A Block Cipher Based Pseudo Random Number Generator Secure against Side-Channel Key Recovery

Christophe Petit¹, François-Xavier Standaert¹, Olivier Pereira¹, Tal G. Malkin², Moti Yung²

¹UCL Crypto Group, Université catholique de Louvain. ² Dept. of Computer Science, Columbia University.

Security is usually proved in an idealized model

Physical Security

- Security is usually proved in an idealized model
- While implemented, many secure cryptographic protocols are vulnerable to side-channel attacks (SC)

Physical Security

- Security is usually proved in an idealized model
- While implemented, many secure cryptographic protocols are vulnerable to side-channel attacks (SC)
 - Issue : partial information on the SECRET is leaked by physical media

Physical Security

- Security is usually proved in an idealized model
- While implemented, many secure cryptographic protocols are vulnerable to side-channel attacks (SC)
 - Issue : partial information on the SECRET is leaked by physical media
 - By recovering many pieces of partial info, one can recover the whole secret key

- How to deal with leakages ?
 - (Try to) remove them by electronic countermeasures (masking, noise addition, dual-rails,...)

- How to deal with leakages ?
 - (Try to) remove them by electronic countermeasures (masking, noise addition, dual-rails,...)
 - Assume some perfect component (e.g. Katz' non-tamperable device)

- How to deal with leakages ?
 - (Try to) remove them by electronic countermeasures (masking, noise addition, dual-rails,...)
 - Assume some perfect component (e.g. Katz' non-tamperable device)
 - Re-design algorithms

- Re-design algorithms
 - Do not only prevent leakages from occuring
 - Make their combination hard

- Re-design algorithms
 - Do not only prevent leakages from occuring
 - Make their combination hard
 - Model the leakages
 - Micali-Reyzin model

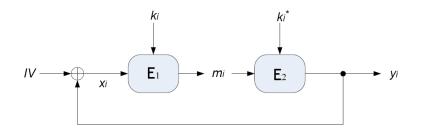
- Re-design algorithms
 - Do not only prevent leakages from occuring
 - Make their combination hard
 - Model the leakages
 - Micali-Reyzin model
 - Case Study : Pseudo-Random Number Generator (PRNG)

- Black-Box security (BB) : PRNG
- ► Grey-Box security (GB): prevent traditional SC cryptanalysis

Talk Overview

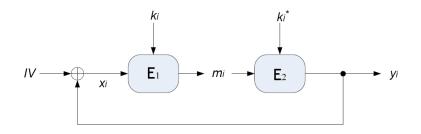
- Introduction
- PRNG
 - Construction
 - BB model & security
 - GB model & security
 - PRNG summary
- Conclusion and further work

Construction



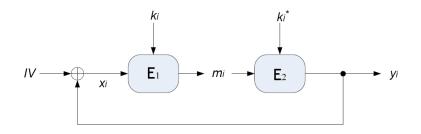
(Public IV, secret keys)

Construction



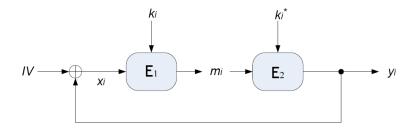
- (Public IV, secret keys)
- First idea (in BB): if E₁ and E₂ are "good", then the y_i's should be PRNs.

Construction



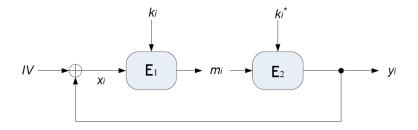
- (Public IV, secret keys)
- First idea (in BB): if E₁ and E₂ are "good", then the y_i's should be PRNs.
- But (in GB) successive leakages allow recovering the whole secret.

The construction



▶ So key update : $k_{i+1} = k_i \oplus m_i$ and $k_{i+1}^* = k_i^* \oplus m_i$

The construction



▶ So key update : $k_{i+1} = k_i \oplus m_i$ and $k_{i+1}^* = k_i^* \oplus m_i$

UCL Crypto Group

• Each running key k_i, k_i^* is used to encrypt *only* one message.

