
Research Article

A Blockchain-Based Editorial Management System

Eman-Yaser Daraghmi ,1Mamoun Abu Helou ,2 and Yousef-Awwad Daraghmi 3

1Department of Applied Computing, College of Applied Sciences, Palestine Technical University-Kadoorie, Tulkarm, State
of Palestine

2Department of Management Information System, Al Istiqlal University, Jericho, State of Palestine
3Department of Computer Systems Engineering, Palestine Technical University-Kadoorie, Tulkarm, State of Palestine

Correspondence should be addressed to Eman-Yaser Daraghmi; e.daraghmi@ptuk.edu.ps

Received 22 March 2021; Accepted 27 April 2021; Published 6 May 2021

Academic Editor: omar cheikhrouhou

Copyright © 2021 Eman-Yaser Daraghmi et al.&is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Research publications are reaching a stunning growth rate. &erefore, new challenges regarding managing the peer-review
activities are presented, such as data security, privacy, integrity, fragmentation, and isolation. Further, because of the emergence of
predatory journals and research fraud, there is a need to assess the quality of the peer-review process.&is research proposes a fully
functional blockchain-based editorial management system, namely, TimedChain, for managing the peer-review process from
submission to publication. TimedChain provides secure, interoperable, transparent, and efficient access to manuscripts by
publishers, authors, readers, and other third parties. Time-based smart contracts and advanced encryption techniques are
employed for governing transactions, controlling access, and providing further security. An incentive mechanism that evaluates
publishers’ value respecting their efforts at managing and maintaining research data and creating new blocks is introduced.
Extensive experiments were conducted for performance evaluation. Results demonstrate the efficiency of the proposed system in
governing a large set of data at low latency.

1. Introduction

Nowadays, the technology of blockchain goes far beyond its
primary use. It is adopted worldwide to improve the
management of information assets owned by organizations
or individuals. &e blockchain provides the infrastructure in
order to simplify collecting, managing, preserving, storing,
and delivering information. &us, it can be employed in
various fields, such as health records management, acade-
mia, Internet of &ings (IoT) data, digital voting, research
publications, and many more. It allows information to be
available to the right users at the right time.

Research publications are reaching a stunning growth
rate which increases annually by 8–9%. &is growth is a
result of the increasing number of researchers and the hy-
percompetitive environment of science. Before publishing a
research paper, it undergoes a long process, namely, peer-
review, to assess its quality before publication.&e process of
peer-review means the scrutiny and the evaluation of an

author’s research by other experts in the same field before
publication. &is process is managed by the editorial
management system (EMS) which employs the Information
and Communication Technologies (ICT) to facilitate the
overseeing of all editorial content and the process of peer-
review. EMS is the support tool that manages the peer-re-
view process and enhances its quality, facilitates the editorial
tasks (i.e., manuscript submission, tracking its progress from
submission to publication), improves the decision-making
processes, and enhances the communication between au-
thors, editors, and reviewers. Currently, several commercial
and open source editorial management systems are
available and in use, such as ScholarOne [1], Elsevier [2],
Aries [3], Bepress [4], Open Journal Systems (OJS) [5],
and eJManager [6]. &ese systems vary in their offered
features and services to improve the publisher’s pro-
ductivity and archive the historical data preserved by the
publisher, such as review reports, contact information,
and manuscript versions [7].

Hindawi
Security and Communication Networks
Volume 2021, Article ID 9927640, 17 pages
https://doi.org/10.1155/2021/9927640

mailto:e.daraghmi@ptuk.edu.ps
https://orcid.org/0000-0001-8986-4232
https://orcid.org/0000-0002-8597-3033
https://orcid.org/0000-0001-9126-376X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/9927640


Currently, there is a rapid increase in the number of
publications, the options to conduct scholarly publishing,
and the demand to publish. &us, new challenges are in-
troduced, including ensuring the quality of peer-review,
preventing plagiarism, avoiding predatory publishing, en-
suring the security and privacy of scientific data, improving
the academic integrity, managing the coordinated data, data
fragmentation and isolation, effective data sharing, inter-
operability access, and preventing fraud [8]. Blockchain is
one of the most powerful technologies that has the potential
to address these challenges. Few blockchain-based editorial
management platforms have been proposed, such as Pluto
[9], ARTiFACTS [10], ScienceMatters-EUREKA [11], and
Orvium [12]. Further discussion will be illustrated in Section
2.2.

&is research proposes a fully functional blockchain-
based editorial management system, namely, TimedChain.
&e proposed system is designed to manage the editorial
activities and the peer-review process from submission to
publication. TimedChain provides secure, interoperable,
transparent, and efficient access to manuscripts by pub-
lishers, editors, authors, readers, and other third parties. In
this work, time-based smart contracts that meet the de-
mands of peer-review are proposed. &ese contracts are
embedded in the blockchain to govern and control trans-
actions, as well as to monitor the actions carried out on
scientific data (i.e., manuscripts, review reports, review
scores, etc.). &e proposed smart contracts enforce ac-
ceptable usage policies to manage all the editorial activities
including manuscript submission and handling, peer-review
processes, and final decision making. To improve the se-
curity of the proposed system, advanced encryption schemas
and techniques are also adopted.

Additionally, instead of rewarding publishers with
cryptocurrencies, this work introduces a Proof of Authority
based incentive mechanism which estimates and evaluates
the value of all publishers in the network. &e proposed
mechanism estimates the publishers’ efforts at managing
publications, maintaining scientific data, and creating new
blocks. A publisher who has the least value will be chosen for
creating the new block. An incentive will be rewarded to the
“block’s creator” publisher and added to its value to min-
imize the possibility of recreating the next block, hence
reaching fairness status and achieving system’s sustain-
ability. &e proposed TimedChain system was tested
through extensive experiments, and the results demonstrate
its efficiency in governing a large set of data at low latency.

2. Background and Related Work

2.1. Background. In 2008, Nakamoto [13] introduced the
technology of blockchain as the core of the Bitcoin cryp-
tocurrency (i.e., digital currency). A blockchain is defined as
a decentralized and distributed peer-to-peer network in
which each performed transaction by any blockchain’s
participant is placed in a public immutable single ledger.
Each block within the blockchain network includes (1) a
block’s header that lists a value representing the hash of the

prior block, (2) aMerkle root, (3) a timestamp, and (4) a data
part that includes data related to transactions.

To identify the blockchain’s participants, public-private
key cryptography is utilized [14, 15]. For public identifica-
tion, a public key is employed, whereas for authorizing
transactions, the private key is employed. In fact, any
transaction in the network includes (1) the sender’s public
key, (2) data, and (3) the hash of the former transaction.
Because of the data part, a blockchain can maintain several
digital assets as logs, certificates, records, transcripts,
licenses, and property rights. Blocks are connected in order
in accordance with their hash values. In the blockchain
network, the chain of blocks is duplicated over the dis-
tributed blockchain network and stored by minors.

To manage the relations among the blockchain partic-
ipants, smart contracts are utilized. Smart contracts are the
digital mean or the computer codes that organize, secure,
and formalize relations among participants over the
blockchain network. It is executed and run over all the nodes
within the blockchain network [5] to govern, manage, and
control the transactions [6]. In order to decrease and reduce
the malicious breach, smart contracts may embed various
types of collateral, bonding, contractual clauses, and
property rights in computer software or hardware [16].
Smart contracts enable trusted transactions and agreements
to be performed among anonymous and distinct entities
(i.e., the network nodes) without the need for an external
enforcement schema or a central authority. Smart contracts
have been implemented by several blockchain-based proj-
ects, such as the Ethereum platform [17] and Hyperledger
[18], that enable creating dynamic and scalable rules, pol-
icies, conditions, and terms to securely share and exchange
data.

For managing the mining process, different types of
proof are used. &e Proof of Stake (PoS) and the Proof of
Work (PoW) are consensus algorithms that are utilized in
blockchain-based frameworks to determine the miner’s
block to be appended next. In 2017, Gavin Wood who is the
cofounder of the Ethereum platform and former CTO in-
troduced the Proof of Authority (PoA) consensus algorithm
as a replacement for the PoS and the PoW [19]. To set a
private blockchain-based network, the PoA considers the
value of the nodes in order to define the set of “block
validators” or “authorities.” Authorities are arbitrarily se-
lected as trustworthy entities to create the new blocks and
secure the blockchain network. &ey are staking their rep-
utation instead of coins to maintain security. Accordingly,
improving the system’s security, maintaining its privacy,
lowering the time-consuming computations, and increasing
the performance of the system by requiring minimum la-
tency in accepting transactions and stable time periods for
issuing blocks are the benefits of the PoA.

