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Abstract 

Recent work in the area of model-order reduction 

for RLC interconnect networks has been focused on 

building reduced-order models that preserve the circuit­

theoretic properties of the network, such as stability, 

passivity, and synthesizability {1, 2, 3, 4, 5}. Passiv­

ity is the one circuit-theoretic property that is vital for 

the successful simulation of a large circuit netlist con­

taining reduced-order models of its interconnect net­

works. Non-passive reduced-order models may lead 

to instabilities even if they are themselves stable. In 

this paper, we address the problem of guaranteeing 

the accuracy and passivity of reduced-order models of 

multipart RLC networks at any finite number of e:c­

pansion points. The novel passivity-preserving model­

order reduction scheme is a block version of the ratio­

nal Arnoldi algorithm [6, 7}. The scheme reduces to 

that of {5] when applied to a single e:cpansion point at 

zero frequency. Although the treatment of this paper 

is restricted to expansion points that are on the neg­

ative real a:cis, it is shown that the resulting passive 

reduced-order model is superior in accuracy to the one 

that would result from e:cpanding the original model 

around a single point. Nyquist plots are used to illus­

trate both the passivity and the accuracy of the reduced­

order models. 

1 Introduction 

It is well known [8] that multiport RLC networks 

are passive, in the sense that they are energy dissipa­

tors. Passive networks are necessarily stable, but the 

converse is not true. Passivity and stability differ in 

the following fundamental way: while the connection 

of two stable networks is not necessarily stable, any 

multiport connection of passive networks is guaran­
teed to be passive. 

This closure property is of paramount importance 
from a practical point of view for the following reason. 

The reduced-order model is intended to replace the 

original interconnect in the global netlist. It will have 

the same drivers and loads as the original model. The 

output impedances of the drivers and the input imped­

ances of the loads are represented by passive elements. 

If the reduced-order model is only stable but not pas­

sive, there is no guarantee that the network composed 

of output impedances, reduced-order model, and input 

impedances is stable. 1 In the absence of such a guar­

antee the simulation and analysis of the circuit may 

become problematic. A passive reduced-order model 

eliminates this concern. 

One of the first attempts at designing passivity­

preserving model-order reduction algorithms for mul­

tiport RC interconnect networks is the PACT algo­

rithm of [11] where matrix congruence transforma­

tions are used to preserve the positivity of the energy­

storage and DC matrices, a fundamental requirement 

for passivity. As yet unpublished is the work described 

in [3, 10] which addresses the issues of passivity for 

both RC and RLC networks and proposes, for multi­

port RC networks, an algorithm based on the Choleski 

decomposition that makes the PVL algorithm (12] into 

a passivity-preserving one. Recently [4], the PACT al­

gorithm has been extended to the RLC case using split 

congruence transformations. The splitting operation 

is designed to decouple the capacitive behavior of the 

RLC network from its inductive one, thus preserving 

the algebraic properties of the MNA matrices of the 

original network model. More recently (5], a reduction 

algorithm based on the Arnoldi iteration (13, 1] has 

been shown to guarantee the passivity of the reduced­

order model without requiring a "splitting operation" 
for the congruence transformation matrix. It is worth 

noting, in this passivity context, that a symmetrized 

version of the PVL algorithm (2] was shown to pre­

serve the passivity of one-port RC networks using the 

stronger requirement of RC Cauer-synthesizability. 

One engineering concern in the use of model-order 

reduction algorithms is that the model be accurate 

not just at a single point in the frequency spectrum 

1 An example of such a situation is given in [9]. See also 

[3, 10] for interesting theoretical insights. 
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but over a whole range of frequencies. This situation 

typically arises when dealing with microwave circuits. 

Reduction algorithms that address this concern are 

the complex frequency hopping algorithm [14] and the 

multipoint rational Krylov algorithm [7]. 

The main contribution of this paper is to extend 
the recent passivity preserving Arnoldi algorithm to 

the multipoint expansion case. The vehicle of the ex­

tension is the use of the block rational Arnoldi algo­

rithm [6], the classical Arnoldi iteration being a poly­

nomial algorithm. It is rigorously shown that for any 

multiport RLC network, the block rational Arnoldi 

reduced-order model is passive and satisfies the re­

quired accuracy at all the expansion points. Nyquist 

plots are used to illustrate both the passivity and 

the accuracy of the resulting models. Recall that a 

Nyquist plot contains both the magnitude and phase 
information of the network driving-point impedance 

(admittance). Moreover, the Nyquist plot of a passive 

network is entirely contained in the right-half complex 

plane. 

