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ABSTRACT Although ElectroEncephaloGram (EEG) signals allow subjects suffering from neuromuscular

disorders to interface their brains with the cyber-physical world, occupational therapy can be enhanced

with the introduction of further modalities better assist the disabled person. In this paper, we propose

an in-home occupational therapy environment, which leverages a rich set of occupational therapy-related

activity recognition modalities, namely, EEG signals to understand brain activity, ElectroMyoGram (EMG)

signals for muscle activity, gesture-tracking sensors for forward and inverse kinematics activities, and smart

home appliance control sensors. To support a wide variety of disabled people’s in-home occupational therapy,

we have incorporated both selective attention and motor imagery processes for mapping a mental command

with that of an occupational therapy-related command within a serious game environment. To attain higher

accuracy and to avoid a higher number of false positives, a subject is first recommended to use a selective

attention-based serious game in which a digital avatar of the subject acting as a model therapist will

guide the therapy session. Once familiar with the generation of proper motor imagery, an advanced user

can use self-paced motor imagery signals to perform occupational therapy activities within the serious

game environment. The occupational therapy consists of a serious game environment in which smart home

appliances are mapped with therapeutic activities through forward and inverse kinematics. The therapy data

has been secured through blockchain and off-chain-based distributed repositories. The test results show the

viability of using the framework in a clinical environment.

INDEX TERMS Brain computer interface, blockchain, off-chain, serious games, digital virtual avatar.

I. INTRODUCTION

Occupational therapy (OT) is intended to allow daily life

activities independently [1]. The purpose of OT is to allow

an individual to live as close as possible to their normal

day-to-day living. For effectiveness, OT governs therapeutic

features such as type, length, and frequency of motor imagery

and therapeutic exercises, and change in difficulty level or

course of activities to support quality of improvement [2].

The associate editor coordinating the review of this manuscript and
approving it for publication was Victor Hugo Albuquerque.

Although much work has been done in the area of OT, under-

standing the Brain Computer Interface (BCI) and how it can

help in certain types of disabilities remains an open challenge

[3]. BCI leverages collaboration between the brain and any

external hardware and software-based computing system [4].

BCI is used for mind state reading by probing brain activity,

which is reflected in the electrical signals generated within

the brain neurons. The signals portray a disabled person’s

mental desires to do an action [5]. A BCI intercepts these

brain electrophysiological signals through an invasive or non-

invasive computing hardware and software and finally maps
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each distinct brain signal with a certain action [6]. In the case

of OT, the BCI is designed to understand mapping between

the brain signals identified by the BCI and the corresponding

occupational therapy commands [7]. The hardware interfaces

with the brain, collects electrical signals, and relays them

to a software component, which analyzes signals, maps the

signals with a certain occupational therapy command, and

actuates an external device or system that can be part of the

OT environment. BCI-based research has gained attraction

due to its support of neurofeedback, external IoT device

interactions with brain signals, and the possibility of brain

enhancement [7].

The brain generates rhythmical potentials in response to

certain sensory-motor stimulus [8], which can be interpreted

by EEG. The motor imagery is very popular in augmenting

the rehabilitation process of disabled people [9]. In partic-

ular, the brain state signature of a disabled person, which is

decoded by the interpretation of EEG signals can help during

the physical rehabilitation process. Although several meth-

ods of capturing neuro signals exist, such as EEG, Magne-

toEncephaloGraphy (MEG), FunctionalMagnetic Resonance

Imaging (fMRI), and Near Infrared Spectroscopy (NIRS),

EEG data is widely used as neurofeedback for mapping the

brain with a set of activities being performed [10]. This is

because of its non-invasive usage, ease of use, support of

portability, and cost-effectiveness [11]. Being able to map

brain activity with certain motor functions has the potential

to support disabled people [12].

When a person’s mental state of ‘‘wanting to do certain

action’’ change, corresponding oscillatory components of

EEG signals also change [13]. Event-Related Synchroniza-

tion (ERS) is a notion which is characterized by an increase

of EEG signal power in a certain band of brain signal fre-

quency [14] and Event-Related Desynchronization (ERD)

happens when the signal power decreases [15]. For example,

during and after the imagination of a left hand movement

related to an OT exercise exhibits an ERD and ERS respec-

tively in the beta and gamma frequency bands [16], [17].

