
A Block Scaling FFT/IFFT Processor

for WiMAX Applications

Yuan Chen†, Yu-Wei Lin‡, and Chen-Yi Lee†
†National Chiao Tung University, Hsinchu, Taiwan

‡MediaTek Inc., Hsinchu, Taiwan

Email: ychen@si2lab.org

Abstract-This paper presents a low-power design of a two-

stream MIMO FFT/IFFT processor for WiMAX applications. A

novel block scaling method and a new ping-pong cache-memory

architecture are proposed to reduce the power consumption and

hardware cost. With these schemes, half the memory accesses

and 64-Kbit memory can be saved. Furthermore, by proper

scheduling of the two data streams, the proposed design achieves

better hardware utilization and can process two 2048-point

FFTs/IFFTs consecutively within 2052 cycles. A test chip of the

proposed FFT/IFFT processor has been designed using UMC

0.13 μm 1P8M process with a core area of 1332×1590 μm
2
. The

SQNR performance of the 2048-point FFT/IFFT is over 48 dB

for QPSK and 16/64-QAM modulations. Power dissipation of

two 2048-point FFT computations is about 17.26 mW at 22.86

MHz which meets the maximum throughput rate of WiMAX

applications.

I. INTRODUCTION

Multiple-input multiple-output orthogonal frequency

division multiplexing (MIMO OFDM) is considered a key

technology in high-throughput transmissions over wireless

fading channels. The emerging WiMAX/IEEE 802.16

standard has employed this technology in its physical-layer

specification to provide broadband wireless access services.

In the specification, scalable channel bandwidths from 1.25 to

20 MHz by adjusting FFT size (from 128 to 2048-point) are

employed for different applications. Three modulation types

(QPSK, 16/64-QAM) and four guard intervals modes (1/4,

1/8, 1/16, 1/32) are also supported to further increase the

system scalability. A block diagram of a 2×2 MIMO

transceiver for WiMAX applications is shown in Fig. 1. By

processing two data streams with duplicated antennas and

functional units, the peak data rate of the 2×2 MIMO

transceiver can be two-folded compared to that of a

single-input single-output (SISO) transceiver.

To support a MIMO transceiver for WiMAX applications,

a variable-length FFT/IFFT processor capable of processing

multiple data streams is required. Since 2×2 MIMO with time

division duplex (TDD) mode is defined in the WiMAX

Forum Release-1 system profiles [1], a two-stream 128/256/

512/1024/2048-point FFT/IFFT processor is considered in

this paper. Besides, while the power consumption is critical

for portable systems, the FFT/IFFT processor for WiMAX

applications should be power-efficient. There have been

many researches on low-power FFT designs by employing

the cached-memory architecture to reduce the memory

accesses [2], [3]. However, the increase in wordlength [2] or

idle cycles [3] still causes wastes in power consumption and

hardware cost. To solve these problems, a novel block scaling

method and a new ping-pong cache-memory architecture are

exploited in our proposed FFT/IFFT processor. With these

schemes, half the memory accesses and 64-Kbit memory (4

bits in wordlength) can be saved without inducing idle cycles.

Moreover, by proper scheduling of the two data streams, the

proposed FFT/IFFT processor avoids stalls of function units

and thus achieves better hardware utilization. Two-stream

2048-point FFTs/IFFTs can be computed consecutively

within 2052 processing cycles.

Fig. 1. Block diagram of a 2×2 MIMO transceiver for WiMAX applications.