The next section of this paper introduces the ba­

sic circuit notation and the multipoint model-order 

reduction formulation. In Section 3, the block ra­

tional Arnoldi model-order reduction algorithm is 

described, its accuracy properties at the expansion 
points are proved, and the passivity of the rational­
Arnoldi reduced-order model is rigorously shown. Nu­

merical results along with their Nyquist plot illustra­

tions are presented in Section 4. 

2 Background 

The modified nodal analysis (MNA) equations of 

a multiport, linear, time-invariant RLC network are 
given by 

c ~ 
y 

-9 al + p u 

PTm +Du 
(1) 

where, m E !Rl.n, u E ffil.P, y E ffil.P are, respectively, 

the state-space, input and output vectors of the p­

port network, and C, 9 E !Rl.nxn are, respectively, its 

energy-storage and DC matrices. 2 The p x p matrix 

D accounts for the direct gain from the input to the 

output. In terms of the circuit elements and variables, 

the above quantities are expressed as follows: 

2 These matrices will be assumed nonsingular, which would 

exclude networks with resistive meshes, capacitive loops, or in­

ductive cutsets. 

with v and i being the capacitor node voltages and 

the inductor branch currents, respectively. The square 

matrices C, L, and G, are all symmetric, positive def­

inite and denote, respectively, the nodal capacitance, 

inductance, and conductance matrices of the RLC cir­

cuit. It follows that the matrix C is symmetric, posi­
tive definite, and that the symmetric part of 9 is pos­

itive semidefinite. The matrix B is rectangular and 

denotes the incidence matrix of the inductor branches. 

Assuming that p currents are injected at the input 

ports, the network driving-point impedance is the pxp 

transfer matrix given by 

Z(5) = pT (9 + 5C)- 1 
P (3) 

In multipoint model-order reduction, we are given 

m distinct points 51, 52, ••• , 5m and m integers 

n1, n2, ... , nm, and we are asked to find a reduced­
order driving-point impedance Z(5) such that 

dk-lz dk-lz 

d
5
k-l (5i) = dsk-l (si), 1 :S k :S ni, 1 < i < m. 

(4) 
In other words, at each point Bi the original and the 

reduced-order model must have equal moments up to 

order ni. Or, equivalently, both models must have 
the same Taylor series expansion up to order (ni- 1) 

at each point 5i· Matching at multiple points should 
intuitively result in a reduced-order model that has 

better accuracy over a wider region of the complex 

plane than what would be obtained with a single-point 

matching at, say, the DC point. 

Assume that the quadruplet [9, i;, P, D] is a state­

space realization of Z, then the matching conditions 

can be expressed by the matrix equalities 

PT { (9 + sil) -l l r-l (9 +Sic) -l p (5) 

= pT { (9 + Si.C)-l C r-l (9 + SiL)-l p 

Note that the matrix D is the same for both models 

and therefore it does not appear in these equalities. 

For each point Bi, there is a Krylov subspace Kn, 

spanned by the columns of the matrices 

where Mi = (9 + si.C)-
1 

C and Ni = (9 + siC)-
1 

P. 

Note that these subspaces arise naturally from the ma­

trix moment matching formulas (5). 
In the context of direct Pade approximation reduc­

tion methods like Asymptotic Waveform Evaluation 

(AWE) [15], the complex frequency hopping (CFH) 
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algorithm (14] has been proposed to deal with multi­

point expansions. In CFH, the expansion points lie 

on the imaginary axis of the complex plane, and a bi­

nary search strategy for choosing these points based 

on the required accuracy of the reduced-order model 

is used. The main objective in CFH is to improve 

the accuracy of the reduced-model poles compared to 

those obtained using AWE. 

In the context of indirect, iterative Krylov subspace 

methods, an algorithm for multipoint model-order re­

duction using a rational Lanczos process was devel­

oped in (7]. A family of algorithms employing unions 

of Krylov subspaces to produce multipoint moment 

matching is proposed in (16]. 

In both the direct and indirect approaches to mul­

tipoint expansion, the problem of preserving the pas­

sivity of interconnect network models has not been 

addressed. The algorithm of the next section can be 

viewed as a synthesis of the rational Lanczos algo­

rithm of (7] that preserves multipoint moments with 

the Arnoldi algorithm of (5] that preserves passivity. 

This synthesis results in a model-order reduction al­

gorithm that preserves the passivity and the moments 
up to a given order for multiport RLC interconnect 

networks. 

3 Block Rational Arnoldi 

The block rational Arnoldi algorithm proposed in 

this paper is an adaptation of the rational Krylov al­

gorithm introduced in (6] in the context of the non­

symmetric eigenvalue problem. In order to simplify 

the presentation, only real-valued expansion points are 

used in Algorithm 1. 

