral:

|v(x, t)− vh(x, t)|
(3.13)

≤ |∇K ∗ ρ(x, t)−∇Kδ ∗ ρ(x, t)|+
∣

∣

∣∇Kδ ∗ ρ(x, t)−
∑

∇Kδ(x−Xj(t))ρ0jh
d
∣

∣

∣ ,

|∇ · v(x, t)−∇ · vh(x, t)|

≤ |∆K ∗ ρ(x, t)−∆Kδ ∗ ρ(x, t)|+
∣

∣

∣∆Kδ ∗ ρ(x, t)−
∑

∆Kδ(x−Xj(t))ρ0jh
d
∣

∣

∣
.

First, we bound the moment error.

Proposition 3.17 (regularization error). Fix R > 1. Under the hypotheses of
Theorem 3.8, for |x| < R and 0 ≤ t ≤ T ,

|∇K ∗ ρ(x, t)−∇Kδ ∗ ρ(x, t)| ≤ Cδm , |∆K ∗ ρ(x, t)−∆Kδ ∗ ρ(x, t)| ≤ Cδm

The constant depends on the exact solution, the kernel, the mollifier, the dimension,
T , R0, and R.

Proof. It is a standard result (see for example Ying and Zhang [70, Lemma 3.2.6])
that if a mollifier ψ is accurate of orderm and f ∈ Cm(Rd) has bounded derivatives,
|f(x) − f ∗ ψδ(x)| ≤ Cδm for all x ∈ R

d. Under our assumptions on ψ, the result
continues to hold for |x| < R if we merely require f ∈ Cm(Rd) and

|∂βf(x)| ≤ C(1 + |x|(S−m)+) , |β| = m .(3.14)

This follows from Taylor’s formula with integral remainder,

f(x−y) ≤ f(x)+

m−1
∑

|γ|=1

(−1)|γ|yγ

γ!
∂γf(x)+m

∑

|β|=m

(−1)myβ

β!

∫ 1

0

(1−t)m−1∂βf(x−ty)dt .

Inequality (3.14) implies for |x| < R, 0 < t < 1,

|∂βf(x−ty)| ≤ C(1+|x−ty|(S−m)+) ≤ C(1+(|x|+t|y|)(S−m)+) ≤ CR(1+|y|(S−m)+) .

Thus,
∣

∣

∣

∣

∫ 1

0

(1− t)m−1∂βf(x− ty)dt

∣

∣

∣

∣

≤ CR(1 + |y|(S−m)+) .
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By Assumption 3.3 on the mth order accuracy of ψ,

∫

yγψδ(y)dy = δ−d

∫

yγψ(y/δ)dy = δ|γ|
∫

yγψ(y)dy =

{

δ|γ| if |γ| = 0 ,

0 if |γ| ∈ [1,m− 1] .

and
∫

|y|m|ψδ(y)|dy < Cδm. We also have that
∫

|y|S |ψδ(y)|dy < CδS when S > 0.
If S > m, δS < δm. Thus, integrating Taylor’s formula against ψδ(y) gives

|f ∗ ψδ(x)− f(x)| ≤ Cδm .

It remains to show that (3.14) holds for f = ∇K ∗ ρ and f = ∆K ∗ ρ. This
follows from Lemma 3.6. �

Proposition 3.18 (discretization error). Fix R > 1. Under the hypotheses of
Theorem 3.8, with GL(δ) defined by (3.3), for |x| < R and 0 ≤ t ≤ T ,

∣

∣

∣

∣

∫

∇Kδ(x− y)ρ(y, t)dy −
∑

∇Kδ(x−Xj(t))ρ0jh
d

∣

∣

∣

∣

≤ CGL(δ)h
L

∣

∣

∣

∣

∫

∆Kδ(x− y)ρ(y, t)dy −
∑

∆Kδ(x−Xj(t))ρ0jh
d

∣

∣

∣

∣

≤ CGL+1(δ)h
L

The constant depends on the exact solution, the kernel, the mollifier, the dimension,
T , R0, and R.

Proof. We prove the two estimates simultaneously by bounding

ed(x, t) =

∫

Kδ(x− y)ρ(y, t)dy −
∑

Kδ(x−Xj(t))ρ0jh
d ,

where Kδ = ∇Kδ or Kδ = ∆Kδ. By Lemma 3.7, for all α ∈ BR0+2, the particle
trajectories, Xt(α) belong to CL and satisfy

∫

Kδ(x− y)ρ(y, t)dy =

∫

Kδ(x−Xt(α))ρ0(α)dα .

By Assumption 3.5, ρ ∈ CL(Rd), and by Lemma 3.15, ∇Kδ and ∆Kδ also belong
to CL(Rd). Since L ≥ d+ 2, we may bound the error using Lemma 3.14,

|ed(x, t)| =
∣

∣

∣

∣

∫

Kδ(x−Xt(α))ρ0(α)dα−
∑

Kδ(x−Xj(t))ρ0jh
d

∣

∣

∣

∣

,

≤ CL,d‖Kδ(x−X(·, t))ρ0(·)‖WL,1(Rd)h
L .

By Assumption 3.5, |Xt(α)| < C for all α ∈ supp ρ0, t ∈ [0, T ], so for |x| < R,
|x−Xt(α))| ≤ R+ C. Thus, applying the chain and product rules give

|ed(x, t)| ≤ C‖Kδ‖WL,1(BR+C)h
L .

The result then follows from the regularized kernel estimates, Lemma 3.16. �

Finally, we combine the previous two propositions to prove Proposition 3.11.

Proof of Proposition 3.11. By (3.13), Proposition 3.17, and Proposition 3.18, tak-

ing x = X̃i(t) for |ih| < R0,

|vi(t)− vhi (t)| ≤ C(δm +GL(δ)h
L) ,

|∇ · vi(t)−∇ · vhi (t)| ≤ C(δm +GL+1(δ)h
L) .
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By Assumption 3.5, ρ is bounded and supported in BR0
. Hence,

‖v(t)− vh(t)‖L∞

h (BR0
) ≤ C(δm +GL(δ)h

L) ,

‖∇ · v(t)ρ(t)−∇ · vh(t)ρ(t)‖L∞

h
≤ C(δm +GL+1(δ)h

L) .

�

3.2. Stability. We now turn to the proof of stability, which relies on the following
lemma relating the Lp

h norm of a discrete convolution to the Lp norm of a con-
volution. This lemma allows us to apply classical results for integral operators to
conclude stability of the method. Our approach is strongly influenced by previous
work on the stability of classical vortex blob methods for the Euler equations by
Beale [7] and Beale and Majda [8, 9].

Let Qi be the d-dimensional cube with side length h centered at ih ∈ hZd and
define Qt

i = Xt(Qi). Since h <
1
2 , if we define Ω = ∪|ih|<R0+1Qi, then Ω ⊆ BR0+2

and Lemma 3.7 ensures that

|Qt
i| =

∫

Qt
i

dy =

∫

Qi

|J t(α)|dα(3.15)

and C1h
d ≤ |Qt

i| ≤ C2h
d, so {Qt

i} partitions Xt(Ω) for all t ∈ [0, T ].

Lemma 3.19. Let GL(δ) be defined as in equation (3.3) and let Jj(t) = J t(jh).
Consider yij(t) ∈ C([0, T ], L∞

h (Rd × R
d)) and gj(t) ∈ C([0, T ], L∞

h (Rd)), where
‖y(t)‖L∞

h
≤ 2δ and the support of gj(t) is contained in BR0−1 for all t ∈ [0, T ].

Then for any multiindex |β| ≤ L − 1 and 1 < p ≤ +∞, there exists C,R > 0
depending on the exact solution, the kernel, the mollifier, the dimension, β, T , R0,
p, and g so that for all t ∈ [0, T ],

∥

∥

∥

∥

∥

∥

∑

|jh|<R0

∂β∇Kδ(Xi(t)−Xj(t) + yij(t))gj(t)h
d

∥

∥

∥

∥

∥

∥

Lp
h(BR0+1)

≤ C
(

‖∂β∇Kδ ∗ g(t)‖Lp(BR) + δG|β|+1(δ)‖g(t)‖Lp

)

.

If s = 1−d, the above holds with Lp(BR0+1) replaced by Lp(BR0+C′) for all C ′ ≥ 0
and the constants depend on C ′.

