
A BLOCK ORTHOGONALIZATION PROCEDURE WITH

CONSTANT SYNCHRONIZATION REQUIREMENTS

ANDREAS STATHOPOULOS � AND KESHENG WU y

Abstract. We propose an alternative orthonormalization method that computes the orthonor-

mal basis from the right singular vectors of a matrix. Its advantage are: a) all operations are

matrix-matrix multiplications and thus cache-e�cient, b) only one synchronization point is required

in parallel implementations, c) could be more stable than Gram-Schmidt. In addition, we consider

the problem of incremental orthonormalization where a block of vectors is orthonormalized against a

previously orthonormal set of vectors and among itself. We solve this problem by alternating itera-

tively between a phase of Gram-Schmidt and a phase of the new method. We provide error analysis

and use it to derive bounds on how accurately the two successive orthonormalization phases should

be performed to minimize total work performed. Our experiments con�rm the favorable numerical

behavior of the new method and its e�ectiveness on modern parallel computers.

Key words. Gram-Schmidt, orthogonalization, Householder, QR factorization,
singular value decomposition, Poincare

AMS Subject Classi�cation. 65F15

1. Introduction. Computing an orthonormal basis from a given set of vectors
is a basic computation, common in most scienti�c applications. Often, it is also one
of the most computationally demanding procedures because the vectors are of large
dimension, and because the computation scales as the square of the number of vectors
involved. Further, among several orthonormalization techniques the ones that ensure
high accuracy are the more expensive ones.

In many applications, orthonormalization occurs in an incremental fashion, where
a new set of vectors (we call this internal set) is orthogonalized against a previously
orthonormal set of vectors (we call this external), and then among themselves. This
computation is typical in block Krylovmethods, where the Krylov basis is expanded by
a block of vectors [12, 11]. It is also typical when certain external orthogonalization
constraints have to be applied to the vectors of an iterative method. Locking of
converged eigenvectors in eigenvalue iterative methods is such an example [19, 22].

This problem di�ers from the classical QR factorization in that the external set
of vectors should not be modi�ed. Therefore, a two phase process is required; �rst
orthogonalizing the internal vectors against the external, and second the internal
among themselves. Usually, the number of the internal vectors is much smaller than
the external ones, and signi�cantly smaller than their dimension. Another important
di�erence is that the accuracy of the R matrix of the QR factorization is not of pri-
mary interest, but rather the orthonormality of the produced vectors Q. A variety
of orthogonalization techniques exist for both phases. For the external phase, Gram-
Schmidt (GS) and its modi�ed version (MGS) are the most competitive choices. For
the internal phase, QR factorization using Householder transformations is the most
stable, albeit more expensive method [11]. When the number of vectors is signi�-
cantly smaller than their dimension, MGS or GS with reorthogonalization are usually
preferred.

Computationally, MGS, GS and Housholder transformations are based on level
1 or level 2 BLAS operations [15, 9, 8]. These basic kernel computations, dot prod-
ucts, vector updates and sometimes matrix-vector operations, cannot fully utilize the

�Department of Computer Science, College of William and Mary, Williamsburg, Virginia 23187-

8795, (andreas@cs.wm.edu).
yNERSC, Lawrence Berkeley National Laboratory, Berkeley, California 94720, (kwu@lbl.gov).

1

processor cache, with signi�cant performance shortcomings on most of todays com-
puters. In addition, these methods have high synchronization requirements when
implemented on parallel computers. The number of synchronization points of the GS
is linear to the number of vectors, while for the rest methods it is quadratic [14].
When the parallel platform involves a high latency network but fast processors, as
in the case of the increasingly popular clusters of workstations [21], the number of
synchronization points can have an adverse e�ect in the scalability of the method.

Most of the previous e�orts to address these problems considered blocks of vectors,
and used hybrids of the more scalable GS for orthogonalization between blocks, and
the more accurate MGS for orthogonalization within blocks [14, 2]. By adjusting
the block size appropriately, these techniques can produce accurate orthonormal sets
while reducing the synchronization requirements of MGS. However, the number of
synchronization points is still linear to the number of vectors, and BLAS level 2
kernels are still dominant despite blocking. Finally, most of such e�orts have focused
on a full QR factorization of a set of vectors, rather than the two phase problem.

In this paper, we introduce a method based on the singular value decomposition
(SVD), that uses the right singular vectors to produce an orthonormal basis for a
given subspace. The idea itself is not new, dating back at least to Poincare, and it
is sometimes encountered in chemistry and wavelet literature [5, 20, 16, 17, 6]. How-
ever, it has not received any attention as a computationally viable orthogonalization
method, and to our knowledge there is no analysis of its numerical properties. Beyond
theoretical considerations, the method, which we call SVQB, has some very attractive
characteristics. It uses primarily level 3 BLAS kernels, and it has a constant number
of synchronization points. As we show in this paper, it is not as numerically accurate
as MGS, but it is often better than GS. More interestingly, we show that more stable
alternatives, such as MGS or Householder, are an overkill for our two phase problem.
Coupling the SVQB method for the internal phase with a block GS with reorthogonal-
ization for the external phase results in a method also with constant synchronization
requirements.

The paper is organized as follows. We �rst describe the basic idea of the SVQB
method, and we couple it with a block GS for the two phase problem. The numerical
stability of the method is analyzed in the following section, and some numerical exper-
iments and comparisons with other methods verify its e�ectiveness. We then analyze
the numerical interaction between the methods used in each of the two phases, and
based on this theory we tune the two phases so that they do not perform unneces-
sary reorthogonalizations. Following, we present timings from a series of experiments
on the Cray T3E, and on the IBM SP-2. These verify that both the block computa-
tions and the small number of synchronizations help the new method achieve accurate
orthogonality, faster than other competitive methods.

2. Orthogonalization methods. Let V 2 <n�k be a set of orthonormal vec-
tors, and W 2 <n�m be a set of vectors, where k +m � n. In practice, we usually
expect m < k and m � n. The problem is to obtain an orthonormal set of vec-
tors Q, such that span(Q)=span(W) and Q ? V . This problem can be viewed as
consisting of two phases: obtaining a Q which is orthogonal to V (external phase),
and orthonormalizing the Q vectors among themselves (internal phase). The internal
phase problem is most commonly solved through various methods for QR factoriza-
tion [11, 23].

Gram-Schmidt (GS) is the most well known and also the least computationally
expensive method for QR factorization. In addition, GS is based primarily on level

2

2 BLAS kernels, and it is possible to implement it in parallel with a modest num-
ber of m + 1 synchronization points. Although computationally attractive, GS does
not always produce numerically orthogonal vectors [2]. However, when used with
reorthogonalization, a second GS iteration is typically enough for producing orthog-
onality to machine precision [7]. Since a second iteration is not always necessary, GS
with reorthogonalization is often preferred over other methods.

Householder reections, on the other hand, yield a QR factorization that is nu-
merically accurate. By construction, the resulting matrix Q is orthogonal to machine
precision (�), and the computed upper triangular matrix R di�ers from the exact one
by less than �kAk [11]. Despite its excellent numerical characteristics, this technique
involves twice the arithmetic of the GS. For a slight increase in arithmetic, a block
version is also possible that facilitates the use of level 3 BLAS kernels. However, when
m� n, this blocking is harder to obtain and it is less e�ective. Moreover, the number
of synchronization points it requires grows quadratically with m.