- $\blacktriangleright \text{ Ideal cipher model } \mathsf{E}: \mathcal{K} \times \mathcal{M} \to \mathcal{M}$
 - (Here $\mathcal{K} = \mathcal{M}$)
 - For each key k ∈ K, the function E_k(·) = E(k, ·) is a random permutation on M

- ► PRNG :
 - Deterministic algorithm $G: \mathcal{K} \to \hat{\mathcal{K}}$ (with $|\mathcal{K}| < |\hat{\mathcal{K}}|$)

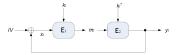
- ► PRNG :
 - Deterministic algorithm $\mathsf{G}:\mathcal{K}\to\hat{\mathcal{K}}$ (with $|\mathcal{K}|<|\hat{\mathcal{K}}|)$
 - For any adversary $\mathcal{A}: \hat{\mathcal{K}} \to \{0,1\}$, let

$$\begin{aligned} &\mathsf{Succ}_{\mathsf{G},\mathsf{A}}^{\mathrm{prng}-1} &= \mathsf{Pr}[\mathsf{A}(\hat{k}) = 1 : \hat{k} \xleftarrow{R} \hat{\mathcal{K}}], \\ &\mathsf{Succ}_{\mathsf{G},\mathsf{A}}^{\mathrm{prng}-0} &= \mathsf{Pr}[\mathsf{A}(\hat{k}) = 1 : \hat{k} \leftarrow \mathsf{G}(k); k \xleftarrow{R} \mathcal{K}], \\ &\mathsf{Adv}_{\mathsf{G},\mathsf{A}}^{\mathrm{prng}} &= |\mathsf{Succ}_{\mathsf{G},\mathsf{A}}^{\mathrm{prng}-1} - \mathsf{Succ}_{\mathsf{G},\mathsf{A}}^{\mathrm{prng}-0}|. \end{aligned}$$

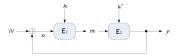
- ► PRNG :
 - Deterministic algorithm $G : \mathcal{K} \to \hat{\mathcal{K}}$ (with $|\mathcal{K}| < |\hat{\mathcal{K}}|$)
 - For any adversary $A: \hat{\mathcal{K}} \to \{0,1\}$, let

$$\begin{split} & \textbf{Succ}_{G,A}^{\text{prng}-1} &= & \Pr[\mathsf{A}(\hat{k}) = 1 : \hat{k} \xleftarrow{R} \hat{\mathcal{K}}], \\ & \textbf{Succ}_{G,A}^{\text{prng}-0} &= & \Pr[\mathsf{A}(\hat{k}) = 1 : \hat{k} \leftarrow \mathsf{G}(k); k \xleftarrow{R} \mathcal{K}], \\ & \textbf{Adv}_{G,A}^{\text{prng}} &= & |\textbf{Succ}_{G,A}^{\text{prng}-1} - \textbf{Succ}_{G,A}^{\text{prng}-0}|. \end{split}$$

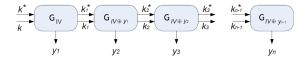
• G is a PRNG if for any A, $\mathbf{Adv}_{G,A}^{prng} \approx 0$.



Proof: study security of one round and extend it to multiple rounds by "hybrid argument"



Proof: study security of one round and extend it to multiple rounds by "hybrid argument"



- ▶ For each $X \in \mathcal{M} = \mathcal{K}$, let $G_X : \mathcal{K} \times \mathcal{K} \to \mathcal{K} \times \mathcal{K} \times \mathcal{K}$
 - $\mathsf{G}_X(K,K^*) = (\mathsf{E}_K(X) \oplus K, \mathsf{E}_K(X) \oplus K^*, \mathsf{E}_{K^*}(\mathsf{E}_K(X))).$

 Security of a single round By definition,

$$\begin{aligned} \mathbf{Succ}_{\mathsf{G}_X,\mathsf{A}}^{\mathrm{prng}-0} &= & \mathsf{Pr}[\mathsf{A}(\hat{k}) = 1 : (k,k^*) \xleftarrow{R} \mathcal{K} \times \mathcal{K}; \\ & \hat{k} \leftarrow \mathsf{G}_X(k,k^*)] \end{aligned}$$