Proof. Define wi(t) =
∑

|jh|<R0
∂β∇Kδ(Xi −Xj + yij(t))gj(t)Jj(t)h

d, and for x ∈
Qt

i, y ∈ Qt
j , define G(x, y, t) = ∂β∇Kδ(Xi −Xj + yij(t)) and g(y, t) = gj(t). Since

Jj(t) is bounded below, it is enough to bound ‖wi(t)‖Lp
h(BR0+1). For x ∈ Qt

i,

wi(t) =

∫

∂β∇Kδ(x− y)g(y, t)dy +

∫

[G(x, y, t)− ∂β∇Kδ(x− y)]g(y, t)dy

+
∑

j

G(x,Xj(t), t)gj(t)(|Jj(t)|hd − |Qt
j |) = a(x, t) + b(x, t) + c(x, t) .

By definition, |wi(t)| ≤ ‖a(t) + b(t) + c(t)‖L∞(Qt
i)
, and for 1 < p < +∞,

|wi(t)|phd ≤ hd

|Qt
i|

∫

Qt
i

|a(x, t) + b(x, t) + c(x, t)|pdx ≤ C‖a(t) + b(t) + c(t)‖p
Lp(Qt

i)
.

Thus, for 1 < p ≤ +∞,

‖w(t)‖Lp
h(BR0+1) ≤ C‖a(t) + b(t) + c(t)‖Lp(Xt(Ω)) .
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By Assumption 3.5, there exists R > 0 so that for α ∈ Ω, |Xt(α)| < R. Since
‖a(t)‖Lp(BR) = ‖∂β∇Kδ ∗ g(t)‖Lp(BR), this gives the first term in our bound.

It remains to control b(t) and c(t). By Lemma 3.7, there exists C > 0 so that
for x ∈ Qi, y ∈ Qj , ih, jh ∈ Ω, t ∈ [0, T ],

|Xi(t)− x|+ |Yi(t)− y| ≤ Ch < Cδ .

Since ‖y(t)‖L∞

h
≤ 2δ, by the mean value theorem, there exists z(x, y, t) with

|z(x, y, t)| ≤ (C + 2)δ so that for x ∈ Xt(Ω),

|b(x, t)| ≤
∑

|γ|=|β|+1

∫

|∂γ∇Kδ(x− y + z(x, y, t))| (C + 2)δ|g(y, t)|dy .

By the regularized kernel estimates, Lemma 3.16, for all y ∈ BR0
, |γ| = |β|+ 1,

‖∂γ∇Kδ(x− y + z(x, y, t))‖L1(BR) ≤ CG|β|+1(δ) .

Therefore, by a classical inequality for integral operators [37, Theorem 6.18],

‖b(x, t)‖Lp(Xt(Ω)) ≤ CδG|β|+1(δ)‖g(t)‖Lp .

Finally, we bound c(t). By Lemma 3.7, J t(α) ∈ C1(Rd). Hence,

‖Qt
j | − |Jj(t)|hd| ≤

∣

∣

∣

∣

∣

∫

Qj

|J t(α)| − |Jj(t)|dα
∣

∣

∣

∣

∣

≤ Chd+1 .

Therefore,

|c(x, t)| =

∣

∣

∣

∣

∣

∣

∑

j

G(x,Xj(t), t)gj(t)(|Jj(t)|hd − |Qt
j |)

∣

∣

∣

∣

∣

∣

≤ Chd+1−d

∣

∣

∣

∣

∣

∣

∑

j

G(x,Xj(t), t)gj(t)h
d

∣

∣

∣

∣

∣

∣

≤ C

∣

∣

∣

∣

∫

G(x, y, t)g(y, t)dy

∣

∣

∣

∣

≤ C(|a(x, t)|+ |b(x, t)|) .

Combining this with the bounds on a(x, t) and b(x, t) gives the result.
If s = 1−d, the above holds with R0 + 1 replaced by R0 + C ′ for all C ′ ≥ 0. �

We now consider stability of the velocity, Proposition 3.12.

Proof of Proposition 3.12. Define ei(t) = Xi(t) − X̃i(t). As our estimates are uni-
form in t ∈ [0, T ], we suppress the dependence on time.

First, we decompose the difference between vh and ṽ, isolating the effects of
approximate and exact particle trajectories. By the mean value theorem, there

exists |y(1)ij | ≤ |ej | ≤ δ and |y(2)ij | ≤ 2δ so that

vhi − ṽi = Σj∇Kδ(Xi − X̃j)ρ0jh
d − Σj∇Kδ(Xi −Xj)ρ0jh

d(3.16)

+ Σj∇Kδ(X̃i − X̃j)ρ0jh
d − Σj∇Kδ(Xi − X̃j)ρ0jh

d

= ΣjD
2Kδ

(

Xi −Xj + y
(1)
ij

)

ejρ0jh
d

+ eiΣjD
2Kδ

(

Xi −Xj + y
(2)
ij

)

ρ0jh
d .

= v
(1)
i + eiv

(2)
i .
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Because it will be useful in the next proposition, we bound the Lp
h and L∞

h norms

of v(1) and v(2) over BR0+1, instead of BR0
. By two applications of Lemma 3.19

with |β| = 1, g
(1)
j = ejρ0j , and g

(2)
j = ρ0j , there exists C,R > 0 so that

‖v(1)‖Lp
h(BR0+1) ≤ C

(

‖D2Kδ ∗ g(1)‖Lp(BR) + δG2(δ)‖g(1)‖Lp

)

,

‖v(2)‖L∞

h (BR0+1) ≤ C
(

‖D2Kδ ∗ g(2)‖L∞(BR) + δG2(δ)‖g(2)‖L∞

)

.

To complete the proof, it suffices to show the first term is bounded by C‖e‖Lp
h(BR0

)

and the second term is bounded by C. We bound v(1) by showing that there exists
C > 0 so that ‖D2Kδ ∗ g(1)‖Lp(BR) ≤ C‖g(1)‖Lp . By the linearity of convolution

and differentiation, if we show the result for K =
∑N

n=1Kn for N = 1, this implies
the result for N > 1. Thus, we may assume K = K1 for s = S ≥ 1− d.

When s = 1−d, we can apply the Calderón Zygmund inequality. When s > 1−d,
|D2K(x)| ≤ C|x|s−1 ∈ L1

loc(R
d), and we can apply Young’s inequality. Thus,

‖D2Kδ ∗ g(1)‖Lp(BR) ≤ ‖D2K ∗ g(1)‖Lp(BR)‖ψδ‖L1 ≤ C‖g(1)‖Lp .

Since δG2(δ) ≤ C, we use the definition g
(1)
j = ejρj , to conclude

‖v(1)‖Lp
h(BR0+1) ≤ C‖g(1)‖Lp ≤ C‖e‖Lp

h(BR0
) .(3.17)

We now turn to v(2). For y ∈ Xt(Ω),

|g(2)(y)− ρ0(X
−t(y))| ≤ sup

j,α∈Qj

|ρ0j − ρ0(α)| ≤ Ch .

Hence,
∣

∣

∣

∣

∫

D2Kδ(x− y)g(2)(y)dy

∣

∣

∣

∣

≤ C max
|γ|=1

∣

∣

∣

∣

∫

∇Kδ(x− y)∂γρ0(X
−t(y))dy

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

D2Kδ(x− y)(g(2)(y)− ρ0(X
−t(y)))dy

∣

∣

∣

∣

.

By Assumption 3.5, Lemma 3.7, and Lemma 3.16, and the fact that h < δ, the
above quantity is bounded by a constant for |x| < R. Thus,

‖v(2)‖L∞

h (BR0+1) ≤ ‖D2Kδ ∗ g(2)‖L∞(BR) + δG2(δ)‖g(2)‖L∞ ≤ C .(3.18)

�

We now prove stability of the divergence of the velocity.

Proof of Proposition 3.13. As in the previous proof, define ei(t) = Xi(t) − X̃i(t)
and fi(t) = ρi(t) − ρ̃i(t). Since our estimates are uniform in time, we suppress
dependence on t.

We decompose the difference between ∇ · vhi ρi and ∇ · ṽiρ̃i as

∇ · vhi ρi −∇ · ṽiρ̃i ≤
(

∇ · vhi −∇ · ṽi
)

ρi +∇ · vhi (ρi − ρ̃i) +
(

∇ · ṽi −∇ · vhi
)

(ρi − ρ̃i)

≤ ai + bi + ci(3.19)
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First we bound the W−1,p
h norm of a in terms of the Lp

h norm of e. As in the

proof of the stability of the velocity, we further decompose ∇ · vhi −∇ · ṽi,

∇ · vhi −∇ · ṽi =
∑

j

∆Kδ(Xi − X̃j)ρ0jh
d −

∑

j

∆Kδ(Xi −Xj)ρ0jh
d(3.20)

+
∑

j

∆Kδ(X̃i − X̃j)ρ0jh
d −

∑

j

∆Kδ(Xi − X̃j)ρ0jh
d .

