
Citation: Jiang, Y.; Zhou, Y.; Feng, T.

A Blockchain-Based Secure Multi-

Party Computation Scheme with

Multi-Key Fully Homomorphic Proxy

Re-Encryption. Information 2022, 13,

481. https://doi.org/10.3390/

info13100481

Academic Editor: Muhammad

Azeem Akbar

Received: 17 August 2022

Accepted: 4 October 2022

Published: 6 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 information

Article

A Blockchain-Based Secure Multi-Party Computation Scheme
with Multi-Key Fully Homomorphic Proxy Re-Encryption
Yongbo Jiang, Yuan Zhou * and Tao Feng *

School of Computer and Communication, Lanzhou University of Technology, Lanzhou 730050, China
* Correspondence: zhouyxy@163.com (Y.Z.); fengt@lut.edu.cn (T.F.)

Abstract: At present, secure multi-party computing is an effective solution for organizations and
institutions that want to derive greater value and benefit from the collaborative computing of their
data. Most current secure multi-party computing solutions use encryption schemes that are not
resistant to quantum attacks, which is a security risk in today’s quickly growing quantum computing,
and, when obtaining results, the result querier needs to collect the private keys of multiple data
owners to jointly decrypt them, or there needs to be an interaction between the data owner and
the querier during the decryption process. Based on the NTRU cryptosystem, which is resistant to
quantum computing attacks and has a simple and easy-to-implement structure, and combined with
multi-key fully homomorphic encryption (MKFHE) and proxy re-encryption, this paper proposes
a secure multi-party computing scheme based on NTRU-type multi-key fully homomorphic proxy
re-encryption in the blockchain environment, using the blockchain as trusted storage and a trusted
execution environment to provide data security for multi-party computing. The scheme meets the
requirements of being verifiable, conspiracy-proof, individually decryptable by the querier, and
resistant to quantum attacks.

Keywords: secure multi-party computation; blockchain; multi-key homomorphic encryption; NTRU

1. Introduction

With the rapid development of communication technology and the steady advance-
ment of global information, data information owned by organizations or individuals can
generate great value and wealth through communication and integration. To make full use
of the value of data to obtain greater benefits, data interaction, and sharing, information
integration and utilization between different institutions and organizations have become
urgent needs, among which collecting data from all parties for collaborative computing
is a typical scenario. Participants want to protect the security of data, protect the privacy
of all parties, and ensure the fairness of computing in the process of data collection and
use. The proposal and development of secure multi-party computation (SMPC) [1] provide
an effective solution and technical support for the above requirements. In order to protect
the privacy of all parties and the security of their private data during the use of secure
multi-party computation, it is necessary to continuously improve the security of secure
multi-party computation solutions. In addition, since the homomorphic encryption algo-
rithm (FHE) [2] can solve the problem of user data privacy protection in cloud computation
and big data environments, it is also a research hotspot to combine the homomorphic
encryption algorithm with secure multi-party computation.

SMPC refers to the collaborative computation of a function by two or more participants
in a collaborative computation, without trusting each other, using data held secretly by
each party as the input. The privacy of each participant is protected by requiring each
party to have no access to additional information beyond its own secret input and the final
result of the computation. Specifically, SMPC protects the privacy of each participant by
means of the secret data held by the participants for Pi, i = 1, . . . , n separate secret inputs

Information 2022, 13, 481. https://doi.org/10.3390/info13100481 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info13100481
https://doi.org/10.3390/info13100481
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0002-7630-759X
https://orcid.org/0000-0003-1611-9017
https://doi.org/10.3390/info13100481
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info13100481?type=check_update&version=2

Information 2022, 13, 481 2 of 13

held by xi, i = 1, . . . , n, in order to jointly compute a common function f with the values of
f (x1, x2, . . . , xn) = (y1, y2, . . . , yn). Throughout the computation process, the participant’s
Pi cannot learn anything other than the result of the computation and their own secret
inputs (xi, yi). The participants are not privy to any information other than the result of the
computation and their own secret input.

