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Abstract-This paper presents a low-power design of a two- 

stream MIMO FFT/IFFT processor for WiMAX applications. A 

novel block scaling method and a new ping-pong cache-memory 

architecture are proposed to reduce the power consumption and 

hardware cost. With these schemes, half the memory accesses 

and 64-Kbit memory can be saved. Furthermore, by proper 

scheduling of the two data streams, the proposed design achieves 

better hardware utilization and can process two 2048-point 

FFTs/IFFTs consecutively within 2052 cycles. A test chip of the 

proposed FFT/IFFT processor has been designed using UMC 

0.13 μm 1P8M process with a core area of 1332×1590 μm
2
. The 

SQNR performance of the 2048-point FFT/IFFT is over 48 dB 

for QPSK and 16/64-QAM modulations. Power dissipation of 

two 2048-point FFT computations is about 17.26 mW at 22.86 

MHz which meets the maximum throughput rate of WiMAX 

applications. 

I.  INTRODUCTION 

Multiple-input multiple-output orthogonal frequency 

division multiplexing (MIMO OFDM) is considered a key 

technology in high-throughput transmissions over wireless 

fading channels. The emerging WiMAX/IEEE 802.16 

standard has employed this technology in its physical-layer 

specification to provide broadband wireless access services. 

In the specification, scalable channel bandwidths from 1.25 to 

20 MHz by adjusting FFT size (from 128 to 2048-point) are 

employed for different applications. Three modulation types 

(QPSK, 16/64-QAM) and four guard intervals modes (1/4, 

1/8, 1/16, 1/32) are also supported to further increase the 

system scalability. A block diagram of a 2×2 MIMO 

transceiver for WiMAX applications is shown in Fig. 1. By 

processing two data streams with duplicated antennas and 

functional units, the peak data rate of the 2×2 MIMO 

transceiver can be two-folded compared to that of a 

single-input single-output (SISO) transceiver. 

To support a MIMO transceiver for WiMAX applications, 

a variable-length FFT/IFFT processor capable of processing 

multiple data streams is required. Since 2×2 MIMO with time 

division duplex (TDD) mode is defined in the WiMAX 

Forum Release-1 system profiles [1], a two-stream 128/256/ 

512/1024/2048-point FFT/IFFT processor is considered in 

this paper. Besides, while the power consumption is critical 

for portable systems, the FFT/IFFT processor for WiMAX 

applications should be power-efficient. There have been 

many researches on low-power FFT designs by employing 

the cached-memory architecture to reduce the memory 

accesses [2], [3]. However, the increase in wordlength [2] or 

idle cycles [3] still causes wastes in power consumption and 

hardware cost. To solve these problems, a novel block scaling 

method and a new ping-pong cache-memory architecture are 

exploited in our proposed FFT/IFFT processor. With these 

schemes, half the memory accesses and 64-Kbit memory (4 

bits in wordlength) can be saved without inducing idle cycles. 

Moreover, by proper scheduling of the two data streams, the 

proposed FFT/IFFT processor avoids stalls of function units 

and thus achieves better hardware utilization. Two-stream 

2048-point FFTs/IFFTs can be computed consecutively 

within 2052 processing cycles. 

 

Fig. 1. Block diagram of a 2×2 MIMO transceiver for WiMAX applications. 

 

II. ALGORITHM 

The N-point discrete Fourier transform (DFT) of a complex 

input sequence x(n) can be defined as: 
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kn j kn NW e π−=  is referred to the twiddle factor. To 

reduce the number of complex multiplications, radix-8 

algorithm is chosen to carry out the DFT [4]. Here we take the 

longest 2048-point DFT in the design as an example. Since 

2048 is not a power of 8, we decompose the 2048-point DFT 

into three radix-8 stages and a final radix-4 stage as shown in 

the following equation: 
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 where k1,k2,k3=0,1,2,…7 and k4=0,1,2,3. Similarly, 128/256/ 

512/1024-point DFT can also be decomposed to preceding 
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radix-8 stages and a final radix-8/4/2 stage depending on the 

DFT size. Although high-radix algorithm is effective in 

reducing the number of complex multiplications, its hardware 

is very complex if directly implemented. Thus we employ 

radix-23 and radix-22 [4] to replace radix-8 and radix-4, 

respectively. A signal flow graph (SFG) of the 32-point 

radix-23/22 FFT is shown in Fig. 2 as an example. We can find 

in this figure that a full 32-point FFT is completed by one 

radix-23 and multiplication stage and one radix-22 stage. With 

these steps, we can decompose the 2048-point FFT into three 

radix-23 and multiplication stages and a final radix-22 stage 

for further hardware implementations. 
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Fig. 2. SFG of a 32-point radix-23/22 FFT. 