By Taylor’s theorem, there exists |y(1)ij | ≤ |ej | ≤ δ2 and |y(2)ij | ≤ 2δ2 so that the
above can be further decomposed as

∑

j

∇∆Kδ (Xi −Xj) ejρ0jh
d +

∑

|γ|=2

∑

j

1

γ!
∂γ∆Kδ(Xi −Xj + y

(1)
ij )eγj ρ0jh

d

(3.21)

+
∑

j

∇∆Kδ (Xi −Xj) eiρ0jh
d + C

∑

|γ|=2

∑

j

1

γ!
∂γ∆Kδ(Xi −Xj + y

(2)
ij )eγi ρ0jh

d

= a
(1)
i +A

(1)
i + a

(2)
i +A

(2)
i

With this decomposition, ai = ρi(a
(1)
i +A

(1)
i + a

(2)
i +A

(2)
i ).

First, consider A(1) and A(2). By Lemma 3.19 with |β| = 3, g
(1)
j = eγj ρ0j , and

g
(2)
j = ρ0j , there exists C,R > 0 so that

‖A(1)‖Lp
h(BR0

) ≤ C‖D4Kδ ∗ g(1)‖Lp(BR) + δG4(δ)‖g(1)‖Lp ,

‖A(2)‖Lp
h(BR0

) ≤ C‖eγ‖Lp
h(BR0

)

(

‖D4Kδ ∗ g(2)‖L∞(BR) + δG4(δ)‖g(2)‖L∞

)

.

Since |eγi | ≤ C|ei|2 ≤ Cδ2|ei|, by the regularized kernel estimates Lemma 3.16, we

have for both A(1) and A(2),

‖A(·)‖Lp
h(BR0

) ≤ C(δ2G3(δ) + δ3G4(δ))‖e‖Lp
h(BR0

) ≤ C‖e‖Lp
h(BR0

) .(3.22)

By Proposition 3.1 (a) and the fact that ρi is bounded and supported in BR0
, this

implies ‖ρA(1)‖W−1,p
h

and ‖ρA(2)‖W−1,p
h

≤ C‖e‖Lp
h(BR0

).

Now, consider ρa(1). For α ∈ Qi, define

F (α) =
∑

j

∆Kδ(X
t(α)−Xj(t))ejρ0jh

d .

Let ∇h
i be a finite difference operator of the form in Proposition 3.1 (e) and suppose

it is lth order accurate, i.e. ‖∇h
i F−∇αF‖Lp

h(BR0
) ≤ Chl‖Dl+1

α F‖Lp
h(BR0+lh). Define

Z(α, t) = ∇αX
t(α) and Zi(t) = ∇αX

t(ih). Rewriting a(1) with a Lagrangian
derivative and approximating it by this finite difference operator,

a
(1)
i = (Z−1

i )∇αF (ih) = (Z−1
i )∇h

i F (ih) + (Z−1
i )

(

∇αF (ih)−∇h
i F (ih)

)

.(3.23)

To bound the first term in ρa(1), let ψ : R
d → [0, 1] be a smooth function

satisfying ψ(x) = 1 for |x| ≤ R0 + 1/2 and ψ(x) = 0 for |x| ≥ R0 + 1, and let ψi =
ψ(ih). Since h < 1/2 and ρi is supported in BR0

, ρi∇h
i F (ih) = ρi∇h

i (ψiF (ih)).
Therefore, by Proposition 3.1 (e), Assumption 3.5, and Lemma 3.7,

‖(ρiZ−1
i )∇h

i F (ih)‖W−1,p
h

≤ ‖ρZ−1‖W 1,∞
h

‖∇h
i (ψiF (ih))‖W−1,p

h
≤ C‖F (ih)‖Lp

h(BR0+1) .
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By the definition of v(1) (3.16) and inequality (3.17) from the previous proof,
‖ρa(1)‖W−1,p

h
is bounded by C‖e‖Lp

h(BR0
).

Next, we bound the second term in ρa(1). Combining Proposition 3.1 (a), As-
sumption 3.5, Lemma 3.7, and the lth order accuracy of ∇h

i ,

‖(ρiZ−1
i )

(

∇αF (ih)−∇h
i F (ih)

)

‖W−1,p
h

≤ ‖ρZ−1‖W 1,∞
h

‖∇αF (ih)−∇h
i F (ih)‖W−1,p

h
,

≤ C‖∇αF (ih)−∇h
i F (ih)‖Lp

h(BR0
) ≤ Chl‖Dl+1F‖Lq

h(BR0
+lh) .

When s = 1 − d, we choose l ≥ q/(1 − q). Otherwise, we choose l = 1. We can
now apply Lemma 3.19 with |β| = l + 2, gj = ejρ0j to control the right hand side.
Combining this with Young’s inequality and Lemma 3.16 gives

Chl‖Dl+1F‖Lq
h(BR0

+lh) ≤ Chl
(

‖Dl+3Kδ ∗ g‖Lp(BR) + δGl+3(δ)‖g‖Lp

)

≤ ChlGl+2(δ)‖g‖Lp ≤ ChlGl+2(δ)‖e‖Lp
h(BR0

) .

Since 1
2 < q < 1 and δ ≥ hq,

hlGl+2(δ) ≤











hl if l + 2 < s+ d

qhl| log(h)| if l + 2 = s+ d

hlhq(s+d−l−2) if l + 2 > s+ d .

When s = 1− d, l ≥ q/(1− q), and when s > 1− d, l = 1. Thus, l ≥ max{1, q(l +
2− s− d)} and the above quantity is bounded by a constant.

It remains to bound ‖ρa(2)‖W−1,p
h

≤ C‖a(2)‖Lp
h(BR0

). Since

‖a(2)‖Lp
h(BR0

) ≤ C‖e‖Lp
h(BR0

)

∥

∥Σj∇∆Kδ (Xi −Xj) ρ0jh
d
∥

∥

L∞

h (BR0
)
,(3.24)

it suffices to show
∥

∥ΣjD
2∇Kδ (Xi −Xj) ρ0jh

d
∥

∥

L∞

h (BR0+1)
≤ C .(3.25)

For any N > d, the quadrature Lemma 3.14 and the regularized kernel estimates
Lemma 3.16 imply

∣

∣

∣

∣

∣

∣

∫

Rd

D2∇Kδ(x−Xt(α))ρ0(α)dα−
∑

j∈Zd

D2∇Kδ(x−Xj(t))ρ0jh
d

∣

∣

∣

∣

∣

∣

≤ C‖D2∇Kδ(x−Xt(·))ρ0(·)‖WN,1(Rd)h
N ≤ ChNGN+2(δ) .

As argued above, since 1
2 < q < 1, δ ≥ hq, choosing N large enough so N+2 > s+d

and N > q/(1− q), the above quantity is bounded by a constant. Finally,
∣

∣

∣

∣

∫

Rd

D2∇Kδ(x−Xt(α))ρ0(α)dα

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

Rd

D2∇Kδ(x− y)ρ(y, t)dy

∣

∣

∣

∣

,

≤ C

∣

∣

∣

∣

∫

Rd

∇Kδ(x− y)D2ρ(y, t)dy

∣

∣

∣

∣

≤ C .

Combining our estimates, we conclude

‖a‖W−1,p
h

≤ ‖ρ(a(1) +A(1) + a(2) +A(2))‖W−1,p
h

≤ C‖e‖Lp
h(BR0

) .