Modi�ed Gram-Schmidt (MGS) improves the numerical stability of the GS by
orthogonalizing individual pairs of vectors rather than a vector against a block. For
MGS, the error in the orthogonality of Q can be bounded by ��(W), where �(W) is
the condition number of W [1, 3]. The operation count for MGS is the same with GS,
but working on individual vectors allows only for level 1 BLAS kernels, which impairs
signi�cantly the actual performance on cache based computers. Finally, the number
of synchronization points grows quadratically with m.

In the context of the two phase problem, producing an internal set of vectors Q
with orthogonality close to machine precision is unnecessary, because of the interde-
pendence of the phases. For example, if the internal vectors W are orthogonal to
machine precision to all external vectors V , the internal orthogonalization could spoil
signi�cantly this external orthogonality. Therefore, a second iteration through the
algorithm would still be necessary. If W and V are far from orthogonal, obtaining a
fully orthonormal Q is also unnecessary because the external orthogonalization will
spoil the orthogonality of Q. Therefore, this two phase problem obviates the use of
expensive but stable methods such as Householder.

3. The SVQB method. As with the two phase problem, it is often the case
that an orthonormal basis of the span(W) is needed, rather than a QR factorization
of W . There are various ways of obtaining such a basis, but an especially interesting
one is the one derived from the right singular vectors of W . Assume that the vectors
inW are normalized. The singular values ofW are the square roots of the eigenvalues
of S =W TW , and the right singular vectors are the corresponding eigenvectors of S.
Let Su = u� be the eigendecomposition of S, and de�ne Q = Wu��1=2. Obviously,
span(Q) = span(W) and QTQ = I . If the W vectors are not normalized, the diagonal
of S, D = diag(S), contains the squares of their norms (Sii = W T

i Wi). Therefore,
we can perform a normalization implicitly by scaling the columns and rows of S, and
work with the implicitly normalizedWD�1=2. This implicit normalization is not only
inexpensive, but also as numerically stable as explicit normalization. The resulting
factorization is not a QR but rather a `QB' factorization where Q is orthonormal
and B a full matrix. In exact arithmetic, the algorithm for this singular vector QB
factorization (which we call SVQB) follows:

Algorithm 3.1. Q = SVQB(W)
1. S0 =W TW

2. Scale S = D�1=2S0D�1=2, with D = diag(S)

3

3. Solve Su = u�, for all eigenpairs

4. Compute Q =WD�1=2u��1=2

When some of the vectors inW are linearly dependent, one or more of the eigenvalues
are zero, and the scaling in the computation of Q cannot be carried out. In �nite pre-
cision, the same e�ect is caused by almost linearly dependent vectors and eigenvalues
close to zero. To prevent normalization overows, we set a minimum threshold for
eigenvalues. If � is the machine precision, we insert the following two steps:

3.1 � = � maxi(�ii)
3.2 If �ii < � , set �ii = � , for all i.

Other strategies for dealing with linear dependencies are also possible. For example,
we could consider only those eigenvectors with eigenvalues greater than some \safe"
threshold. The resulting basis is then smaller, but it is guaranteed to be orthonormal
and to numerically span a subspace of the original vectors. Finally, because of �nite
precision arithmetic, the algorithm may have to be applied iteratively (Q(i+1) =
SVQB(Q(i))), until an orthonormal set Q is obtained.

Both the solution of the eigenvalue problem and the implicit normalization in-
volve only m�m matrices (S and u), and thus can be computed inexpensively. On
the other hand, the matrix-matrix multiplication for computing S and the multipli-
cation of W with u, each contribute 2nm2 oating point operations, which makes the
algorithm twice as expensive as GS. However, these operations are both level 3 BLAS
kernels and can be performed e�ciently on cache based computers. Alternatively,
the matrix multiplication for computing the symmetric S can be performed with half
the operations, but level 2 BLAS will have to be used. Moreover, if implemented in
parallel, the SVQB method method requires only one synchronization point, when
computing the matrix S.

3.1. The Choleski QR method. Similarly to the SVQB method, we can de-
rive a block QR factorization based on the Choleski factorization. Note, that if
S = W TW = RTR, where R is the Choleski factor, Q = WR�1 de�nes the QR
factorization for W [11]. Although this method is rarely or never used computation-
ally, it has some attractive characteristics; it is a QR factorization, it is based on
a level 3 BLAS kernel and a triangular system solution, it involves only 50% more
arithmetic than GS, and it also requires one synchronization point in parallel imple-
mentations. Researchers have noticed that it is not as stable as MGS, but frequently
it can be more stable than GS [2, 10]. One of the problematic issues with this (denoted
as CholQR) method is that the more ill-conditioning S is, the less stable the Choleski
factorization becomes. Regularizing it in some e�cient and e�ective way is not as
straightforward as in the case of the SVQB, where the smallest singular pairs can be
simply left out of the computation. Finally, the cache performance of the CholQR is
usually inferior to that of the SVQB, because of the triangular solve.

3.2. The two phase GS-SVQB. In the two phase case, the external vectors
V should not be modi�ed, and thus external orthogonalization is performed by either
GS or MGS. Better stability is certainly an advocate for MGS. However, in many
problems k, the number of vectors in V , is large and performing this operation as
e�ciently as possible is crucial. In addition, accuracy close to machine precision is
less critical because the orthogonality achieved in one phase may not be preserved
in the other. For this reason, the block GS with BLAS 3 kernels and some form of
reorthogonalizationmechanism is usually preferred. If we denote asQ=GS(V;W) the

4

block GS process, (I �V V T)W followed by a normalization, the two phase algorithm
can be described as:

Algorithm 3.2. Q = GS-SVQB(V;W)
1. W 0 = GS(V;W)
2. Q = SVQB(W 0)

In practice, the above algorithm does not always compute an accurately orthonor-
mal set Q, and thus it has to be applied in an iterative fashion. To develop an e�cient
iterative version of GS-SVQB, we must �rst examine the numerical characteristics of
the SVQB algorithm. This is the goal of the following section.

4. Stability analysis of the SVQB. For many applications, such as block
Krylov iterative methods, the orthonormality of the resulting vectors Q is more im-
portant, than the accuracy of the upper triangular R of the QR factorization. For
example, Krylov methods will still make progress, albeit a slower one, if provided with
an orthonormal set Q. Moreover, the actual span(W) of an almost linearly dependent
W is not well de�ned numerically. Therefore, in this paper we measure stability as
the departure of the resulting Q from orthonormality rather than the backward error.
Because of its block, non sequential nature, we expect the SVQB procedure to be less
stable than the MGS. But as we show below, it can often be more stable than GS.

Theorem 4.1. Let W be a set of m linearly independent vectors of <n. Let
�Q be the oating point representation of the matrix computed by applying the SVQB

procedure on W . If �(W) is the condition number of W , then

kI � �QT �Qk � ct min
�
� �(W)2; 1

�
;

where kk = kk2, � is the machine round o�, and ct is a constant depending on n and

m.

Proof. Let S = W TW , and denote by ~S the oating point representation of S.
Then

~S = S + �S; with k�Sk � c1 � kSk:(4.1)

We can further write this as k�Sk � c1 � kWk2. The e�ect of performing scaling on
the matrix S, corresponds to each vector in W having norm 1 implicitly, and in that
case k�Sk � c1 � m.