 Security of a single round By definition,

$$\begin{aligned} \mathsf{Succ}_{\mathsf{G}_X,\mathsf{A}}^{\mathrm{prng}=0} &= & \mathsf{Pr}[\mathsf{A}(\hat{k}) = 1 : (k,k^*) \xleftarrow{R} \mathcal{K} \times \mathcal{K}; \\ & \hat{k} \leftarrow \mathsf{G}_X(k,k^*)] \end{aligned}$$

Recalling what $G_X(k, k^*)$ is,

► Security of a single round Recalling what $G_X(k, k^*)$ is, $Succ_{G_X,A}^{prng-0} = Pr[A(k_1, k_1^*, y) = 1 :$ $k \stackrel{R}{\leftarrow} \mathcal{K}; k^* \stackrel{R}{\leftarrow} \mathcal{K};$ $m \leftarrow E_k(X);$ $k_1 \leftarrow m \oplus k; k_1^* \leftarrow m \oplus k^*;$

 $\begin{array}{l} \kappa_1 \leftarrow m \oplus \kappa; \, \kappa_1 \leftarrow m \oplus \\ y \leftarrow \mathsf{E}_{k^*}(m) \end{array} \right]$

 Security of a single round Recalling what G_X(k, k*) is,

$$Succ_{G_{X},A}^{prng-0} = \Pr[A(k_{1}, k_{1}^{*}, y) = 1 :$$

$$k \xleftarrow{R} \mathcal{K}; k^{*} \xleftarrow{R} \mathcal{K};$$

$$m \leftarrow E_{k}(X);$$

$$k_{1} \leftarrow m \oplus k; k_{1}^{*} \leftarrow m \oplus k^{*};$$

$$y \leftarrow E_{k^{*}}(m)]$$

Now using the ideal cipher model for E_k and E_{k^*} ,

► Security of a single round
Now using the ideal cipher model for
$$E_k$$
 and E_{k^*} ,
 $Succ_{G_X,A}^{prng-0} = Pr[A(k_1, k_1^*, y) = 1 :$
 $k \stackrel{R}{\leftarrow} \mathcal{K}; k^* \stackrel{R}{\leftarrow} \mathcal{K};$
 $P \stackrel{R}{\leftarrow} Perm(\mathcal{K}); P^* \stackrel{R}{\leftarrow} Perm(\mathcal{K});$
 $m \leftarrow P(X);$
 $k_1 \leftarrow m \oplus k; k_1^* \leftarrow m \oplus k^*;$
 $y \leftarrow P^*(m)]$

Security of a single round
Now using the ideal cipher model for E_k and E_{k*},
$$\begin{aligned} \mathbf{Succ}_{G_X,A}^{\mathrm{pring}=0} &= \Pr[A(k_1, k_1^*, y) = 1: \\ k \leftarrow \mathcal{K}; k^* \leftarrow \mathcal{K}; \\ P \leftarrow \mathcal{K}; k^* \leftarrow \mathcal{K}; \\ P \leftarrow \mathcal{Perm}(\mathcal{K}); P^* \leftarrow \mathcal{Perm}(\mathcal{K}); \\ m \leftarrow P(X); \\ k_1 \leftarrow m \oplus k; k_1^* \leftarrow m \oplus k^*; \\ y \leftarrow P^*(m)] \end{aligned}$$

Choosing random permutation and then applying to X is equivalent to choosing random element, so

UCL Crypto Group

Security of a single round

Choosing random permutation and then applying to X is equivalent to choosing random element, so

$$\begin{aligned} \mathbf{Succ}_{\mathsf{G}_X,\mathsf{A}}^{\mathrm{prng}-0} &= & \mathsf{Pr}[\mathsf{A}(k_1,k_1^*,y) = 1:k \xleftarrow{R} \mathcal{K}; k^* \xleftarrow{R} \mathcal{K}; \\ & & m \xleftarrow{R} \mathcal{K}; k_1 \leftarrow m \oplus k; \\ & & k_1^* \leftarrow m \oplus k^*; y \xleftarrow{R} \mathcal{K}] \end{aligned}$$