2.2. Related Work: Blockchain-Based Editorial Management
Systems. Despite the fact that the technology of blockchain
was first introduced to present the Bitcoin cryptocurrency,
spreading its nonfinancial utilization is an objective of
researchers.

2 Security and Communication Networks



Previous research shows that a blockchain technology
has the capabilities to impact the process of managing
scientific data and extend its potential. Blockchain tech-
nology not only can enhance the management of data, but
also can improve the default auditability as all database
access operations will be verifiable. Research in this field is
quite new but growing rapidly.

&e authors in [8] present a governance framework for
scientific publishing. &ey employ the model of a consor-
tium-based blockchain for efficient publishing process. In
[9], Pluto uses smart contracts to build a decentralized
publishing system that allows users to submit scientific
information and retain copyright control. Pluto proposes the
concept of “reputation score” which is calculated based on
research contributions and peer-review process. &e AR-
TiFACTS system in [10] uses blockchain as underlying
technology to record scholarly artifacts in immutable chains
so that research outputs can be captured and shared easily.
To enable the integration with open access research re-
positories, the ARTiFACTS focuses on handling only the
process of research creation, paper tracking, and output
sharing. Similarly, EUREKA in [11] utilizes smart contract
and tokens for rating paper review. In this system, authors
pay review fees which are converted to tokens and
rewarded to reviewers. &e Orvium publishing platform in
[12] aims at making the review process open and trans-
parent, reducing publication cost, and rewarding reviewers
with Orvium tokens. Further, Orvium enables institutions
to create and manage decentralized journals in the Orvium
environment.

In [20], a decentralized publication system for open
science is proposed. &e proposal aims to challenge the
technical infrastructure that supports the middleman role
of the oligopoly of traditional publishers. In [21], the au-
thors propose a decentralized blockchain-based solution
for managing scientific communication to solve the chal-
lenges and the incentive problems of traditional systems.
&e authors in [22] employed a smart contract on the
blockchain to present the implementation of a modifiable
research paper. &ey proposed a decentralized scholarly
communication platform using blockchain network. In
[23], a blockchain-based system for scientific knowledge
with a community management framework, namely,
Aletheia, is proposed. It is designed to host peer-to-peer
information allowing people to transfer scientific journals
to one another, with the community being facilitated by
smart contracts. It is hoped these smart contracts could
form the basis for administering other open source soft-
ware projects.

2.3. Contributions. Building upon previous efforts, this re-
search proposes a fully functional blockchain-based editorial
management system, namely, TimedChain, to manage the
editorial activities and the peer-review process from sub-
mission to publication. &e proposed system provides se-
cure, interoperable, transparent, and efficient access to
manuscripts by publishers, editors, authors, readers, and
other third parties.

Unlike previously proposed systems, TimedChain is
designed to be built above the current databases stored by
publishers. &e blockchain of the TimedChain system stores
the hashes of the data references while sending the actual
link for queries in a private transaction over HTTPS.

Moreover, TimedChain employs the proxy reencryption
and the deposit-box techniques, which allows storing keys
and small encrypted records directly on the blockchain, thus
improving the transfer of records to other third parties.
Furthermore, timed-based smart contracts are adopted to
manage access to accounts for the varying roles of pub-
lishers, editors, authors, readers, and other third parties on
the blockchain. &is allows for a stratification of roles that
can suit the various needs of users. Additionally, the design
of the TimedChain system is based on a consensus algorithm
which plays an important role in improving the validation
process when adding new nodes to the network or removing
harmful users. Finally, instead of rewarding publishers with
cryptocurrencies, this research introduces a Proof of Au-
thority based incentive mechanism which estimates and
evaluates the value of all publishers in the network. &e
proposed mechanism estimates the publishers’ efforts at
managing publications, maintaining scientific data, and
creating new blocks. A publisher who has the least value will
be chosen for creating the new block. An incentive will be
rewarded to the “block’s creator” publisher and added to its
value to minimize the possibility of recreating the next block,
hence reaching fairness status and achieving system’s
sustainability.

3. TimedChain Architecture

3.1. SystemOverview. Figure 1 shows the architecture of the
proposed system which facilitates the interaction between
the nodes (publishers, authors, reviewers, researchers, and so
on). A “third-party-typeA” node represents a reviewer, while
a “third-party-typeB” node represents a researcher who
would like to access the published manuscripts preserved
and archived by the publisher.

To facilitate the integration with publishers, TimedChain
is designed to be built above the current databases stored by
publishers. Accessing scientific data will be performed
through the smart contracts stored in the blockchain. Ac-
cordingly, the blockchain will maintain the history of this
access carried out on the scientific data, hence meeting data
integrity and preventing misuse of it.

A novel incentive mechanism that is combined with the
consensus algorithm, namely, Proof of Authority (PoA), is
adopted in this work. It evaluates the value of publishers
from the perspective of EMSs by estimating the efforts of
publishers regarding maintaining scientific data and gen-
erating new blocks.&e value of a publisher node specifies its
significance regarding the quality and quantity of scientific
data stored in its database. Four major indicators, namely,
Correctness, Consistency, Completeness (3C’s), and non-
redundancy, are used to evaluate the quality of scientific data
stored in publishers’ databases.

&e proposed incentive mechanism implies that each
publisher node will be categorized as a block creator or a

Security and Communication Networks 3



voter node regarding its value. A “block creator” is a pub-
lisher node that has the lowest value among all other
publisher nodes. Any node that has a value greater than or
equal to the average value of the TimedChain network will be
classified as a “voter node.” Voter nodes validate the IDs of
new nodes that intend to join the system.&is minimizes the
possibility of adding illegitimate nodes to system. A block
creator node will be rewarded an incentive that will be added
to its current value to lower its probability of recreating the
next block rather than rewarding it a digital currency,
thereby maintaining the sustainability of the system and
reaching fairness status. Moreover, improving the quality of
scientific data can be considered as another advantage of the
proposed incentive mechanism since publishers will com-
pete to maintain and/or create more correct, consist,
complete, and unique scientific records to increase their
values. &is decreases their probability of performing the
computational task of creating the new next block.

3.2. TimedChain Software Components. &is section dem-
onstrates the main components of the TimedChain system,
as shown in Figure 1.

3.2.1. Scientific Data Evaluation Manager (Sci-DEM). It is a
python-based tool that evaluates the value of publishers
during the initialization stage or when adding/editing sci-
entific data stored in the publisher’s database. &e value of
each node demonstrates the significance of a publisher re-
garding the quantity and quality of the maintained scientific
data. Extracting features, managing related data, and or-
ganizing the unstructured parts are the main functions of the
Sci-DEM. A classification technique with semantic,

syntactical, and lexical analysis of the record is adopted [24].
&e value of each publisher node will be calculated by (3)
and stored in the Publishers Contract (PC) to classify nodes
as (1) the voters’ nodes and (2) the creator of the next block.

3.2.2. DB Manager (DBM). &e DB manager is a Golang
API that is designed to control all access to publishers’
database, and it is managed by the blockchain’s permissions.
&e DB manager stores scientific data, navigates the existing
database, and ensures data integrity. When submitting a new
manuscript, the DB manager calculates the hash of the
manuscript and its access links to be stored in the Records
Contract (RC). Additionally, it calculates the hash of each
log to be stored in the Mining Contract (MC).

3.2.3. CryptoManager. &is component employs the en-
cryption/decryption schemas. According to the proposed
design, three encryption schemas are employed: (1) sym-
metric key encryption; (2) public key encryption; (3) proxy
reencryption. &e scientific data is stored and encrypted
using a symmetric key encryption schema. &e Crypto-
Manager generates a symmetric key, which is reencrypted
using the public keys of the author node, publisher node, and
proxy node. Further, the public key encryption schema is
used to provide a secure distribution of the information
among nodes over HTTPS.

In addition, the temporary records saved in the Deposit-
Box Contract (DBC) are also encrypted using the public key
encryption schema; these records are used to facilitate the
access by a “third-party-typeB” node, while the proxy
reencryption schema is adopted to facilitate the access by a
“third-party-typeA” node.

A Publisher Node

DB manager

Web Submission Interface E
th

ereu
m

 C
lien

t

CryptoManager

S
ci-D

E
M

Backend Library

Author Node

Database

DB manager

Web Submission Interface E
th

ereu
m

 C
lien

t
CryptoManager

Backend Library

Smart
contracts 

A �ird Party type A [External Reviewer]

Web Submission Interface E
th

ereu
m

 C
lien

t

CryptoManager

Backend Library

A �ird Party type B [others] 

Web Submission Interface E
th

ereu
m

 C
lien

t

CryptoManager

Backend Library

Blockchain Network

Figure 1: &e components of the TimedChain system.