From standard backward error analysis, the solution of the smallm�m symmetric
eigenvalue problem ~Su = u� can be considered an exact eigendecomposition of a
nearby matrix �S = �u���uT . Using relation (4.1) we can express the error in �S as:

�S = ~S + � ~S; with k� ~Sk � c2 � kSk+O(�2):(4.2)

From the above, and by letting c3 = c1 + c2, the matrices S and �S are related by:

k �S � Sk = k� ~S + �Sk � c3 � kSk:(4.3)

Let �Q = Q + �Q = W �u���1=2 + �Q be the oating point representation of the
matrix returned by the SVQB procedure. Then, k�Qk � c4 � kWk k�uk k���1=2k.
Note that k���1=2k = 1p

��min
, where ��min = mini ��ii, and since �u are orthonormal

eigenvectors, we have:

k�Qk � c4 �
kWkp
��min

:(4.4)

5

It is well known that for symmetric eigenproblems the error in the eigenvalue is
bounded by the error in the matrix. Thus, the minimum eigenvalue of �S could have
a large error:����min � �min(S)

�� � k �S � Sk � c3 � kSk = c3 � �max(S);(4.5)

while the largest eigenvalue is always relatively accurate. Because the eigenvalues of
S are the squares of the singular values of W , the eigenvalue bounds reect also that
singular values of W smaller than

p
� cannot be represented as eigenvalues of �S. For

this reason we have to distinguish between the following two cases for the condition
number �(W) =

p
�(S) =

p
�max(S)=�min(S):

a. If �(W) � 1p
�
, then �min(S) is not computed accurately in oating point,

and ��min could be O(� �max(S)). In fact, our algorithm speci�cally sets any
eigenvalues that are smaller than � �max(�S) equal to this threshold. In this
case the ratio is bounded by:

kWkp
��min

�
s

�max(S)

� �max(S)
= O

�
1p
�

�
:(4.6)

b. If �(W) � 1p
�
, then from bound (4.5) and since for this case, it holds 1 +

c3 � �(S) = O(1), the ratio is bounded by:

kWkp
��min

�
s

�max(S)

�min(S) + c3 � �max(S)
=

s
�(S)

1 + c3 � �(S)

= O(
p
�(S)) = O(�(W)):(4.7)

Combining the two cases, the bound for the ratio in (4.4) can be written as:

k�Qk � c4 min
�
� �(W);

p
�
�
:(4.8)

We emphasize that the above is not the backward error for the exact result of
the SVQB, but for the matrix product of the computed eigenpairs of �S. The exact
backward error is not relevant because the orthogonality of the resulting �Q is of
interest.

Let us consider the departure of the computed �Q = Q+ �Q from orthonormality:

kI � �QT �Qk = kI � ���1=2�uTW TW �u���1=2 + �QTQ+QT �Qk+O(�Q2)

� kI � ���1=2�uTS�u���1=2k+ 2k�QkkQk:(4.9)

From relations (4.1{4.3) and (4.9), the orthonormality of �u, and the fact that kQk =
O(1), we have:

kI � �QT �Qk � kI � ���1=2�uT ~S�u���1=2 + ���1=2�uT (� ~S + �S)�u���1=2k+ 2k�QkkQk
� k���1kk� ~S + �Sk+ 2k�QkkQk

� c3 �
kSk
��min

+ 2k�Qk:(4.10)

From bounds (4.6) and (4.7), and because kSk � kWk2 we have:

kI � �QT �Qk � c3 � min

�
�(W)2;

1

�

�
+ 2c4 min

�
� �(W);

p
�
�

� ct min
�
� �(W)2; 1

�
:(4.11)

6

Next, we provide bounds on j�(�Q) � 1j, thus showing that when applying the
SVQB iteratively, �Q converges fast to an orthonormal basis. We �rst state the fol-
lowing lemma (see [13]).

Lemma 4.2.

1. If kI �QTQk � �, then kQTQk � kQk2 � 1 + a.
2. If kI �QTQk � � < 1, then kI � (QTQ)�1k � �

1�� .

Proposition 4.3. Assume that for the set of vectors W , with condition number

�(W), kI � W TWk � � < 1. After one application of the SVQB algorithm, the

resulting Q matrix has condition number:

�(Q) �
r

1 + a

1� a
:

Proof. By de�nition, �(Q) =
p
kQTQkk(QTQ)�1k. The proof follows from

lemma 4.2, since kQTQk � kQk2 � 1 + a, and k(QTQ)�1k = kI � I + (QTQ)�1k �
1 + kI � (QTQ)�1k � 1

1�a .
To avoid extensive use of complexity analysis symbols, we introduce the following

intuitive notations f < O(g) , f = o(g), f > O(g) , f = !(g), and f � O(g) ,
f =
(g).

Theorem 4.4. Let W be a set of m linearly independent vectors of <n, with

condition number �(W). Let �Q be the oating point representation of the matrix

computed by applying the SVQB procedure on W . If � is the machine round o�, then:

if �(W) < O(
1p
�
); �(�Q) � 1 +O(� �(W)2)):

Proof. If we let a = O(� �(W)2) < 1, according to theorem 4.1, kI � �QT �Qk < a,

and by using proposition 4.3, we have: �(�Q) �
q

1+a
1�a �

q
1 + 2a

1�a � 1 + a
1�a : This

proves the bound, because, in this case, a is bounded away from 1.
The case where �(W) � O(1p

�
) is much harder to bound because the eigenvalues

of the S =W TW are much smaller than � and numerical error dominates. However,
a bound can be given with some relatively weak assumptions. We �rst need the
following lemma.

Lemma 4.5. Let A =

�
G

p
�Cp

�CT B

�
, where kCk = O(1), G is a symmetric

matrix with eigenvalues �g = O(1), and B is symmetric matrix with eigenvalues

0 < �b < O(1). Then, if there is a �b � O(1), there exists an eigenvalue of A, �,
such that j�b � �j = O(�).

Proof. Let (ub; �b) an eigenpair of B, and de�ne the vector: u = [uTg u
T
b]

T ,
where ug is chosen to satisfy the �rst block row set of eigenvalue equations for

A: ug =
p
�(�bI � G)�1Cub. Applying A on u we have: Au = �b

�
ug
ub

�
+�

0
� CT (�bI �G)�1Cub

�
: From our assumption, �b � O(1), which implies k(�bI �

G)�1k = O(1), and thus k� CT (�bI �G)�1Cubk = O(�). This means that the matrix
A is only O(�) away from a matrix that has (u; �b) as an eigenpair.

Theorem 4.6. Consider the same assumptions of theorem 4.4. If we assume, in

addition, that (a) singular values of W that are smaller than O(
p
�) are well separated

7

from the rest which are O(1), and (b) the smallest singular value of �Q is not appreciably

smaller than the one of W , then:

if �(W) � O(
1p
�
); �(�Q) � O(

p
� �(W))):

Proof. Throughout this proof we assume the notation of theorem 4.1. We intro-
duce Qu = W �u, the unscaled version of �Q. The error in the oating point represen-
tation of Qu is �Qu with k�Quk � �kWk = O(�

p
�max), where �max � �max(S). We

now rewrite relation (4.9) using this unscaled Qu:

�QT �Q = ���1=2
�
�uTS�u+ �QT

uQu +QT
u �Qu

�
���1=2:(4.12)

Let �Q = �QT
uQu + QT

u �Qu, and observe that k�Qk � 2k�QukkQuk = O(��max).
Because �u are orthonormal vectors, QT

uQu = �uTS�u has the same eigenvalues as S.
We will show that scaling from left and right with ���1=2 reduces �(QT

uQu +�Q) by
a factor of O(�). Thus, we focus on the exact eigenvalues of the exact product �QT �Q
of the computed vectors �Q.