ElectroEncephaloGram (EEG) and ElectroMyoGram

(EMG) are used primarily to probe the nervous system [18].

EEG data represent the electrical waves of the brain whereas

EMG data evaluate nerve and muscle function in the arms or

legs [10]. For example, EEG data available from the motor

cortex area of the brain, which controls the muscles of the

body that help in moving the arms, fingers, legs, and torso,

can indicate initiation of the kinematic actions [19]. In other

words, knowing which part of the brain controls which parts

of muscles allows the right therapy to be given to the muscles

of interest [13]. For example, Broca’s area in themotor cortex

controls the muscles in the mouth so that a person can express

him/herself in an intelligent and coordinated way [3]. On the

other hand, EMG data provides an indication of the electrical

activities in the muscle, which is being stimulated by the

nervous system [20]. EMG measures the electrical activity

of a muscle when a person does kinematic gestures [21].

Once a person contracts any muscle, for example, by making

a wrist flexion and extension, the muscle around the wrist

joint responds to nerve stimulation [11].

Each brain signal acquired against a thought can be

divided into various frequency bands [22], namely, delta

δ (1 – 3Hz), theta θ (4 – 7Hz), alpha α (8 – 12Hz), beta β

(12 – 30Hz) and gamma γ (30 – 100Hz). Each frequency

band represents a specific feature. Each frequency range con-

tains information related to a different aspect of human think-

ing. For example, the β and γ rhythms ranging from 12Hz

to 100Hz are related to motor activities, more specifically

the visualization of motion [23]. The higher the frequency

in brainwaves, the larger the number of neurons that fire up

synchronously at the same time [24]. When there is increased

availability of β and γ waves, a person becomes alert with

complete focus and an engaged mind and can have an active

conversation, play sports, or drive a car [25]. Although all

the types of frequency signals are generated at any given

time, a particular type of signal becomes dominant which

allows the body to determine what type of activity is to take

place. For example, during the day time when one needs to

do some hard work, the beta or gamma wave is assumed

to have higher dominance over other signals [26]. Hence,

researchers have found a correlation between EEG signal’s β

(12 – 30Hz) and γ (30 – 100Hz) waves and the EMG signal

available at the muscles during a typical working time [7].

Hence, wanting to do a motor task to perform a therapy can

be correlated to a particular therapy performed by a subset

of muscles around a subset of joints [22]. Understanding

the EEG and EMG signal gives more latitude of information

during an occupational therapy [2].

Li et al. [24] target spastic cerebral palsy (CP) children to

evaluate their sensory-motor response and beta waves in the

frontal lobe area of the brain, as it is responsible for human

motor and sensory functions: the left part of the frontal lobe

is the primary motor area, while the right part is the primary

somatosensory area. During analysis, two parameters were

studied: one is sensory-motor response (SMR) amplitude,

which is higher when the corresponding sensorimotor area

is immobile or in an idle state and lower during activation

of motor areas, i.e., at the time of motion or motor imagery.

The second parameter is Beta amplitude, that increases at the

motor cortex region as muscles contract or when the move-

ment is resisted. The study results demonstrate the effective-

ness of the system on the basis of improved SMR and beta

values in CP children.

Scherer et al. [27] used the motor imagery technique for

allowing a user to navigate in a virtual environment using

three commands, rotate-left, rotate-right and move forward.

They used the mental commands of the right/left hand and

foot movement. The same technique has been used to allow

a tetraplegic patient to control his wheelchair in a Virtual

Environment [28]. After an excessive amount of training

lasting approximately 4 months, he was able to move his

avatar in a VR environment by movement imagination of

his paralyzed feet. The results of the study showed that the

subject was able to execute some predefined tasks in a virtual
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environment with a success rate of 90%-100% and that the

methods could be easily transferred from the laboratory to a

real-world application.

Brain computer interfaces (BCI) have been applied

to motor rehabilitation in stroke patients with promising

results [29]. In order to interact with different disabled

patients, different modalities can be used such as manual

interaction, using voice commands, gestures, eye movement,

and thoughts [30]. Combining thought, gesture, eye move-

ment, and voice as modalities for therapy allows various

factors to be optimized, such as in different situations: when

a disabled person is at home alone, is surrounded by peo-

ple, or desires to do something him/herself [31]. Forward

kinematics data provides the therapeutic gesture data, which

shows the wellbeing or improvement of target body joints.

