
Received January 30, 2020, accepted February 13, 2020, date of publication February 18, 2020, date of current version February 27, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2974810

A Blockchain-Based Approach for the
Creation of Digital Twins

HAYA R. HASAN 1, KHALED SALAH 1, RAJA JAYARAMAN 2, MOHAMMED OMAR 2,
IBRAR YAQOOB 1, SAS̆A PESIC 3, TODD TAYLOR 3,
AND DRAGAN BOSCOVIC 3
1Department of Electrical Engineering and Computer Science, Khalifa University, Abu Dhabi, UAE
2Department of Industrial and Systems Engineering, Khalifa University, Abu Dhabi, UAE
3ASU’s Blockchain Research Laboratory, Arizona State University, Tempe, AZ 85281, USA

Corresponding author: Ibrar Yaqoob (ibraryaqoob@ieee.org)

This work was supported by the Khalifa University of Science and Technology under Award CIRA-2019-001 and RCII-2019-002-

Research Center for Digital Supply Chain and Operations Management.

ABSTRACT The rapid advancements in computing, storage, communications, and networking technologies

have enabled the creation of Digital Twins (DTs). A DT is a digital representation of a real-world physical

component, product, or equipment. A DT can be used for 3-D design, testing, simulation, and prototyping

prior to themanufacturing of the physical component. Once a physical component is in operation, a DT can be

used for configuration, monitoring, diagnostics, and prognostics. It is expected that DTs will gain significant

attention in the foreseeable future, and will play a key role in Industry 4.0. However, today’s approaches,

systems, and technologies leveraged for the creation of DTs are mostly centralized and fall short of providing

trusted data provenance, audit, and traceability. Also, data related to transactions, logs, and history are not

secure or tamper-proof. In this paper, we propose a blockchain-based creation process of DTs to guarantee

secure and trusted traceability, accessibility, and immutability of transactions, logs, and data provenance. Our

proposed approach uses smart contracts to govern and track transactions initiated by participants involved in

the creation of DTs. Our approach also employs decentralized storage of interplanetary file systems to store

and share DTs data. Moreover, we present details on our system design and architecture, implementation,

and algorithms. Furthermore, we provide security and cost analysis, and show how our approach fulfills the

requirements of DTs process creation. We make the smart contract code for creating DTs publicly available

on Github.

INDEX TERMS Digital twins, blockchain, Ethereum, smart contracts, security, Industry 4.0.

I. INTRODUCTION

With unprecedented proliferation of Cyber-Physical Sys-

tems (CPS), advanced data analytics, and high performance

computing technologies, Industry 4.0 has brought extensive

changes to industrial operations since the past decade. A Dig-

ital Twin (DT) is considered as an indispensable component

of the CPS concept which refers to a virtual representation

of any physical object, process, system, smart city, to name

a few [1]. DTs aim to optimize industrial operations and

maintain physical assets and manufacturing processes before

their creation. An amalgamation of physical and virtual dig-

italized elements leads to the creation of DTs. These DTs

operate in the digital world just like their physical twins

The associate editor coordinating the review of this manuscript and

approving it for publication was Vicente Alarcon-Aquino .

in the real physical world [2]. Figure 1 shows a digital

replica of a physical engine in a three-dimensional model.

DTs bridge the gap between the real and virtual worlds.

The pairing between the digital and physical worlds using

streams of data generated by sensory devices not only helps

in terms of proactive maintenance but also helps in build-

ing predictive simulation models [3]. Moreover, performance

optimization is one of the prime aspects in industries that

can be achieved by creating DTs of real devices includ-

ing aircraft engines, smart containers, wind turbines, space

crafts, and others. Furthermore, DTs have great potential to

improve the healthcare industry. For example, a healthcare

provider can simulate an operation on a patient’s virtual organ

and perform experiments on it with different procedures

before performing the real operation on the patient’s physical

organ [4].

VOLUME 8, 2020
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 34113

https://orcid.org/0000-0002-0029-9095
https://orcid.org/0000-0002-2310-2558
https://orcid.org/0000-0002-2749-2688
https://orcid.org/0000-0001-8833-2947
https://orcid.org/0000-0002-8438-3429
https://orcid.org/0000-0003-4916-6506
https://orcid.org/0000-0001-7882-2045
https://orcid.org/0000-0003-3704-6910
https://orcid.org/0000-0002-9843-9219

H. R. Hasan et al.: Blockchain-Based Approach for the Creation of Digital Twins

FIGURE 1. A real physical engine vs. its digital twin.

The concept of DTs was introduced by NASA [5], [6]

to find effective ways to resolve challenges associated with

the Apollo 12 mission. Specifically, the organization needs

to operate on such systems that are out of their physical

proximity and thereby led toward the creation of a ‘‘virtual

model of a process or service’’ that has similar characteristics

to the physical object [7]. The augmentation and integration

of the virtual and real worlds are established using modeling

techniques, Internet of things, artificial intelligence, and data

analytics of the uninterrupted data streams collected from

sensory elements. It is anticipated that half of the large indus-

trial companies will adopt DTs by 2021, and their market is

set to hit $15.66 billion by 2023 [7]. Hence, DTs will become

prevalent in smart industries.

DTs can mainly be classified into two categories, namely,

static and dynamic DTs. The former type of digitized models

neither change in shape nor affected by data streams. How-

ever, the latter type of DTs keeps changing based on the

updated streams of data. They capture live performances of

the real objects. Thus, they always stay updated and can be

altered instantaneously.

Sincemultidisciplinary teams are involved in creatingDTs,

the interaction between the teams, workflows, and progresses

need to be monitored in a trustworthy manner. Each collabo-

ration activity that occurs between different phase providers,

engineers, and managers must be documented in such a

way that it ensures transparent history monitoring, traceabil-

ity, privacy, trust, and security [8]. This can be achieved

using blockhain that is based on decentralized and distributed

ledger [9], [10]. Blockchain ensures provenance data tracking

and tracing on-chain [11]. It also provides other features that

include trust, accountability, data integrity, and immutability

which make it an ideal solution to monitor the creation pro-

cess of DTs. Blockchain allows the exchange of timestamped

events and notifications which are permanently stored in a

secure and tamper-proof ledger [12]. In sum, the pairing of

DTs with blockchain ensures secure, efficient, decentralized,

and trusted creation of virtual models. The creation process

usually involves four phases, e.g., design phase, building

phase, testing phase, and delivery phase [8]. The beginning

of each phase depends on the completion of the previous

phase. These phases can further be divided based on hardware

design, quality testing, dimensional analysis, and others [6].

Current creation processes of DTs are mostly based on simple

tools, thereby ended up using centralized solutions that are

vulnerable to single point of failures. However, incorporation

of blockchain ensures that DTs creation processes are man-

aged in a secured and trusted manner.

A. RELATED WORKS AND CONTRIBUTIONS

DTs are still in their infancy and as such very limited literature

is available on the subject. Herein, we discuss the existing

solutions concerning to creation process of DTs and their

convergence with blockchain.