A.  Block Scaling Method 

Block floating-point (BFP) [5] is an efficient way to reduce 

the wordlength by increasing the dynamic range compared to 

the fixed-point format. The behavior of BFP is similar to that 

of floating-point except a single exponent is used for a group 

of data. Although BFP is often adopted in memory-based FFT 

processors to save the hardware cost and power, it is not 

suited to cached-memory FFT processors because of the 

interleaved processing stages [5]. To solve this problem, a 

dynamic scaling FFT processor [3] is proposed by employing 

multiple exponents for cache-size blocks. While dynamic 

scaling approach has a satisfactory result in reducing 

wordlength, it still has two drawbacks. Since the exponent 

position can be determined only after all cached data are 

processed, some clock cycles are wasted. Also, the internal 

wordlength of both arithmetic units and cache needs to be 

extended to prevent overflows. 

Thus we propose the block scaling method which 

eliminates the increased wordlength and idle cycles by a 

“detect and scale” approach. Each set of the output symbols 

will be scaled right away if an overflow is detected. At the 

same time, the resulting exponents are saved for data 

alignment in the next processing stage. Although this method 

can be realized by saving block exponents for all processing 

stages, it is hardware consuming. To work out this issue, we 

scale the final output of FFT to a predetermined exponent, 

and thus only 296 exponents are needed to be stored for the 

longest-length 2048-point FFTs. There are two main reasons 

why this fixed-exponent scheme is feasible. First, because the 

input symbols are gain-controlled and have specified 

modulation in OFDM systems, the maximum value of the 

final FFT output can be expected in advance. Second, in most 

dedicated OFDM transceiver designs, only fixed-point format 

is considered due to simpler hardware implementations. As 

the simulation result shows in Fig. 3, over four bits can be 

reduced in wordlength by the proposed method under the 

same signal-to-quantization-noise ratio (SQNR). We can also 

find that more than one fourth of the memory size (from 16 

bits to 12 bits) can be saved at about 50 dB SQNR. 
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Fig. 3. SQNR performance of the proposed block scaling method. 

 

III. ARCHITECTURE 

Block diagram of the proposed FFT/IFFT processor is 

depicted in Fig. 4. It consists of four FFT/IFFT control units, a 

main memory unit, a processing engine (PE), and a 64-word 

cache. In this design, a novel block scaling method and a new 

ping-pong cache-memory architecture are proposed to reduce 

the power consumption and hardware cost. Besides, since 

FFT and IFFT have the same operations except for complex- 

conjugated twiddle factors, we implement IFFT by simply 

taking conjugates of FFT input/output [6] as shown in Fig. 4. 

With these techniques and proper data scheduling, the 

proposed design can realize two 2048-point FFT/IFFT 

computations in 2052 clock cycles. Thus by taking the guard 

interval of WiMAX systems into account, the proposed 

FFT/IFFT processor does not need to operate in a multiple 

sampling frequency as the previous cached-memory FFT 

designs do [2], [3]. The modules of the proposed design will 

be described in more detail below. 

 
Fig. 4. Block diagram of the proposed two-stream FFT/IFFT processor. 
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A.  Main Memory 

For memory-based FFT processors supporting consecutive 

I/O, multiple main memories are needed as computation and 

I/O buffers [7]. To reduce the total memory size, the 

continuous flow (CF) memory architecture is proposed [7] 

where only two N-word memories are required for N-point 

FFT. Although CF FFT can reduce memory size by doing I/O 

operation concurrently in a single memory, it requires 

additional controls for memory addressing and butterfly units 

(BU). This is because the original CF FFT adopts radix-4 and 

radix-2 algorithms which have different bit-reverse orders. In 

our proposed design; however, CF memory architecture 

causes no problem since radix-23 and radix-22 algorithms 

have the same bit-reverse order as radix-2 algorithm [4]. As 

shown in Fig. 4, one 4096-word SRAM works as the I/O 

buffer while the other one works as the processing buffer, and 

vice versa. Each SRAM is further partitioned to eight banks to 

support eight accesses simultaneously for radix-23 algorithms. 