Inverse kinematics allow a subject to achieve a target goal in

terms of forward kinematics [32]. For example, if a person

has a disability in moving the left hand, an IoT-based door

lock can be interfaced such that during occupational therapy,

the door will open through the elbowflexion-extensionmove-

ment of a certain range of motion. It is assumed that cortical

areas control the movements of the contralateral limbs as well

as playing a role in ipsilateral movements [18].

FIGURE 1. (a) 10-20 system of placing EEG signal collection electrodes,
and (b) an EEG headband with electrodes touching the desired location
of the brain [6].

In order to interface the brain signals with the BCI,

the international 10-20 system is widely used an industry

standard [33] (see Figure 1). The 10-20 systemmaps a certain

portion of the brain with that of the spatial location of the

interfaced electrodes. Researchers use the 10-20 notations to

represent certain EEG signals originating from certain por-

tion of the brain in terms of 10-20 electrode IDs. For example,

researchers have found that imagination about movement of

left and right-hand can be detected by placing electrodes

in C3 and C4 or F7 and F8 locations [14], [34]. On the

other hand, researchers have found that eyeball movement

influences brain waves’ F7 and F8 electrodes [35]. The sug-

gested placement of the corresponding electrodes is shown

in Figure 1. One important aspect of knowing such distinct

patterns, researchers can identify high level motor actions

related to OT that is created within the brain and place

the electrodes accordingly. For example, if an OT exercise

requires both hand and eye movement motor actions to be

monitored, the BCI can be configured to acquire signals from

C3, C4, F7, and F8 [24], [35]. Existing occupational therapy

research shows that motor imagery can help stroke patients

who have problems moving their arms and hands, and legs

after a stroke [14], [36]–[38]. Stroke sufferers have shown

increased neural awareness due to motor imagery exercise

during their regular occupational therapy, instead of just reg-

ular therapy alone [39].

Data originated duringOT requires privacy, confidentiality,

and integrity while in storage, or transmission or processing.

Also, a large volume of multimedia data is being generated

during each OT session. In order to provide occupational

data security, recent advancement in blockchain and off-

chain-based decentralized digital repository shows promising

options [40]. The new generation of blockchain and off-

chain solutions even guarantees availability and scalability

of OT data [41], proper end-to-end encryption, digital wallet

with secure cryptographic public/private keys, and high speed

transaction overlays such as Lightning Network (LN).

In this paper, we propose a novel in-home occupational

therapy environment, which incorporates off-the-shelf EEG,

EMG, eye tracking sensors, smart home IoT sensors [42], and

kinematic gesture tracking non-invasive sensors to support

forward and inverse kinematic actions. We have developed

a 3D game environment in which the sensory data from the

brain, muscles, joint range of motion and eye positions are fed

to a digital avatar. The occupational therapy environment has

been created with a subset of therapies that incorporate the

brain commands, the hand muscle movement, and different

hand and eye gestures to interact with the serious game

environment in which different smart home IoT devices can

be controlled with gestures. The game environment consists

of two phases: during the first phase, a digital model occu-

pational therapist guides a subject with model occupational

therapy movements. During this time, the subject develops

motor imagery in his/her brain. During the actual therapy

time, the subject performs the action, which is recorded by

the multimodal sensors. At the end of the therapy session,

a summary of the kinematic data and quality of improvement

is saved in the secure therapy blockchain while the raw EEG,

EMG, and other kinematic data are saved in an off-chain

repository for immutable storage. The therapeutic data can be

shared with a remote therapist, which consists of an improve-

ment in terms of motor movement, muscle power gain, and

the ability to do certain motor tasks, as defined within the

therapy.

The remainder of this paper is organized as follows.

Section II outlines some preliminary background. Section III

describes the proposed research framework, while Section IV

presents the implementation, results, and discussion. Finally,

Section V concludes the paper.