In most cases, multidisciplinary teams having extensive

experience are involved to create the flexible, scalable,

resilient to operational changes, and expandable DTs [3].

However, the current creation of DTs is based on traditional

methods that have centralized authorities to manage the truth

and facts [3], which do not ensure trustworthiness. Authors

of [13] have discussed the challenges that hinder the suc-

cessful and secure creation of DTs. First, the interoperability

between the different collaborators and associates is con-

sidered as an indispensable issue. Second, data storage and

analysis are other aspects that need to be considered. Third,

ensuring real-time communication transparency between the

contributors is a vital feature that must be incorporated in the

creation process of DTs [13].

The study conducted in [14] presents important charac-

teristics (e.g., data provenance tracking, traceability, trans-

parency, and tamper-proof logs) of blockchain that make it

best fit for supply chain industries. These characteristics also

make blockchain a highly secure distributed ledger that is

trusted throughout the end-to-end creation process of DTs.

Blockchain acts as a unity layer where it brings together

all the transactions and interactions of the stakeholders into

transparency and accountability [8]. Authors of [8] have

introduced the concept of employing DTs for additive manu-

facturing in the aircraft industry. The authors proposed a the-

oretical solution that highlights the importance of blockchain

to secure the data associated with the aircraft industry. They

used visual studio tool to write and test their Javascript

code [8].

Motivated by the need of a secure, trusted, resilient and

reliable method to track and trace the different phases

involved in the creation of DTs, this study aims to design and

implement a decentralized blockchain-based solution. Unlike

the existing works, the key contributions of our paper can be

summarized as follows:

• We propose a blockchain-based creation process of DTs

that guarantees secure and trusted traceability, accessi-

bility, and immutability of transactions, logs, and data

provenance.

• We introduce smart contracts to govern and track trans-

actions initiated by participants involved in the creation

of DTs.

• We integrate our blockchain-based system with the

InterPlanetary File System (IPFS) to store and share

information of DTs.

34114 VOLUME 8, 2020

H. R. Hasan et al.: Blockchain-Based Approach for the Creation of Digital Twins

FIGURE 2. A system diagram showing the main components interacting with the smart contract and the resulting on-chain
resources.

• We provide security and cost analysis, and show how

our approach fulfills the requirements of DTs process

creation.

• We propose a generic solution that can be customized to

fulfill the needs of any industry.

• We present the full implementation details, smart con-

tract code,1 and testing details.

The remainder of this paper is organized as follows. Section II

presents the proposed blockchain-based approach. Section III

describes the implementation details. Section IV provides

testing and validation details. Section V evaluates the imple-

mented solution, and section VI concludes the paper.

II. PROPOSED BLOCKCHAIN-BASED SOLUTION

This section describes the proposed blockchain-based

approach for the creation process of DTs. This is a generic

approach that can be customized to fulfill the requirements

and functionalities of any company that needs a digital model

to meet certain objectives.

To create a DT, which is a digitized virtual model of a

real physical object, multidisciplinary teams gather up and

work together. The DT creation process requires trusted

management and tracking to assure that entire history infor-

mation is kept in a tamper-proof manner. Thus, blockchain

is employed to meet strict security requirements in a

1 https://github.com/smartcontract694/DT/blob/master/code

decentralized way. The components of the proposed solution

are presented in figure 2. In the figure, the DT stakeholders,

i.e., process managers, phase managers, and owners inter-

act with the smart contract through a front-end layer using

Application Program Interfaces (APIs). The front-end decen-

tralized application may use any of the interfaces, such as

RestHTTP, Web3 or JSON RPC to connect the stakeholders

to the smart contract or IPFS servers as shown in 2. The

interactions with the smart contract ensure secure on-chain

resources that are traceable and tamper-proof. Further details

of different system components are provided below.

• DT Stakeholders: The stakeholders include process

manager, design manager, quality manager, testing man-

ager, deliverymanager, and registeredDT owners. These

stakeholders act as participating entities in the smart

contract. They are authorized to execute certain function

calls depending on the state of the DT. Moreover, they

can access the on-chain resources, such as the prove-

nance data and DT details to keep track of the DT state,

history and logs information. Furthermore, they have

authorized access to the full information of theDT stored

on the IPFS servers [15].

• IPFS Storage: We employ IPFS to store the required

details of DTs or agreement forms in a decentralized

way. The IPFS-based storage ensures reliability, acces-

sibility, and integrity of the stored data. Moreover,

VOLUME 8, 2020 34115

H. R. Hasan et al.: Blockchain-Based Approach for the Creation of Digital Twins

the costs of storing on IPFS is very minor compared

to storing on-chain. Additionally, the cost of storing on

IPFS would not cost more than conventional storage

spaces and it is a fixed monthly amount that depends on

the amount of storage space required.

IPFS ensures data integrity through the IPFS hash which

is uniquely generated for every file uploaded on the IPFS

servers. All the information and data of the DT creation

process are stored on IPFS and their unique hash is

stored in the smart contract. If anyone tries to modify

the information on the IPFS servers, the newly generated

hash of the file would not match the hash stored in the

smart contract. Hence, storing the data on IPFS ensures

that the data is securely stored with high integrity [16].

• Ethereum Smart Contract: The concept of Ethereum

smart contract is introduced to manage the creation pro-

cess of DTs. The contract facilitates in terms of logistics

tracking and manages all the history of transactions. The

contract also deals with IPFS hash that leads to accessing

the DT information from IPFS servers.

• On-chain Resources: Since all the process creation

phases aremonitored through the smart contract, thereby

creating a large number of transaction logs. Storing

such information on-chain creates an important resource

for tracing and tracking, and making all stakeholders

accountable for their actions. On-chain resources also

handle certain types of DT information, such as the

timestamp, owner, registered owners, state, IPFS hash,

and warranty.

A. PERMISSIONED AND PERMISSIONLESS BLOCKCHAIN

The proposed solution is based on the Ethereum blockchain

platform. By design, Ethereum is a permissionless public

blockchain. However, a private or permissioned blockchain

can be used if data privacy is a key issue, to restrict access

to the blockchain. The presented architecture, techniques,

algorithms, and code are generic and could be used on both

permissioned and permissionless blockchain platforms.

A permissioned blockchain can be built with Ethereum

by setting up a private instance of the Ethereum blockchain

(nodes, wallets, and funds in private control). However,

Ethereum blockchain does not support complex privacy and

permissioning features by design. Thus, a more suitable

approach would be to use a blockchain with such fea-

tures already built-in, such as Hyperledger Fabric (HF),

which is designed as a permissioned private blockchain,

where only specific entities/users are authorized to use, val-

idate, and access the blockchain [17], [18]. HF relies on

a crash-fault tolerant, decentralized and deterministic con-

sensus algorithm, guaranteeing finality and correctness of

blocks. As a result, ledgers cannot fork, performance and

scalability are increased, and transaction throughput is sig-

nificantly superior compared to proof-of-Work (PoW) con-

sensus used in Ethereum [19]. Most important components

of a HF blockchain are the organizations, peers, ordering

service, membership service providers (MSPs), channels and

chaincodes. Organizations refer to business entities partic-

ipating in the network: they can have access to multiple

channels and can issues identities to network participants

through their associatedMSP.MSPs offer an abstraction layer

for a membership orchestration architecture. HF’s certificate

authority component is the default implementation of MSP

interface that includes identity management operations such

as certificate issuance, renewal and revocation. Channels are

components that enable transaction confidentiality in HF.