Now that we have controlled a, the second and third terms in (3.19) follow
quickly. We seek to bound ‖bi‖W−1,p

h
in terms of ‖fi‖W−1,p

h
. By assumption, ρi

vanishes outside of BR0
, hence it suffices to show ‖∇ · vh‖W 1,∞

h (BR0
) is bounded by



A BLOB METHOD FOR THE AGGREGATION EQUATION 19

a constant. The fact that ‖∇·vh‖L∞(BR0
) ≤ C follows from the bound on v(2) from

the previous proof (3.16, 3.18). The fact that ‖D+
j ∇·vh‖L∞(BR0

) ≤ C follows from

inequality (3.25) above.
Finally, we turn to the last term in (3.19). To bound ‖c‖W−1,p

h
in terms of ‖e‖Lp

h
,

we may use the decomposition of ∇ · vh −∇ · ṽ = a(1) +A(1) + a(2) +A(2) given by
(3.20, 3.21). By (3.22, 3.24, 3.25), and the fact that ‖ρi − ρ̃i‖L∞

h
≤ δ2 ≤ C,

‖(A(1)+a(2)+A(2))(ρi− ρ̃i)‖W−1,p
h

≤ C‖A(1)+a(2)+A(2)‖Lp
h(BR0

) ≤ C‖e‖Lp
h(BR0

) .

By Lemma 3.19 with |β| = 2 and gj = ejρ0j , there exists C,R > 0 so that

‖a(1)(ρi − ρ̃i)‖W−1,p
h

≤ ‖Σj∇∆Kδ (Xi −Xj) ejρ0jh
d‖Lp

h(BR0
)‖ρi − ρ̃i‖L∞

h

≤ Cδ2(‖D3Kδ ∗ g‖Lp(BR) + δG3(δ)‖g‖Lp) ≤ C(δ2G2(δ) + δ3G3(δ))‖e‖Lp
h(BR0

)

The above is bounded by C‖e‖Lp
h(BR0

). This completes the proof. �

4. Numerics

We now present several numerical examples in one and two dimensions for a
range of kernels and initial data. These examples confirm the rate of convergence
obtained in Corollary 3.10 and illustrate the varied phenomena of solutions to the
aggregation equation, including blowup and pattern formation.

4.1. Numerical implementation. We implement the blob method in Python,
using the NumPy, SciPy, and matplotlib libraries [47]. We approximate solutions
to the ordinary differential equations which comprise our method using the VODE
solver [19], which uses either a backward differentiation formula (BDF) method or
an implicit Adams method, depending on the stiffness of the problem.

In one dimension, we use the mollifiers

ψ(4)(x) =
4

3
√
π
e−|x|2 − 1

6
√
π
e−|x|2/4 , ψ(6)(x) =

16

15
ψ(4)(x)− 1

30
ψ(4)(x/2) .(4.1)

These satisfy Assumption 3.3 with m = 4, 6, L = +∞. In two dimensions, we use

ψ(4)(x) =
2

π
e−|x|2 − 1

2π
e−|x|2/2 ,(4.2)

which satisfies Assumption 3.3 with m = 4 and L = +∞.
After selecting a mollifier, one next computes ∇Kδ = ∇K ∗ ψδ and ∆Kδ =

∆K ∗ ψδ. If ∇K and ∆K are polynomials of degree less than m, convolution
with ψ preserves the polynomial and ∇Kδ = ∇K, ∆Kδ = ∆K. (See Remark
3.4.) If K is the Newtonian potential (∆)−1, we have ∆Kδ = ψδ and ∇Kδ(x) =
x

|x|d

∫ r

0
sd−1ψδ(s)ds.

Aside from these special cases, in which an exact expression for the mollified
kernel may be found, we compute the convolution numerically using a fast Fourier
transform in radial coordinates on a ball of radius 2.5 centered at the origin. De-
pending on the accuracy we seek, we partition the domain into between 100 and
2× 106 grid points and interpolate to obtain ∇Kδ(x) and ∆Kδ(x).

Finally, when K is the Newtonian potential, we may also compare our approx-
imate numerical solutions to exact solutions. We are able to compute exact so-
lutions for radial initial data by rewriting the aggregation equation in mass co-
ordinates. This gives the following formula for the particle trajectories in radial



20 KATY CRAIG AND ANDREA L. BERTOZZI

coordinates [12, Section 4] and the density along particle trajectories [13],

r(t)d = r(0)d − (dt)m(r(0), 0) , ρ(Xt(α), t) =







(

1
ρ0(α)

− t
)−1

if ρ0(α) 6= 0 ,

0 if ρ0(α) = 0 .

−1.0 −0.5 0.0 0.5 1.0
Position

0.0

0.5

1.0

T
im

e

Particle TrajectoriesA.

−0.4 −0.2 0.0 0.2 0.4
Position

1

2

3

4

5

H
ei

g
h
t

Density

approx

exact

B.

−0.1 0.0 0.1
Position

0.0

0.5

1.0

T
im

e

Particle TrajectoriesC.

10−4 10−3 10−2 10−1

h

10−5

10−10

10−15

E
rr

o
r

L
1
h

Error

density slope ≈ 3.55

particle slope ≈ 3.57

D.

Figure 1. A comparison of exact solutions (solid lines) with blob
method solutions (dashed lines). The densities (B) are shown at
times t = 0, 0.4, 0.8. The log-log plot (D) corresponds to t = 0.5.

4.2. One dimension, K = Newtonian Potential = (∆)−1.

Blob method, regular initial data: Figure 1 compares exact and blob method
solutions to the one dimensional aggregation equation when K is the Newtonian
potential and the initial initial data is

ρ0(x) =

{

(1− x2)20 if |x| ≤ 1 ,

0 otherwise .
(4.3)

For this initial data, finite time blowup for the classical solution occurs at t = 1.
We discretize the domain [−1, 1] using h = 0.04. With this refinement of the

grid, the approximate and exact particle trajectories are visually indistinguishable
(A), though the approximate density loses resolution at t = 0.8 (B). Focusing
on a smaller spatial scale (C) reveals that the approximate particle trajectories
bend away from the exact solution to avoid collision at t = 1. This is due to the
regularization of the kernel, which causes the velocity field to be globally Lipschitz.
Bhat and Fetecau observed the same bending effect for an analogous regularization
in their work on Burgers equation [17].

In spite of the bending, blob method solutions converge to exact solutions with
a high order rate of convergence for t < 1. We choose the m = 4 mollifier ψ(4) (4.1)
and δ = hq for q = 0.9. A log-log plot of the L1

h error of the particle trajectories
and density (D) reveals a numerical rate of convergence close to the theoretically
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predicted rate of mq = 3.6. Note that the numerical result is slightly stronger
than the theoretical result, which measures the error of the approximate density in
W−1,1

h and requires the exact solution to be smooth.
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Figure 2. A comparison of exact solutions (solid lines) and par-
ticle method solutions (dashed lines). The log-log plot of the error
(right) corresponds to t = 0.5.

Particle method, regular initial data: Figure 2 compares a particle method
approximation with an exact solution for initial data (4.3). To compute the particle
method approximation, we remove the singularity at zero by setting ∇K(0) = 0,
instead of regularizing the kernel. Since K is the Newtonian potential, the particle
method densities are point masses, which do not belong to Lp

h. Thus, we only
consider the particle trajectories defined by this method.

Unlike the blob method solution from in the previous example, the particle
method trajectories do not bend away at blowup time. However, a log-log plot of the
L1
h error reveals a slower rate of convergence than for the blob method, consistent

with the rate of O(h2−ǫ) for particle approximations of the Euler equations [39,42].

Discontinuous initial data: Figure 3 compares exact and blob method solutions
to the one dimensional aggregation equation with discontinuous initial data

ρ0(x) = 1[−1,1](x) =

{

1 if |x| ≤ 1 ,

0 otherwise .
(4.4)

Though our convergence results only apply to sufficiently regular solutions to the
aggregation equation, the definition of the blob method (Definition 2.2) merely
requires that initial data to be a compactly supported function.

We discretize the domain [−1, 1] using h = 0.04. At this level of resolution,
the approximate and exact particle trajectories are visually indistinguishable (A),
though the approximate density becomes rounded at t = 0.8 (B), with a similar
oscillating profile as the mollifier (4.1).

Considering the particle trajectories on a smaller spatial scale (C), we again
observe the trajectories bending away to avoid collision. As expected, a log-log
plot of the L1

h error (D) reveals a slower rate of convergence than in Figure 1.
Unlike in the previous example, for which the slower rate of convergence was due
to using a particle method instead of the blob method, in this example the slower
rate of convergence is due to the lower regularity of the initial data.
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Figure 3. A comparison of exact solutions (solid lines) and blob
method solutions (dashed lines) with δ = hq for q = 0.9. The
densities (B) are shown at t = 0, 0.4, 0.8. The log-log plot (D)
corresponds to t = 0.5.