II. BACKGROUND

1) MOTOR IMAGERY FOR OCCUPATIONAL

THERAPY APPLICATIONS
Motor imagery is a form of neurophysiological therapy that

allows a disabled person to mentally rehearse the movement
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of the affected body parts, without actually needing to per-

form the movement. In other words, a subject imagines doing

the movement as shown or guided by a computer system, e.g.

a virtual or augmented reality game. A subject may imagine

opening a door using their right hand or moving an object

from left to right using his/her left hand [34], [36], [37].

Motor imagery can be integrated within the OT lifecycle in

many ways, for example:

• Model therapy – serious games containing a virtual ther-

apist showing the steps required to complete an occupa-

tional therapy task (e.g. switching on/off a light using

wrist flexion/extension). The serious game incorporates

those actions and tasks the patient has difficulty with

performing on a daily basis.

• Imagining the therapeutic actions – the subject is

instructed to recall the mistakes made.

• Following the model therapist – the subject practices the

prescribed tasks through imagination and subsequently

performs that OT in self-paced mode.

FIGURE 2. Motor imagery can help in actual occupational therapy
activities [14].

Figure 2 shows a sample scenario in which a person is

intending to perform an elbow flexion operation. Appropriate

motor signals are sensed by the EEG headset from the motor

cortex area and the corresponding EMG signal is sensed by

the EMG armband.

2) MULTIMODAL OCCUPATIONAL THERAPY SENSORS

Adding multiple dimensions to occupational therapy brings

richer immersiveness and greater insights. For example,

during a motor imagery session, the coordination of eye

and motor signals together make the intercepted signal

higher in power for recognition of the movement intention.

FIGURE 3. Eye tracking used for occupational therapy: (a) an eye tracking
device has been setup, (b) the proper field of view for the gaze tracker is
maintained, and (c) sample left and right eye movement can be tracked
by the device.

FIGURE 4. Hand kinematic data recognition for OT: (a) 50 Hz Hand
Kinematic Data available from the Leap Motion Kinematic Sensor,
(b) samples of different gestures recognized by Leap Motion,
(c) Microsoft Hololens for hand gesture tracking, and (d) an augmented
reality view of gesture based sensors.

FIGURE 5. (a) 200 Hz, 8-channel EMG Sensors, 9-axis IMU with haptic
feedback MYO Armband, (b) Position of placing at the hand, and (c) ability
to recognize different hand gestures from the analysis of EMG signals.

Further, the intention imagery can be recognized and verified

by actual eye movement data available from eye tracking

sensor, the EMG data, and the subsequent gesture tracking

data available from gesture tracking sensors. Figure 3 shows

a sample eye tracking environment. Figures 4, 5, and 6 show

gesture tracking sensors, different joints and body parts each

sensor can track and their coverage. A mashup of these sen-

sors provides a rich set of human joint movements for our

research. Figure 7 shows how these gesture tracking sensors

play a role within the framework. Figure 7(a) shows sample
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FIGURE 6. Microsoft Kinect V2 sensor, which can detect the motions
around 25 joints of a human body within its field of view.

FIGURE 7. (a) Different gestures from various parts of the body that are
used for occupational therapy, (b) human body joint anatomy and
muscles around joints of interest help in making the required
gestures [courtesy 44].

motions around different joints of the body, Figure 7(b) shows

the motions around each joint, and how the muscles around

each joint respond to each motion type. All of these different

sensors together provide real-time maps of joints, motions

and muscle tones around the hand [43].

3) FORWARD AND INVERSE KINEMATICS-BASED

SERIOUS GAMES

Forward kinematics data, after classification, are fed into a

serious game to be able to follow the model therapist avatar.

The objective of the controller is to move the suggested

joints to the desired set point and return the kinematic data

of the attempted action. The therapy engine controller [32]

measures the difference between the desired position of the

model therapist in the cyber world and the actual position,

and help drive the BCI interface with a signal proportional to

this. Figure 8 (a) shows the collection of kinematic data from

different joints while the occupational therapy exercise takes

place. Figure 8(b) shows a scenario a user is shown for target

hand position in augmented reality view. The user follows

the suggested skeletal position and adjusts his hand position,

as shown in Figure 8(c).

III. SYSTEM DESIGN

A. BCI SYSTEM OVERVIEW

Figure 9 shows high level BCI data processing framework.