4 Security and Communication Networks



3.2.4. Ethereum Client (Eth.Client). Joining the blockchain
network requires an access point. &e Eth.Client component
includes all the required functionalities to allow a node
accessing and joining the Ethereum blockchain network
[25]. TimedChain is a permissioned blockchain system.
&us, via the Eth.Client, a node that has a permission can
access the blockchain network. &e Go Ethereum client,
which employs JSON RPC endpoints on the Internet, is used
for implementation [26]. &e Go Ethereum client allows
accessing the information of a node over HTTPS via the use
of wallets which in turn function differently based on the
type of the node.

3.2.5. Web Submission Interface. &e web submission
component enables managing the editorial activities by
providing the entire required functions from manuscript
submission to publishing.

3.2.6. 5e Backend Library. To enable the Eth.Client com-
ponent to communicate with the blockchain and the em-
bedded smart contracts, the backend library performs low-
level parsing and formatting, as well as exporting a function
call API to abstract the communication with the blockchain.

3.3. Smart Contracts. &ey are implemented in blockchain-
based systems to monitor, manage, and govern transactions.
&e proposed smart contracts are shown in Figure 2.
According to the smart contracts’ design shown in Figure 2,
a set of timers (i.e., timing functions) and connectivity
operations are employed to ensure that transactions are
performed in acceptable time, and an authorized transaction
is intended. Next, we provide a detail for each part of the
smart contracts which are deployed in TimedChain.

3.3.1. Nodes Contract (NC). &is contract is a general
contract that keeps the Eth.Add of all nodes registered in the
system to facilitate all functions provided by the system and
to avoid double registration.

3.3.2. Publishers Contract (PC). PC is a contract that pre-
serves the data of publishers’ nodes (i.e., publishers) to
organize the procedures of mining, the activities of regis-
tration, and certain overwrite functions for the blockchain. It
maps the identification string (ID) of a publisher node with
its Ethereum address (Eth.Add); i.e., the Eth.Add of a node is
considered as its public key.

PC maintains the value of all publisher nodes in the
system to determine “voters’ nodes” and “a block creator
node.” A voter node is a publisher node that has a value
which is equal or greater than the average value of system. A
creator node is a publisher node that has the lowest value in
the system. &us, PC has two Boolean data fields labeled as
“voter” and “creator.” &e PC applies a combination of both
the Proof of Authority (PoA) consensus algorithm [27] and
the new proposed incentive mechanism proposed for

mining. PC maps the Eth.Add of a publisher node with its
corresponding RHC.Add.

PC exploits its coded policies, procedures, and rules to
regulate adding and registering new IDs. Publishers who are
labeled as “voters’ nodes” validate any other node that re-
quests a new higher-level role. &e set of “voters’ nodes” will
secure the system against any potential threats. To initialize
the system, initially the PC will first be empty with no
registered nodes. After that, the system will add an ad-
ministrative node (i.e., temporary node) which acts as an
initial publisher node. Later on, once enough nodes join the
system, the temporary node is deleted and removed from the
network.

Moreover, the PC applies the overwriting procedures,
such as leaving the system because of going out of business
or removing those nodes which may damage the system by
revoking and canceling their permissions. First, a request of
“removing a node” will be submitted by a voter node. Once
the request reaches the majority of votes, the node’s type will
be overwritten as terminated. &e node will be removed
from the PC, and all of its related information from the
various contracts will be deleted.

3.3.3. Authors Contract (AC). AC is a contract that preserves
the data of authors (i.e., authors). Similar to the PC, AC
maps the identification string (ID) of an author node to its
associated Eth.Add and RHC.Add.

3.3.4. 5ird Parties Contract (TPC). TPC is a contract that
preserves the data of third parties (i.e., external reviewers,
editors, and researchers who would like to collect data).
Similar to the PC and AC, TPC maps the ID of a third-party
node to its associated Eth.Add. &e proposed system em-
ploys two techniques to access data via an authorized third
party: proxy reencryption and deposit-box.

3.3.5. Relation History Contract (RHC). RHC preserves the
history of the relationship of each node in the system or a
summary list of the relationship where the academic re-
search data is stored and managed by publishers’ nodes
(peer-reviewed journals/conferences). &e RHC of an au-
thor’s node maintains references to all peer-review pub-
lishers that have connection with that author. &e RHC of a
publisher node has references to all authors’ nodes that have
submitted research. &e RHC will be created for every
publisher or author node through a node’s registration.

As shown in Figure 2, the RHC is recognized by the
Eth.Add of the RHC’s owner. Each row in the RHC lists the
Eth.Add of an engaged node, its IDs, and status (i.e., newly
established, pending, approved, declined). &e main ad-
vantage of using the status data field ID is to allow and enable
notifications. &e RHC row also uses the timestamp for the
date field to specify the time of the latest updates of the status
field, the timer field, and the RC.Add.

3.3.6. Records Contract (RC). RC tracks all research data
(i.e., records) stored by peer-reviewed journals/conferences.

Security and Communication Networks 5



&e RC is created when establishing a new relation between
publisher and author nodes.

&e Eth.Add of the owner node is used to identify the
RC. Each row in the RC includes two data fields: a filename
which specifies the record ID and the access info which
provides the required information to access the database of a
publisher node. Additionally, to ensure the integrity of data,
a hash value of the record’s access link and a hash value of
the record itself will be stored. Moreover, the RC lists both
the ACC.Add and the DBC.Add.

3.3.7. Access Control Contract (ACC). &e details of all
permissions are listed in this contract. It lists the Eth.Add of
nodes which have access permissions. &is contract includes
the following data fields: the “AccessLevel,” an encrypted
symmetric key, status, timestamp, and a timer T.

&e AccessLevel field demonstrates the level of access of
the node that has the listed Eth.Add, such as owner, read/
edit, read only, blind-read, and temp-read.&e owner level is
assigned to the publisher node that creates the access link for
the record and adds it to the database.&is level means that a
node has a complete control on the ACC. Owner node has
permission to (1) add other nodes with the other level, (2)
alter the level of existing nodes, and (3) remove nodes from
the ACC.

A node with “read/edit” access level can read and/or edit
the record. (1) &is node has the symmetric key which is
generated for encrypting the record when the record was
created, or (2) the node gets the symmetric key through
proxy reencryption.

A node with “temp-read” level can temporarily read a
record as it has the DBC.Add. A node with “read only” access
level can only read the record. &e “blind-read” access level
demonstrates that the PReC can retrieve the symmetric key
encrypted for the proxy nodes.

&e ACC also notifies the participants when any changes
occur on their access level. To do so, the ACC uses the
“status” field, the timestamp, and the timer units.

3.3.8. Mining Contract (MC). MC preserves the detailed
“log” of each transaction carried out on the stored scientific
data. It is designed to allow creating/validating/appending
new blocks. MC lists the Eth.Add of the node which is
considered as the “generator of the transaction.” It includes
the details of the transaction and a status field that dem-
onstrates whether these details have been added to the
blockchain or not. It also keeps the timestamp field which
specifies the time of updating the status field.

3.3.9. 5e Proxy Reencryption Contract (PReC). To allow
accessing scientific data by a “third-party-typeA” node, the
proxy reencryption technique proposed by [28] is employed
in the proposed design and is utilized by this contract. &is
contract will automatically be generated each time a new
group of proxy nodes is determined.

&e group of proxy nodes will be supplied by a shared
private key and a master or a main public key. All nodes
within the group of proxies have a unique private/public key
pair.

Each node in the proxy group also has a public key that is
known by others. Each node in the proxy set will pick
randomly a blinding value “p” and encrypt it. &e node then
blinds that encrypted blinding value with the encrypted
message. After that, portions of the blinded message will be
decrypted on their own systems. &e contribution of all
proxy nodes will be maintained in the PReC. Each entry in
the PReC includes (1) the Eth.Add of the proxy node, (2) the
blinded plaintext message “mp,” and (3) the encrypted pairs
of p values.

3.3.10. Deposit-Box Contract (DBC). To allow accessing
scientific data by a “third-party-typeB” node, the deposit-
box schema is employed. A record will be encrypted first by
the public key of the “third-party-typeB” node before being
stored in this contract for a specific time stated by the timer
field.