II. ALGORITHM

The N-point discrete Fourier transform (DFT) of a complex

input sequence x(n) can be defined as:
1

0

() () 0,1, 2,... 1
N

N
kn

n

X k x n W k N
−

=

= = −∑ (1)

where 2 /

N

kn j kn NW e π−= is referred to the twiddle factor. To

reduce the number of complex multiplications, radix-8

algorithm is chosen to carry out the DFT [4]. Here we take the

longest 2048-point DFT in the design as an example. Since

2048 is not a power of 8, we decompose the 2048-point DFT

into three radix-8 stages and a final radix-4 stage as shown in

the following equation:

1 2 3 4 2 3 4 3 3 3 41 1 2 2 4 4

4 3 2 1

1 2 3 4

3 7 7 7
(32 4) (4)

1 2 3 4 8 2048 8 256 8 32 4

0 0 0 0

(8 64 512)

(256 32 4)
k n n n k n n k n k nk n k n k n

n n n n

X k k k k

x n n n n W W W W W W W
+ + +

= = = =

+ + + =

⎧ ⎫⎧ ⎫⎧ ⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪+ + +⎨ ⎨ ⎨ ⎬ ⎬ ⎬
⎪ ⎪⎪ ⎪⎩ ⎭⎪ ⎪⎩ ⎭⎩ ⎭

∑ ∑ ∑ ∑

 (2)

 where k1,k2,k3=0,1,2,…7 and k4=0,1,2,3. Similarly, 128/256/

512/1024-point DFT can also be decomposed to preceding

0-7803-9735-5/06/$20.00 ©2006 IEEE 203

7-1

radix-8 stages and a final radix-8/4/2 stage depending on the

DFT size. Although high-radix algorithm is effective in

reducing the number of complex multiplications, its hardware

is very complex if directly implemented. Thus we employ

radix-23 and radix-22 [4] to replace radix-8 and radix-4,

respectively. A signal flow graph (SFG) of the 32-point

radix-23/22 FFT is shown in Fig. 2 as an example. We can find

in this figure that a full 32-point FFT is completed by one

radix-23 and multiplication stage and one radix-22 stage. With

these steps, we can decompose the 2048-point FFT into three

radix-23 and multiplication stages and a final radix-22 stage

for further hardware implementations.

3

8W

3

8W

3

8W

3

8W

1

8W

1

8W

1

8W

1

8W

4

32W

8

32W

4

32W

12

32W

2

32W

6

32W

6

32W

12

32W

18

32W

1

32W

2

32W
3

32W

5

32
W

10

32W
15

32W

3

32W
6

32W
9

32W

7

32W
14

32W

21

32W

Fig. 2. SFG of a 32-point radix-23/22 FFT.

A. Block Scaling Method

Block floating-point (BFP) [5] is an efficient way to reduce

the wordlength by increasing the dynamic range compared to

the fixed-point format. The behavior of BFP is similar to that

of floating-point except a single exponent is used for a group

of data. Although BFP is often adopted in memory-based FFT

processors to save the hardware cost and power, it is not

suited to cached-memory FFT processors because of the

interleaved processing stages [5]. To solve this problem, a

dynamic scaling FFT processor [3] is proposed by employing

multiple exponents for cache-size blocks. While dynamic

scaling approach has a satisfactory result in reducing

wordlength, it still has two drawbacks. Since the exponent

position can be determined only after all cached data are

processed, some clock cycles are wasted. Also, the internal

wordlength of both arithmetic units and cache needs to be

extended to prevent overflows.

Thus we propose the block scaling method which

eliminates the increased wordlength and idle cycles by a

“detect and scale” approach. Each set of the output symbols

will be scaled right away if an overflow is detected. At the

same time, the resulting exponents are saved for data

alignment in the next processing stage. Although this method

can be realized by saving block exponents for all processing

stages, it is hardware consuming. To work out this issue, we

scale the final output of FFT to a predetermined exponent,

and thus only 296 exponents are needed to be stored for the

longest-length 2048-point FFTs. There are two main reasons

why this fixed-exponent scheme is feasible. First, because the

input symbols are gain-controlled and have specified

modulation in OFDM systems, the maximum value of the

final FFT output can be expected in advance. Second, in most

dedicated OFDM transceiver designs, only fixed-point format

is considered due to simpler hardware implementations. As

the simulation result shows in Fig. 3, over four bits can be

reduced in wordlength by the proposed method under the

same signal-to-quantization-noise ratio (SQNR). We can also

find that more than one fourth of the memory size (from 16

bits to 12 bits) can be saved at about 50 dB SQNR.