Security of a single round

Choosing random permutation and then applying to X is equivalent to choosing random element, so

$$\mathbf{Succ}_{\mathsf{G}_X,\mathsf{A}}^{\mathrm{prng}-0} = \mathsf{Pr}[\mathsf{A}(k_1, k_1^*, y) = 1 : k \xleftarrow{R} \mathcal{K}; k^* \xleftarrow{R} \mathcal{K}; m \xleftarrow{R} \mathcal{K}; k_1 \leftarrow m \oplus k; k_1^* \leftarrow m \oplus k^*; y \xleftarrow{R} \mathcal{K}]$$

So, each of the inputs of A "looks random"

Security of a single round

So, each of the inputs of A "looks random"

$$\begin{aligned} \mathbf{Succ}_{\mathsf{G}_X,\mathsf{A}}^{\mathrm{prng}-0} &= & \mathsf{Pr}[\mathsf{A}(k_1,k_1^*,y) = 1:k_1 \xleftarrow{R} \mathcal{K}; k_1^* \xleftarrow{R} \mathcal{K}; \\ & y \xleftarrow{R} \mathcal{K}] \end{aligned}$$

Security of a single round

So, each of the inputs of A "looks random"

$$\begin{aligned} \mathbf{Succ}_{\mathsf{G}_{X},\mathsf{A}}^{\mathrm{prng}-0} &= & \mathsf{Pr}[\mathsf{A}(k_{1},k_{1}^{*},y)=1:k_{1}\xleftarrow{R}\mathcal{K};k_{1}^{*}\xleftarrow{R}\mathcal{K};\\ & y\xleftarrow{R}\mathcal{K}]\\ &= & \mathbf{Succ}_{\mathsf{G}_{X},\mathsf{A}}^{\mathrm{prng}-1} \end{aligned}$$

- Security of G^q (q rounds of G): hybrid argument
 - Consider hybrid algorithms on q rounds

- Security of G^q (q rounds of G): hybrid argument
 - Consider hybrid algorithms on q rounds
 - The *ith* hybrid has *i* single G rounds, followed by *q i* rounds of truly random generators

Black-Box Analysis

- Security of G^q (q rounds of G): hybrid argument
 - Consider hybrid algorithms on q rounds
 - ► The *ith* hybrid has *i* single G rounds, followed by *q* − *i* rounds of truly random generators
 - The i + 1th hybrid differs from the ith hybrid only by one round

Black-Box Analysis

- Security of G^q (q rounds of G): hybrid argument
 - Consider hybrid algorithms on q rounds
 - ► The *i*th hybrid has *i* single G rounds, followed by *q* − *i* rounds of truly random generators
 - The i + 1th hybrid differs from the ith hybrid only by one round
 - If there is A such that $\mathbf{Adv}_{G^{q},A}^{\operatorname{prng}} > \epsilon$, then there is A' such that $\mathbf{Adv}_{G,A'}^{\operatorname{prng}} > \frac{\epsilon}{q}$ for one of the rounds

Grey-Box Model

Now recall that physical means leak information on the keys

Grey-Box Model

- Now recall that physical means leak information on the keys
- Implementation = algorithm + (probabilistic) leakage function of the keys
 P^q(K, K*) = (G^q(K, K*), L^q(K, K*))

Grey-Box Model

- Now recall that physical means leak information on the keys
- Implementation = algorithm + (probabilistic) leakage function of the keys
 P^q(K, K*) = (G^q(K, K*), L^q(K, K*))
- We show the available information does not permit recovering the secret