Nodes Contract (NC)

Eth.Add

Publishers Contract (PC)
Authors Contract (AC)

Eth.Add .. ID .. RHC.Add

Mining Contract (MC)

Relation History Contract (RHC)

Records Contract (RC)

Access Level Contract (ALC)

(DBC) Contract (PReC)

�ird Parties Contract
(TPC)

Eth.Add .. ID

Eth.Add .. ID.. δ .. Voter .. Creator ..
RHC.Add

Eth.Addi

Eth.Addj .. IDj .. Status.. timestamp..RC.Add ..T
Eth.Addi .. Access leveli .. [SMK]pki.. status

.. timestamp ..T

Eth.Addi .. IDi .. AccessInfo.. �lename.. h(record) .. h(AL ) .. ALC.Add ...DBC.Add .. T

Deposit-Box Contract Proxy Re-encryption

Eth.Addi .. p-pair .. mp .. TEth.Addi .. Epki(record) .. T
Eth.Addi .. Epki(log) .. Lstatus

..timestamp ..T

Figure 2: &e proposed smart contracts.

6 Security and Communication Networks



4. TimedChain Implementation

4.1. Initializing theTimedChainSystem:Part I—AddingaNew
Publisher Node. Before joining the blockchain system,
publishers (of peer-reviewed journals/conferences) should
accept the following: (1) the rules and policies of the pro-
posed smart contracts; (2) the frequency of updating the
blockchain network; (3) the proposed incentive mechanism;
(4) the procedures of generating new blocks. Figure 3 shows
the steps of adding a new publisher. Each publisher has a
public identifier (ID) or an identification string that is
unique to the official publisher. Each publisher first has to set
up the blockchain to receive the Ethereum address
(Eth.Add) and configure the software components. Note
that the Eth.Add of a node is considered as a public key of
that node. &e process of adding a publisher node starts by
sending the ID, the Eth.Add, and the “publisher” role to the
NC. All transactions are timed to ensure the system per-
formance. NC ensures that the received Eth.Add is unreg-
istered previously. NC forwards the received request to the
PC whose voters authenticate the received request and
validate that it is commitment to a legal publisher (pub-
lisher). Upon validating and accepting the request, the NC
adds the Eth.Add of the publisher to its local memory. &e
PC also adds the Eth.Add of the node and its ID. &e PC
generates a new RHC for the new node. &e RHC.Add will
be sent to the publisher node for later reference.

4.2. Initializing the TimedChain System: Part II—Evaluating
theValue of a PublisherNode. &is stage is performed by the
publisher nodes listed in the PC. &e process of reviewing
articles is a key part in the publication process, ensuring that
a publisher preserves high quality standards for its published
papers. Sci-DEM, which is a python-based tool installed in
each publisher node, evaluates the node’s value by deter-
mining whether a stored record serves the purpose for which
it was intended or not. &is work evaluates the value of a
node, δi, by measuring the quality and the quantity of the
“review records” maintained in its database as

δi � ∑
m

RR�1

QRR. (1)

&is paper proposes a general measurable standard for a
record’s quality. &e quality of a record is evaluated by
measuring the record’s Consistency, Correctness, and
Completeness (3C’s), in addition to the nonredundancy
attribute.

(i) Completeness (CM): A complete record includes all
fields, items, and elements that all joining publishers
have agreed on and accepted during the initializa-
tion stage. For instance, a review report is consid-
ered complete if the reviewer fills in the required
fields.

(ii) Correctness (CR): &e correctness of a scientific
record is evaluated by measuring data accuracy.

(iii) Consistency (CN): A consistent record means that
all data the record includes are reliable.

(iv) Nonredundancy (NR): It demonstrates that the data
stored in a record is not repeated by more than one
publisher node. For instance, review reports that
have the same comments are considered as re-
dundant reports.

To measure the NR attribute, Sci-DEM will check the
similarity of data stored in a record. &e nonredundancy of
record “I” is equal to 1 (NRI� 1) when all record’s data are
not repeated (i.e., unique) by other publishers; otherwise, the
value of the nonredundancy attribute will be divided be-
tween those publishers who share the same data.

To measure the 3C’s attributes, Sci-DEM will categorize
and classify each field, item, and element in the stored record
as follows: n1: correct; n2: incorrect; n3: missing; n4: extra; n5:
conflict. &erefore,

CMRR �
∑ n1 + n2 + n5

∑ n1 + n2 + n3 + n5
,

CRRR �
∑ n1

∑ n1 + n2 + n4 + n5
,

CNRR � 1 −
∑ n5

∑ n1 + n2 + n4 + n5
.

(2)

Accordingly, the publisher’s value is evaluated by

δi � ∑
m

RR�1

QRR � ∑
m

RR�1
CMRRCNRRCRRRNRRR. (3)

At the end of this stage, all publishers, as shown in
Figure 4, will add/update their values listed in the PC. A
publisher node sends a request to the NC to add/update its
value. NC will first validate if the request is received from a
registered node. &e NC then forwards the request to the PC
to “add/update” the value of the node. After that, the average
value of nodes within the system, voters’ nodes, and a block
creator node will automatically be updated in the PC.

It is worth noting that the node is labeled as a “voter”
node if it has a value equal to or greater than the average
value of the network, while the node with lower value in the
network will be labeled as a “block creator” node, which will
be assigned the task of creating/verifying/appending the next
new block.

4.3. Adding a New Author Node. &is stage is shown in
Figure 5. It begins when the author via a web interface sends
a “joining request” to the publisher node (publisher) which
in turn forwards the required configuration steps to set up an
author node and create an Eth.Add.

&e Eth.Client of the publisher node sends the infor-
mation of the new author node to the blockchain. For
validation, it sends the node ID, Eth.Add, and the “author”
role to the NC. NC ensures that the received Eth.Add is
unregistered previously. NC forwards the received request to
the PC whose voters authenticate that request and validate
that it is commitment to a legal author who is not registered
previously. Upon validating and accepting the request, the
NC adds the Eth.Add of the author to its local memory.

Security and Communication Networks 7



Furthermore, the AC adds the Eth.Add of the node and its
ID. &e AC generates a new RHC for the new node. &e
RHC.Add will be sent to the publisher node. &e new au-
thor’s account information will be sent to the author node
from the publisher node that forms the request.

4.4. Author Registration. Once the author has joined the
blockchain system, the author registration stage is started (see
Figure 6). In this stage, a “registration request” will be sent
from the web interface of the author node to the web interface
of the publisher node which in turn will forward the Eth.Add
of the author and its “author” role to the NC for verification.
&eNC verifies the “author” node role through the AC, which

will verify that the registration process is accomplished for the
new author node, which joined the system. Otherwise, an
author node has to be added first (see stage C).

After that, the author information including its ID and
Eth.Add is transmitted to the RCH of the publisher node,
which will check the author originality. &e RHC indicates
whether the author is new in the peer-review system or it has
been registered previously. Upon confirmation, the RHC
requests the generation of new stewardship with the author
who can decide to either accept or reject that request. As a
result, the RHC generates a new entry that includes the
Eth.Add of the author node, its ID, and “newly established-
pending” status, and updates the “timestamp” data field
accordingly.

Publisher node
‘‘Ethereum Client’’

NC PC RHC

Sends a ‘‘blockchain_join’’ request validate

Already
registered 

Cancel the request

Not registered Request‘s forward for 
authentication Validate

Not Legal
Cancel the request

Cancel the request

Legal Create new RHC

Con�rm and send RHC.Add

Update info

Update infoCon�rm

Figure 3: Adding a new publisher node.

Publisher Node
‘‘Ethereum Client’’

NC PC

A request to add/update the degree of a node 
Validate

Not
registered 

Not registered

Registered A request to ‘‘Add/Update’’ the degree 

Update

Con�rm
Con�rm

Figure 4: Adding/updating the value of a node.

8 Security and Communication Networks



Similarly, at the author node, the RHC creates a new
entry that includes the Eth.Add of the publisher node, its ID,
and “newly established-pending” status, and updates the
“timestamp” data field.

Upon the author acceptance, the status field of the RCH
is updated as “approved” along with the timestamp field, for
both the publisher and the author nodes. Otherwise, the
process will be canceled. After that, the RHC of the publisher
node creates a new RC for the new stewardship. &e RC fills

in the author’s related information and sends its address to
the RHC to update the “RC.Add” data field, for the publisher
and the author nodes.

4.5. Manuscript Submission (Record). &e process of sub-
mitting a new manuscript, shown in Figure 7, begins after
establishing stewardship (i.e., author registration) between
the publisher (peer-reviewed system) and the author nodes

Publisher
Node

NC PC RHC

Sends the request
Validate

Already
registered 

Cancel the request

Not registered
Request’s forward for authentication

Validate

Not Legal Cancel the request
Cancel the request

Legal

Create new RHC

Update info

Forward customer info 

CC

Update the CC

Author Node
“web interface”

Sends a “join” request 

Con�rm and Forward 
customer info Update infoForward customer info

Figure 5: Adding a new author node.