9 10 11 12 13 14 15 16
0

10

20

30

40

50

60

70

80

S
Q

N
R

 (
d
B

)

Wordlength (bits)

Fixed-point method

Proposed block-scaling method

Fig. 3. SQNR performance of the proposed block scaling method.

III. ARCHITECTURE

Block diagram of the proposed FFT/IFFT processor is

depicted in Fig. 4. It consists of four FFT/IFFT control units, a

main memory unit, a processing engine (PE), and a 64-word

cache. In this design, a novel block scaling method and a new

ping-pong cache-memory architecture are proposed to reduce

the power consumption and hardware cost. Besides, since

FFT and IFFT have the same operations except for complex-

conjugated twiddle factors, we implement IFFT by simply

taking conjugates of FFT input/output [6] as shown in Fig. 4.

With these techniques and proper data scheduling, the

proposed design can realize two 2048-point FFT/IFFT

computations in 2052 clock cycles. Thus by taking the guard

interval of WiMAX systems into account, the proposed

FFT/IFFT processor does not need to operate in a multiple

sampling frequency as the previous cached-memory FFT

designs do [2], [3]. The modules of the proposed design will

be described in more detail below.

Fig. 4. Block diagram of the proposed two-stream FFT/IFFT processor.

204

A. Main Memory

For memory-based FFT processors supporting consecutive

I/O, multiple main memories are needed as computation and

I/O buffers [7]. To reduce the total memory size, the

continuous flow (CF) memory architecture is proposed [7]

where only two N-word memories are required for N-point

FFT. Although CF FFT can reduce memory size by doing I/O

operation concurrently in a single memory, it requires

additional controls for memory addressing and butterfly units

(BU). This is because the original CF FFT adopts radix-4 and

radix-2 algorithms which have different bit-reverse orders. In

our proposed design; however, CF memory architecture

causes no problem since radix-23 and radix-22 algorithms

have the same bit-reverse order as radix-2 algorithm [4]. As

shown in Fig. 4, one 4096-word SRAM works as the I/O

buffer while the other one works as the processing buffer, and

vice versa. Each SRAM is further partitioned to eight banks to

support eight accesses simultaneously for radix-23 algorithms.

B. Ping-Pong Cache-Memory Architecture

Cached-memory FFT [2], [3] is proposed for low power

consumption by reducing the memory accesses. As shown in

Fig. 5, data are first read from main memory and then sent to

the cache. By proper data scheduling, PE can perform

multiple-stage processing by accessing local cache instead of

the main memory. Although cached-memory FFT can reduce

memory accesses effectively, a concurrent read/write cache

with complex control is required to increase the throughput.

Thus we propose the ping-pong cache-memory architecture

which uses a simple cache with single read/write operations.

As illustrated in Fig. 6, data read from the main memory are

processed by PE first and then written to the cache for future

use. After the cache is full, data in the cache are read by PE

and the computed results are stored back to the main memory.

Since radix-23 algorithm is adopted in the proposed design, a

64-word cache is employed to support two-stage radix-23

processing. By using this scheme, half the memory accesses

can be saved. Moreover, the ping-pong cache-memory has

shorter latency compared to the cached-memory, which is

beneficial in scheduling data streams.

Fig. 5. Cached-memory architecture.

Fig. 6. Proposed ping-pong cache-memory architecture.