They represent physically separate, independent and private

instances of blockchain ledger visible only to organizations

that are members of the channel. All data associated with

private channels remain inaccessible and invisible to any

unauthorized network organizations. Peers are components

that communicate with clients on one side and are responsible

for committing blocks to the world state on the other. Each

peer holds its copy of ledgers, and an organization can have

multiple peers (i.e. for redundancy). Consensus in networks

is achieved through the Ordering Service. It is a decentralized

service offering fast ordering of transactions into blocks.

The ordering service also enforces basic access control for

channels, restricting who can read and write data to them,

and who can configure them. Finally, chaincodes provide the

means to implement business functionalities in form of smart

contracts (in Golang, Java, or NodeJS).

If Ethereum-like blockchains are favored, Hyperledger

Besu is an option to create permissioned private blockchain

networks. Besu is an open-source Ethereum client that can

be used to build a permissioned private Ethereum blockchain.

Besu nodes can connect to Ethereum public (MainNet), or test

networks (Ropsten, RinkeBy, Kovan, etc.). Alternatively, one

can create a private Besu network with private nodes, wallets,

smart contracts, and funds. Being well ahead of Ethereum

when it comes to privacy and permissioning features offer-

ing, Hyperledger Besu provides smart contract-based permis-

sioning, account and node-level whitelisting, high transac-

tion throughput consensus mechanisms (IBFT, Clique PoA)

and private transactions and privacy groups [20]. Moreover,

Hyperledger Besu can use a separate component for man-

aging identities and private keys, such as ’EthSigner’ [21].

Access control and management to support private transact-

ing are provided by ’Orion’ which is also Besu’s private

transactions manager [21], [22].

B. PHASES INVOLVED IN THE DT CREATION PROCESS

Figure 3 shows the main phases involved in the creation

process of DTs. There are mainly four phases:

• Design: Using Computer-Aided Design (CAD) Tools,

the design engineers apply modeling techniques and

analyze the digital data. The purpose is to directly cap-

ture objectives of the abstract model and convert it into

a virtual replica of the real figure.

• Build: The virtual design is transformed into a real

model using sensory data. This is a critical phase where

the model is updated continuously from captured data

34116 VOLUME 8, 2020

H. R. Hasan et al.: Blockchain-Based Approach for the Creation of Digital Twins

FIGURE 3. The four main phases involved in the DT creation process using blockchain as the managing entity.

and sends feedback of analytical information. It is essen-

tial to ensure that the build model works well in the real

environment whether it is in a supply chain industry or

any other heavily hectic data-dependent circumstances.

• Test: When the model is built successfully, it is tested

using a test bench to exclude any logical or possible

design defects in the DT model. Validation and compli-

ance with the certification standards are obligatory steps

to meet the quality assurance and control standards.

Certain thresholds of acceptance must be met to provide

confidence that certain requirements are fulfilled.

• Deliver: After successful testing and validation, the DT

model is ready for deployment. Potential owners can

register and the ownership rights are released to them

by the current DT owner. In this proposed design, all the

owners are available on the blockchain.

III. IMPLEMENTATION DETAILS

We used Solidity language to write the smart contract which

was compiled and tested using the Remix IDE [23]. Solidity is

the most popular language used for writing Ethereum smart

contracts. A debugger is embedded within Remix to check

for any warnings and fix possible errors. This section briefly

explains what functions are used in the code and how they

are implemented. Also, the code is publicly made available

on GitHub.

The process manager is responsible for initiating the cre-

ation process of DTs. Hence, the process manager is the smart

contract owner. The process starts after an event is triggered

that notifies all the other managers (participating entities).

This event triggers a flow of function calls that starts with

the design manager and ends with the delivery manager. All

these calls are logged and all the transactions can be traced

back when needed. Each function call produces an event and

each phase has a beginning and an end.

Modifiers are used to restrict access on who can exe-

cute a function call. This is done using the Ethereum

addresses of the participating entities. Therefore, only autho-

rized Ethereum addresses can make a function call. If for

any reason, an unauthorized entity tries to execute a function,

the contract state is reverted to its original state. Hence,

the DT state is not amended or affected in anyway. This is

captured in the algorithms using the statement ’Revert Con-

tract State’, which happens if any of the function restrictions

and requirements are not met.

Each phase has two main functions. One is responsible

to commence a new phase and the other is to approve its

results. The DT can be modified in a phase between those two

function calls as much as needed. The changes in between the

two function calls are not captured on-chain. However, if a

certain use case requires capturing changes during a phase,

a new function can be added. The current implementation is

a generic one that can be modified based on the requirements

and use case. The state of the DT keeps changing on-chain as

the phases proceed and as the functions get called. Once all

required steps of a phase are completed, the phase manager

executes the last function call which would change the DT

state and end the current phase. The states and roles are used

VOLUME 8, 2020 34117

H. R. Hasan et al.: Blockchain-Based Approach for the Creation of Digital Twins

FIGURE 4. Sequence diagram showing all the interactions between the participating entities of the smart contract.

to ensure the correct flow of function calls which determines

the process sequence.

Several owners can own the DT. When the DT is ready

for deployment, the delivery manager releases the asset for

deployment and a new owner gets registered by the delivery

manager. Then the process manager who currently owns

the DT releases the ownership rights to the new registered

owner. Later on, the registered owner can announce that

the DT is available for release to another new owner. All

the Ethereum addresses of the DT owners can be traced

and tracked using the events available in the logs. However,

the detailed information of the DT model and data is stored

in a decentralized way using the IPFS servers [15] because

storage on the blockchain is highly expensive. Furthermore,

all the participating entities agree to fulfill their roles based

on the company’s terms, conditions, and regulations. This

agreement form is also saved on the IPFS server.

Figure 4 illustrates the interactions between the participat-

ing entities from the start to the end of the creation process.

Those are the main interactions along with their subsequent

events. However, other events are also triggered in the case

of disapproval of the results by any of the managers. Each

phase can be further divided as required by the DT model.

For instance, if additional managers or collaborators are

needed on-chain the same existing criteria can be followed.

Any task can be handled by a certain additional entity using

two functions. Moreover, we have shown how a superior

manager needs to approve the tasks of the team by showing

the relationship between the engineer and the line manager.

The same could be applied to customize any phase depending

on the use case. Further details of each function call are

provided in their algorithms that can be found in the following

subsections.

1) INITIATING THE PROCESS OF CREATING THE DT

Algorithm 1 describes how the process of creating the DT is

started. The process manager starts the process which triggers

an event that leads to a change in the DT state to ’Ordered to

be Created’. This allows the first phase of the process to take

place. If anyone else tries to initiate the process other than the

process manager, the contract shows an error and the state of

the contract is reverted to its original state.