Publisher
node NC CC RC

Forward the request
Validate

Not a
blockchain
node

Cancel the request

A blockchain
node

A ‘‘joined’’ customer? Validate

Not a
joined 
customer

Cancel the requestCancel the request

A joined customer
node Validate

Update info and
waiting approval

RHC

Forward the request

Author
node 

Registration 
request

Cancel the request

Cancel the request

Con�rm

Con�rm

Cancel the request, no RHC is created 

Asks for approval
Approval sent Update info

Update info

Update info
Update info

A new
customer 

Already a
registered
customer

Figure 6: Author registration: establishing stewardship between the publisher (peer-reviewed system) and the author nodes (the author).

Security and Communication Networks 9



(the author), thus having a shared RC. &e web interface of
the author node sends a request of submitting a new
manuscript along with the manuscript to the peer-reviewed
system (publisher).

Once the publisher node receives the author node’s
request, it will start the process of submitting a new man-
uscript by generating the editor(s)/reviewers’ reports and
performing internal encryption. &e new manuscript and
the review reports will be forwarded to the DB manager of
the publisher node to generate access links of free locations
in the existing database. &e DB manager of the publisher
takes a further step by hashing both the received manuscript
and the generated access links, which are sent to the
CryptoManager for encryption.

&e CryptoManager in turn encrypts the received data in
two steps. At first, a symmetric key is generated, which is
used to encrypt the access links, the manuscript, and the
generated review reports. After that, the generated sym-
metric key will be encrypted using the public keys of the
publisher (i.e., editor), author (i.e., author), and set of
proxies. At the end, the encrypted records are forwarded and
stored in the DB manager.

Further, the DBmanager of the publisher node tracks the
process of submission the new manuscript by creating a
“log” file which tracks the access to the manuscript and other
scientific data. &e log file will be hashed and stored in the
blockchain to afford a full view of all events that happened to
all stored records.&en, the CryptoManager encrypts the log
file using the public key of the publisher node in order to
allow verifying the created block later. Ultimately, this will
enhance the security and the integrity of the data.

&e Eth.Client of the publisher node requests the as-
sociated RC.Add from the RHC using the author’s ID (the
ID of the author). &e Eth.Client of the publisher node then
sends the record information (filename of the record, hash
values of the links, hash value of the manuscript, the

encrypted symmetric key, and the log) to the RC. &e RC
stores the received information. &e RC then creates a new
ALC for the record(s) and forwards the encrypted keys Epk
(SMK) to the ALC. &e ALC auto-creates the access and
permissions information for the record and then sends its
address to the RC for its reference.

On the other hand, the MC adds a new entry that in-
cludes the encrypted log and the Eth.Add of the publisher
node (i.e., source of the transaction). Accordingly, the MC
status is defined as “new log,” which indicates that the new
entry has not been added to the blockchain yet, and updates
its timestamp field to specify the time of the last modification
on the status data field. At the end, the web interface of the
publisher node sends the encrypted access link of the
submitted manuscript to the web interface of the author
node over HTTPS which in turn forwards it to the Cryp-
toManager to store. &e received link can be used by the
author node later for viewing the submitted manuscript.

4.6. Manuscript Handling. &e request of reading/updating
a stored record will be sent from the web interface of the
publisher node to its backend library, which in turn will
parse and translate the request and send it to its Eth.Client.
&e Eth.Client sends the author’s ID to the RHC of the
publisher node to fetch the associated RC.Add. &e Eth.-
Client of the publisher node then sends to the RC both the
record’s filename and the publisher’s Eth.Add. &e RC
forwards the address to the ALC to check and verify its
access permission (i.e., “owner” access level).

Upon verification, the ALC forwards the publisher’s
encrypted symmetric key Epk (SMK) to the RC. &e RC in
turn forwards the received key to the Eth.Client of the
publisher node. &e Eth.Client sends via the backend library
the received encrypted symmetric key to its CryptoManager.
&e CryptoManager uses its private key to decrypt the

DB manager
(publisher)

CryptoManager
″publisher″

RHC
(publisher)

RC

Manuscript 
submission

Perform
hashing

Forward encrypted data

RC. Add query

Publisher
node 

DB

Create a record and
ask for access link 

Forward the AL and record for encryption
Perform
encryption

Create a log and
Perform hashing

Ask for log encryption

Create ALC and forward encrypted symmetric keys 

ALCAuthor node

Manuscript
submission

Forward encrypted data

Return RC. Add

Auto-create the access and permissions information 

Return ALC. Add
Con�rm

MC

Update the log

Send the record information (�lename, h(AL), and h(manuscript), the encrypted symmetric key, and the log)

Figure 7: Submitting a new manuscript.

10 Security and Communication Networks



received symmetric key, which will be used to decrypt the
access link stored in the publisher’s DB manager. &e
decrypted access link will be used by the DB manager of the
publisher’s node to retrieve the encrypted record from the
database for reading/updating activities.

It is worth noting that the hash value of a record is
changed as the record status is updated. Accordingly, the DB
manager of the publisher node generates the new hash value
of the updated record. &en, the DB manager requests the
RHC to send the RC.Add that is associated with the author’s
ID. At the end, the RC is updated with the new hash value.

In addition, the DB manager of the publisher node
creates a log to track the process of updating the records.&e
log will be hashed and forwarded to the CryptoManager,
which will be encrypted and forwarded to the MC. &e MC
in turn adds a new entry that includes the encrypted log and
the Eth.Add of the publisher node (i.e., source of the
transaction). Accordingly, the MC status is defined as “new
log,” which indicates that the new entry has not been added
to the blockchain yet, and updates its timestamp field to
specify the time of the last modification on the status data
field. It is worth noting that when a record is updated, the
publisher node notifies the PC to update the record’s as-
sociated value. &en, the PC will inform the Sci-DEM to
update the node’s value according to the new updates of the
record. At the end, the Sci-DEM calculates the new value,
which will be sent to the PC for updating.

4.7. Reading the SubmittedManuscript from an Author Node.
Figure 8 specifies the steps of reading a manuscript. &e
request of reading a submitted manuscript will be sent from
the web interface of the author node to its backend library,
which in turn parses and translates the request and sends it
to its Eth.Client. &e Eth.Client sends the publisher’s ID to
the RHC to fetch the associated RC.Add. &e Eth.Client of
the author node then sends to the RC both the record’s
filename and the author’s Eth.Add. &e RC forwards the
address to the ALC to check and verify its access permission.

Upon verification, the ALC forwards the author’s
encrypted symmetric key Epk (SMK) to the RC. &e RC in
turn forwards the received key to the Eth.Client of the author
node. &e Eth.Client sends via the backend library the re-
ceived encrypted symmetric key to its CryptoManager,
which uses its private key to decrypt the received symmetric
key. &e CryptoManager then uses the decrypted key to
decrypt the access link stored in its DB manager. &e DB
manager of the author’s node retrieves the encrypted record
from the database by using the related access link. In ad-
dition, the DB manager creates a log to track the process of
updating the records. &e log will be hashed and forwarded
to the CryptoManager, which will be encrypted and for-
warded to the MC. &e MC in turn adds a new entry that
includes the encrypted log and the Eth.Add of the publisher
node (i.e., source of the transaction). Accordingly, the MC
status is defined as “new log,” which indicates that the new
entry has not been added to the blockchain yet, and updates
its timestamp field to specify the time of the last modification
on the status data field.

4.8. ExternalReviewer Invitation. All manuscripts submitted
to publisher are reviewed by at least two researchers (i.e.,
experts) in the field. A reviewer will evaluate the scientific
quality of an assigned manuscript, for which he/she will
provide a recommendation for the external editor; for ex-
ample, the manuscript can be accepted, requires revisions, or
should be rejected. In the proposed design, a third-part-
typeA node represents a reviewer. Assume that a reviewer
(third-party-typeA) is invited to review a manuscript sub-
mitted by an author. Figure 9 shows the steps of sending an
invitation to review a manuscript.

To send the review invitation, the Eth.Client of the
publisher node sends the ID of the author, i.e., author, to its
RHC to fetch the associated RC.Add. &e Eth.Client of the
publisher node then sends the filename of the record (i.e.,
manuscript title) to the RC to fetch the “ALC.Add” and
“MC.Add.” &e Eth.Client of the publisher node then sends
the Eth.Add of the reviewer and the “access level” request to
the ALC. &e ALC then forwards the request to the NC
which in turn forwards it to the TPC for verification.