C. Processing Engine (PE)

The PE is designed to perform radix-23/22/2 butterfly

operations and complex multiplications with proposed block

scaling approach as shown in Fig. 7. Since variable-length

FFT must be supported and the final stage can be radix-23,

radix-22, or radix-2 as described earlier, a configurable

radix-23/22/2 butterfly unit capable of processing one radix-23,

two radix-22, or four radix-2 is adopted. We use 2048-point

FFT mode to describe the control of PE. At the fist processing

stage, since the inputs have the same decimal point, data

alignments are skipped. Input data are processed by radix-23

BU directly and then passed to the first overflow detection

and scaling unit (ODSU1) in Fig. 7. If an overflow is detected,

all eight inputs will be scaled and the corresponding shift in

exponent is sent to the block scaling unit. Afterward, the

output of ODSU1 is sent to the complex multipliers for

twiddle factor multiplications. The outputs of the complex

multipliers are passed to the second overflow detection and

scaling unit (ODSU2) in Fig. 7 where the same operation of

ODSU1 is performed. The second and third stages have

similar control flows as stage 1. For stage 4, after inputs are

aligned in decimal point for processing, two radix-22

operations are performed. At this stage; however, only scaling

is performed in ODSU1 since the final output is

fixed-exponent in our proposed block scaling algorithm.

Complex multiplications and ODSU2 are also skipped in this

stage because no twiddle factor multiplication is required at

final stage as shown previously in Fig. 2. The detailed control

flow for all 128~2048 FFT modes is summarized in Table I.

Fig. 7. Block diagram of the processing engine.

TABLE I. PE control for 128~2048-point FFT/IFFT.
 First

Stage

Intermediate

 Stage(s)

Final

Stage

Alignment Bypass ON ON

Configurable

BU
Radix-23 Radix-23

Radix-23 for 512 FFT

Radix-22 for 256/2048 FFT

Radix-2 for 128/1024 FFT

ODSU1
Detection

& Scaling

Detection

& Scaling
Scaling

Multiplier ON ON Bypass

ODSU2
Detection

& Scaling

Detection

& Scaling
Bypass

Block

scaling

unit

Exponent

store

Alignment

control &

Exponent

store

Alignment

control &

ODSU1

control

IV. CHIP IMPLEMENTATION

A test chip of the proposed block scaling FFT/IFFT

processor (2048-point mode) is implemented using UMC

0.13 μm 1P8M CMOS technology for verification. The core

size is 1332×1590 μm2 as shown in Fig. 8. From post-layout

prime power simulation, it is shown that the proposed

205

FFT/IFFT consumes only 17.26 mW at 22.86 MHz when

performing two 2048-point FFT computations consecutively

for WiMAX applications. The SQNR performance of the

2048-point FFT/IFFT has also been verified to exceed 48 dB

for QPSK and 16/64-QAM signals. Thus the implementation

loss of cascaded IFFT and FFT is only 0.1 dB with AWGN at

30 dB SNR which satisfies our design target for WiMAX

applications. The detailed power profiling and chip summary

are shown in Fig. 9.

4096-word SRAM

4096-word SRAM

BSU

ROM

Cache
Cache

BU M7M1 M2

M3 M4

M6M5

Controller

Fig. 8. Chip layout of the proposed FFT/IFFT Processor.

Fig. 9. Power profiling and chip summary of the proposed processor.

V. COMPARISON

For comparisons, we choose two FFT processor chips

which can handle consecutive 2048-point FFT computations

[8], [9]. Since these two chips can not support multiple data

streams and only complete results for 1024-point FFT are

listed, the comparisons of execution time and power are based

on single-stream 1024-point FFT. Besides, to compare the

FFT processor chips fabricated with different technologies,

we adopt the normalized area and FFTs per energy [2] as our

performance indices shown in eqs. (3) and (4). Note that eq.

(4) has been adapted to take account of the voltage scaling.

2

Area
Normalized Area

(Technology/0.13μm)
= (3)

2

3

(Technology/0.13μm) (/1.2)FFTs
Normalized

Energy Power Execution Time 10

DDV×
=

× ×
 (4)

The comparison results are summarized in TABLE II. We

can find that the FFT processor [9] use a shorter wordlength

of 12 bits since it only supports for 9-bit input. The processor

[8] has employed the BFP approach and thus the wordlength

is not increased. However, both designs [8], [9] do not employ

a cache design to reduce the power of memory accesses. From

this comparison, it is shown that our proposal has a

satisfactory result in both normalized area and FFTs per

energy, which justifies the feasibility of the proposed method.