Frequency and spatial filtering is performed prior to feature

FIGURE 8. Forward kinematic data obtained from gesture tracking sensor
shown in Figure 7 is applied to deduce inverse kinematic principles in
order to follow the virtual occupational therapist in an augmented reality
view.

FIGURE 9. BCI data processing (image courtesy [48]).

extraction process. The Common Spatial Pattern (CSP) algo-

rithm is employed to optimally discriminate oscillatory band

powers [8], [45]. Classifiers are used to classify between

EEG of two different motor actions due to imaginary motor

function. Classifiers must be chosen according to the set

of the features. Linear discriminant analysis (LDA) is used

for a two-class problem [46] while Quadratic Discrimi-

nant Analysis (QDA) is used when the hyperplane shows a

quadratic signature instead of linear [46]. A Support Vec-

tor Machine (SVM) classifier [47] is used as a discrimi-

nant hyperplane to further identify classes with maximized

margins.

B. HIGH-LEVEL SYSTEM AND SOFTWARE COMPONENTS

Figure 10 (a) shows the high-level architecture of the pro-

posed system. A subject is assumed to be interfaced and
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FIGURE 10. (a) High-level multisensory occupational therapy
environment, and (b) high-level system components.

within the sensory coverage of the EEG, EMG, eye tracker,

smart home IoT, and the gesture tracking sensors. The sub-

ject is presented with an occupational therapy serious game,

which is designed, customized and personalized for the sub-

ject, i.e., the gameplay actions and objects are presented

such that the person can either use it in observation mode,

motor imagery mode or actual therapy mode. The serious

games can be in different visual metaphors, such as virtual

reality, augmented reality or mixed reality. The subject first

creates an image map from the game environment, in which

a model digital therapist shows how to perform the therapy.

This creates an impression in the motor cortex area, which is

intercepted by the EEG sensor.When the user actually intends

to start the action, the motor actions are recorded by the other

sensors.

Figure 10 (b) shows the software system for supporting

the therapy exercise. The Sensory Data Manager houses

the Live Data Manager component which receives the raw

sensory data from different sensory media. It also hosts the

Session Recorder, which provides a recorder suitable for cap-

turing different types of raw data from different User Inter-

face components. The Storage component is responsible for

storing each occupational therapy Session Data, Knowledge

Base and Blockchain-based Therapy Profile. The Cyber-

Physical Cognitive Intelligence engine incorporates several

key components. The Inverse Kinematics Analyzer helps in

achieving the goal of a therapy session by working with

other components such as the Rendering Engine and Spatio-

Temporal Analyzer. The Rendering Engine updates the sen-

sory data to the appropriate User Interface components. The

Reporting Engine provides live and historical reports, which

can be shared with one’s community of interest. The Recom-

mender System is an AI-based system, which leverages the

knowledge and data available in the Blockchain, Off-chain,

Knowledge Base and suggestions available from the Model

Therapist interface to assist in performing the occupational

therapy at home.

C. BCI-BASED SERIOUS GAMES DESIGN

The system is designed based on a research concept of mak-

ing the brain simulate [49] the action of ‘‘want to move’’ by

incorporating the following notions:

FIGURE 11. BCI-based occupational therapy scenario.

• The BCI based Virtual Reality (VR) therapy [49] will

provide rich photorealistic virtual environments, along

with matching 3D body sensor networks that will be

controlled via sensory data generated from the brain and

the physical movement of the body in an Omni tread-

mill that is connected with the head mounted display

(see Figure 11).

• A VR environment will be provided to the patient to

stimulate his brain into generating a ‘‘desiring to make

an action’’ signal. A patient fitted with the setup shown
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in Figure 11 can move and interact within a virtual

environment just by thinking.

• This thought of ‘‘wanting to move’’ is detected by the

BCI wearable device, such as the Emotiv EPOC EEG.

• This will strongly motivate the patient, as it will provide

a fully immersive environment with fun activities to per-

form. If a goal is achieved, the patient will be rewarded

in the virtual environment and become motivated to try

harder goals.

• Through regular sessions using this system, patients will

have higher rates of recovery.

FIGURE 12. Blockchain and off-chain solution for BCI-based occupational
therapy data security.