Upon receiving the verification, the ALC creates a new
entry with the reviewer’s Eth.Add, the access level, and the
“request new level” status. &e ALC updates its timestamp
field to specify the time of the last status update. &e ALC
requests changing the access level from the reviewer and
updates both its status field to “invitation_sent” and time-
stamp field to specify the time of the last status update. Upon
accepting the request by the reviewer, the access level for the
applicable file will be updated with the “review_invitatio-
n_accepted_review_waiting” status. Once the request has
been approved, the status field will be updated and a no-
tification will be sent to the reviewer indicating that a new
manuscript has been assigned for review.

&e DBmanager of the publisher adds a new entry to the
MC indicating the “review invitation.” &e MC adds a new
entry that includes the encrypted log and the Eth.Add of the
publisher node (i.e., source of the transaction). &e MC
changes its status to “new log” to demonstrate that the new
entry has not been added yet to the blockchain and updates
its timestamp field to specify the time of the last status
update.

4.9. Review Report Submission. &e process of reviewing a
manuscript by external experts, as shown in Figure 10,
employs the proxy reencryption schema to enhance the
security of the peer-reviewed systems and to improve the
system’s accessibility. &is process includes two subpro-
cesses: (1) retrieving the submitted manuscript; (2) re-
trieving and submitting a review report.

To retrieve the manuscript and submit a review, a re-
viewer node (web interface) generates a request to submit a
review report for the assigned manuscript. For authoriza-
tion, the CryptoManager of the reviewer node, first, signs
that created request with the reviewer’s private key. &en,
the CryptoManager of the reviewer encrypts the signed
request with the public key of the publisher (publisher). &e
web interface of the reviewer node over HTTPs sends the
signed request to the publisher web interface. &e request

Security and Communication Networks 11



will be received by the web interface of the publisher node
which in turn via its backend library will be forward it to the
publisher’s CryptoManager. &e CryptoManager decrypts
the request with the private key of the publisher node and

then decrypts it with the public key of a reviewer node to
assure that the reviewer is the one that it claims to be.

&e Eth.Client of the publisher node sends the ID of
the author, i.e., author, to its RHC to fetch the associated

RHC
Author node

RC ALC
DB manager

client
DB

Author node
(Eth. Client)

CryptoManager
client

Backend Library
client

Author node
Web interface

Manuscript′s view request

Manuscript′s view request

Return the RC. Add

Send the �lename and Eth. Add of the customer Request forward

Forward the customer′s 
encrypted symmetric key

Forward the customer′s encrypted symmetric 
key and encrypted AL

Parsing
Forward

encrypted data

Decryption
Parsing

Follow the AL Follow the AL

Retrieve the record
Forward the recordForward the record

Create a log
Forward the log 
for encryption 

Forward the log 

Send the log Forward the log

Send the log

Creatin
g a Log

MC

Figure 8: Reading a manuscript.

Backend
Library

reviewer

Eth.Client
publisher

Backend
Library

publisher

Publisher
Web interface

Eth.
Client

reviewer

Reviewer
Web

interface 

NC TPCRHC RC ALC

Review invitation 
request

Request forward
Ask for the RC. Add

Return the RC. Add

Ask for the ALC. Add, LC. Add

Return the ALC. Add, LC. Add

Send the Eth. Add and request ‘‘access level’’

Authorized?

Reviewer?

Con�rm
Con�rm

Review_invitation Noti�cationParsing

Con�rmParsingInvitation_accepted

Manuscript_assigned
Noti�cationParsing

Figure 9: Invitation to review a manuscript.

12 Security and Communication Networks



RC.Add. &e Eth.Client of the publisher node then sends
the filename of the record (i.e., manuscript title) to the RC
to fetch the “ALC.Add” and “MC.Add.” &e Eth.Client of
the publisher node then sends the Eth.Add of the reviewer
and the “access level” request to the ALC. &e ALC then
forwards the request to the NC which in turn forwards it
to the TPC for verification. &e Eth.Add of a reviewer and
the master encrypted symmetric key will be sent to the
proxy nodes by the ALC to perform the proxy reen-
cryption schema. &e reencrypted symmetric key will be
kept in the ALC which in turn sends its ALC.Add to the
reviewer node.

Over HTTPS, the web interface of the publisher node
sends the encrypted query link of the manuscript and the
review report to a reviewer node that can decrypt the links
and fetch the records. A reviewer node has the ALC.Add that
will be used to fetch the stored “reencrypted symmetric key.”
&e CryptoManager of the reviewer node decrypts the
“reencrypted symmetric key” using its private key and then
decrypts the query links with that symmetric key. &e DB
manager of the reviewer node follows the query links to
retrieve the submittedmanuscript and the review report.&e
manuscript and the report will appear to the reviewer after
decrypting it using the symmetric key.

When the review report is submitted, a notification will
be sent to the publisher node. Accordingly, the DB manager
of the publisher node generates the new hash value of the
updated record. &en, the DB manager requests the RHC to
send the RC.Add that is associated with the author’s ID. At
the end, the RC is updated with the new hash value.
Moreover, the DB manager creates a log to track the process
of submitting a review report. &e log will be hashed and

forwarded to the CryptoManager, which will be encrypted
and forwarded to the MC. &e MC in turn adds a new entry
that includes the encrypted log and the Eth.Add of the
publisher node (i.e., source of the transaction). Accordingly,
the MC status is defined as “new log,” which indicates that
the new entry has not been added to the blockchain yet, and
updates its timestamp field to specify the time of the last
modification on the status data field. &en, the PC will
inform the Sci-DEM to update the node’s value according to
the new updates of the record. At the end, the Sci-DEM
calculates the new value, which will be sent to the PC for
updating.

4.10. 5ird-Party-TypeB Node (Researcher) Reads a Record
from a Publisher Node. &e process of reading a record by a
third-party-typeB node utilizes the time-based deposit-box
schema to increase both the security of the peer-reviewed
system and its accessibility.

A third-party-typeB node generates a request to read a
record. For authorization, the CryptoManager of the node,
first, signs that created request with the node’s private key.
&en, the CryptoManager encrypts the signed request with
the public key of the publisher (publisher).&e web interface
of the node over HTTPs sends the signed request to the
publisher web interface. &e request will be received by the
web interface of the publisher node which in turn via its
backend library will forward it to the publisher’s Crypto-
Manager. &e CryptoManager decrypts the request with the
private key of the publisher node and then decrypts it with
the public key of a third-party-typeB node to assure that it is
the one that it claims to be.

DB
manager
reviewer 

DB

Eth.
Client

reviewer

Crypto 
Manager
reviewer

Backend
Library

reviewer 

Reviewer
Web

interface

Eth.
Client

Provider

Crypto
Manager
Provider

Backend
Library

Provider 

Provide
Web

interfacer
RHC RC ALC NC TPC PReC

Request to submit a review report 

parsingDigital Signature & Encryption 

parsing
Return the Generated request

Forward the request over HTTPs Parsing

Dencryption parsing forward the Generated request

Ask for the RC. Add

Return the RC. Add

Ask for the ALC. Add, LC. Add

Return the ALC. Add, LC. Add

Authorized?

Reviewer?

Con�rmCon�rm

Send the Eth. Add and request ‘‘access level’’ 

Proxy re-encryption

Forward the encrypted link

Parsing
Ask for there-encrypted symmetric key 

Parsing

Dencryption
Parsing

Dencryption

Figure 10: Manuscript review.

Security and Communication Networks 13



&e Eth.Client of the publisher node sends the ID of the
author, i.e., author, to its RHC to fetch the associated
RC.Add.

&e Eth.Client of the publisher node then sends the
filename of the record (i.e., manuscript title) to the RC to
fetch the “ALC.Add” and “MC.Add.” &e Eth.Client of the
publisher node then sends the Eth.Add of the node and the
“access level” request to the ALC.&eALC then forwards the
request to the NC which in turn forwards it to the TPC for
verification.

Once receiving the verification, the ALC creates a new
entry with the Eth.Add of a third-party-typeB node, the
access level, the “request new level” status, and the time-
stamp of the last status update. &e ALC requests changing
the access level from the file owner and updates both its
status field to “waiting approval” and timestamp field to
specify the time of the last status update. Upon the owner
acceptance of the request, the ALC will update the status of
the access level as “temp-read” and the status of the ap-
plicable file as “approved,” and it will update the timestamp.
When the request is approved, the ALC notifies a third-
party-typeB node that it is being assigned a new access level.
&e ALC also notifies the RC to create a new entry in the
DPC associated with the Eth.Add of the third-party-typeB
node. &e RC then sends the Eth.Add of a third-party-typeB
node and the filename to the publisher node. &en, the DB
manager retrieves the record and forwards the record with the
received public key to the CryptoManager for encryption.