B.  Ping-Pong Cache-Memory Architecture 

Cached-memory FFT [2], [3] is proposed for low power 

consumption by reducing the memory accesses. As shown in 

Fig. 5, data are first read from main memory and then sent to 

the cache. By proper data scheduling, PE can perform 

multiple-stage processing by accessing local cache instead of 

the main memory. Although cached-memory FFT can reduce 

memory accesses effectively, a concurrent read/write cache 

with complex control is required to increase the throughput. 

Thus we propose the ping-pong cache-memory architecture 

which uses a simple cache with single read/write operations. 

As illustrated in Fig. 6, data read from the main memory are 

processed by PE first and then written to the cache for future 

use. After the cache is full, data in the cache are read by PE 

and the computed results are stored back to the main memory. 

Since radix-23 algorithm is adopted in the proposed design, a 

64-word cache is employed to support two-stage radix-23 

processing. By using this scheme, half the memory accesses 

can be saved. Moreover, the ping-pong cache-memory has 

shorter latency compared to the cached-memory, which is 

beneficial in scheduling data streams. 

 
Fig. 5. Cached-memory architecture. 

 

 
Fig. 6. Proposed ping-pong cache-memory architecture. 

C.  Processing Engine (PE) 

The PE is designed to perform radix-23/22/2 butterfly 

operations and complex multiplications with proposed block 

scaling approach as shown in Fig. 7. Since variable-length 

FFT must be supported and the final stage can be radix-23, 

radix-22, or radix-2 as described earlier, a configurable 

radix-23/22/2 butterfly unit capable of processing one radix-23, 

two radix-22, or four radix-2 is adopted. We use 2048-point 

FFT mode to describe the control of PE. At the fist processing 

stage, since the inputs have the same decimal point, data 

alignments are skipped. Input data are processed by radix-23 

BU directly and then passed to the first overflow detection 

and scaling unit (ODSU1) in Fig. 7. If an overflow is detected, 

all eight inputs will be scaled and the corresponding shift in 

exponent is sent to the block scaling unit. Afterward, the 

output of ODSU1 is sent to the complex multipliers for 

twiddle factor multiplications. The outputs of the complex 

multipliers are passed to the second overflow detection and 

scaling unit (ODSU2) in Fig. 7 where the same operation of 

ODSU1 is performed. The second and third stages have 

similar control flows as stage 1. For stage 4, after inputs are 

aligned in decimal point for processing, two radix-22 

operations are performed. At this stage; however, only scaling 

is performed in ODSU1 since the final output is 

fixed-exponent in our proposed block scaling algorithm. 

Complex multiplications and ODSU2 are also skipped in this 

stage because no twiddle factor multiplication is required at 

final stage as shown previously in Fig. 2. The detailed control 

flow for all 128~2048 FFT modes is summarized in Table I. 

 
Fig. 7. Block diagram of the processing engine.  

TABLE  I. PE control for 128~2048-point FFT/IFFT. 
 First 

Stage 

Intermediate 

 Stage(s) 

Final 

Stage 

Alignment Bypass ON ON 

Configurable

BU 
Radix-23 Radix-23 

Radix-23 for 512 FFT 

Radix-22 for 256/2048 FFT

Radix-2  for 128/1024 FFT

ODSU1 
Detection 

& Scaling 

Detection 

& Scaling 
Scaling 

Multiplier ON ON Bypass 

ODSU2 
Detection 

& Scaling 

Detection 

& Scaling 
Bypass 

Block 

scaling 

unit 

Exponent 

store 

Alignment 

control & 

Exponent 

store 

Alignment  

control & 

ODSU1 

control 

 