To obtain the points all a2, ... , aN, (refer to Al­

gorithm 1) from the points s11 s2 , ••• , Sm, each point 

Bi is repeated a number of times equal to ni, the 

expansion order at the i-th point. In other words, 

N = n1 + n2 + ... + nm· 

Note that at each iteration i E (1, N- 1], Algo­

rithm !generates p columns of the matrix W, where 

p is the number of ports. Therefore, the order of the 

reduced-order model, which is equal to the number of 

columns of W, is pN. A basic requirement is that pN 

must be much smaller than n, the number of energy­

storage elements in the network. 

The operator orth refers to the Gramm-Schmidt 

orthonormalization procedure. This operation is used 

to orthonormalize the vectors of each n x p matrix 

block Ui, 0 ~ i ~ N - 1, resulting from running 

the block Arnoldi algorithm. Another way of ensuring 

that the columns of wi are orthonormal is by setting 

Algorithm 1 (Block Rational Arnoldi) 

arnoldi(input Q, C, P, all a2, ... , aN; 

output W, g, i:., P) 
{ 

} 

Initialize: 

Solve : (Q + a1C)Uo = P 

W o = orth(U o) 
for (i = 1; i <= N- 1; i + +) 
{ 

} 

if ai+l == ai. vi= cwi 
else vi= p 

Solve (Q + ai+lC)Ui = Vi 
for (j = 0; j <= i- 1; j + +) 
{ 

Hji = wJui 
ui = ui- WjHji 

W = [Wo, W1,···, Wn-l] 
Q=WTQW 

i:. = wTcw 

P=WTP 

Wi = UiZi 1 where Zi is the Choleski factor of the 

symmetric, positive definite matrix urui. 

The innermost iteration of Algorithm 1, which runs 

over j E (0, i - 1], is nothing but a classical block or­

thogonalization process that orthogonalizes the new 

matrix block ui with respect to all the previous ma­

trices W o, W 1, ... , W i-l· The net result of the al­

gorithm is an n x pN matrix W with orthonormal 

columns, i.e., wTw = IpN, the identity matrix of 

order pN. 

The (if, else) condition at the start of each major 
iteration controls when and how to pass from one ex­

pansion point to another. As long as ai+l = ai (we are 

still at the same expansion point), the algorithm pro­

ceeds as in any Krylov subspace iteration, i.e., it gener­

ates the next block of Krylov vectors and orthogonal­

izes it with respect to all the previous blocks. When 

ai+l -:f. ai, the algorithm restarts at the input matrix 

P so as to produce the Krylov iterates correspond­

ing to the expansion point at ai+l· In other words, 

the occurrence of the condition ai+1 -:f. ai signals that 

the Krylov subspace K17 , has been completely spanned 

and that the spanning of the Krylov subspace K17 ,+1 

is about to start. 

Note finally that the block Arnoldi algorithm of (5] 
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can be derived as a special case from Algorithm 1 by 

setting <71 = <72 = ... = <7N = 0. 
Based on this algorithm, the matrices of the 

reduced-order model are given by3 

- T - T - T g = w gw, c = w cw, P = w P (6) 

The driving-point matrix impedance is then given by 

Z(s) = PT (9 + sCr
1 

p (7) 

In fact, due to the symmetry in the problem, the 

reduced-order model can be alternatively and more 

efficiently computed via a symmtric Lanczos method 

[16]. 

The moment-matching properties of Algorithm 1 

hold due to the following two facts: 

1. The full rank of W which is guaranteed by its 

column orthonormality. 

2. The union of the Krylov subspaces generated at 

the different expansion points satisfies the inclu­

sion formula: 

(8) 

The sufficiency of these conditions for multipoint 

moment matching is rigorously explored and proven 

in [16]. The seminal connections between Krylov sub­

spaces and moment matching are presented in [17]. 

The extra computational cost to obtain the addi­

tional moment matching accuracy is a new L U fac­

torization for each expansion point. Note that the 

number of expansion points can be traded off with 

the matching order at each point, thus resulting in 

(perhaps significantly) fewer Krylov iterations at each 

point. The total computational cost of the new algo­

rithm to obtain a given level of accuracy may be less 

than that incurred by a single-point algorithm. 

Passive networks are networks whose net electrical 

energy balance is nonpositive, i.e., the energy that is 

dissipated by the network is at least equal to the en­

ergy supplied by the sources. The fundamental theo­

rem relating passivity to the network's linear response 

is the following [8]: 

Theorem 1 A one-port network is passive if and only 

if its driving-point impedance (admittance), denoted by 

F ( <7 + jw), is positive real, i.e, 

(pr1) 

(pr2) 

'V<7 E JR;,F(<7) E IDI. 

't/<7 2 0, Re{F(<7 + jw)} 2 0 

3 We have dropped the matrix D as it is the same for both 

the original and the reduced-order model$. 