&e DBCwill be updated by storing the encrypted file for
a certain time specified by the time field. Over HTTPS, a
publisher sends the DPC.Add to a third-party-typeB node to
access the requested record by decrypting it using its private
key. &e DB manager of a third-party-typeB node will
update the MC entry with an encrypted log indicating the
process of reading the record. &e MC adds a new entry that
includes the encrypted log and the Eth.Add of the source of
the transaction. &e MC updates its status field to be “new
log” to demonstrate that this new entry has not been added
yet to the blockchain and updates its timestamp field to
specify the time of the last modification on the status data
field.

4.11. Creating, Verifying, and Appending a New Block. To
perform the task of creating a new block, there is a need to
select a publisher node that has the lowest value among all
publishers within the blockchain network. &is publisher
will be notified by the PC to perform the computational task
of creating the new block. Publishers who maintain more
valuable scientific data are less likely to be selected (see
Figure 11).

To illustrate the procedures of creating/verifying/and
appending a new block, assume that there is a blockchain
network of 3 publishers and 10 authors. Author “c.A” reads a
record; Author “c.B” updates a record; Publisher “P.B”
creates 3 new records. Logs related to all Create/Read/Up-
date/Delete (CRUD) operations will be saved in the MC.
Assume that publisher “P.A” is selected to create a new
block.

Publisher “P.A” first sends a request “of creating a new
block” to the MC. &e MC in turn asks the NC if publisher
“P.A” is an authorized publisher on the system. &e NC
forwards the request to the PC to ensure that publisher “P.A”
is the one who is selected to perform the task. After receiving
the verification, the MC sends to publisher “P.A” all the
encrypted logs listed with status “new log”. Publisher “A”
then (1) creates a new block including all received logs, (2)
broadcasts the new block, and (3) calls for verification.

Logs verification will be performed by all involved nodes
through (1) decrypting the log with its private key, (2)
hashing the log after decryption, (3) comparing the hash
result with the one listed in its DB manager, and (4) sending
a signed proof to publisher “A.”

Publisher “A” then, after receiving all the signed proofs,
notifies the PC to update its value.&e PC adds the rewarded
incentive value “c” to the current value of the publisher “A.”
&e publisher who will be picked to generate the new block
will be rewarded an incentive “c” upon successfully verifying
the block by other involved nodes. &e distribution of
publishers’ values and the number of nodes within the
blockchain network affect the value of the rewarded in-
centive “c.” &us, “c” is defined as a fraction of the average
values in the network.

Publisher “A” broadcasts to all publishers to append the
new block. After appending the new block, the MC auto-
matically updates the status field for all logs which are added
to the chain as “appended” and fills in the timestamp field.

5. TimedChain Evaluation

5.1.Experimental Setting. To evaluate the proposed system, a
computer system with 2.6GHz Intel Core i7 processor,
16GB 2400MHz DDR4 memory, and macOS High Sierra
operation system is used. For implementation, the open
source, Ethereum platform, is utilized. Solidity is used for
scripting the functionalities of the proposed smart contracts.
Truffles are used to deploy the proposed smart contracts as it
has no restrictions regarding the capacity and the size of the
stored data. &e web3.js library is employed to enable
interacting with an Ethereum-based node using HTTPS. For
testing the CRUD services, Apache JMeter is applied as a
performance measuring mean and a functional tool. &e
experiments’ parameters and their values are shown in
Table 1.

As shown in the table, three parameters are used to
conduct the experiments, namely, the number of CRUD
queries, the number of registered nodes, and the number of
stored records within a node. In the conducted experiments,
the query time, the communication overhead, and the av-
erage response time are measured. For testing and to study
the relation between the results and the parameters, only one
parameter was modified each time.

5.2. Results and Discussion. &e results of all experiments
indicate that the query time, the communication overhead,
and the average response time increase as the total stored

14 Security and Communication Networks



records, the total submitted CRUD queries, and total
number of nodes were increased, as shown in Figures 12–14.

&e results show that submitting more CRUD queries
causes storing more records which means spending more
time to complete these queries. Moreover, increasing the
number of nodes that join the system means using the
system by more participants which in turn increases the
number of submitted queries and increase the time for
queries to be completed, hence increasing the communi-
cations among participants’ nodes.

Nevertheless, as shown in Figure 15, the throughput
remains steady and stable even with raising the number of
the submitted queries, the number of records stored in the
nodes, or the number of nodes within the TimedChain
network. &is stability in the throughput demonstrates the
power of the system in managing and processing a large size
of data with high frequency at low latency.

&e main reason behind these results is the balance
between the “on-chain” (i.e., actions performed through the
blockchain network) and the “off-chain” (i.e., actions per-
formed outside the blockchain network) operations of the
proposed system. &e actions classified as “off-blockchain”
actions include the following: (1) nodes’ values evaluation
when initializing the blockchain; (2) generating a record’s
access link when creating a record; (3) record’s hashing/
encrypting/decrypting; (4) procedures of database storage
and retrieval. On the other hand, the “on-blockchain” ac-
tions involve the following: (1) storing and acquiring data in
and from smart contracts; (2) internal transactions between
the proposed smart contracts; (3) generating and creating

new contracts via other contracts. &e utilization of “on/off-
chain” actions plays a key role in improving the proposed
TimedChain system and maintains the system performance.

Moreover, there is a critical impact of adopting the PoA
consensus algorithm on the system performance. In com-
parison with the PoS or the PoW, the PoA has the ability to
manage more transactions per second as it decreases the
time-consuming computations and maximizes the system
performance. &e PoA entails lower latency in accepting
transactions and stable time intervals for issuing blocks.
Regarding the proposed system, generating and validating a
new block require two rounds.

Publisher node
″P.A″(Eth. client)

Publisher node
‘‘P.A’’(Eth. client)

Author node
‘‘C.A’’(Eth. client)

MC NC PC

Creating a new block

Registered

Not
registered

Not Creator
provider 

Creator
provider 

Request 
cancel

Request 
cancel

Request 
cancel

TrueTrueForward
the logs

Blockchain

Request 
cancel

Request cancel

‘‘P.B’’(DB
manager)

‘‘C.A’’(DB
manager)

Figure 11: Creating/verifying/appending new block.

Table 1: Experiments’ parameters.

Description Values

Number of nodes joining the blockchain 10,000–100,000
Number of records stored in a node 10,000–100,000
Number of CRUD queries 10,000–100,000

Communication overhead

Query time

Response time

1000 2000 3000 4000 5000 6000 7000 8000 9000 100000

Records

0

10

20

30

40

50

60

T
im

e 
(s

ec
)

Figure 12: Results of system performance (changing the number of
stored records).

Security and Communication Networks 15



&e “block’s creator” node (i.e., the publisher node that
has the lowest value among other publishers within the
system) forwards the new created block to involved nodes
only (i.e., an involved node is a publisher node that is the
source of the performed transaction). It is not required to
dispatch the block to all network’s participants, thereby
decreasing the communication overhead. In round 2, the
created block will be verified by those involved nodes.
Block verification demonstrates approving the list logs.
Appending the new block will be accomplished upon re-
ceiving the verifications from all involved nodes. It is clear
that the adoption of the PoA minimizes the number of
messages sent for generating and validating new blocks
which has a notable impact on enhancing the performance
of the system.

Additionally, employing time-based smart contracts
guarantees acceptable period of time for performing
transactions and computations. Timers will be reset to zero
and data will be destroyed when there is a loss of
connectivity.

6. Conclusion

&is paper proposes the TimedChain system, which is a
blockchain-based peer-review system that facilitates the
integration with existing databases owned by publishers.&e
TimedChain provides secure, interoperable, and efficient
access by publishers (of peer-reviewed journals/confer-
ences), authors (authors), and third parties (external editors/
researchers/readers). According to the proposed design,
maintaining the blockchain network by creating/verifying/
appending new blocks is the role of publishers. Moreover,
publishers securely control access to scientific data stored in
the databases.

Privacy is ensured by exploiting time-based smart
contracts for controlling, managing, and governing trans-
actions. &e proposed smart contracts monitor the com-
putations and the queries carried out on the scientific data by
implementing valid usage policies. Data integrity is achieved
by applying the hashing techniques. Access control and
security are ensured by employing advanced authentication
and encryption techniques (i.e., public key encryption,
symmetric key encryption, proxy reencryption, and deposit-
box). Auditability, interoperability, and accessibility are met
by utilizing and employing comprehensive logs.