Grey-Box Model

Side-channel key recovery adversary

$$\mathbf{Succ}_{\mathsf{P}^{q}(\mathcal{K},\mathcal{K}^{*}),\mathsf{A}}^{\mathrm{sc-kr}-\delta(\mathcal{K},\mathcal{K}^{*})} = \mathsf{Pr}[\mathsf{A}(\mathsf{P}^{q}(k,k^{*})) = \delta(k,k^{*}) : k \xleftarrow{R} \mathcal{K}; k^{*} \xleftarrow{R} \mathcal{K}]$$

 $\delta(K, K^*)$ is part of the key (*e.g.*, 1 byte)

Grey-Box Model

Side-channel key recovery adversary

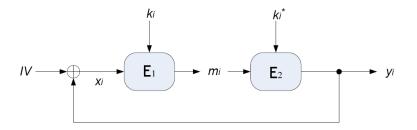
$$\begin{aligned} \mathsf{Succ}_{\mathsf{P}^{q}(\mathcal{K},\mathcal{K}^{*}),\mathsf{A}}^{\mathrm{sc-kr}-\delta(\mathcal{K},\mathcal{K}^{*})} &= \mathsf{Pr}[\mathsf{A}(\mathsf{P}^{q}(k,k^{*})) = \delta(k,k^{*}) : \\ k \xleftarrow{R} \mathcal{K}; k^{*} \xleftarrow{R} \mathcal{K}] \end{aligned}$$

 $\delta(K, K^*) \text{ is part of the key } (e.g., 1 \text{ byte})$ • If $\delta(K, K^*) = K_{[0...7]}$

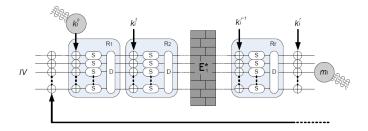
$$\textbf{Succ}_{\mathsf{P}^q(\mathcal{K},\mathcal{K}^*),\mathsf{A}}^{\mathrm{sc}-\mathrm{kr}-\mathcal{K}} = (\textbf{Succ}_{\mathsf{P}^q(\mathcal{K},\mathcal{K}^*),\mathsf{A}}^{\mathrm{sc}-\mathrm{kr}-\mathcal{K}_{[0..7]}})^{n/8}$$

Grey-Box Model

- Assumptions :
 - Fixed IV
 - ▶ Leakages on the m_i's, k_i's (and k_i^{*}'s)
 - Cannot be related but by the rekeying relations $k_{i+1}^j = k_i^j \oplus m_i$



Grey-Box Model



- Additional assumptions
 - Iterative BC, no key schedule
 - The adversary targets first round key $L(k_i) = L(k_i^0)$
 - Form of leakage functions : HW, GHW, NI

Grey-Box Analysis

▶ With observed leakages $I^q = \{L(k_i), L(m_i)\}$ and relations $k_{i+1} = k_i \oplus m_i$, the best guess is

$$k_{guess} := \arg \max_{k} \Pr[K = k | \mathbf{L}^{\mathbf{q}} = \mathbf{I}^{\mathbf{q}}]$$

Grey-Box Analysis

• With observed leakages $I^q = \{L(k_i), L(m_i)\}$ and relations $k_{i+1} = k_i \oplus m_i$, the best guess is

$$k_{guess} := \arg \max_{k} \Pr[K = k | \mathbf{L}^{\mathbf{q}} = \mathbf{I}^{\mathbf{q}}]$$

We derive formulae for the success rate

$$\mathbf{Succ}_{\mathsf{P}^{q}(\mathcal{K},\mathcal{K}^{*}),\mathsf{A}}^{\mathrm{sc-kr}-\mathcal{K}_{0}} = f(q, \{L(k_{i}), L(m_{i})\})$$

Grey-Box Analysis

• With observed leakages $I^q = \{L(k_i), L(m_i)\}$ and relations $k_{i+1} = k_i \oplus m_i$, the best guess is

$$k_{guess} := \arg \max_{k} \Pr[K = k | \mathbf{L}^{\mathbf{q}} = \mathbf{I}^{\mathbf{q}}]$$

We derive formulae for the success rate

$$\mathsf{Succ}_{\mathsf{P}^q(K,K^*),\mathsf{A}}^{\mathrm{sc-kr}-K_0} = f(q, \{L(k_i), L(m_i)\})$$