Fully homomorphic encryption is an encryption algorithm that allows direct manipu-
lation of encrypted data, which has the property that the result of the direct manipulation of
the ciphertext is the same as the result of manipulating the plaintext first and then encrypt-
ing it, a property that allows it to be applied in outsourced computing scenarios. Multi-key
fully homomorphic encryption (MKFHE) was first proposed by A. López-Alt et al. [3], who
used a modified NTRU scheme to construct an MFHE scheme. Multi-key fully homomor-
phic encryption is an encryption method that can process data encrypted and uploaded
by multiple different keys, breaking the restriction that homomorphic encryption can only
process data encrypted by the same key, but, in the decryption method, the resultant querier
needs to collect the private keys of multiple data owners to jointly decrypt the data or inter-
action between the data owner and the querier is required during the decryption process.
To address the above issues, S. Yasuda et al. [4] proposed multi-key homomorphic proxy
re-encryption (MKH-PRE). The MKH-PRE scheme allows the data owner to encrypt the
data with its own public key for multi-key homomorphic computation, as well as allowing
the ciphertext obtained from the homomorphic computation to be proxy re-encrypted,
converting the resultant ciphertext into a new ciphertext that can only be decrypted by
the resultant querier. The advantage of the NTRU cryptosystem is that it is resistant to
quantum attacks, and the NTRU-based scheme is a much easier way to generate secret keys,
using only modulo multiplication and modulo inverse operations, with a simple structure
that is easy to implement. It can be used not only to construct NTRU-based MKFHEs but
also to construct proxy re-encryption schemes that transform ciphertext into data that can
be decrypted with a querier key.

1.1. Motivation and Contribution

The encryption schemes used in most current secure multi-party computing schemes
are not resistant to quantum attacks, which is currently a security risk with the rapid
development of quantum computing, and the SMPC scheme that uses MKFHE cannot be
decrypted separately by the querier when obtaining the computation results. Therefore, it
is necessary to design a secure multi-party computing scheme that is resistant to quantum
attacks and can be decrypted individually by the querier.

The main research contributions of this paper are as follows:

1. A secure multi-party computation scheme based on NTRU-type [5] multi-key fully
homomorphic encryption proxy re-encryption is proposed. The use of proxy re-
encryption solves the problem that the multi-key homomorphic encryption scheme
cannot be decrypted separately when the result is obtained, and the data owner can
go offline after encrypting the uploaded data and does not have to stay online during
secure multi-party computation.

2. A scheme combining the blockchain with an NTRU multi-key fully homomorphic
encryption agent re-encryption secure multi-party computing scheme is proposed.
The decentralized, transparent, and non-tamper characteristics of the blockchain
are utilized to achieve the traceability and verifiability of the scheme and prevent
collusion of the participants.

3. The security proof and comparison with other solutions demonstrate that this se-
cure multi-party computing solution meets the requirements of being independent
of trusted third parties, verifiable, privacy-protected, collusion-proof, individually
decryptable by the querier, and resistant to quantum attacks.

Information 2022, 13, 481 3 of 13

1.2. Paper Structure

The rest of this paper is organized as follows: Section 2 presents related works.
Section 3 describes the scheme model, the steps of the scheme operation, the algorithms in-
volved, and the security model used. Section 4 proves the security of the scheme. Section 5
compares the scheme with other relevant SMPC schemes. The conclusion is provided in
Section 6.

2. Related Work

YAO first proposed a two-party secure computation method in [6] using the “mil-
lionaire problem”. Goldreich and others extended the two-party computation model to
a basic multi-party computation model [7]. Using this as a starting point, the security
of SMPC schemes has been a concern. To provide a trusted execution environment for
SMPC, some researchers have chosen to perform secure multi-party computing through
trusted third parties, such as Wu Y. et al., who constructed a generic server-assisted secure
multi-party computing protocol for secure execution of collaborative computing tasks in
cloud computing [8]. However, trusted third parties are vulnerable to attacks forming a
single point of failure and also have the potential to be complicit with malicious parties.

Researchers found that blockchains can provide a more secure execution environment
for SMPC. The open, transparent, and tamper-evident nature of blockchain can provide a
means of verification and traceability for SMPC, and the incentive mechanism can effec-
tively prevent complicity from occurring. H. Gao et al., proposed a BFR-MPC scheme in
combination with the blockchain [9] that encourages all participants to cooperate through
an incentive mechanism and maintains a public reputation system in the scheme, in which
honest participants gain more and more benefits while corrupt participants are increasingly
punished. Y. Yang et al., proposed Block-SMPC, a blockchain-based SMPC scheme [10],
which ensures data integrity and authentication by using the blockchain, introduces a
multi-party computer system based on homomorphic encryption, and improves privacy
security by separating the authority of homomorphic keys and ciphertexts. Liu et al.,
proposed a secure multi-party computing protocol, BPLSM, for ubiquitous data privacy
protection in combination with blockchain technology [11]. It achieves on-chain signature
verification, a guarantee of commitment, the correctness of encrypted values and address
hiding, and off-chain combined transaction commitment using the property of Pederson’s
additive homomorphism to construct a secure multi-party computation scheme that can
sign different messages in combination with the Schnorr protocol.