Since �(W) � O(1p
�
), there is a set of eigenvalues of S that are smaller than

�. Standard eigensolvers view these eigenvalues as numerical multiplicities, and thus
they produce a basis for their subspace, rather than their exact eigenvectors. On the
other hand, the separation assumption (a) states that the approximations for the rest
of the eigenvectors have no mixing with these almost degenerate ones. If we order the
eigenvalues of �S in decreasing size, we can partition the corresponding eigenvectors
into two groups, a \good" group ug and a \bad" group ub:

ug = �ui; for i = 1; : : : ; l
ub = �ui; for i = l + 1; : : : ;m

; and ��l > O(��max):

The fact that there is no mixing between the good and the bad groups translates
to uTg ub = O(�). Because of the separation and the fact that k �S � Sk = O(��max),

the eigenvectors of �S produced by eigensolvers are accurate approximations of the
eigenspaces of S within each of the two groups. Therefore, the eigenvalues of �uTg S�ug
are �i+O(��max); i = 1; : : : ; l, and the eigenvalues of �uTb S�ub are �i+O(��max); i =
l + 1; : : : ;m. Thus, we can rewrite the unscaled part of equation (4.12) as:

�uTS�u+�Q =

�
G 0
0 B

�
+O(��max);(4.13)

where G = �uTg S�ug, B = �uTb S�ub, and the perturbation O(��max) applies to all the
elements.

We now focus on �QT �Q by scaling the matrix in equation (4.13) from left and right
by ���1=2. In our algorithm, any ��i < ��max is set equal to ��max, which gives �� the
following form:

�� = diag(��1; : : : ; ��l; ��max; : : : ; ��max):

Using these scaling factors we obtain:

�QT �Q =

�
G0 C
CT 1

��max
(B +O(��max))

�
;(4.14)

8

where G0 is G + O(��max) scaled with the good eigenvalues of ��, and the ith row of
C are the scaled perturbations O(��max):

Ci;j =
O(��max)p
��max

��i
= O

�p
��max

�
; j = l + 1; : : : ;m:

From the theorem hypothesis, ��i = O(1); i = 1; : : : ; l, and thus the eigenvalues of
G + O(��max) are O(1). As a result, the eigenvalues of G0 are also O(1). On the
other hand, the minimum eigenvalue �b of B +O(��max) could be much larger than
�min. We consider the worst case scenario, where �b = �min +O(��max). The order
notation covers also the case of no perturbation. From this, and from assumption (b),
the minimum eigenvalue of 1

��max
(B +O(��max)) is:

�0b =
�min +O(��max)

��max
:

We distinguish two cases. First, if the perturbation in order notation above is close
to ��max, the eigenvalues of �QT �Q are all O(1 +

p
�). Therefore, its condition number

is close to one, and the theorem holds. Second, we assume that the perturbation
is much smaller than ��max, and therefore �0b � 1. In this case, the assumptions
of lemma 4.5 are satis�ed for the matrix in equation (4.14), and thus the smallest
eigenvalue of �QT �Q is equal to �0b + O(��max). Substituting these eigenvalues in the
condition number �(�QT �Q) = �(�Q)2 completes the proof:

�(�Q)2 =
1

1+O(� �(S))
� �(S)

+O(��max)
=

� �(S)

1 +O(� �(S)) +O(�2 �(S))
= O(� �(S)):

In general, one could circumvent the separation assumption of the theorem by
choosing a value of � > 1 and the \good" eigenvalues ��l > O(���max), to ensure
O(1) separation between the good and bad groups. The existence of such separator
is guaranteed by the small number (m) of eigenvalues that span the interval between
0 and �max = O(1). Although, increasing � weakens the theoretical bound of the
theorem, our numerical experiments have shown a consistent reduction of

p
� in the

condition number of �Q.
The second assumption of the theorem is necessary since, in general, we cannot

guarantee that the smallest singular value of �Q is not smaller than �min(W) or even
zero. However, such a situation is rather improbable for two reasons. First, one
expects the SVQB process to produce better conditioned, if not orthogonal, �Q vectors.
Second, since computing �Q involves a matrix multiplication and a scaling operation,
one expects the numerical error to be in linearly independent directions, or to be a
small relative error. If the elements of the W and �u vectors are O(1), numerical error
is expected to mount close to �, and thus cancellations should not reduce the lowest
eigenvalue of S, which is much smaller than �. If there is a special structure of either
W or �u with elements smaller than �, numerical error will a�ect the computations
with those elements in a relative sense, and thus the smallest eigenvalue may not be
reduced signi�cantly.

4.1. Convergence comparisons. The above theorems suggest that in most
situations, applying SVQB once or twice should produce orthogonal vectors. In the
case of extremely ill-conditioned vectors, a third application of the procedure might

9

be necessary. This akin to the behavior of the iterative GS method [13, 18, 7]. How-
ever, unlike block GS without internal re-orthogonalization, SVQB guarantees an
improvement of

p
� at every iteration, even for �(W) > 1=

p
�.

If an accurate Choleski decomposition can be computed, the CholQR procedure
should be identical to SVQB. In fact, it might be possible to prove bounds for the
CholQR similar to the ones in the previous section. However, even with an accurate
decomposition, for very large condition numbers we expect the CholQR to be less
stable than the eigenvalue-based SVQB method.

To demonstrate the relative e�ectiveness of these methods, we apply them on
three sets of vectors, and report the improvements on their condition numbers. The
�rst set is the 30 Krylov vectors generated from a vector of all ones and the 2-
D Laplacean on a regular, �nite di�erence, square mesh with Neumann conditions.
The dimension of the matrix is 1089, and the initial vector is not considered among
the set of 30. The second set consists of the columns of the Hilbert matrix of size
100. The third set is rather arti�cial, and it has been used to show the bene�ts
of MGS over GS [14, 13, 2]. We use the following variation, shown in MATLAB
notation: W = [ones(1,30); diag(rand(30,1)*eps*eps*eps)]; All tests are
run in MATLAB, on a SUN Ultra-2 workstation with � = 2.2e�16. The condition
numbers are computed by the Matlab function cond and therefore could be inaccurate
whenever they exceed 1016. The results for these three cases are shown in tables 4.1,
4.2, and 4.3 respectively.

SVQB CholQR GS MGS
Iteration �(Qu) �(�Q) �(Q0u) �(�Q) �(�Q) �(�Q)

1 6e+16 1e+09 4e+08 1e+09 2e+16 2e+01
2 4e+08 1e+01 4e+00 6e+01 1e+14 3e-14
3 4e+00 1+� 1+� 1+7e-12 8e+10 1+�
4 { { { 1+� 3e+06 {
5 { { { { 1+1e�03 {
6 { { { { 1+� {

Table 4.1

W = Krylov(A,30), where A is a 2-D Laplacean of size 1089�1089, and an initial vector of all

ones. Note that �(W) = 3e+20. However, after scaling because of numerical error �(W) becomes:

6e+16.

SVQB CholQR GS MGS
Iteration �(Qu) �(�Q) �(Q0u) �(�Q) �(�Q) �(�Q)

1 2e+19 3e+11 9e+10 2e+12 2e+19 7e+02
2 9e+10 2e+03 7e+02 6e+04 4e+16 1+2e-13
3 8e+02 1+5e-11 1+2e-11 1+2e-07 2e+14 1+�
4 1+2e-11 1+� 1+� 1+� 4e+12 {
5 { { { { 4e+10 {
6 { { { { 4e+08 {
7 { { { { 2e+00 {
8 { { { { 1+� {

Table 4.2

W = Hilbert matrix of size(100). �(W) = 2e+19.