For mining, this research introduces a new incentive
mechanism that is combined with the PoA. It estimates the
value of publishers respecting their efforts at managing
publications and creating new blocks. A publisher who has
the lowest value among all publishers will be picked to create
the next new block. An incentive will be rewarded to the
“block’s creator” node and added to the node’s value to

Communication overhead

Query time

Response time

0

10

20

30

40

50

60

T
im

e 
(s

ec
)

1000 2000 3000 4000 5000 6000 7000 8000 9000 100000

Submitted queries

Figure 13: Results of system performance (changing the number of
submitted queries).

2000 3000 4000 5000 6000 7000 8000 9000 100001000

Number 

0

0.2

0.4

0.6

0.8

1

�
ro

u
gh

tp
u

t

Records

Queries

Nodes

Figure 15: &roughput of the system.

1000 2000 3000 4000 5000 6000 7000 8000 9000 100000

Number of nodes

0

10

20

30

40

50

60

T
im

e 
(s

ec
)

Communication overhead

Query time

Response time

Figure 14: Results of system performance (changing the number of
nodes).

16 Security and Communication Networks



minimize its possibility of recreating the next block, hence
reaching fairness status and achieving system’s
sustainability.

Data Availability

&e data supporting this study are available within the
article.

Conflicts of Interest

&e authors declare no conflicts of interest.

Acknowledgments

&e authors thank Palestine Technical University-Kadoorie
(PTUK) and Al Istiqlal University for their support.

References

[1] ScholarOne, 2020, https://clarivate.com/webofsciencegroup/
solutions/scholarone/.

[2] Elsevier Submission System, 2020, https://www.elsevier.com/
editors/submission-systems.

[3] Editorial Management, 2020, https://www.ariessys.com/.
[4] Bepress, 2020, https://www.bepress.com/.
[5] J. Willinsky, “Open journal systems: an example of open

source software for journal management and publishing,”
Library Hi Tech, vol. 23, pp. 504–519, 2005.

[6] EJManager, 2020, https://www.ejmanager.com/?
page=ejmfeatures.

[7] S. Kim, H. Choi, N. Kim, E. Chung, and J. Y. Lee, “Com-
parative analysis of manuscript management systems for
scholarly publishing,” Science Editing, vol. 5, pp. 124–134,
2018.

[8] T. K. Mackey, N. Shah, K. Miyachi, J. Short, and K. Clauson,
“A framework proposal for blockchain-based scientific
publishing using shared governance,” Frontiers in Blockchain,
vol. 2, p. 19, 2019.

[9] J. Yoo, H. Lee, T. Lee, and M. Shin, Pluto. Breaking Down the
Barriers in Academia, 2018, https://assets.pluto.network/
Pluto_white_paper_v04_180108_2130_BSH.pdf.

[10] ARTiFACTS, 2020, https://www.prnewswire.com/news-
releases/artifacts-launches-first-ever-blockchain-based-
platform-for-scientific-and-scholarly-research-300615989.
html.

[11] Sciencematters, 2020, https://www.sciencematters.io/.
[12] Orvium. Architecture & Technology Specification, https://

orvium.io/.
[13] S. Nakamoto: Bitcoin: A Peer-to-Peer Electronic Cash System,

2008, https://bitcoin.org/bitcoin.pdf.
[14] E.-Y. Daraghmi, Y.-A. Daraghmi, and S.-M. Yuan, “Med-

Chain: a design of blockchain-based system for medical
records access and permissions management,” IEEE Access,
vol. 7, pp. 164595–164613, 2019.

[15] E.-Y. Daraghmi and Y.-A. Daraghmi, “UniChain: a design of
blockchain-based system for electronic academic records
access and permissions management,” Applied Sciences, vol. 9,
p. 4966, 2019.

[16] N. Szabo, “&e idea of smart contracts,” vol. 6, 1997 Nick
Szabo’s Paper Concise Tutor.

[17] R. Modi, Solidity Programming Essentials: A Beginner’s Guide
to Build Smart Contracts for Ethereum and Blockchain, Packt

Publishing Ltd, Birmingham, UK, 2018, ISBN 978-1-78883-
138-3.

[18] C. Cachin, Architecture of the Hyperledger Blockchain Fabric,
IBM Research, Zurich, Switzerland, 2016.

[19] S. De Angelis, A. Leonardo, B. Roberto, F. Lombardi,
A. Margheri, and V. Sassone, “PBFT vs Proof-of-Authority:
Applying the CAP &eorem to Permissioned Blockchain,” in
Proceedings of the Italian Conference on Cyber Security, p. 11,
2018, https://eprints.soton.ac.uk/415083/.

[20] A. Tenorio-Fornés, V. Jacynycz, D. Llop-Vila, A. Sánchez-
Ruiz, and S. Hassan, “Towards a Decentralized Process for
Scientific Publication and Peer Review Using Blockchain and
IPFS,” in Proceedings of the Hawaii International Conference
on System Sciences, Maui, HI, USA, 2019.

[21] F. C. Coelho and A. Brandão, “Decentralising scientific
publishing: can the blockchain improve science communi-
cation?”Memórias do Instituto Oswaldo Cruz, vol. 114, Article
ID e190257, 2019.

[22] E. Stojmenova Duh, A. Duh, U. Droftina et al., “Publish-and-
Flourish: using blockchain platform to enable cooperative
scholarly communication,” Publications, vol. 7, p. 33, 2019.

[23] A. C. Kade Morton, “Aletheia: blockchain for scientific
knowledge with a community management framework,”
2017, https://github.com/aletheia-foundation/aletheia-
whitepaper/.

[24] A. Anita, A. Flora, C. Giovanni, G. Francesco, I. Nicla, and
M. Antonino, “A study on textual features for medical records
classification,” Studies in Health Technology and Informatics,
pp. 370–379, 2014.

[25] Ethereum Clients, http://www.ethdocs.org/en/latest/
ethereum-clients/index.html.

[26] JSON RPC, https://github.com/ethereum/wiki/wiki/JSON-
RPC#json-rpc-endpoint.

[27] N. Prusty, Building Blockchain Projects: Building Decentral-
ized Blockchain Applications with Ethereum and Solidity,
Packt Publishing Ltd., Birmingham, UK, 2017, ISBN 978-1-
78712-214-7.

[28] L. Zhou, M. Marsh, F. Schneider, and A. Redz, Distributed
Blinding for Distributed ElGamal Re-Encryption, IEEE, Co-
lumbus, OH, USA, 2005.

Security and Communication Networks 17

https://clarivate.com/webofsciencegroup/solutions/scholarone/
https://clarivate.com/webofsciencegroup/solutions/scholarone/
https://www.elsevier.com/editors/submission-systems
https://www.elsevier.com/editors/submission-systems
https://www.ariessys.com/
https://www.bepress.com/
https://www.ejmanager.com/?page=ejmfeatures
https://www.ejmanager.com/?page=ejmfeatures
https://assets.pluto.network/Pluto_white_paper_v04_180108_2130_BSH.pdf
https://assets.pluto.network/Pluto_white_paper_v04_180108_2130_BSH.pdf
https://www.prnewswire.com/news-releases/artifacts-launches-first-ever-blockchain-based-platform-for-scientific-and-scholarly-research-300615989.html
https://www.prnewswire.com/news-releases/artifacts-launches-first-ever-blockchain-based-platform-for-scientific-and-scholarly-research-300615989.html
https://www.prnewswire.com/news-releases/artifacts-launches-first-ever-blockchain-based-platform-for-scientific-and-scholarly-research-300615989.html
https://www.prnewswire.com/news-releases/artifacts-launches-first-ever-blockchain-based-platform-for-scientific-and-scholarly-research-300615989.html
https://www.sciencematters.io/
https://orvium.io/
https://orvium.io/
https://bitcoin.org/bitcoin.pdf
https://eprints.soton.ac.uk/415083/
https://github.com/aletheia-foundation/aletheia-whitepaper/
https://github.com/aletheia-foundation/aletheia-whitepaper/
http://www.ethdocs.org/en/latest/ethereum-clients/index.html
http://www.ethdocs.org/en/latest/ethereum-clients/index.html
https://github.com/ethereum/wiki/wiki/JSON-RPC#json-rpc-endpoint
https://github.com/ethereum/wiki/wiki/JSON-RPC#json-rpc-endpoint