The secure multi-party computation scheme in the above study improves the secu-
rity of SMPC with the help of blockchain features, but the scheme cannot be decrypted
separately by the querier when obtaining the computation result. In order to meet the
requirement of being able to carry out decryption individually, T. Wang et al. [12] proposed
a secure, high-performance sharing and multi-party computing model by combining the
features of the blockchain, based on a combination of on-chain storage and off-chain storage,
and, in this storage environment, data are shared by using proxy re-encryption. However,
most of the encryption algorithms involved in the above scheme are based on large integer
decomposition or discrete logarithm difficulty problems, which do not have the ability to
resist quantum attacks.

To solve these problems, this paper proposes a secure multi-party computing scheme
based on a multi-key homomorphic proxy re-encryption scheme and an NTRU-based
MKFHE scheme [13,14] with resistance to quantum attacks in the blockchain environment.

3. SMPC Scheme with Multi-Key Fully Homomorphic Proxy Re-Encryption
3.1. System Model

The system consists of several components: the data owner, the data querier (in
general, the data owner, but possibly also the authorized user), the computation network,
the SMPC contract, the InterPlanetary File System (IPFS) [15], and the blockchain. The

Information 2022, 13, 481 4 of 13

system architecture is shown in Figure 1. The functions of each part of the system are
as follows:

• Data owner

Information 2022, 13, x FOR PEER REVIEW 5 of 13

Block
N－1

Txs

Block
N

Txs

Block
N＋1

Txs

Block-chain

MPC Contract

Calculate
node

Calculate
node

Calculate
node

Calculate
node

Calculate
node

Calculate
node

Storage
node

Storage
node

Storage
node

Storage
node

Storage
node

Storage
node

Computing networkIPFS

Sandbox

Result
inquirer

Data owner

①Register

①Register

①Register/Pay the deposit
⑩Send calculation request

⑬Check to update global status

②Return unique ID

②Return unique ID

②Return unique ID⑪Start calculation

③Upload data
ciphertext
encrypted with
data owner‘s pk,
data keywords

④Sending
the public
key of the
result
searchers

⑧Query data

⑨Return
encrypted
data and the
pk of the
results
inquirers

⑤Upload data
keywords, index,
stored addresses
to the blockchain

⑥Query the
address of the
data store

⑦Return the
address of the
data store

⑫Send the final result to
the result searchers

Figure 1. System model diagram.

3.2. Program Steps
The steps in the operation of the system are shown in Figure 2.

1. Initially, the data owner, the data querier, and the SMPC node register with the SMPC
contract, which distributes a unique ID to each registered node, while the SMPC node
pays a deposit to the contract.

2. The data owner generates keywords for the original data to be involved in the oper-
ation and then encrypts the data to be involved in the operation with its own public
key and uploads them to IPFS, where a Bloom filter generates the index value of the
encrypted data. The data owner uploads the keywords generated from the original
data and the storage address of the encrypted data.

3. The computing network node interacts with the blockchain by querying keywords,
querying the corresponding block to obtain the storage address of the required en-
crypted information, and obtaining the encrypted data from the IPFS data storage
address for calculation.

4. The data querier sends its public key to the SMPC contract, and the ciphertext result
after the homomorphic calculation is converted into the ciphertext result encrypted
by the data querier’s public key through the NTRU proxy re-encryption algorithm.
To obtain the final calculation result, the data querier only needs to decrypt the cal-
culation result returned by the computing network with its own private key. The
contract is carried out in a sandbox isolation environment, and the blockchain re-
wards or deducts the deposit based on whether the node is honest or not.

Figure 1. System model diagram.

As the data provider of secure multi-party computation, the data owner owns the
original data as the input of the computation. To ensure the privacy and data security of all
parties, the data must be encrypted by the data owner before being used as the input of the
computation.

• Result inquirer

As the receiver of the computation result, the result inquirer is generally the data
owner or the authorized user who does not provide the data. With the support of the proxy
re-encryption algorithm, the result inquirer can decrypt the encrypted computation result
through their own private key and obtain the calculation result.