10

SVQB CholQR GS MGS
Iteration �(Qu) �(�Q) �(Q0u) �(�Q) �(�Q) �(�Q)

1 2e+49 3e+41 4e+34 4e+34 2e+01 1+�
2 4e+34 7e+25 4e+19 4e+19 1+� {
3 4e+19 3e+11 2e+07 4e+06 { {
4 2e+07 1+1e�03 1+1e�04 1+4e�03 { {
5 1+1e�04 1+� 1+� 1+� { {

Table 4.3

W = [ones(1,30), diag(rand(30,1)*eps*eps*eps)]

We compare SVQB against CholQR, GS, and MGS, by printing the condition
number �(�Q) of the vectors that these methods produce after each iteration. Since
the implicit normalization in SVQB does not guarantee normality for ill-conditioned
problems, we print also the condition number of the unscaled vectors Qu, �(Qu),
and the condition number of the same vectors after explicitly scaling them by their
norms, �(Q0u). Note that after each iteration �(Qu) is equal to the condition number
of the vectors before the application of SVQB. For example, after the �rst iteration
�(Qu) = �(W).

The results in all tables con�rm theorems 4.4 and 4.6. The application of one
step of SVQB reduces the condition number of a set of vectors at least by

p
�. This

reduction is sharp for the examples in tables 4.1 and 4.2, but if the vectors are explicitly
normalized the reduction could be larger (see table 4.3). When the condition number
is smaller than 1=

p
�, the reduction obeys closely the bound in theorem 4.4.

As expected, the CholQR method behaves similarly to SVQB (table 4.3). In some
cases, the orthogonality of the CholQR is inferior to that of the SVQB (see table 4.2),
and thus, it is possible that it takes more iterations to produce a fully orthonormal
set (see table 4.1). This is in spite of the fact that in our implementation, we �rst
compute the lowest eigenvalue ofW TW and shift it so that the Choleski decomposition
is applied on a numerically positive de�nite matrix.

As discussed earlier, block GS without re-orthogonalization for each vector is not
e�ective for large condition numbers. In such cases, GS may o�er no improvement be-
tween successive iterations (see �rst GS iteration in table 4.2), or it may require many
iterations to produce a set with relatively small conditioner number (see tables 4.1
and 4.2). Once this is achieved, however, one or two further iterations provide a fully
orthonormal set. An exception, is the example in table 4.3 for which GS requires
only one re-orthogonalization. The reason is that GS takes advantage of the sparse
structure of the matrix, performing computations only among very small elements,
thus achieving low relative error.

MGS is clearly more stable than the rest of the methods. However, because the
departure from orthogonality for the MGS is bounded by ��(W) [1], even for relatively
small �(W), a second MGS is often needed (see tables 4.1 and 4.2). Note that the
� �(W)2 bound for SVQB is virtually identical to that of MGS, if �(W) is close to 1,
thus diminishing any advantages over SVQB.

5. Orthogonalizing against V . The above theory and examples establish that
SVQB is a competitive technique for orthogonalizing a set of vectorsW among them-
selves. In practice, however, full orthogonality amongW vectors may not be necessary
in all iterations of algorithm GS-SVQB. The reason is the interplay between the block
GS and the SVQB at the �rst and second step of the algorithm respectively. The GS

11

destroys the orthogonality of W , and the SVQB procedure may destroy the orthogo-
nality against V .

Lemma 5.1. Let W = GS (V;W 0) be the set of vectors resulting after the �rst

step of the GS-SVQB(V;W 0) algorithm, and assume that kV TWk � � kWk. Let
�Q = SVQB(W) be the result of the second step of the GS-SVQB algorithm. Then,

kV T �Qk = O

�
(�+ �) min

�
�(W);

1p
�

��
:

Proof. Following the notation of theorem 4.1, let �Q = W �u���1=2 + �Q. Using
the error bound on �Q in (4.4), and the bounds for the two di�erent cases in (4.6)
and (4.7), we have: kV T �Qk = kV TW �u���1=2+V T �Qk � �kWkk���1=2k+O(k�Qk) =
O ((�+ �)min(�(W); 1=

p
�)) :

The above lemma states that even when GS producesW that is exactly orthogonal
to V , i.e., � = 0, the SVQB procedure may destroy that orthogonality up to a
maximum of

p
�. Although lemma 5.1 is given only for the SVQB, similar results apply

if any other method for QR decomposition is used. In our numerical experiments, we
have observed consistently the bound (� �(W)) for the loss of orthogonality against
V , regardless of the method used to orthogonalize the W vectors among themselves.
This is an additional reason diminishing the importance of using the more accurate
MGS, instead of SVQB, in our procedure.

The GS procedure in the �rst step of the GS-SVQB algorithm, has an even worse
e�ect on the orthogonality of the W vectors.

Lemma 5.2. Let V TV = I; and W be a set of normal vectors with kW TW �Ik �
�. Let Q = (W �V V TW)D�1=2 be the normalized result of the block GS, where D is

a diagonal matrix with the squares of the normalizing norms of the vectors. Assume

that there is no oating point error in computing Q. If kV TWk = � < 1, then:

kQTQ� Ik = O

�
� + �2

1� �2

�
:

Proof. If we let S = V TW , we have Dii = wT
i wi � wT

i vv
Twi = 1 � eTi S

TSei.
Note that for all diagonal elements of STS, it holds eTi S

TSei � kSTSk = �2 < 1. As
a result, for all diagonal elements of D, we have : Dii > 1 � �2. This holds for the
the min(Dii) too, and therefore kD�1k < 1=(1� �2). In addition, we see that for all
i: 1=Dii � 1 < �2=(1� �2). From the above we can compute:

kQTQ� Ik = kD�1=2(W TW � I)D�1=2 +D�1 � I �D�1=2(W TV)(V TW)D�1=2k
� �kD�1k+ kD�1 � Ik+ kD�1kkSTSk
� �=(1� �2) + �2=(1� �2) + �2=(1� �2) = (� + 2�2)=(1� �2):

The lemma states that if the vectors W are not orthogonal enough to V (i.e., if
kV TWk > p

�), they will also lose their orthogonality among each other after the GS
step. This lemma applies to any procedure that may be used instead of GS.

6. The iterative GS-SVQB algorithm. Theorems 4.1, 4.4 and 4.6 and the
well studied behavior of the GS algorithm suggest that the GS-SVQB should be
applied iteratively. Figure 6.1 shows four possible implementations, based on which
of the two steps (GS/SVQB) is carried out iteratively.

12

Algorithm 1:
repeat

W = GS(V;W)
W = SVQB(W)

until (kW TW � Ik; kV TWk = O(�))

Algorithm 2:
repeat

repeat W = GS(V;W)
repeat W = SVQB(W)

until (kW TW � Ik; kV TWk = O(�))

Algorithm 3:
repeat

repeat W = GS(V;W)
W = SVQB(W)

until (kW TW � Ik; kV TWk = O(�))

Algorithm 4:
repeat

W = GS(V;W)
repeat W = SVQB(W)

until (kW TW � Ik; kV TWk = O(�))

Fig. 6.1. Four possible iterative implementations of the GS-SVQB algorithm. The outer loop

is repeated until W becomes orthonormal and orthogonal to V . The inner loops could be repeated

until full orthogonalization is achieved or for a speci�ed number of steps. Our theory suggests that

Algorithm 4 is the most preferable.