Figure 12 (a) shows the blockchain and off-chain thera-

peutic data repository architecture while Figure 12 (b) shows

a sample architecture of a transaction. While the blockchain

stores key OT transactions and other performance related

metrics, the off-chain is used to store raw EEG/EMG/skeletal

data, and other types ofmultimedia data related to the therapy.

As shown in Figure 12, a certain user’s OT data related to one

session is stored in one of the blocks in the blockchain, which

includes a link of the raw OT data as Electronic Medical

Record (EMR) within the off-chain to be able to maintain

a global view of a particular OT session [13], [21]. The OT

transactions can be automated using smart contract, a sample

of which is shown in Figure 12 (b).

IV. IMPLEMENTATION

We have tested the framework with healthy subjects via an

EEG cap mounted on the participants’ heads, performing

a standard signal quality check for all electrodes, follow-

ing by the calibration of the eye-tracking, Leap Motion,

and Kinect V2 devices. One test session per subject took

around 20minutes to complete, including the mounting of the

psychophysiology measurement equipment and pre-testing.

Participants were seated in a comfortable condition and were

asked to keep as motionless as possible during the entire

procedure, to minimize possible signal interference due to

movement. We have used both Emotiv and MUSE EEG

headsets as suggested by Zaki et al. [6]. We have used a

Node.js and AngularJS based framework to access data from

the Emotiv EPOC brain sensor or the open dataset available

from Emotiv. This supports the Emotiv EPOC EEG headset,

analyzing a Raw EEG data stream of 14 electrodes with

128Hz sample rate. Using the API, we can log events such as

a person smiling, looking up, down, left or right, blinking an

eye, winking left or right, laughing or not, spatial coordinates

from gyroscope, and cognitive actions [24], [35], [50].

To record EMG signal, we chose the MYO EMG armband,

which was placed over four selected forearm muscles as

suggested by Hashimoto et al. [19]. This helps in identi-

fying EMG signals responsible for wrist flexion with ulnar

deviation, wrist flexion, extension of four fingers and exten-

sion of the wrist, and extension and radial abduction of the

wrist [51], [53], [54]. Eye-tracking data was recorded using

the stationary Eye Tribe eye-tracker with a 60 Hz sampling

rate [52]. The eye-tracker was calibrated using the native Eye

Tribe calibration system. During the experiment, the follow-

ing eye data was tracked and recorded: i) x and y coordinates

for the on-screen gaze positions of the eyes, ii) pupil dilation

for right and left eyes, iii) x and y coordinates for on-screen

left and right eye positions. Each on-screen gaze position

recorded by the eye-tracker was converted to a fixation point.

For classification of a fixation point, the maximum gaze

position was set to a 160 pixels distance from the previous

sampled gaze position and the minimum number of samples

was set to 6 Hz.

To run the aforementioned experimental design condi-

tions, a custom-made stimulus presentation therapy environ-

ment was implemented using Unity3D. The application was

implemented to handle the following functions: i) present the

stimuli via immersive and game-based event, ii) present base-

line experimental conditions, iii) assign unique identification

triggers to each of the presented conditions, and iv) send

the triggers to the EEG/EMG/IoT/Gesture tracking software

components.

Through our developed smart home cyber physical game

environment. A subject sees a natural daily life environment

with appliances which he/she interacts or intends to interact

on a daily basis. The OT environment has been interfaced

such that the OT exercise comprises those brain and gesture

commands that will allow interacting with the surrounding
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smart home IoT devices through virtual reality, augmented

reality, or mixed reality serious game metaphors. This will

make one engaged and immersed and allow a therapist to

know how many of the daily life activities are performed by

the subject. While a subject interacts with the IoT appliances,

the corresponding EEG/EMG/eye position/skeletal data is

recorded and analyzed by the system.

V. TEST RESULTS

In this paper, we have proposed a smart home appliance

control serious game environment based on motor imagery

tasks and present the preliminary experimental results. Two

types of experiments are being performed: a guided and a

self-paced therapeutic exercise. The self-paced BCI paradigm

supports two different benefits of occupational therapy.

Firstly, it increases the degrees of freedom of brain excitation

area. Secondly, it improves the independence and control-

lability of the BCI system. Finally, it allows adding more

dimensions of modality at any given motor imagery session.