2) STARTING THE DESIGN PHASE

Algorithm 2 describes the design phase initiated by the autho-

rized design manager by changing the state of the DT to ’In

34118 VOLUME 8, 2020

H. R. Hasan et al.: Blockchain-Based Approach for the Creation of Digital Twins

Algorithm 1 Creating the Digital Twin

Input : caller, DTstate, Process Manager

1 caller is the Ethereum Address of the function caller.

2 if caller == ProcessManager then

3 if DTstate == NotCreated then

4 DTstate = OrderedToBeCreated.

5 Create a notification about the order by the

Process Manager to initiate the creation process.
6 end

7 else

8 Revert contract state and show an error.

9 end

10 end

11 else

12 Revert contract state and show an error.

13 end

Algorithm 2 Initiating Design Phase

Input : caller, DTstate, Design Manager

1 caller is the Ethereum Address of the function caller.

2 if caller == DesignManager then

3 if DTstate == OrderedToBeCreated then

4 DTstate = InDesignPhase.

5 Create a notification about the start of the design

phase.
6 end

7 else

8 Revert contract state and show an error.

9 end

10 end

11 else

12 Revert contract state and show an error.

13 end

Design Phase’. This creates a notification and sends it to all

the participating entities to let them know that the design

phase has started.

3) APPROVING THE RESULTS OF THE DESIGN PHASE

Once the design phase is completed, the design manager

checks the details and signs with approval, so the next phase

can be started. This approval of results is carried out using a

boolean as explained in algorithm 3. This changes the state of

the DT to ’Done with Design Phase’ and triggers an event to

announce it. If the design manager disagrees with the results

for any reason or faced issue, the state of the DT is not

updated.

4) COMMENCING THE BUILDING PHASE

Algorithm 4 describes how the building phase starts with the

permission of the quality manager. This triggers a notifica-

tion that announces to the listeners to change the status of

DT to ’In Building Phase’. This action of starting the new

building phase can only occur if the results of the design

Algorithm 3 Approving Results of the Design Phase

Input : caller, DTstate, Design Manager, result

1 caller is the Ethereum Address of the function caller.

2 if caller == DesignManager then

3 if DTstate == InDesignPhase then

4 if result == True then

5 DTstate = DoneWithDesignPhase.

6 Create a notification about the end of a

successful design phase.
7 end

8 else

9 Create a notification stating that the next

phase cannot be started.
10 end

11 end

12 else

13 Revert contract state and show an error.

14 end

15 end

16 else

17 Revert contract state and show an error.

18 end

Algorithm 4 Commencing Building Phase

Input : caller, DTstate, Quality Manager

1 caller is the Ethereum Address of the function caller.

2 if caller == QualityManager then

3 if DTstate == DoneWithDesignPhase then

4 DTstate = InBuildingPhase.

5 Create a notification about the start of the

building phase.
6 end

7 else

8 Revert contract state and show an error.

9 end

10 end

11 else

12 Revert contract state and show an error.

13 end

phase have been successfully approved by the design man-

ager and the previous state of the DT is ’Done with Design

Phase’.

5) APPROVING RESULTS OF THE BUILDING PHASE

It is important for the quality manager to carefully check the

results of the building phase before starting the testing phase.

This is ensured using algorithm 5, where only the quality

manager is allowed to update the DT state to ’Done with

Building Phase’. This in return triggers an event that yields in

all the listeners knowing that the building phase is completed.

If the produced results were not as per expectations of the

quality manager, then the signature of the manager can be

’False’ to indicate that the DT state cannot be updated that

VOLUME 8, 2020 34119

H. R. Hasan et al.: Blockchain-Based Approach for the Creation of Digital Twins

Algorithm 5 Approving Results of the Building Phase

Input : caller, DTstate, Quality Manager, result

1 caller is the Ethereum Address of the function caller.

2 if caller == QualityManager then

3 if DTstate == InBuildingPhase then

4 if result == True then

5 DTstate = DoneWithBuildingPhase.

6 Create a notification about the end of a

successful building phase.
7 end

8 else

9 Create a notification stating that the next

phase cannot be started.
10 end

11 end

12 else

13 Revert contract state and show an error.

14 end

15 end

16 else

17 Revert contract state and show an error.

18 end

Algorithm 6 Starting Testing Phase

Input : caller, DTstate, Testing Manager

1 caller is the Ethereum Address of the function caller.

2 if caller == TestingManager then

3 if DTstate == DoneWithBuildingPhase then

4 DTstate = InTestingPhase.

5 Create a notification about the start of the testing

phase.
6 end

7 else

8 Revert contract state and show an error.

9 end

10 end

11 else

12 Revert contract state and show an error.

13 end

requires to move on the next phase. Subsequently, the issue

can be resolved off the chain, and then the design manager

can sign for approval.

6) STARTING THE TESTING PHASE

Once the quality manager approves the results of the design

phase, the testing manager initiates the testing phase. This

changes the DT state to ’In Testing Phase’ as shown in

algorithm 6. This creates an event to inform all listen-

ers about the beginning of the testing phase. If any other

Ethereum address tries to start the testing phase, the con-

tract state will revert to its previous state by showing an

error.

Algorithm 7 Approving Results of the Testing Phase

Input : caller, DTstate, Testing Manager, result

1 caller is the Ethereum Address of the function caller.

2 if caller == TestingManager then

3 if DTstate == InTestingPhase then

4 if result == True then

5 DTstate = DoneWithTestingPhase.

6 Create a notification about the end of a

successful testing phase.
7 end

8 else

9 Create a notification stating that the next

phase cannot be started.
10 end

11 end

12 else

13 Revert contract state and show an error.

14 end

15 end

16 else

17 Revert contract state and show an error.

18 end

7) APPROVING RESULTS OF THE TESTING PHASE

When the testing phase is completed, the testing manager

checks the results and confirms by signing so that the next

phase can be started. This procedure is performed using

algorithm 7 where the testing manager uses a Boolean to

approve continuing of the next phase. The state of the DT

gets updated accordingly.

8) RELEASING THE DT FOR DEPLOYMENT

Once the testing phase is completed, the DT is ready to be

deployed. Therefore, the delivery manager creates an event

after changing its state to ‘‘Available for Release’’. This

procedure is shown in algorithm 8 that explains how it can

be executed by the delivery manager when testing of the DT

is completed. When an owner decides that the DT can be

released to another prospective new owner, this algorithm can

also be executed by the current owner of the DT.

9) REGISTERING THE DT OWNERS

Once the DT is available for release to its new owner,

the delivery manager registers the new owner by announcing

the Ethereum address of the new owner to all the participating

entities using an event in the logs file. This is an important

step to keep tracking of all registered owners of the DTmodel.

Algorithm 9 shows how the state gets updated to ’Reserved

for New Owner’ when the new owner’s Ethereum address is

successfully announced.