4.3. One dimension, Various potentials. Figure 4 compares the rate of conver-
gence of numerical solutions when K = (−∆)−1 or K(x) = |x|3/3. The mollifiers
(4.1) are of order m = 4 and m = 6. The scaling of the regularization is δ = hq for
q = 0.9, and the initial data is

ρ0(x) =

{

(1− x2)10 if |x| ≤ 1 ,

0 otherwise .
(4.5)

The more singular the kernel, the greater improvement we see in using the blob
method over a particle method. For the negative Newtonian potential, the m = 4
blob method improves upon the particle method, and them = 6 blob method shows
even greater improvement. For the cubic potential, the particle method is better
than the m = 4 blob method for the trajectories, but not for the density. The
m = 6 blob method is best for both trajectories and density.

For both kernels, the rates of convergence for the m = 4 blob method are very
close to the theoretically predicted rate of mq = 3.6, while the rates of convergence
for the m = 6 blob method are not as good as the theoretically predicted rate of
mq = 5.4, due to other sources of error in the numerical implementation.

4.4. Two Dimensions.

Newtonian potential: Figure 5 compares the rate of convergence of numerical
solutions when K = (∆)−1 for various choices of initial data. In the first and third
plot, the numerical solution is computed via the blob method with a mollifier (4.2)
of order m = 4 and δ = hq for q = 0.9. In the second plot, the numerical solution
is computed via a particle method.
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Figure 4. A comparison of the L1
h error at t = 0.5 for various

kernels and numerical methods. For K = (−∆)−1, we use analytic
expressions for ∇K ∗ψδ and ∆K ∗ψδ. For the cubic potential, we
compute the convolutions using a fast Fourier transform in radial
coordinates on a ball of radius 2.5 with 5 × 105 grid points (for
m = 4) and 2× 106 grid points (for m = 6).

ρ0(x) = (1− x2)2+ ρ0(x) = 1[−1,1]
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Figure 5. A comparison of L1
h error at t = 0.5 for the two dimen-

sional aggregation equation when K = (∆)−1.

As in the one dimensional case, we see the best rates of convergence for the blob
method applied to regular initial data (left). This agrees with our theoretically
predicted rate of mq = 3.6. The rates of convergence for a particle method applied
to regular initial data (middle) and the blob method applied to discontinuous initial
data (right) are slower.
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Figure 6. A comparison of blob method solutions for the two di-
mensional aggregation equation. The scaling of the regularization
is δ = hq for q = 0.9, and the mollifier (4.2) satisfies m = 4. In the
top six plots, the unit square is discretized using h ≈ 0.13. In the
bottom six plots, the unit square is discretized using h ≈ 0.07.

Newtonian, quadratic, and cubic potentials: Figure 6 illustrates various phe-
nomena of blob method solutions for three choices of kernel (Newtonian, quadratic,
and cubic) as well as two choices of initial data (regular and discontinuous).
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The top six plots illustrate the behavior of solutions with smooth, compactly
supported initial data,

ρ0(x) =

{

e1/(x
2−1) if |x| ≤ 1 ,

0 otherwise .

The first row shows the space-time trajectories of twenty particles, and the second
row shows the density at time t = 1.4. For K = (∆)−1, finite time blowup of the
classical solution occurs at t = 1/ρ0(0) ≈ 1.2, and the particle trajectories become
very close at this time, bending to avoid collision. Two subsequent near-collisions
occur before t = 3.2. For K(x) = |x|2/2, the particles converge to a point in infinite
time, while for K(x) = |x|3/3, the particles converge to a ring in infinite time. Each
of these phenomena is reflected in the evolution of the density.

The second two rows consider discontinuous initial data given by the character-
istic function on a star shaped patch,

ρ0(r, θ) =

{

1 if r <
(

sin2( 5θ2 ) + 1
2

)

/4 ,

0 otherwise .
(4.6)

All six plots show the approximate density at t = 0.8, either from the side or above.
For K = (∆)−1, the density exhibits the same rounding due to regularization
as in the one dimensional case. For K(x) = |x|2/2, there is no rounding due
to regularization since convolution with a mollifier of accuracy m = 4 preserves
polynomials of degree less than 4, including ∇K and ∆K. For K(x) = |x|3, the
density again converges to a ring in infinite time.

Repulsive-attractive power law kernels: Figure 7 displays the evolution of
particle trajectories for numerical solutions to the two dimensional aggregation
equation with repulsive-attractive power law kernels. In the past few years, there
has been significant interest in such kernels, due to the stationary patters which
develop [4–6,10–14,21,23,28,33–36,43–45,48,59,60,64,65].

Figure 7 compares the results of a particle method with the blob method. In all
six plots, the initial data is

ρ0(x) =

{

C(1− x2)2 if |x| ≤ 1 ,

0 otherwise ,
(4.7)

with C chosen so that
∫

ρ0 = 1.
For each of the three choices of kernel, the corresponding plots demonstrate

that a large regularization parameter—in this case δ ≈ 0.32—can affect the steady
states of blob method solutions. This effect vanishes as δ becomes small, but it
still of interest since it illustrates the important role of the kernel’s regularity in the
dimensionality of steady states. Balagué, Carrillo, Laurent, and Raoul proved that
the dimensionality of the support of steady state solutions depends on the strength
of the repulsive forces at the origin [4]. For a repulsive-attractive power law kernel,

K(x) = |x|a/a− |x|b/b , a > b ,

the repulsive part is more singular than the attractive part, so regularizing the
kernel by convolution with a mollifier has a greater effect for the repulsive part,
and we expect this to dampen the repulsive forces.
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Figure 7. A comparison of numerical solutions to the aggregation
equation. The mollifier (4.2) satisfies m = 4, and the unit square
is discretized with h ≈ .11. For the first kernel, we use an analytic
expression for ∇Kδ. For the second two kernels, we numerically
compute the convolution ∇K ∗ ψδ in radial coordinates on a ball
of radius 2.5 with 100 grid points.

For K(x) = |x|4/4 − log |x|/2π, we recover the radial, integrable, compactly
supported steady states found by Fetecau, Huang, and Kolokolnikov [36]. A large
regularization parameter causes the steady states to collapse to a ring. For K(x) =
|x|4/4 − |x|3/2/(3/2), we recover the stable delta ring found by Kolokonikov, Sun,
Uminsky, and Bertozzi [48]. A comparison of the particle and blob methods at t = 8
indicates that the blob method solution converges to the ring more quickly. For
K(x) = |x|7/7− |x|3/2/(3/2), we recover the ring formation and breakup found by
Bertozzi, Sun, Kolokolnikov, Uminsky, and Von Brecht [14]. A large regularization
parameter lowers the dimension of the steady state to three point masses.

Repulsive-attractive Morse potential: Figure 8 shows the evolution of particle
trajectories for numerical solutions to the aggregation equation when the kernel is
given by a repulsive-attractive Morse potential, comparing the results of a particle
method with the blob method. In the first two columns, the initial data is given
by (4.7), with C chosen so that

∫

ρ0 = 1. In the third column, the initial data is
given by a star shaped patch (4.6).

We only observe the effect of a large regularization parameter for the kernel
K(x) = 2e−|x| − 2e−|x|/2 with regular initial data. This is likely due to the fact
that the repulsive and attractive components of the kernel have the same regularity,
so regularization does not disproportionately affect one without the other.
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K(x) = e−|x| − 2e−|x|/2 K(x) = 2e−|x| − 2e−|x|/2

regular initial data regular initial data discontinuous initial data
t

=
0

t
=

4
t

=
8

δ =0.00

t
=

1
2

δ =0.32

t
=

0
t

=
1

0
t

=
2

0

δ =0.00

t
=

2
0

0
0

δ =0.32

t
=

0
t

=
5

0
t

=
2

0
0

δ =0.00

t
=

2
0

0
0

δ =0.32

Figure 8. A comparison of numerical solutions to the aggregation
equation computed by particle and blob methods. The mollifier
(3.1) is chosen so that m = 4, and the unit square is discretized
with h ≈ 0.11. The spatial scale in the first column is the unit
square, and the spatial scale is doubled in the second and third
columns. For all three kernels, we numerically compute the con-
volution ∇K ∗ ψδ and ∆K ∗ ψδ in radial coordinates on a ball of
radius 5 with 200 grid points.

5. Conclusion

We develop a new numerical method for the aggregation equation for a range
of kernels, including singular kernels, kernels which grow at infinity, and repulsive-
attractive kernels. We prove that our blob method solutions converge to classical
solutions of the aggregation equation with arbitrarily high rates of convergence,
depending on the choice of blobs. We also provide several numerical examples
which confirm our theoretically predicted rates of convergence and illustrate key
properties of the method, including long-time existence of particle trajectories.