Algorithm 1 is a straight forward iterative implementation of GS-SVQB, but it
does not take into account the fact that SVQB and GS may require di�erent number of
steps to orthogonalizeW among themselves and against V respectively. Forcing both
methods to take the same number of steps may cause a lot of work to be wasted. This
applies especially to the GS, which performing twice is usually enough [18]. Moreover,
because usually the size of V is much larger than that of W , we try to minimize the
number of times that GS has to be repeated.

Algorithms 2 and 3 apply GS repeatedly on W and thus they also are inappro-
priate for similar reasons. In addition, although the resulting W might be orthogonal
to V after the GS, applying the SVQB on W destroys that orthogonality by as much
as ��(W) (from lemma 5.1). This completely obviates more than one GS application.

Algorithm 4 seems the most appropriate choice for an iterative implementation
of GS-SVQB. An additional argument in favor of this choice is that GS destroys
the orthogonality among the W vectors only by O(kV TWk2) (see lemma 5.2). The
presence of the square often alleviates this loss, especially when the GS has already
been applied once.

6.1. Tuning the algorithm. The next step is to identify e�cient and practical
conditions for terminating the outer and inner repeat loops of algorithm 4. We observe
that the iterative application of SVQB in the inner loop should not necessarily produce
a fully orthonormal set W . Lemmas 5.1 and 5.2 suggest that the two steps, GS and
SVQB, must be balanced so that work is not wasted in obtaining full orthogonality
when this is not needed. They also suggest that both �(W) and kV TWk must be
kept comparably small.

We start by determining the number of times the inner repeat loop needs to be
executed. First, we seek the conditions under which the �nal outer iteration does not
require any SVQB applications. In this case, one or more outer iterations have been
performed already, because W must be orthonormal. In addition, orthonormality of
W must not be destroyed by the GS at this last outer iteration. Thus, lemma 5.2
implies that before this GS it holds:

kV TWk <
p
�:(6.1)

Although, this condition can be checked inexpensively as a by-product of GS, the

13

�(W) cannot be known exactly without additional synchronization and computa-
tion. To decide whether to skip the �nal SVQB, we can instead use theorem 4.1 and
the singular values of W obtained in the last SVQB of the previous outer iteration.
According to the theorem, the SVQB that produced the latest orthonormal set W
must have been applied to a previous set with condition number O(1). Therefore,
besides (6.1), we should also test for:

�(Wbefore last SVQB) = O(1):(6.2)

Next, we examine the number of inner iterations required at any step of algorithm
4. Because applying GS twice is usually enough [18], we claim that the inner iteration
should produce a set ofW with at least �(W) = O(1). If the inner iteration produced
W with �(W) > O(1), then at the next outer iteration, the orthogonality that the
next GS achieves against V will be on the order of � �(W) (lemma 5.1). Thus, a
third outer iteration would be necessary, which could have been avoided. As a result,
we only need to distinguish between those cases for which the inner iteration should
produce a completely orthonormal setW or one with �(W) = O(1). For this, we need
to take into account the reorthogonalization requirement of GS.

To test whether the GS procedure requires reorthogonalization, we have used a
popular test due to Daniel et al. [7]. Reorthogonalization is needed whenever the
norm of W after GS becomes less than .7 times its original norm before the GS. In
our algorithm, the SVQB also can cause loss of orthogonality against V . Let Q be
the set resulting from GS on W , and consider the following cases.

Assume that Daniel's test does not require reorthogonalization. If �(Q) = O(1),
then one application of the SVQB will produce a fully orthonormal Q, without de-
stroying its orthogonality against V . If �(Q) > O(1); then SVQB will destroy the
orthogonality against V and orthogonalization must be repeated. The SVQB should
be carried out until the �(Q) becomes O(1), so that the SVQB at the following outer
iteration does not a�ect V TQ.

Next, assume that Daniel's test requires reorthogonalization. If �(Q) = O(1),
still we need to apply SVQB once. This will probably orthonormalize Q and if or-
thogonality against V is relatively good, a �nal SVQB may not be needed at the next
outer step. If �(Q) > O(1), as in the previous case, we iterate the SVQB until the
�(Q) becomes O(1).

At this point we can summarize our above observations and analysis into the
following algorithm. The algorithm simpli�es our previous discussion by noting that
repeat-until loops execute always at least once. Thus, it is su�cient that the `until'
condition for SVQB checks whether the condition number of the resulting Q is O(1).
Note, that the condition number of the set W is computed from the eigenvalues of
the matrix S = W TW in the SVQB algorithm. Therefore, it corresponds to the set
W before the application of the SVQB. Because a bound on the resulting �(Q) can
be inferred through theorems 4.4 and 4.6, the until condition checks if the condition
number before the last SVQB was less than 1=

p
�. Finally, note that kV TWk can be

computed during the GS, and it corresponds to the overlap of the two matrices before
the GS.

Algorithm 6.1. Q = iGS-SVQB(V;W) (iterative GS-SVQB method)

i = 1
W (0) =W
�last = large number

14

repeat

� = kV TW (i�1)k
W (i) = GS(V;W (i�1))
Reorthogonalization = Daniel's test

Q(0) =W (i)

j = 1
if (� <

p
�) and (�last = O(1))

break (skip �nal SVQB)

if (Reorthogonalization = false) and (�(Q(0)) > O(1))
Reorthogonalization = true

repeat

�last = �(Q(j�1))
Q(j) = SVQB(Q(j�1))
j = j + 1

until (�last < O(1=
p
�))

W (i) = Q(j�1)

i = i+ 1
until (Reorthogonalization = false)

7. Further optimizations. Because of its block character, the iGS-SVQB al-
gorithm iterates on the whole set of vectors W . Often, this may be wasteful because
individual vectors in W may be almost orthogonal to V and also to any other vector
in W . Clearly, further reorthogonalizations should exempt these vectors, performing
computations on a smaller block.

Speci�cally, after the GS phase, we can easily separate those vectors that do
not need reorthogonalization (good vectors) and those that need it (bad vectors),
W = [WgWb]. Unfortunately, not all of the good vectors will turn out to have large
singular values in the SVQB phase. Moreover, the SVQB phase will mix all these
good and bad vectors and the identity of the good ones will disappear.

To solve this problem, �rst we perform an eigenvalue decomposition of Sg =
W T

g Wg , for the Wg vectors alone. This, in turn, will subdivide the good group into
two groupsWg = [WggWgb]. The �rst group, which we call good-good group, consists
of all the singular vectorsWgg corresponding to large singular values of Sg. Therefore,
theseWgg vectors are orthogonal both to V and to each other and can be appended to
V in future iterations. Note also that Wgg has at least one vector. The second group
Wgb, which we call good-bad, are all the vectors that did not need reorthogonalization
originally, but because they were too close to other vectors in Wg they may have lost
their orthogonality against V as well. Therefore, the Wgb vectors should be combined
with the Wb vectors, and an SVQB should be applied on [WgbWb].