10) RELEASING OWNERSHIP RIGHTS

The final step is releasing the ownership rights which are

explained briefly in algorithm 10. Releasing the ownership

rights can only be performed by the DT owner. When the

34120 VOLUME 8, 2020

H. R. Hasan et al.: Blockchain-Based Approach for the Creation of Digital Twins

Algorithm 8 Releasing Asset for Deployment

Input : caller, DTstate, Delivery Manager,

DTcurrentOwner

1 caller is the Ethereum Address of the function caller.

2 if (caller == DeliveryManager ∧ state ==

DoneWithTestingPhase) ∨ (caller ==

DTcurrentOwner ∧ state == ReleasedToNewOwner)

then

3 DTstate = AvailableForRelease.

4 Create a notification about the availability of the DT

for release by the caller.
5 end

6 else

7 Revert contract state and show an error.

8 end

Algorithm 9 Registering DT Owner

Input : caller, DTstate, Delivery Manager, newOwner,

DTcurrentOwner

1 caller is the Ethereum Address of the function caller.

2 newOwner holds the Ethereum Address of the DT’s new

owner.

3 if caller == DeliveryManager then

4 if

DTstate == AvailableForRelease ∧ newOwner 6=

DTcurrentOwner then

5 DTstate = ReservedForNewOwner.

6 Create a notification about the newly registered

owner of the DT using address newOwner .
7 end

8 else

9 Revert contract state and show an error.

10 end

11 end

12 else

13 Revert contract state and show an error.

14 end

first time this algorithm is executed, then the process man-

ager is the only authoritative entity that can release the

ownership rights to the first official owner. As can be seen

in this algorithm, we have avoided using lists or arrays to

store the registered owners on the chain as it is expen-

sive. Instead, we are depending on a blockchain that uses

only one attribute to hold the Ethereum address of the DT

owner. All owners’ history can be traced back using the

emitted events which hold the Ethereum address of every

owner.

Our implementation code can be customized to any appli-

cation that requires a DT. It is not specific to a certain industry

or manufacturing model. Moreover, the phases can include

more specific specialties based on the desired requirements.

Table 1 describes the functions used in the code along with

their descriptions.

Algorithm 10 Releasing Ownership Rights

Input : caller, DTstate, DTcurrentOwner, newOwner

1 caller is the Ethereum Address of the function caller.

2 DTcurrentOwner is the Ethereuem Address of the DT’s

owner.

3 newOwner is the Ethereum Address of the new DT

owner.

4 if caller == DTcurrentOwner then

5 if DTstate == ReservedForNewOwner then

6 DTcurrentOwner = newOwner

7 DTstate = ReleasedToNewOwner.

8 Create a notification about the DT being owned

now by its new owner.
9 end

10 else

11 Revert contract state and show an error.

12 end

13 end

14 else

15 Revert contract state and show an error.

16 end

FIGURE 5. Logs showing a successful request to create the DT by the
process manager.

IV. TESTING AND VALIDATION

Herein, we discuss testing and validation of the smart con-

tract. The functions of the smart contract and their logical

flows were tested using Remix IDE. There are five par-

ticipants interacting with the smart contract. Each of the

participating entities has an Ethereum address. For example,

the processmanager has ‘‘0xCA35b7d915458EF540aDe6068

dFe2F44E8fa733c’’, the design manager has ‘‘0×14723A09

ACff6D2A60DcdF7aA4AFf308FDDC160C’’, the quality

manager has ‘‘0×4B0897b0513fdC7C541B6d9D7E929C4e

5364D2dB’’, the testingmanager has ‘‘0×583031D1113aD41

4F02576BD6afaBfb302140225’’, and the delivery manager

has‘‘0xdD870fA1b7C4700F2BD7f44238821C26f7392148’’.

Each of the functions in the smart contract is associated with a

DT state. Moreover, only specific roles are allowed to execute

each function. If either of these criteria is not met, the contract

state reverts back to its original state. Each algorithm is tested

and the results are shown in a figure associated with each test

VOLUME 8, 2020 34121

H. R. Hasan et al.: Blockchain-Based Approach for the Creation of Digital Twins

TABLE 1. Functions along with their Descriptions.

case. The figures are used to show the hash, events triggered,

and the function executed.

A. INITIATING THE DT CREATION PROCESS

The process manager is authorized to start the DT creation

process using the function named CreateDT (). Figure 5

shows the logs which are produced after the DT has suc-

cessfully been updated and an event is triggered to let other

participants to take actions accordingly.

B. COMMENCING AND APPROVING THE DESIGN PHASE

The design manager commences the design phase and

updates the DT state successfully using the function named

InitiateDesignPhase(). The design manager also approves

FIGURE 6. Logs presenting a successful beginning and end of the design
phase by the design manager.

FIGURE 7. Logs showing successful starting and ending of the build
phase by the quality manager.

the results of the design process using the function named

ApproveResultsofDesignPhase, as shown in figure 6. The

figure shows how a successful event is triggered based on

the ’True’ boolean result passed by the design manager.

Both functions show errors if executed by any unauthorized

Ethereum Address.

C. STARTING AND ENDING THE BUILD PHASE

The quality manager starts the build phase by calling a func-

tion named CommenceBuildingPhase. The function changes

the DT state and notifies the listeners about the beginning

of the new phase, as shown in figure 7. The quality engi-

neer also ends the phase by approving and signing on the

results using the function named ApproveResultsofBuilding

Phase.

D. BEGINNING AND FINISHING THE TESTING PHASE

The last step prior to the deployment phase is final test-

ing and validation. This is done by the authorized testing

engineer by executing the function named StartTestingPhase.

34122 VOLUME 8, 2020

H. R. Hasan et al.: Blockchain-Based Approach for the Creation of Digital Twins

FIGURE 8. Logs showing a successful beginning and end to the testing
phase as approved by the testing manager.

FIGURE 9. The DT was successfully released for deployment for the first
time by the delivery manager after a successful testing phase.

Subsequently, a notification is triggered to inform every-

one that the DT has been successfully tested, as shown

in figure 8. This is done by executing the function named

ApproveResultsofTestingPhase.

E. RELEASING ASSET FOR DEPLOYMENT

The successful testing of the DT makes it initially

ready for the deployment. The delivery manager makes a

change in the DT status by executing the function named

ReleaseAsseForDeployment which creates a notification,

as shown in figure 9.

This function can also be executed by the owner of the

DT if the state of the DT was ‘‘ReleasedToNewOWner’’.

The state ‘‘ReleasedToNewOWner’’ indicates that the DT is

now owned by an owner that can release it for deployment.

This can be seen in figure 10, where the owner with Ether-

eum address ‘‘0xba1d1ffc6188e365c70592083a5213d480db

7451’’ releases the asset for deployment.

F. REGISTERING A NEW DT OWNER

When a new owner for the DT is available, the deliv-

ery manager uses the function named RegisterNewOwner

to register the Ethereum address of the new owner in the

logs. In this example, the new owner’s Ethereum address is

FIGURE 10. The DT owner successfully released it for deployment.