▶ Goal : show that SR remains small as *q* increases

Hamming Weight Leakages

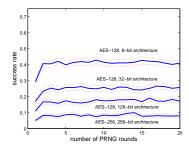
- Hamming weight leakages $L(x) = W_H(x) = \sum_i x_i$
- (relevant in power consumption measures)

Hamming Weight Leakages

- Hamming weight leakages $L(x) = W_H(x) = \sum_i x_i$
- (relevant in power consumption measures)
- ► In this case we compute : $\mathbf{Succ}_{\mathsf{P}^q(K,K^*),\mathsf{A}}^{\mathrm{sc-kr}-K_0} = \frac{n+1}{2^n}$
- High security, independently of q

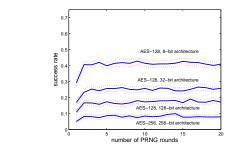
Noisy Identity Leakages

 \blacktriangleright Here the above formulae are hard to evaluate analytically \rightarrow Monte-Carlo simulations



Noisy Identity Leakages

 \blacktriangleright Here the above formulae are hard to evaluate analytically \rightarrow Monte-Carlo simulations



PRNG Summarized

BB : secure in the ideal cipher model

- BB : secure in the ideal cipher model
- GB : SC Key Recovery prevented by the rekeying process Some practically relevant leakages are investigated and $SR \ll 1$ even if q increases

PRNG Summarized

- BB : secure in the ideal cipher model
- GB : SC Key Recovery prevented by the rekeying process Some practically relevant leakages are investigated and SR << 1 even if q increases With other countermeasures, leakages on more rounds

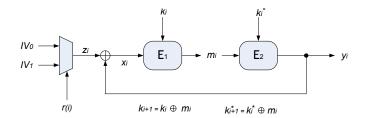
means better attack

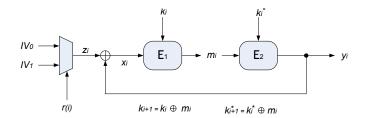
Conclusion and Further Work

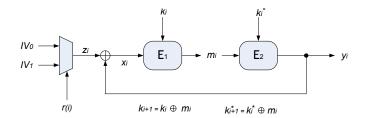
 Re-design strategy to be used with other countermeasures

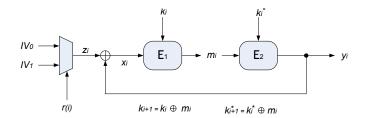
Conclusion and Further Work

- Re-design strategy to be used with other countermeasures
- Need of theoretical framework for SC
 - unify BB and GB...
 - define physical primitives
 - compose primitives



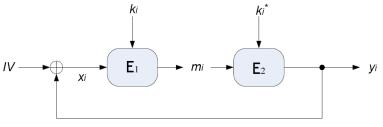






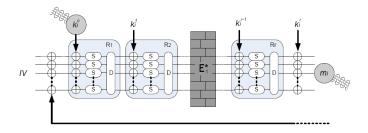
Grey-Box Model

- Assumptions :
 - Fixed IV (removed further)
 - Leakages on the m_i's, k_i's (and k_i^{*}'s)
 - Cannot be related but by the rekeying relations $k_{i+1}^j = k_i^j \oplus m_i$



 $k_{i+1} = k_i \oplus m_i$ $k_{i+1}^* = k_i^* \oplus m_i$

Grey-Box Model



- Additional assumptions
 - Iterative BC, no key schedule
 - The adversary targets first round key $L(k_i) = L(k_i^0)$
 - ► Form of leakage functions : HW, GHW, NI
 - We suppose Bayesian adversary

Discussion about Grey-Box assumptions

- Many assumptions
 - make the proofs cleaner...
 - ...but are not essential.
- Relaxations \rightarrow same qualitative conclusions
 - key schedule \rightarrow adapt the leakage model $L(k_i)$
 - ► targeting not only the first iteration of the PRNG → may increase SR, but qualitative results remains