Still, a few more subtleties need to be resolved. First note that one synchroniza-
tion is still enough, since the computation of Sb = W T

b Wb can be computed at the
same time as Sg . Second, neither of Wgb and Wb vector sets are orthogonal to Wgg ,
and moreover the Wb set has not been orthogonalized against Wgg yet. If the angles
between Wb and Wgg are very small, extra iterations of the expensive, outer loop
of the iGS-SVQB algorithm may be needed. Therefore, we have to perform at least
one orthogonalization of the [WgbWb] against Wgg . Interestingly, these orthogonal-
izations can be performed on m�m matrices, by orthogonalizing the short singular
vectors instead of the corresponding W vectors. In this way, the computation of
S0b = [WgbWb]

T
[WgbWb] can also be performed inexpensively using m �m matrices,

15

and without additional synchronization points.
The theory supporting the above optimizations, as well as the details of the im-

plementation fall beyond the scope of this paper, and will be the focus of an upcoming
technical report. In summary, we can say that at each iteration, our iGS-SVQB im-
plementation identi�es orthonormal vectors in W that have been orthonormalized
e�ectively, so that no further computations are wasted on them.

When the number of vectors in W is very large, applying the SVQB method
on the full block may not always be e�cient or numerically stable. For example,
the better cache performance of the SVQB may not be enough to counterbalance
the increase in the arithmetic over the GS, or even the solution of the m �m SVD
problem. Moreover, in most situations increasing the block beyond an optimal size
may even decrease cache performance. Finally, the conditioning of W is bound to
deteriorate with block size. For these reasons, we want a variable block size that can
be tuned according to the machine and the problem.

Let b be the desirable block size. We partition W into p = m=b sets of vectors,
W = [W1; : : : ;Wp], and apply the SVQB on each one individually. After aWi subblock
is made orthonormal and orthogonal to V and to previousWj ; j < i, it is locked with
V and the next Wi+1 is targeted. The algorithm follows:

Algorithm 7.1. Q = bGS-SVQB(V;W; b) (variable block iGS-SVQB method)

p = m=b
Partition W = [W1; : : : ;Wp]
Q = [] ; Z = V
for i = 1; p

Qt = iGS-SVQB(Z;Wi)
Z = [Z;Qt]
Q = [Q;Qt]

The number of synchronization points in the bGS-SVQB algorithm increases lin-
early with p, and a larger percentage of the computation is spent on the GS procedure.
In the extreme case of b = 1, the algorithm reduces to the classical GS method, while
for b = m the algorithm is simply the iGS-SVQB method. With bGS-SVQB, we
expect to identify a range of block sizes for which the cache performance is optimal,
while the synchronization requirements are not excessive. Finally note that since
bGS-SVQB is based on the iGS-SVQB, it will iterate to guarantee orthogonality to
any user speci�ed level.

8. Timing experiments. We have extensively tested our implementation of the
bGS-SVQB method against a variety of orthogonalization alternatives. To provide a
common comparison framework for all methods, we use a \bGS-Method" algorithm
that is identical to our bGS-SVQB, except that a di�erent method is used to orthog-
onalize the block.

The �rst method is the classical GS algorithm with reorthogonalization. This is
the only method whose structure di�ers slightly from the \bGS-Method". For GS, it
is more e�cient to orthogonalize each vector in the block at once against all V vectors
and all previously orthogonalized vectors in W . Thus, block size does not a�ect the
behavior of GS, and in the �gures we simply refer to it as GS.

We also compare against the QR factorization with Householder reections. The
method is denoted as bGS-QR, and uses the QR implementation from the ScaLA-
PACK library [4] for both single and multiprocessor platforms.

16

1 2 3 4 5 6 8 10
60

80

100

120

140

160

180

200

Block size

M
F

LO
P

s
on

 o
ne

 p
ro

ce
ss

or
 o

f t
he

 C
ra

y
T

3E

bGS−SVQB

bGS−CholQR

GS

bGS−QR

1 2 3 4 5 6 8 10
60

80

100

120

140

160

180

Block size

M
F

LO
P

s
on

 o
ne

 p
ro

ce
ss

or
 o

f t
he

 IB
M

 S
P

2 bGS−SVQB

bGS−CholQR

GS

bGS−QR

Fig. 8.1. Single node MFLOPs as a function of block size for the four methods. The methods

orthonormalize thirty vectors of dimension 500000. Left graph depicts Cray T3E results. Right

graph depicts IBM SP2 results.

Finally, we compare against with the computationally similar method CholQR.
The method is denoted as bGS-CholQR, and uses the Choleski decomposition pro-
vided in the ScaLAPACK library. Note that all \bGS-Method" variants reduce to GS
when the block size is equal to one.

All algorithms have been implemented in Fortran 90 using the MPI interface, and
run on the Cray T3E 900 and the IBM SP2 parallel computers at NERSC National
lab. 256 MB of memory are available on each node of both machines, while on the
SP2 the nodes are two-processor SMP nodes, but they are assigned individual MPI
processes. The T3E network is considerably faster than the SP2 one, while the SP2
processors are slightly faster than the SP2 ones. On both parallel platforms we link
with the MPICH libraries, and we make use of the machine optimized libraries for
ScaLAPACK and BLAS.

Our �rst numerical example was chosen to be easily reproducible as a set of thirty
Krylov vectors of a diagonal matrix. We use the matrix A = diag([1:n]) (in Matlab
notation), and the initial vector x = [1 log([2:n])]', with n = 500000. We let
V = ;, and build W as the set of normalized vectors: W =

�
x;Ax;A2x; : : : ; A29x

�
.

The condition number of the resulting set W , as computed by the Matlab cond

function, is 1.3892E+20. The goal is to orthonormalize the set W as accurately as
possible, by applying di�erent orthogonalization variants and for a range of block
sizes: bGS-Method(V;W; b). Note that, initially, most of the computation is spent on
the \Method", while as more blocks get orthonormalized GS takes over.

Figure 8.1 illustrates the single-node oating point performance (MFLOP rate)
achieved for each of the four algorithms as a function of block size, on the T3E (left
graph), and on the SP2 (right graph). As expected, the CG rate is constant regardless
of block size. The single-node performance of the bGS-QR does not scale with block
size on either machine, which points both to the ScaLAPACK implementation and to
the inherent block limitations of the QR. On the other hand, the block structure of the
SVQB and CholQR allows them to outperform GS signi�cantly, even for small blocks
of 8-10 vectors. The Choleski back-solve implementation seems to exploit better the
architecture of the SP2 than of the T3E. However, on both platforms, bGS-SVQB
improves GS performance by at least 70-80% for these small block sizes. We should
mention that the block MGS method in [14] is expected to have worse single-node
performance than the GS because only one of the two phases involves BLAS 3 kernels.

17

1 2 3 4 5 6 8 10

0.5

1

2

4

8

Block size

T
im

e
in

 s
ec

on
ds

 o
n

th
e

C
ra

y
T

3E

2 nodes

4 nodes

8 nodes

16 nodes

32 nodes

−+− GS −x− bGS−CholQR −o− bGS−SVQB

1 2 3 4 5 6 8 10

0.5625

1.125

2.25

4.5

9

Block size

T
im

e
in

 s
ec

on
ds

 o
n

th
e

IB
M

 S
P

2

−+− GS −x− bGS−CholQR −o− bGS−SVQB

2 nodes

4 nodes

8 nodes

16 nodes

32 nodes

Fig. 8.2.

Good node performance is important only if it leads to accurate and faster or-
thogonalization. All of the algorithms tested produced a �nal orthonormal set Q,
with kQTQ � Ik = 10�13. Figure 8.2 shows that execution times of block methods
are superior to the GS method. The graphs plot execution time as a function of block
size, for three methods, and for various numbers of processors. The left graph corre-
sponds to the Cray T3E and the right one to the IBM SP2. The bGS-CholQR and
bGS-SVQB are consistently faster than the GS, for any block size on the SP2, and for
block sizes of 4 or above on the T3E. It is also clear, because of the logarithmic time
scale, that the relative improvement over the GS timings persists on large number of
processors, despite smaller local problem sizes. On the T3E, bGS-SVQB is 20% faster
than the GS method, and on the SP2, it is more than 25% faster. Note that although
bGS-CholQR is 35% faster than GS on the SP2, this impressive performance does not
carry over to the T3E.