FIGURE 11. The new DT owner has successfully been announced in an
event in the logs.

‘‘0xba1d1ffc6188e365c70592083a5213d480db7451’’. This

function is executed successfully, as can be seen in figure 11.

G. RELEASING OWNERSHIP RIGHTS

After a successful registration of the new DT owner,

the current owner which is in our case a process engi-

neer can only release ownership rights. This is the

final step that results in changing the current owner-

ship parameter in the DT structure defined on the con-

tract. Hence, the new owner thereafter can release the

asset for deployment. In figure 12, the owner which in

this case was the process manager, releases the ownership

rights to the registered DT owner with Ethereum address

‘‘0xba1d1ffc6188e365c70592083a5213d480db7451’’.

V. EVALUATION

The proposed blockchain-based approach is evaluated to

ensure that it meets the DTs creation requirements in terms

of trust and security.

A. SECURITY ANALYSIS

The implementation code has successfully been tested and

cross-checked using a security tool named ’SmartCheck’

[24], [25]. The tool evaluates the solidity code against any

vulnerabilities or even bad practices, such as reentrancy,

timestamp dependence, denial of service (DoS), locked

money or costly loops, and others. The security analysis

results reveal that no known vulnerabilities were found. Only

specific errors were categorized in the tool as ’bad practices’

and they have been used in our code for testing purposes. For

example, the hardcoded addresses of the stakeholders will

VOLUME 8, 2020 34123

H. R. Hasan et al.: Blockchain-Based Approach for the Creation of Digital Twins

FIGURE 12. The new DT owner has successfully been updated as the
ownership rights were released by the former owner.

not be needed in the real solution. Moreover, the compiler

version can be fixed as per the application needs. In a nutshell,

the code is free from any recognizable bugs, and is reliable

and maintainable.

B. COST ANALYSIS

Cost analysis of each on-chain transaction is important as it

affects the reliability and feasibility of the solution. The cost

of the functions in the contract is almost negligible as the

functionsmainly change the DT state and create a notification

about the current phase state. Also, in our implementation,

we relied on the logs to save the owner information of the

DT. Thus, we avoided using arrays or mappings as their costs

are much higher compared to storing only the current owner’s

Ethereum address. Consequently, a smart contract is respon-

sible for the creation and tracking of one DT. Therefore,

multiple smart contracts are needed for multiple DTs. This

is more convenient, unless the owners prefer otherwise for

logistics reasons then mappings can be used in the code to

map different DT structures to managerial structures. In our

implementation, we relied on a single DT to better present the

idea as well as to avoid unnecessary costs of using structures

and mappings which could only be needed for certain justifi-

able use cases. Also, in our implementation of only one DT

per smart contract, we avoided additional costs to ensure that

our solution is feasible.

Table 2 shows the storage cost of the DT owners in an

array as the number of registered owners increases. The ETH

Gas Station was used to find the cost in dollars of each

transaction [26]. The average gas price which is three Gwei

was used at the time of finding the cost in USD. The fastest,

fast, average and cheap prices are 11, 10, 3 and 1 Gwei,

respectively. We have used the average price in computing

the values and presented the cost in US dollars as can be

found in the tables 2-3 which show that the cost of storing

in an array is much higher. This is because storing in an array

also involves storing the length of the elements. Moreover,

both tables 2-3 indicate that first time storage costs are the

highest. This factor indicates that changing the values of a

storage space from zero (non-initialized) to non-zero costs

higher regardless of the type of storage. Subsequent additions

to the array all cost the same which is less than the first time.

In addition, storing in an array the first time involves storing

TABLE 2. Storage costs of registered owners in an array.

TABLE 3. Storage costs of current owner attribute.

the element as well as the length. Hence, a store operation

which costs 20K is actually doubled for an array when the

storage value is set to non-zero from zero [27]. Consequently,

this storage operation for an array would cost at least 40K.

This is double the cost needed for single storage spaces where

it costs only 20K the first time.

It can also be seen from the tables that in the case of

array the storage cost of the first time is 1.6% higher than

the next subsequent times. However, the difference between

the cost of storing in a single storage space by first time

and the subsequent times is almost negligible, only 0.00005$.

Moreover, the cost of storing in an array by the first time

is 3.68% higher and for the subsequent times it is 2.09%

compared to a single storage space.

C. SATISFYING DT REQUIREMENTS

To secure the creating process of DTs, our solution uses

blockchain to ensure history tracking and traceability. These

features are ensured using tamper-proof logs. These logs help

to ease and secure the look-up process and expedite problem-

solving, process management, and traceability during the

creation process of DTs. Data integrity is one of the important

features of blockchain. All transactions have a hash and they

are timestamped. Therefore, on-chain transactions are safe

from replay and Man in the Middle (MITM) attacks, thereby

making them immutable.

Furthermore, the framework’s security relies on the

intrinsic features of blockchain, which also include non-

repudiation. The Ethereum addresses of the participating enti-

ties are used to sign each transaction as they possess unique

asymmetric keys. Therefore, ensuring non-repudiation and

accountability. The proposed solution employs IPFS to store

and share the DTs data. The proposed solution ensures

non-repudiation and accountability of eachDT creation phase

by using restricted function calls in the Ethereum smart

contract. Therefore, each phase manager and DT owner are

accountable for their actions. Moreover, each transaction is

signed by its initiator, which is later on saved as part of the

reliable logs. Additionally, the creation process of DTs using

blockchain is reliable and resilient to security vulnerabilities.

The on-chain provenance data is always accessible. In addi-

34124 VOLUME 8, 2020

H. R. Hasan et al.: Blockchain-Based Approach for the Creation of Digital Twins

tion, the functions of the smart contract are flexible and can

be amended to meet the specific needs of any industry.

VI. CONCLUSION

In this paper, we have designed and implemented a

blockchain-based creation process for DTs in a manner that

is decentralized, tamper-proof, immutable, and secure. Our

design approach eases the management of the process from

the design phase all the way to the delivery and release of

ownership rights. It also keeps track of all the registered

owners and provides a history of the process on-chain. In our

approach, we made use of the decentralized IPFS storage

servers to store the details of the DTs. We also provided

a solution framework, detailed implementation and testing

results. In addition, the smart contract code is publicly made

available on GitHub and is generic enough to be customized

for the use case of each enterprise as it requires. The pro-

vided code meets the security requirements and has been

analyzed successfully using the SmartCheck tool. Moreover,

it is secure against the commonly known security vulnera-

bilities and attacks. Cost analysis was also discussed as part

of the evaluation. As a future work, we plan to implement a

complete solution composed of private blockchain nodes in

addition to developing frontend decentralized apps (DApps)

to be used by different participants. For our private blockchain

platform, we will consider the use of HF and Hyperledger

Besu.

REFERENCES

[1] N. Mohammadi and J. E. Taylor, ‘‘Smart city digital twins,’’ in Proc. IEEE

Symp. Ser. Comput. Intell. (SSCI), Honolulu, HI, USA, Nov. 2017, pp. 1–5.