As analysis of numerical methods for the aggregation equation is a relatively new
area of interest, there are several directions for future work. First, our estimates do
not differentiate between purely repulsive, purely attractive, or repulsive-attractive
kernels, and our numerical method may be improved by leveraging the different
dynamics in each of these cases. In particular, a numerical method for repulsive
or repulsive-attractive kernels might take advantage of the formation of steady
states to obtain global in time bounds on the error. Preliminary analysis in this
direction indicates that it will be necessary to measure error in different norms. Our
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current discrete Lp norms measure the distance between exact and approximate
solutions along particle trajectories that begin at the same grid point. However,
small perturbations of the functional can change where particles settle in a steady
state. This causes the discrete Lp

h norm of the error to be large, even if the overall
structure of the steady state is the same.

Another direction for future work is to adapt the blob method to the Keller-Segel
equation by the addition of (possibly degenerate) diffusion. From the perspective
of classical vortex methods, the addition of diffusion corresponds to passing from
the Euler equations to the Navier Stokes equations, so it may be possible to adapt
random vortex or core spreading methods from the Navier Stokes equations to the
Keller-Segel equation [25, 38, 50, 52, 62]. Our method might also be extended to
the Keller-Segel equation by separately simulating the effects of aggregation and
(degenerate) diffusion at each time step. Yao and Bertozzi developed such a method
by using a radial particle method to simulate aggregation and an implicit finite
volume scheme to simulate degenerate diffusion [69]. The blob method would allow
one to perform the aggregation step for non-radial solutions with a high degree of
accuracy.

Finally, our result on the convergence of the blob method to classical solutions
might be extended to weak measure solutions. Lin and Zhang [49] used a blob
method to prove existence of weak measure solutions for the two dimensional ag-
gregation equation when K = (−∆)−1. The blob method might also be used to
prove existence of weak measure solutions for the multidimensional aggregation
equation for a range of singular kernels. This would build on the work of Bertozzi,
Garnett, and Laurent for radial initial data and kernels of the form K(x) = |x|a,
2− d ≤ a < 2 [12]. Such a result would be of particular interest for kernels in the
range K(x) = |x|−1 to K(x) = |x|, for which uniqueness may also hold.

6. Appendix

6.1. Discrete Lp and Sobolev Norms. In this section, we provide references
and proofs for the discrete norm inequalities given in Proposition 3.1. We begin
with the following lemma regarding extensions for discrete Sobolev spaces.

Lemma 6.1 (extensions from W 1,p
h (QR) to W 1,p

h (Rd)). Let QR = [−R,R]d for

R ≥ 3. For all 0 < h < 1, there exists P : W 1,p
h (QR) → W 1,p

h (Rd) satisfying
Pg|QR

= g and ‖Pg‖W 1,p
h (Rd) ≤ Cd,p‖g‖W 1,p

h (QR).

Proof. Denote the vertices ofQR by ~v ∈ {(v1, . . . , vd) : vi = ±R}. Define a partition
of unity {η~v} on QR so that 0 ≤ η~v ≤ 1,

∑

~v η~v = 1, and η~v(x) vanishes on the edges
of the cube opposite ~v, i.e. whenever x = (x1, . . . , xd) satisfies |xj − (−vj)| < 1.

For any g ∈ W 1,p
h (QR), define g~v = η~vg. We claim that for all g~v, there exists

an extension Pg~v so that Pg~v|QR
= g~v and ‖Pg~v‖W 1,p

h (Rd) ≤ Cd,p‖g~v‖W 1,p
h (QR).

Supposing this claim holds, define the extension Pg of g by Pg =
∑

~v Pg~v. This
satisfies Pg|QR

=
∑

~v Pg~v|QR
=

∑

~v g~v = g and

‖Pg‖W 1,p
h (Rd) ≤

∑

~v

‖Pg~v‖W 1,p
h (Rd) ≤

∑

~v

Cd,p‖g~v‖W 1,p
h (QR) ≤ Cd,p‖g‖W 1,p

h (QR) .

Thus it remains to construct the extension Pg~v. By translation invariance, we
suppose that QR = [0, 2R]d, and by rotational symmetry, we suppose that ~v =
(0, 0, . . . , 0). Then g~v ∈W 1,p(QR) and g~v(x) = 0 whenever x = (x1, . . . , xd) satisfies
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|xj − 2R| < 1. To extend g~v to all of R
d, first reflect the function across each

coordinate axis, giving a function defined on [−2R, 2R]d, and then extend it to
be zero outside of [−2R, 2R]d. The resulting extension satisfies Pg~v|QR

= g~v and
‖Pg~v‖W 1,p

h (Rd) ≤ Cd,p‖g~v‖W 1,p
h (QR). �

We now turn to the proof of Proposition 3.1.

Proof of Proposition 3.1.

(a) The result follows from Hölder’s inequality on ℓp and the definition of W−1,p
h .

‖u‖W−1,p
h

= sup
g∈W 1,p′

h

|(u, g)h|
‖g‖

W 1,p′

h

≤ sup
g∈W 1,p′

h

‖u‖Lp
h
‖g‖

Lp′

h

‖g‖
W 1,p′

h

≤ ‖u‖Lp
h

(See also [7, Equation 2.9].)

(b) By definition of the W−1,p
h norm,

|(u, g)h| ≤ ‖u‖W−1,p
h

‖g‖
W 1,p′

h

≤ (1 + 2d/h)‖u‖W−1,p
h

‖g‖
Lp′

h

.(6.1)

Suppose p < +∞. If we define g = {|ui|p−2ui} and use that (p− 1)p′ = p,

(u, g)h =
∑

|ui|phd = ‖u‖p
Lp

h
and ‖g‖p

′

Lp′

h

=
∑

|ui|(p−1)p′

hd = ‖u‖p
Lp

h
.

Thus, ‖u‖Lp
h
≤ (1 + 2d/h)‖u‖W−1,p

h
.

If p = +∞, define gji to be 1 if i = j and 0 otherwise. Then (6.1) implies

|uj |hd ≤ (1 + 2/h)‖u‖W−1,∞
h

hd ,

so ‖u‖L∞

h
≤ (1 + 2d/h)‖u‖W−1,∞

h
. (See also [7, Equation 2.10].)

(c) If Ω ⊆ BR, the number of grid points in Ω is bounded by CRh
−d. By an

elementary inequality for ℓp norms on finite dimensional vector spaces,

‖u‖Lq
h(Ω) = hd/q‖u‖ℓq ≤ (CRh

−d)
1
q−

1
phd/q‖u‖ℓp ≤ CR,q,p‖u‖Lp

h(Ω) .

(d) FixQR = [−R,R]d, so by (c),‖g‖
W 1,p′

h (QR)
≤ Cp,q,R‖g‖W 1,q′

h (QR)
≤ Cp,q,R‖g‖W 1,q′

h

.

By Lemma 6.1, there exists an extension operator P :W 1,p′

h (QR) →W 1,p′

h (Rd).
Since u is supported in BR ⊆ QR,

|(u, g)h| = |(u, Pg)h| ≤ ‖u‖W−1,p
h

‖Pg‖W 1,p′ ≤ ‖u‖W−1,p
h

‖g‖
W 1,p′

h (QR)

≤ Cp,q,R‖u‖W−1,p
h

‖g‖
W 1,q′

h

.

(e) See [8, Proposition 2.1].

�

6.2. Proof of Regularity of Velocity Field and Particle Trajectories. In
this section we prove Lemma 3.6 on the regularity of the velocity field ~v = ∇K ∗ ρ,
the divergence of the velocity field ∇·~v = ∆K ∗ρ and Lemma 3.7 on the regularity
of the particle trajectories Xt(α) and the Jacobian determinants J t(α).

Proof of Lemma 3.6. By the linearity of differentiation and convolution, it is enough
to show the result in the specific case that that K = K1 with s = S ≥ 1− d.

When s = 1 − d, K is a constant multiple of the Newtonian potential. By
Assumption 3.5, ρ ∈ C1([0, T ], Cr

c (R
d)) for r ≥ m,L and has compact support.
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It is a classical result that ∆K ∗ ρ = Cρ. Thus ∇ · ~v = ∆K ∗ ρ belongs to
CL(Rd) ∩ Cm(Rd) and has bounded derivatives up to order m.