For a multiport network with driving-point matrix 

impedance, G( s ), a sufficient condition for passivity 

[8] is that for any real vector u E JR;P, the transfer 

function F(s) = uTG(s)u is positive real. 

The main theoretical result of this paper is an ex­

tension to multipoint model reduction of the one ob­

tained in [5] for the single-point case. It is stated as 

follows: 

Theorem 2 The multipart reduced-order model of 

driving-point impedance Z( s) is passive. 

Proof. Let u E JR;P, and let z(s) = uT Z(s)u. First 

it is clear that z( s) is real whenever its argument s is 

real. Next let s = <7 + jw with <7 > 0, :z: = Pu, and 

(- -)-T y= 9+sC :z:, 

where 8 is the complex conjugate of s. Then 

2Re{z(s)} z(s) + z(s) 

:z:T ( g + sC) -1 :z: + :z:T ( g + sC) -T :z: 

:z:T (9+scr
1 

[(9+sc) 

+ ( g + sC) T] ( g + sC) -T :z: 

y* (g + s£ + gT +seT) y 

y* (g + gT + <7(£ + £T)) y. 

The conclusion that Re{F(s)} 2 0, whenever Re{s} 2 
0 results from the fact that the symmetric matrices 

g + gT and £ + £T are both positive semidefinite. 0 

4 Results 

In this section, the Nyquist plot is used to illus­

trate, for some numerical examples, both the accuracy 

and the passivity of the reduced-order model obtained 

with a MATLAB implementation of the passive block 

rational Arnoldi Algorithm 1. 

The circuit used in these examples is a 4-port 

RLC network with 2500 capacitors and 25 inductors. 

Two 8-pole reduced-order models are computed for 

this network. The first model is obtained using the 

PRIMA algorithm [5] by matching two moments at 

DC, while the second model is computed using the 

block rational Arnoldi algorithm of this paper by 

matching one moment at DC and another moment at 

the real shift s = 10. A set of magnitude Bode plots, 

step-response plots, and Nyquist plots are given. 
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Figure 1: Driving-point impedance at port 1: Magni­

tude Bode plot 

Figure 1 is the magnitude plot of the driving-point 

impedance of port 1. It clearly shows that the resonant 

peak of the network is more closely approximated with 

the multipoint algorithm than with the single-point al­

gorithm. This increased accuracy is also reflected in 

the step response plot. Note that both the transient 

and the overshoot are approximated rather well with 

the block rational Arnoldi. This better approxima­

tion is essential when using the model in the context 

of timing analysis (transient) or noise analysis (over­
shoot). 

It has been the tradition, in model-order reduction 
publications, to display only these two types of plots. 

In Figure 3, the Nyquist plot4 of the driving-point im­

pedance at port 1 is shown. This plot has the following 

two advantages. First, it contains both the magnitude 

and phase information about the network impedance. 

Second, it provides a graphical test of port passivity. 

Indeed, it is well known [8] that the Nyquist plots of 

positive real transfer functions lie entirely in the right 

half of the complex plane. The accuracy of the block 

rational Arnoldi algorithm vs. PRIMA is again illus­
trated in Figure 3. Moreover, both algorithms lead 

to driving-point impedances whose Nyquist plots lie 

entirely in the right-half plane. 

The reader is invited to contrast the behavior of the 

Nyquist plot in the driving-point case (Figure 3) vs. 

the transfer function case (Figure 4). In the latter, 

the reduced-order models may cross irito the left-half 

plane. Note that this is not a violation of passivity 
or of Theorem 2

1 
as passivity is a driving-point con-

4 The Nyquist plot displays the imaginary part of the transfer 

function Z(jw) computed on the jw axis vs. its real part. 
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Figure 3: Driving-point impedance at port 1: Nyquist 

plot 

cept, i.e., electrical quantities and their duals must be 

measured at the same ports. 

5 Conclusions 

In this paper, the passivity-preserving Arnoldi al­
gorithm of [5] was extended to the case where the 

reduced-order model is required to satisfy accuracy 

requirements at more than one expansion point. The 

vehicle of this extension was a block version of the 

rational Arnoldi algorithm [6] adapted to the model­

ing context so as to satisfy predefined moment match­

ing requirements. Those requirements are met via the 

Krylov subspace inclusion formula (8) [16]. Nyquist 

plots were used to illustrate the accuracy and the pas-

5



1.5 

0.5 

-0.5 

-1 

-1.5 

Nyquist plot 

-exact 

-- PRIMA 

- ·- RATIONAL 

' ' ' i 
.,." /. 

... "', ,·,. 

-2L_--~--~----~--~----~--~--~--~ 
-0.5 0.5 1.5 2.5 3.5 

real 

Figure 4: Transfer function from Port 1 to Port 2: 

Nyquist plot 

sivity of the driving-point impedances of the reduced­

order models. 
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