[2] F. Tao, J. Cheng, Q. Qi, M. Zhang, H. Zhang, and F. Sui, ‘‘Digital twin-

driven product design, manufacturing and service with big data,’’ Int. J.

Adv. Manuf. Technol., vol. 94, nos. 9–12, pp. 3563–3576, Mar. 2017.

[3] B. Schleich, N. Anwer, L. Mathieu, and S. Wartzack, ‘‘Shaping the digital

twin for design and production engineering,’’ CIRP Ann., vol. 66, no. 1,

pp. 141–144, 2017.

[4] A. El Saddik, ‘‘Digital twins: The convergence of multimedia technolo-

gies,’’ IEEE MultimediaMag., vol. 25, no. 2, pp. 87–92, Apr. 2018.

[5] M. Grieves and J. Vickers, ‘‘Digital twin: Mitigating unpredictable, unde-

sirable emergent behavior in complex systems,’’ in Transdisciplinary Per-

spectives on Complex Systems: New Findings and Approaches. Berlin,

Germany: Springer, 2017, pp. 85–113.

[6] R. Stark, C. Fresemann, and K. Lindow, ‘‘Development and operation of

digital twins for technical systems and services,’’CIRP Ann., vol. 68, no. 1,

pp. 129–132, 2019.

[7] Digital Twin Technology Benefits and Challenges. Accessed:

Dec. 12, 2019. [Online]. Available: https://www.identitymanagement-

institute.org/digital-twin-technology-benefits-and-challenges/

[8] C. Mandolla, A. M. Petruzzelli, G. Percoco, and A. Urbinati, ‘‘Build-

ing a digital twin for additive manufacturing through the exploitation

of blockchain: A case analysis of the aircraft industry,’’ Comput. Ind.,

vol. 109, pp. 134–152, Aug. 2019.

[9] A. Dorri, S. S. Kanhere, R. Jurdak, and P. Gauravaram, ‘‘Blockchain for

IoT security and privacy: The case study of a smart home,’’ in Proc. IEEE

Int. Conf. Pervas. Comput. Commun. Workshops (PerCom Workshops),

Kona, HI, USA, Mar. 2017, pp. 618–623.

[10] H. R. Hasan and K. Salah, ‘‘Combating deepfake videos using blockchain

and smart contracts,’’ IEEE Access, vol. 7, pp. 41596–41606, 2019.

[11] P. Ruan, G. Chen, T. T. A. Dinh, Q. Lin, B. C. Ooi, and M. Zhang, ‘‘Fine-

grained, secure and efficient data provenance on blockchain systems,’’

Proc. VLDB Endowment, vol. 12, no. 9, pp. 975–988, May 2019.

[12] K. Christidis and M. Devetsikiotis, ‘‘Blockchains and smart contracts for

the Internet of Things,’’ IEEE Access, vol. 4, pp. 2292–2303, 2016.

[13] S. P. A. Datta, ‘‘Emergence of digital twins,’’ 2016, arXiv:1610.06467.

[Online]. Available: https://arxiv.org/abs/1610.06467

[14] H. M. Kim and M. Laskowski, ‘‘Toward an ontology-driven blockchain

design for supply-chain provenance,’’ Intell. Syst. Accounting, Finance

Manage., vol. 25, no. 1, pp. 18–27, Mar. 2018.

[15] IPFS is the Distributed Web. Accessed: Jun. 13, 2018. [Online]. Available:

https://ipfs.io/

[16] N. Nizamuddin, H. R. Hasan, and K. Salah, ‘‘IPFS-blockchain-based

authenticity of online publications,’’ in Proc. Int. Conf. Blockchain. Cham,

Switzerland: Springer, 2018, pp. 199–212.

[17] L. Severeijns. (2017).What is Blockchain? How is it Going to Affect Busi-

ness? [Online]. Available: https://www.math.vu.nl/ sbhulai/papers/paper-

severeijns.pdf

[18] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis,

A. De Caro, D. Enyeart, C. Ferris, G. Laventman, and Y. Manevich,

‘‘Hyperledger fabric: A distributed operating system for permissioned

blockchains,’’ in Proc. 13th EuroSys Conf., Porto, Portugal, 2018,

pp. 1–15.

[19] C. Harris, ‘‘Improving telecom industry processes using ordered transac-

tions in hyperledger fabric,’’ in Proc. Global Commun. Conf., Waikoloa,

HI, USA, 2019, pp. 1–6.

[20] Hyperledger Besu. Accessed: Nov. 12, 2019. [Online]. Available:

https://www.hyperledger.org/projects/besu

[21] Announcing Hyperledger Besu. Accessed: Nov. 19, 2019. [Online].

Available: https://www.hyperledger.org/blog/2019/08/29/announcing-

hyperledger-besu

[22] Ethereum Blockchain Solutions. Accessed: Nov. 19, 2019. [Online]. Avail-

able: https://pegasys.tech/

[23] Remix. Accessed: Nov. 19, 2019. [Online]. Available: https://remix.

ethereum.org/

[24] Smartcheck. Accessed: Nov. 4, 2019. [Online]. Available: https://tool.

smartdec.net/

[25] Smartcheck. Accessed: Jan. 26, 2020. [Online]. Available: https://github.

com/smartdec/smartcheck

[26] Eth Gas Station. Accessed: Nov. 11, 2018. [Online]. Available: https://

ethgasstation.info/

[27] G. Wood, ‘‘Ethereum: A secure decentralised generalised transaction

ledger,’’ Ethereum Project Yellow Paper, vol. 151, pp. 1–32, Apr. 2014.

HAYA R. HASAN received the B.S. degree in

computer engineering from the American Uni-

versity of Sharjah, UAE, in 2014, and the mas-

ter’s degree in electrical and computer engineering

from Khalifa University, UAE, in 2018. She is cur-

rently a Research Associate with the Department

of Industrial and Systems Engineering, Khalifa

University. She has publications in her areas of

interest, blockchain, as well as in security. She is

passionate about research, especially in the field of

blockchain and smart contracts.

KHALED SALAH received the B.S. degree in

computer engineering, with a minor in computer

science, from Iowa State University, Ames, IA,

USA, in 1990, the M.S. degree in computer sys-

tems engineering from the Illinois Institute of

Technology, Chicago, IL, USA, in 1994, and the

Ph.D. degree in computer science from the Illinois

Institute of Technology, in 2000. He is currently

a Full Professor with the Department of Electri-

cal and Computer Engineering, Khalifa University,

UAE. He has over 220 publications and three US patents, and has been

giving a number of international keynote speeches, invited talks, tutorials,

and research seminars on the subjects of blockchain, IoT, fog and cloud

computing, and cybersecurity. He is currently leading a number of projects

on how to leverage blockchain for health care, 5G networks, combating

deepfake videos, supply chain management, and AI. He has served as the

Chair of the Track Chair of the IEEE Globecom 2018 on Cloud Computing.

He is currently an Associate Editor of the IEEE Blockchain Tech Briefs, and

a member of the IEEE Blockchain Education Committee.