IV. CHIP IMPLEMENTATION 

A test chip of the proposed block scaling FFT/IFFT 

processor (2048-point mode) is implemented using UMC 

0.13 μm 1P8M CMOS technology for verification. The core 

size is 1332×1590 μm2 as shown in Fig. 8. From post-layout 

prime power simulation, it is shown that the proposed 
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FFT/IFFT consumes only 17.26 mW at 22.86 MHz when 

performing two 2048-point FFT computations consecutively 

for WiMAX applications. The SQNR performance of the 

2048-point FFT/IFFT has also been verified to exceed 48 dB 

for QPSK and 16/64-QAM signals. Thus the implementation 

loss of cascaded IFFT and FFT is only 0.1 dB with AWGN at 

30 dB SNR which satisfies our design target for WiMAX 

applications. The detailed power profiling and chip summary 

are shown in Fig. 9. 
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4096-word SRAM

BSU

ROM

Cache
Cache

BU M7M1 M2

M3 M4

M6M5

Controller

 
Fig. 8. Chip layout of the proposed FFT/IFFT Processor. 

 
Fig. 9. Power profiling and chip summary of the proposed processor. 

 

V. COMPARISON 

For comparisons, we choose two FFT processor chips 

which can handle consecutive 2048-point FFT computations 

[8], [9]. Since these two chips can not support multiple data 

streams and only complete results for 1024-point FFT are 

listed, the comparisons of execution time and power are based 

on single-stream 1024-point FFT.  Besides, to compare the 

FFT processor chips fabricated with different technologies, 

we adopt the normalized area and FFTs per energy [2] as our 

performance indices shown in eqs. (3) and (4).  Note that eq. 

(4) has been adapted to take account of the voltage scaling.  

2

Area
Normalized Area

(Technology/0.13μm)
=                           (3) 

2

3

(Technology/0.13μm) ( /1.2)FFTs
Normalized

Energy Power Execution Time 10

DDV×
=

× ×
 (4) 

The comparison results are summarized in TABLE II. We 

can find that the FFT processor [9] use a shorter wordlength 

of 12 bits since it only supports for 9-bit input. The processor 

[8] has employed the BFP approach and thus the wordlength 

is not increased. However, both designs [8], [9] do not employ 

a cache design to reduce the power of memory accesses. From 

this comparison, it is shown that our proposal has a 

satisfactory result in both normalized area and FFTs per 

energy, which justifies the feasibility of the proposed method. 

TABLE  II. Chip comparison of various 2048-point FFT Processors. 
 This Work Zhong [8] Lin [9]

*3
 

Technology 0.13 μm 0.25 μm 0.35 μm 

Supported FFT/ 

IFFT (consecutive)

Two 2048-point
*1

FFTs/IFFTs 

8~2048-point

FFT 

512~2048-point

FFT 

Cache design Yes No No 

Scaling/BFP design Block scaling BFP No 

Input bit width 12 bits 16 bits 9 bits 

Wordlength 12 bits 16 bits 12 bits 

Core voltage 1.2 volt 2.5 volt 3.3 volt 

Clock rate 22.86 MHz 200 MHz 45.45 MHz 

Execution time 

(1024-point) 
22.48 μs*2

 26.4 μs 45.06 μs 

Power (1024-point) 17.26 mW*2 400 mW 640 mW 

Core Area 2.12 μm2 11.42 μm2 13.05 μm2 

Normalized 1024- 

Point FFTs/ Energy
2577

*2 
790 706 

Normalized Area 1.06 3.09 1.80 
               *1:  Can be extended to 128~2048-point by adding control modes. 

               *2:  Normalized from data of two 2048-point FFTs. 

               *3:  The bit-reverse memory is not included. 

VI.  CONCLUSION 

A block scaling MIMO FFT/IFFT processor for WiMAX 

applications has been proposed in this paper. It can support 

two 2048-point FFT/IFFT computations simultaneously 

within 2052 clock cycles. Moreover, with a novel block 

scaling method and a new ping-pong cache-memory 

architecture, both power consumption and hardware cost can 

be greatly reduced. A test chip has been designed using UMC 

0.13 μm 1P8M process. Simulation result has shown that the 

proposed FFT processor consumes only 17.26 mW at 22.86 

MHz which meets the maximum throughput rate of WiMAX 

applications. 
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