Finally, we test a di�erent scalability. We measure the e�ects of synchronization
as the number of nodes increases, by �xing the problem size on each processor and
using a constant block size of 6. For this test, the set W has 30 Krylov vectors gen-
erated by the matrix of the discretized Laplacean on a 3 dimensional cube. Every
processor holds a 32� 32� 32 grid locally (so the matrix size is proportional to the
number of nodes), and uses it to create the Krylov space. The W vectors are gen-
erated in chunks of 6 successive Krylov vectors, and each chunk is orthonormalized
by a call to bGS-Method(V;W; 6). Figure 8.3 plots the execution times of the four
methods over a wide range of processor numbers. The T3E has been used for this
experiment because of the large number of available nodes. In the absence of com-
munication/synchronization costs, the times should be equal for all processors. The
time increase observed in the �gure is relatively small for all methods because of the

18

1 2 4 8 16 27 64 125 216 343 512
2.5

3

3.5

4

4.5

Number of processors

T
im

e
in

 s
ec

on
ds

 o
n

th
e

C
ra

y
T

3E

−+− GS −*− bGS−Scalapack QR −x− bGS−CholQR −o− bGS−SVQB

Fig. 8.3.

extremely fast T3E network. However, the e�ects are more apparent on the GS and
the bGS-QR, as their curves increase faster than the respective ones for bGS-CholQR
and bGS-SVQB. These di�erences are expected to be signi�cant if the experiment is
run on a high-latency network cluster. Finally, we observe that on this problem the
bGS-SVQB is more than 30% faster than the GS (an improvement over the previous
numerical problem). This is especially important because the GS is one of the most
computationally e�cient methods.

9. Conclusions. We have introduced and analyzed a new orthonormalization
method, called SVQB, that computes the orthonormal basis from the right singular
vectors of a matrix. The method is attractive computationally because it involves
only BLAS 3 kernels and it requires only one synchronization point in parallel im-
plementations. We have proved that if the condition number of the vector set is
originally �(W) < O(1=

p
�), the departure from the orthonormality of the resulting

vector set is kI �QQTk < O(��(W)). Moreover, when �(W) > O(1=
p
�), and under

some weak assumptions, the algorithm guarantees that each iteration reduces the con-
dition number of the set by

p
�. We have also considered the problem of incremental

orthonormalization where a block of vectors is orthonormalized against a previously
orthonormal set of vectors with GS, and among itself with SVQB. The independent
application of each of the methods destroys the orthogonality produced by the other
method. We have provided bounds that describe this numerical interdependence and
have used them to balance the work performed by each of the two orthogonaliza-
tion phases of an iterative scheme. Our Matlab examples have demonstrated that
our theoretical bounds are in accordance with practice, and our parallel implementa-
tions on the Cray T3E and the IBM SP2 have shown that our method improves the
performance of other orthonormalization alternatives.

10. Acknowledgements. This work was supported by the College of William
and Mary and the Director, O�ce of Science, Division of Mathematical, Information,
and Computational Sciences of the U.S. Department of Energy under contract number
DE-AC03-76SF00098.

This research used resources of the National Energy Research Scienti�c Comput-
ing Center, which is supported by the O�ce of Science of the U.S. Department of
Energy under Contract No. DE-AC03-76SF00098.

19

REFERENCES

[1] �A. Bj�orck. Solving linear least squares problems by gram-schmidt orthogonalization. BIT,

7:1{21, 1967.

[2] �A. Bj�orck. Numerics of gram-schmidt orthogonalization. Linear Algebra and its Applications,

198:297{316, 1994.

[3] �A. Bj�orck and C. Paige. Loss and recapture of orthogonality in the modi�ed gram-schmidt

algorithm. SIAM J. Matrix Anal. Appl., 13(1):176{190, 1992.

[4] L. S. Blackford, J. Choi, A. Cleary, E. D'Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Ham-

marling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley. ScaLAPACK

User's Guide. SIAM, 1997.

[5] S. Chaturvedi, A. K. Kapoor, and V. Srinivasan. A new orthogonalization procedure with an

extremal property. Technical Report quant-ph/9803073, LACS Stanford, Palo Alto, 1998.

[6] C. K. Chui. Wavelet Analysis and its Applications. Academic Press, San Diego, 1992.

[7] J. W. Daniel, W. B. Gragg, L. Kaufman, and G. W. Stewart. Reorthogonalization and stable

algorithms for updating the Gram-Schmidt QR factorization. Math. Comp., 30(136):772{

795, October 1976.

[8] J. Dongarra, J. DuCrouz, I. Du�, and S. Hammarling. A set of level 3 basic linear algebra

subprograms. ACM Trans. Math. Soft., 16:1{17, 1990.

[9] J. Dongarra, J. DuCrouz, S. Hammarling, and R. Hanson. An extended set of FORTRAN basic

linear algebra subprograms. ACM Trans. Math. Soft., 14:1{32, 1988.

[10] W. Gander. Algorithms for the QR decomposition. Technical Report TR 80-02, Angewandte

Mathematik, ETH, 1980.

[11] G. H. Golub and C. F. Van Loan. Matrix Computations. The John Hopkins University Press,

Baltimore, MD 21211, 1989.

[12] G. H. Golub and R. Underwood. The block Lanczos method for computing eigenvalues. In

J. R. Rice, editor, Mathematical Software III, pages 361{377, New York, 1977. Academic

Press.

[13] W. Ho�man. Iterative algorithms for gram-schmidt orthogonalization. Computing, 41:335{348,

1989.

[14] W. Jalby and B. Philippe. Stability analysis and improvement of the block gram-schmidt

algorithm. SIAM J. Sci. Statist. Comput., 12(5):1058{1073, 1991.

[15] C. Lawson, R. Hanson, D. Kincaid, and F. Krogh. Basic linear algebra subprograms for FOR-

TRAN usage. ACM Trans. Math. Soft., 5:308{325, 1979.

[16] P. O. L�odwin. J. Chem. Phys., 18:365, 1950.

[17] P. O. L�odwin. Adv. Quant. Chem., 23:84, 1992.

[18] Beresford N. Parlett. The Symmetric Eigenvalue Problem. SIAM, Philadelphia, PA, 1998.

[19] Yousef Saad. Iterative methods for sparse linear systems. PWS Publishing Company, 1996.

[20] H. C. Schweinler and E. P. Wigner. J. Math. Phys., 11:1693, 1970.

[21] J. P. Singh, D. E. Culler, and A. Gupta. Parallel Computer Architecture. A Hardware/Software

Aproach. Morgan Kaufmann Publishers, Inc, San Francisco, 1999.

[22] A. Stathopoulos and J. R. McCombs. A parallel, block, Jacobi-Davidson implementation for

solving large eigenproblems on coarse grain environments. In 1999 International Confer-

ence on Parallel and Distributed Processing Techniques and Applications, pages 2920{2926.

CSREA Press, 1999.

[23] J. H. Wilkinson. The Algebraic Eigenvalue Problem. Claredon Press, Oxford, England, 1965.

20