VOLUME 8, 2020 34125

H. R. Hasan et al.: Blockchain-Based Approach for the Creation of Digital Twins

RAJA JAYARAMAN received the Ph.D. degree

in industrial engineering from Texas Tech Uni-

versity, the M.Sc. degree in industrial engineering

from New Mexico State University, and the mas-

ter’s and bachelor’s degree in mathematics from

India. He is currently an Associate Professor with

the Department of Industrial and Systems Engi-

neering, Khalifa University, Abu Dhabi, UAE.

His expertise is in multicriteria optimization tech-

niques applied to diverse applications, including

supply chain and logistics, healthcare, energy, environment, and sustain-

ability. His research interests are primarily focused on using blockchain

technology, systems engineering and process optimization techniques to

characterize, model and analyze complex systemswith applications to supply

chains, maintenance operations planning, and healthcare delivery. His post-

doctoral research was centred on technology adoption and implementation

of innovative practices in the healthcare supply chains and service delivery.

He has led several successful research projects and pilot implementations in

the area of supply chain data standards adoption in the US healthcare system.

His research has appeared in top-rated journals, including the Annals of

Operations Research, the IISE Transactions, Energy Policy, Applied Energy,

Knowledge-Based Systems, IEEE ACCESS, the Journal of Theoretical Biol-

ogy, the Engineering Management Journal, and others.

MOHAMMED OMAR was an Associate Pro-

fessor and a Graduate Coordinator with Clem-

son University, Clemson, SC, USA. He was a

part of the Founding Faculty Cohort of Clemson

University Research Park, Greenville, SC, USA.

He is currently a Full Professor and the Founding

Chair of the Department of Engineering Systems

and Management (currently renamed Industrial

and Systems Engineering). His professional career

includes a postdoctoral service at the Center for

Robotics and Manufacturing Systems CRMS, and a Visiting Scholar at the

Toyota Instrumentation and Engineering Division, Toyota Motor Company,

Japan. He has over 100 publications in the areas of product lifecycle man-

agement, knowledge-based manufacturing, and automated testing systems,

in addition to authoring several books and book chapters. He holds four U.S.

and international patents. He was named a Tennessee Valley Authority Fel-

low of two consecutive years during the Ph.D. degree, in addition to being a

ToyotaManufacturing Fellow. His group graduated seven Ph.D. dissertations

and over 35 M.Sc. theses, and four Ph.D. students are currently on academic

ranks in U.S. universities. His work has been recognized by the U.S. Society

ofmanufacturing engineers SME through the Richard L. KeggAward. He has

also received the SAE Foundation Award for Manufacturing Leadership.

In addition, he has received the Murray Stokely Award from the College of

Engineering, Clemson University. He has also led an NSF I/UCRC Center

and a part of the DoE GATE Center of Excellence in Sustainable Mobility

Systems. His current research interests include capabilities in composite

fabrication andmanufacturing analytics at a laboratoryMasdar City Campus.

His current research group supported two Postdoctoral Scholar’s Career

Planning to become an Assistant Professor at the Texas A&M (TAMUQ),

in 2013, and the University of Sharjah, in 2015. He currently serves as

an Editor-in-Chief for the Journal of Material Science Research (Part of

the Canadian Research Center), and as an Associate Editor for the Jour-

nal of Soft Computing (Springer), handling the areas of decision science,

knowledge-based systems, in addition to his membership on several editorial

boards and conference organizations. Furthermore, he serves on theAdvisory

Board of the Strata PJSC (part of Mubadala Aerospace).

IBRAR YAQOOB received the Ph.D. degree in

computer science from the University of Malaya,

Malaysia, in 2017. He worked as a Research

Professor at the Department of Computer Science

and Engineering, Kyung Hee University, South

Korea, where he completed his Postdoctoral Fel-

lowship under the prestigiousGrant of BrainKorea

21st Century Plus. He worked as a Researcher

and Deve-loper at the Centre for Mobile Cloud

Computing Research (C4MCCR), University of Malaya. He is currently

working with the Department of Electrical Engineering and Computer Sci-

ence, Khalifa University, UAE. His numerous research articles are very

famous and among the most downloaded in top journals. He has been listed

among top researchers by Thomson Reuters (Web of Science) based on the

number of citations earned in the last three years in six categories of computer

science. He has been involved in a number of conferences and workshops in

various capacities. His research interests include big data, blockchain, edge

computing, mobile cloud computing, the Internet of Things, healthcare, and

computer networks. He is currently serving/served as a guest/associate editor

for various journals.

SAS̆A PESIC is currently pursuing the Ph.D.

degree with the Department of Mathematics and

Informatics, Faculty of Science, University of

Novi Sad, Serbia. He works as a Blockchain

Engineer at VizLore Labs Foundation, Novi Sad,

AZ, USA, and at VizLore LLC, Scottsdale, AZ,

USA. He is currently a Visiting Researcher at the

School of Computing, Informatics, and Decision

Systems Engineering, Arizona State University,

and at the Blockchain Research Lab, Tempe, AZ,

USA. In his research work, he deals with the highly distributed Internet of

Things and edge computing systems, analyzing their robustness, security,

operating capacity, and stability. In addition, as a part of his doctoral thesis,

he is designing, modeling, and implementing an advanced indoor positioning

system called BLEMAT. He is the author/coauthor of nine conference papers

and one paper in an international journal. As a Research and Development

Engineer, he is actively working on two Horizon2020 Research Projects:

PhasmaFOOD, Interconnect. In the past two years, he has worked on Vicin-

ity, AgileIoT, and i SymbIote. His research interests include distributed

ledger technologies and their interdisciplinary application in the domains of

energy, finance, the security of the IoT systems, and peer-to-peer insurance.

TODD TAYLOR worked for Compaq, HP, and IBM

for over 25 years in multiple technology and oper-

ations functions. He also co-founded Ops Rules,

which is now a part of Accenture Analytics. He is

currently a Professor of practice in the Supply

Chain Department of Arizona State University’s

W.P. Carey School of Business. He is also the

Founder of the ASUBlockchain Research Lab and

the Co-Founder of Aperio–a blockchain solution

provider and incubator which is now a part of

Sweetbridge Inc. He is an expert in supply chain strategy and technology.

DRAGAN BOSCOVIC received the Ph.D. degree

in EE and CS, numerical electromagnetic model-

ing from the University of Bath, U.K., in 1991.

He is currently a Research Professor with the

School of Computing, Informatics and Decision

Systems Engineering (CIDSE), and a Distin-

guished Visiting Scholar at mediaX, Stanford Uni-

versity. He is also the Academic Research Director

of AZ Applied Research Center, where his team’s

mission is to advance the research and develop-

ment of blockchain-based technologies for use in business, finance, eco-

nomics, mathematics, computer science, and all other areas of potential

impact. He has 25 years of high tech experience acquired in an international

set up, i.e., U.K., France, China, USA, and is uniquely positioned to help

data-driven technical advances within today’s global data-intensive technol-

ogy arena.

34126 VOLUME 8, 2020