Hence, the EEG headset will pick up greater number of

determinant spatial signals from the brain. Figure 13 shows

the EEG signals received from C3, C4, F7, and F8 elec-

trodes containing motor imagery and ERD/ERS stimulation.

The results are in line with the findings of Li et al. [24].

FIGURE 13. EEG signals originated during multi-class occupational
therapy mental tasks.

Figure 13 shows the time varying beta and gamma frequency

bands (13-100 Hz), which cover most of the frequency infor-

mation in sensorimotor rhythm, and provide a comprehensive

view of the current frequency band used for classification and

analysis.

As shown in Figure 13, we have found correlation among

different obtained signals such as EEG, EMG, Kinematic, eye

tracking sensors and the corresponding occupational thera-

peutic exercise. For example, in our experiment, the occu-

pation therapy named ‘‘70 degrees flexion followed by

75 degrees extension of left hand wrist joint’’ was bro-

ken down into ‘‘motor imagery’’ and ‘‘actual therapeutic

movement’’ sessions. During the motor imagery session,

a subject follows a model therapist in the VR/AR mode.

During this mode, the intention along with the eye move-

ment is tracked from the respective EEG and eye tracking

sensors. Subsequently, the subject actually performs the wrist

flexion-extension movement as shown to a subject during the

motor imagery session. The recorded session data analysis

shows that adding multi-dimensional occupational data bring

more confidence into how a subject’s brain, muscle and joints

work as a combined unit while performing daily life activities

in its normal state. Since occupational therapy is aimed at

helping each patient going to his/her normal life, tracking

multiple human body parts that allows a subject in performing

a certain high level task through occupational therapy will

bring better insight about the quality of improvement.

During the analysis of the dataset as shown in Figure 13,

we have found that there is a strong correlation between

the motor imagery session and the afterwards actual motor

actions’ data available from the additional sensory data.

This follows the pattern shown in Figure 2 and Figure 11.

In other words, the excitation of neuronal activities through

the motor imagery session in which a particular occupational

therapy session is being shown in a screen is found to be

mapped with the subsequent motor neuronal actions that is

available through EMG signal at the hand FCU, ED, PL,

and ECR muscles, the eye movement data available from

the eye tracker and the kinematic data available from hand

gesture tracking sensors. This result shows that the occu-

pational therapy can be augmented with the effective EEG,

EMG monitoring systems to enhance the interaction with

the brain functionality. In particular, the neuro-occupational

therapy research would bring more in depth knowledge about

a disabled user’s quality of improvement in all the arenas such

as brain activity, disabled joints, muscle tone and other types

of therapeutic gains.

However, we have found several challenges while perform-

ing the tests with the dataset. The EEG data is extremely

noisy as the off-the-shelf sensors such as emotive and MUSE

have to carefully setup to intercept the frequency bands. For

example, the beta and gamma wave’s discrimination of EEG

signal originated due to left and right hand movement motor

imagery along with gaze movement captured from C3 and C4

electrodes and F7 and F8 electrodes exhibit different patterns.

In addition, the pattern recognition algorithms and the filter
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designs are highly sensitive to the available dataset. Using a

completely automated and tightly synched occupational ther-

apy in which brain though is part of the therapeutic process is

highly challenging given the fact that the brain signal controls

certain hardware such as smart bulb, smart lock or other types

of IoT devices. In our future research, we will address these

challenges of improving the recognition rate and the better

correlation with brain and other therapeutic movements.

VI. CONCLUSION

In this paper, we have proposed an occupational therapy envi-

ronment in which a multimodal set of media is used to track

the quality of improvement of a subject. The occupational

therapy consists of using motor imagery stimulation for an

exercise, which is followed by the actual therapeutic exercise.

The motor imagery phase is assisted by an online virtual

model therapist, during which the EEG signal is recorded

about the intention of the user. Afterwards, during the actual

exercise, the affected and utilized body joints and motions are

recorded through EEG, eye tracker, gesture tracking and IoT

sensors. The multisensory occupational therapy data gives a

therapist rich insights and greater dimensions of the inner

conditions of a subject. In the near future, we intend to stabi-

lize the testing procedure through real-life disabled subjects.
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