Now, we may assume that both ∇K and ∆K are homogeneous of order at least
1− d. We treat both simultaneously by proving the result for a kernel K, which for
fixed l ≥ 1− d satisfies

|∂βK(x)| ≤ C|x|l−|β|, ∀x ∈ R
d \ {0}, 0 ≤ |β| ≤ l + d− 1 .

Note that this implies ∂βK ∈ L1
loc(R

d) for all |β| ≤ l+d−1. When K(x) = ∇K(x),
l = s, and when K(x) = ∆K(x), l = s − 1. The fact that K ∗ ρ ∈ CL(Rd) is
immediate, since ρ ∈ CL

c (R
d) and K ∈ L1

loc(R
d). We now turn to the estimates

that imply K ∗ ρ ∈ Cm(Rd) and the bound on its derivatives.
We prove by induction that for 0 ≤ |γ| ≤ l + d− 1,

∂γK ∗ ρ(x) =
∫

∂γK(x− y)ρ(y)dy .

If |γ| = 0, equality holds. Suppose |γ| ≥ 1 and ∂βK ∗ ρ(x) =
∫

∂βK(x − y)ρ(y)dy

for all |β| = |γ| − 1. If |η| = 1 satisfies ∂η∂β = ∂γ ,

∂γ(K ∗ ρ) = ∂η((∂βK) ∗ ρ) = (∂βK) ∗ (∂ηρ) .
We now move ∂η onto K. Fixing ǫ ∈ (0, 1),

(∂βK) ∗ (∂ηρ)(x) =
∫

|y|<ǫ

∂βK(y)∂ηxρ(x− y)dy +

∫

|y|≥ǫ

∂βK(y)∂ηxρ(x− y)dy

= O(ǫd+l−|β|) +

∫

|y|≥ǫ

∂γK(y)ρ(x− y)dy +O(ǫd−1+l−|β|) .

Since |β| = |γ| − 1 ≤ l + d− 2, sending ǫ→ 0 gives

(∂βK) ∗ (∂ηρ)(x) = (∂γK) ∗ ρ(x) .
This shows K∗ρ ∈ Cl+d−1(Rd). We now show K∗ρ ∈ Cm(Rd). If m ≤ l+d−1,

this is immediate, so suppose m > l + d − 1. By Assumption 3.5, ρ ∈ Cr
c (R

d) for
r ≥ m−(s+d−2). Since ∂γ(K∗ρ) = (∂γK)∗ρ and ∂γK ∈ L1

loc for all |γ| ≤ l+d−1,
for any |β| = m, there exists |η| = m− (l + d− 1) ≤ r so that

∂βK ∗ ρ = (∂γK) ∗ (∂ηρ) .
Thus, K ∗ ρ ∈ Cm(Rd).

Finally, we show that |∂βK ∗ ρ(x, t)| ≤ C(1 + |x|(l−|β|)+) for |β| ≤ m. If
|β| ≥ l + d− 1, let |η| = |β| − (l + d − 1) and |γ| = l + d − 1 so that ∂β = ∂η∂γ .
Otherwise, let γ = β and η = 0. Since ∂βK ∗ ρ(x) is continuous, it is bounded for
|x| ≤ 2R0. If |x| > 2R0,

|∂βK ∗ ρ(x)| = |(∂γK) ∗ (∂ηρ)(x)| ≤ C

∫

|x− y|l−γ |∂ηρ(y)|dy ≤ C

∫

BR0

|x− y|l−γdy

≤
{

C|x|l−γ if l > γ ,

C if l ≤ γ .

Thus, |∂βK∗ρ(x)| ≤ C(1+|x|(l−|β|)+). The constant depends on the exact solution,
the kernel, the dimension, β, T , and R0. �

We now prove Lemma 3.7 on the regularity of the particle trajectories.
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Proof of Lemma 3.7. Assumption 3.5 and Lemma 3.6 ensure sufficient regularity
on the velocity field so that there exists a time interval [0, T0] on which, for α ∈
BR0+2, the particle trajectories X

t(α) and their inverses X−t(α) uniquely exist, are
continuously differentiable in time, and CL in space. Likewise J t(α) and J−t(α)
are CL−1 in space and satisfy equation (3.2) .

Suppose T0 < T . Then there exists α so that |Xt(α)| → +∞ as t → T0. This
contradicts Assumption 3.5. Therefore, T0 = T .

If s = 1− d, we may replace BR0+2 with R
d. �

6.3. Proof of Regularized Kernel Estimates. We now prove the regularized
kernel estimates from Section 3. Throughout, we use that

{

|y|s ∈ L1(B1(0)) and |y|s ∈ L∞(Rd \B1(0)) if 1− d ≤ s ≤ 0 ,

|y|s ∈ L∞(B1(0)) if 0 < s .
(6.2)

Proof of Lemma 3.15. By the linearity of differentiation and convolution, it is enough
to show the result in the specific case that that K = K1 with s = S ≥ 1− d.

If s = 1 − d, K is a constant multiple of the Newtonian potential. In this case,
since ψ ∈ CL(Rd) for L ≥ d+2, it is a classical result that ∆Kδ = ∆K ∗ψδ = Cψδ.
Assumption 3.3 ensures ψδ ∈ CL(Rd), hence ∆Kδ ∈ CL(Rd).

We may now treat the cases of ∇Kδ and ∆Kδ simultaneously by proving the
result for a kernel Kδ = K ∗ ψδ, which for fixed l ≥ 1− d satisfies

|∂βK(x)| ≤ C|x|l−|β|, ∀x ∈ R
d \ {0}, 0 ≤ |β| ≤ l + d− 1 .

When K(x) = ∇K(x), l = s and when K(x) = ∆K(x), l = s− 1.
It is enough to show that in a neighborhood around every x, there exists g(y) ∈

L1(Rd) which dominates K(y)∂βxψδ(x− y). Then, the mean value theorem ensures
that the difference quotient which converges to this derivative at x is also dominated
by g(y), allowing us to conclude

∂β
∫

K(y)ψδ(x− y)dy =

∫

K(y)∂βψδ(x− y)dy ,

and Kδ ∈ CL(Rd). We use Assumption 3.3 on the decay and regularity of ψ to find
dominating functions when l ≤ 0 and l > 0.

If 1 − d ≤ l ≤ 0, the decay and regularity assumptions ensure that there exists
ǫ > 0 so that |∂βψ(x)| ≤ C|x|−d−ǫ for all |β| ≤ L. If l > 0 the regularity assumption
ensures that |∂βψ(x)| ≤ C|x|−d−l−ǫ for all |β| ≤ L. Since ∂βψ is bounded near the
origin, there exists C ′ > 0 so that for all x ∈ R

d,

|∂βψ(x)| ≤
{

C ′(|x|+ 1)−d−ǫ if 1− d ≤ l ≤ 0 ,

C ′(|x|+ 1)−d−ǫ−l if 0 < l .

Therefore,

|K(y)∂βψδ(x− y)| ≤
{

Cδ|y|l(|x− y|+ 1)−d−ǫ if 1− d ≤ l ≤ 0 ,

Cδ|y|l(|x− y|+ 1)−d−ǫ−l if 0 < l .
(6.3)

If |x| < R and |y| > 2R, |x − y| + 1 > |y| − |x| > 1
2 |y|. This gives the following

dominating functions when |x| < R:

|K(y)∂βψδ(x− y)| ≤
{

Cδ,R|y|l1|y|≤2R + Cδ,R1|y|>2R if 1− d ≤ l ≤ 0 ,

Cδ,R if 0 < l .
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Since R was arbitrary, ∂βKδ(x) = K ∗ ∂βψδ(x) for all x ∈ R
d. �

Proof of Lemma 3.16. Our proof generalizes the approaches of Beale and Majda [8]
and Anderson and Greengard [3]. By the linearity of differentiation and convolution,
it is enough to show the result in the specific case that that K = K1 with s = S ≥
1− d.

We first prove the following pointwise bounds for |β| ≤ L and r > 0:

|∂β∇Kδ(x)| ≤
{

C|x|s−|β| if δ ≤ |x| ,
Cδs−|β| if |x| ≤ rδ .