TABLE II. Chip comparison of various 2048-point FFT Processors.
 This Work Zhong [8] Lin [9]

*3

Technology 0.13 μm 0.25 μm 0.35 μm

Supported FFT/

IFFT (consecutive)

Two 2048-point
*1

FFTs/IFFTs

8~2048-point

FFT

512~2048-point

FFT

Cache design Yes No No

Scaling/BFP design Block scaling BFP No

Input bit width 12 bits 16 bits 9 bits

Wordlength 12 bits 16 bits 12 bits

Core voltage 1.2 volt 2.5 volt 3.3 volt

Clock rate 22.86 MHz 200 MHz 45.45 MHz

Execution time

(1024-point)
22.48 μs*2

 26.4 μs 45.06 μs

Power (1024-point) 17.26 mW*2 400 mW 640 mW

Core Area 2.12 μm2 11.42 μm2 13.05 μm2

Normalized 1024-

Point FFTs/ Energy
2577

*2
790 706

Normalized Area 1.06 3.09 1.80
 *1: Can be extended to 128~2048-point by adding control modes.

 *2: Normalized from data of two 2048-point FFTs.

 *3: The bit-reverse memory is not included.

VI. CONCLUSION

A block scaling MIMO FFT/IFFT processor for WiMAX

applications has been proposed in this paper. It can support

two 2048-point FFT/IFFT computations simultaneously

within 2052 clock cycles. Moreover, with a novel block

scaling method and a new ping-pong cache-memory

architecture, both power consumption and hardware cost can

be greatly reduced. A test chip has been designed using UMC

0.13 μm 1P8M process. Simulation result has shown that the

proposed FFT processor consumes only 17.26 mW at 22.86

MHz which meets the maximum throughput rate of WiMAX

applications.

ACKNOWLEDGMENT

This work was supported by the National Science Council

of Taiwan under Grant NSC94-2215-E-009-044 and

by ICL/ITRI. under Grant 5352BA5115.

REFERENCES

[1] WiMAX Forum, Mobile WiMAX-Part I: A technical overview and

performance evaluations, Feb. 21, 2006.

[2] B. M. Bass, “A low-power, high-performance, 1024-point FFT

processor,” IEEE J. Solid-State Circuits, vol. 34, pp. 380–387, Mar.

1999.

[3] Y.-W. Lin, H.-Y. Liu, and C.-Y. Lee, “A dynamic scaling FFT

processor for DVB-T applications,” IEEE J. Solid-State Circuits, vol.

39, pp. 2005–2013, Nov. 2004.

[4] He Shousheng and M. Torkelson, “Designing pipeline FFT processor

for OFDM (de)modulation,” In Proc. Int. Symp. Signals, Systems,

and Electronics, 29 Sept.-2 Oct. 1998, pp. 257-262.

[5] B. M. Baas, “An approach to low-power, high-performance, fast

Fourier transform processor design,” PhD Dissertation, Stanford

University, Stanford, CA, 1999.

[6] K. Maharatna, E. Grass, and U. Jagdhold, “A 64-point Fourier

transform chip for high-speed wireless LAN application using

OFDM,” IEEE J. Solid-State Circuits, vol. 39, pp. 484-493, Mar.

2003.

[7] B. G. Jo and M. H. Sunwoo, “New continuous-flow mixed radix

(CFMR) FFT using novel in-place strategy,” IEEE Trans. Circuits

Syst., vol. 52, pp. 911–919, May. 2005.

[8] G. Zhong, F. Xu, and A. N. Willson Jr., “A power-scalable

reconfigurable FFT/IFFT IC based on a multi-processor ring,” IEEE

J. Solid-State Circuits, vol. 41, pp. 483-495, Feb. 2006.

[9] Y.-T. Lin, P.-Y. Tsai, and T.-D. Chiueh, “Low-power variable-

length fast Fourier transform processor,” In Proc. Comput. Digit.

Tech., vol. 152, No. 4, pp. 499-506, July 2005.

206