We begin with |x| ≤ rδ. By Lemma 3.15, ∂β∇Kδ = ∇K ∗ (∂βψδ), so

|∂β∇Kδ(x)| ≤
∫

|∇K(y)||∂βψδ(x− y)|dy ≤ C

∫

|y|sδ−d−|β|

∣

∣

∣

∣

∂βψ

(

x− y

δ

)∣

∣

∣

∣

dy ,

≤ C

∫

|δy|sδ−|β|
∣

∣

∣∂βψ
(x

δ
− y

)∣

∣

∣ dy = Cδs−|β|

∫

|y|s
∣

∣

∣∂βψ
(x

δ
− y

)∣

∣

∣ dy .(6.4)

Suppose 1− d ≤ s ≤ 0. By (6.2),

|∂β∇Kδ(x)| ≤ Cδs−|β|

{

‖∂βψ‖L∞(Rd)

∫

|y|≤1

|y|sdy + sup
|y|≥1

|y|s ‖∂βψ‖L1

}

≤ Cδs−|β| .

If s > 0, we apply Assumption 3.3, |x| ≤ rδ, and (6.4) to conclude

|∂β∇Kδ(x)| ≤ Cδs−|β|

∫

∣

∣

∣y +
x

δ

∣

∣

∣

s
∣

∣∂βψ (y)
∣

∣ dy ,

≤ Cδs−|β|

∫

(|y|+ r)
s ∣
∣∂βψ (y)

∣

∣ dy ≤ Cδs−|β| .

We now consider the the pointwise estimate on |∂βKδ(x)| for |x| ≥ δ. First
suppose 1 − d ≤ s ≤ 0. Let φ0 : R → [0, 1] satisfy φ0(s) = 0 for s ≤ 1/4 and
φ0(s) = 1 for s ≥ 1/2. Define φx(y) = φ0(|y|/|x|). By Lemma 3.15,

|∂β∇Kδ(x)| =
∣

∣

∣

∣

∫

∇K(y)∂βψδ(x− y)dy

∣

∣

∣

∣

,

≤
∣

∣

∣

∣

∫

∇K(y)φx(y)∂
βψδ(x− y)dy

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

∇K(y)(1− φx(y))∂
βψδ(x− y)dy

∣

∣

∣

∣

,

= I1 + I2 .

To control I1, we integrate by parts,

I1 ≤
∣

∣

∣

∣

∫

∂βy (∇K(y)φx(y))ψδ(x− y)dy

∣

∣

∣

∣

.

As φx(y) is only nonzero for |y|/|x| > 1/4, we only need to bound I1 for δ ≤
|x| < 4|y|. For any multiindex γ, |∂γyφx(y)| ≤ C|x|−|γ| and by Assumption 3.2,

|∂γ∇K(y)| ≤ C|y|s−|γ| ≤ C|x|s−|γ| for |x| < 4|y|. Combining these facts with the
product rule gives |∂βy (∇K(y)φx(y))| ≤ C|x|s−|β|. Since ψδ ∈ L1(Rd), this shows

I1 ≤ C|x|s−|β| .
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We now turn to I2. Since 1−φx(y) is nonzero for |y|/|x| < 1/2, and |1− φx(y)| ≤ 1,

I2 ≤
∣

∣

∣

∣

∣

∫

|y|≤|x|/2

∇K(y)∂βψδ(x− y)dy

∣

∣

∣

∣

∣

.

For y in this range, |x− y| ≥ |x|− |y| ≥ |x|/2. By Assumption 3.3 on the regularity
of the mollifier, |x|d+|β||∂βψ(x)| ≤ C. Therefore,

|∂βψδ(x−y)| = δ−d−|β|

∣

∣

∣

∣

∂βψ

(

x− y

δ

)∣

∣

∣

∣

≤ Cδ−d−|β||(x−y)/δ|−d−|β| ≤ C|x|−d−|β| .

Furthermore, since s ≥ 1− d,

I2 ≤ C|x|−d−|β|

∣

∣

∣

∣

∣

∫

|y|≤|x|/2

∇K(y)dy

∣

∣

∣

∣

∣

≤ C|x|−d−|β|

∫ |x|/2

0

rsrd−1dr ≤ C|x|s−|β| .

This completes the proof of the pointwise bounds for 1− d ≤ s ≤ 0.
Now we prove the pointwise estimate on |∂βKδ(x)| for δ ≤ |x| when s > 0. First,

note that for any multiindex γ such that |γ| ≤ |β| and s− |γ| ≥ −1,

|∂β∇Kδ(x)|

≤
∣

∣

∣

∣

∣

∫

|y|>ǫ

∇K(x− y)∂βψδ(y)dy

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫

|y|≤ǫ

∇K(x− y)∂βψδ(y)dy

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∫

|y|>ǫ

∂γ∇K(y)∂β−γψδ(x− y)dy

∣

∣

∣

∣

∣

+ Cδ

|γ|−1
∑

m=0

∣

∣

∣

∣

∣

∫

|y|=ǫ

|y|s−mdy

∣

∣

∣

∣

∣

+ Cδ

∣

∣

∣

∣

∣

∫

|y|≤ǫ

|y|sdy
∣

∣

∣

∣

∣

ǫ→0−−−→
∣

∣

∣

∣

∫

∂γ∇K(y)∂β−γψδ(x− y)dy

∣

∣

∣

∣

If there is some |γ| ≤ |β| so that s− |γ| ≤ 0, then applying the previous argument
for s ≤ 0 to |∂γ∇K| ≤ C|x|s−|γ|,

|∇βKδ(x)| ≤ |(∂γ∇K)∗(∂β−γψδ)(x)| ≤ C|x|−1−(|β|−|γ|) = C|x||γ|−1−|β| = C|x|s−|β| .

On the other hand, if s − |β| > 0, integrating by parts |β| times and applying
Assumption 3.3 on the decay of the mollifier when s > 0 leaves us with

|∂β∇Kδ(x)| =
∣

∣

∣

∣

∫

∂β∇K(y)ψδ(x− y)dy

∣

∣

∣

∣

≤ C

∫

|y|s−|β||ψδ(x− y)|dy

≤ C

∫

|y|≤2|x|

|y|s−|β||ψδ(x− y)|dy + Cδ−d

∫

|y|>2|x|

|y|s−|β| δd+s+ǫ

|x− y|d+s+ǫ
dy

The first term is bounded by C|x|s−|β|. The second term is bounded for |x| ≥ δ by

Cδs+ǫ

∫

|y|>2|x|

|y|s−|β| 1

(|y| − |x|)d+s+ǫ
dy ≤ Cδs+ǫ

∫

|y|>2|x|

|y|s−|β| 1

|y|d+s+ǫ
dy

≤ Cδs+ǫ

∫ ∞

2|x|

r−|β|−d−ǫrd−1dr ≤ Cδs+ǫ|x|−|β|−ǫ ≤ C|x|s−|β| .

This completes the proof of the pointwise estimates.
Finally, we apply the pointwise estimates to obtain Lemma 3.16. We define

δ′ = (C ′ + 1)δ, and without loss of generality, we assume R ≥ δ′. First, decompose
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the integral as
∫

BR

|∂β∇Kδ(x+ g(x))|dx

≤
∫

BR∩Bδ′

|∂β∇Kδ(x+ g(x))|dx+

∫

BR\Bδ′

|∂β∇Kδ(x+ g(x))|dx

= I3 + I4

When |x| ≤ δ′, |x + g(x)| ≤ 2δ′ = 2(C ′ + 1)δ and I3 ≤ Cδs−|β|δd ≤ Cδs+d−|β|.
When |x| > δ′, we use that |x+ g(x)| ≥ δ′ − C ′δ = δ to conclude

I4 ≤ C

∫

BR\Bδ′

|x+ g(x)|s−|β|dx .

If s − |β| > 0, the fact that |x + g(x)| ≤ 2R implies the integral is bounded by a
constant which depends on R. If s− |β| ≤ 0,

I4 ≤ C

∫

BR\Bδ′

(|x| − |g(x)|)s−|β|dx ≤ C

∫ R

δ′
(r − C ′δ)s−|β|rd−1dr

≤ C

∫ R−C′δ

δ

rs−|β|(r + C ′δ)d−1dr ≤ C

∫ R

δ

rs+d−|β|−1(1 + C ′)d−1dr

≤











C(Rs+d−|β| − δs+d−|β|) ≤ C if s+ d > |β| ,
C(log(R)− log(δ)) ≤ C| log δ| if s+ d = |β| ,
C(δs+d−|β| −Rs+d−|β|) ≤ Cδs+d−|β| if s+ d < |β| .

The constant depends on the kernel, mollifier, dimension, β, and R. �
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