• Blockchain

The blockchain participates in the process as a trusted storage and execution environ-
ment. This scheme provides resistance to quantum attacks through proxy re-encryption
to enable the result querier to decrypt the ciphertext result alone. At the same time, open,
transparent, and untampered information stored on the blockchain can be verified as proof.

• IPFS

IPFS is used to store encrypted raw data as off-chain storage to save storage space.
A Bloom filter [16] generates index values, and then IPFS uploads the data keywords,

Information 2022, 13, 481 5 of 13

index values, and storage address to the blockchain. SMPC nodes look up the data storage
address on the blockchain and then download the encrypted data from IPFS to local storage
for calculation.

• SMPC Contracts

Data owners, data inquirers, and SMPC nodes need to register with the SMPC contract
before the calculation begins. Participants (SMPC nodes or users) pay a deposit to the SMPC
contract, and the SMPC contract returns a unique ID to the registrant. The data inquirers
send their public keys to the SMPC contract, which generates the proxy re-encryption key.
The computation function in the contract is agreed upon in advance by the participants
of the secure multi-party calculation so that the code can be written and deployed on
the blockchain platform to automatically trigger the execution of the agreed computation
without human intervention.

• Computing networks

The SMPC computing network undertakes the task of data calculation. It queries the
corresponding encrypted data on IPFS as the input and performs the calculation on the
encrypted data consistently with the agreed calculation function according to the SMPC
contract. The obtained encryption results are sent to each data interrogator after the agent
re-encryption operation.

3.2. Program Steps

The steps in the operation of the system are shown in Figure 2.

Information 2022, 13, x FOR PEER REVIEW 6 of 13

Results
inquirers

Computing
network MPC Contract IPFSData owner Blockchain

1.Register
1.Register

1.Register
 Pay the deposit

4.Upload data ciphertext encrypted with data owner's pk and data keywords

7.Upload data keywords,
 index stored addresses
 to the blockchain

8.Query the address of the data store

5.Sending the public key of the result searchers

3.Generate raw
 data keywords

2.Return unique ID

2.Return unique ID
2.Return unique ID

15.Send the final result
to the result searchers

11.Return encrypted data and
the pk of the results inquirers

14.The data is computed
 to obtain the result and
converted into ciphertext
encrypted with the results
inquirers public key

6.Bloom filter generate
 encrypted data Index

10.Query data

9.Return the address of the data store

12.Send calculation request

13.Start calculation

Figure 2. Timing diagram of system operation.

5. At the end of the calculation, the blockchain validation node checks whether any dis-
honest nodes have committed mischief before or after the calculation process. If this
does not happen, the deposit of each node will be returned as is; if this happens, the
deposit of the honest node will be returned, and the deposit of the dishonest node
will be deducted and distributed as a reward to the honest node as a punishment.
In order to enable the nodes in the scheme to reach consensus quickly while ensuring

security during the operation, the Score Grouping-practical Byzantine fault-tolerant (SG-
PBFT) consensus algorithm, which is based on a modified version of the practical Byzan-
tine fault-tolerant (PBFT) algorithm [17] proposed in the literature [18], is used in the
scheme.

The SG-PBFT sets the initial score of N sequential random nodes as 100 points and
divides them into a consensus node set and a candidate node set. The consensus node
executes the consensus process, while the candidate node does not participate in the con-
sensus process and only receives the consensus results. The primary node is selected by p = vmodCN. CN represents the agreed number of nodes. When the primary node p is
attacked or fails, the view v will be changed, and the recalculated primary node will re-
place it.

When the nodes reach a consensus, the master node will send the confirmed results
to all consensus nodes and update the score of the node. If the result of the node is con-
sistent with the consensus result, one point will be added. Otherwise, five points will be
deducted. The m nodes with the lowest score will be removed from the consensus node

Figure 2. Timing diagram of system operation.

Information 2022, 13, 481 6 of 13

1. Initially, the data owner, the data querier, and the SMPC node register with the SMPC
contract, which distributes a unique ID to each registered node, while the SMPC node
pays a deposit to the contract.

2. The data owner generates keywords for the original data to be involved in the opera-
tion and then encrypts the data to be involved in the operation with its own public
key and uploads them to IPFS, where a Bloom filter generates the index value of the
encrypted data. The data owner uploads the keywords generated from the original
data and the storage address of the encrypted data.

3. The computing network node interacts with the blockchain by querying keywords,
querying the corresponding block to obtain the storage address of the required en-
crypted information, and obtaining the encrypted data from the IPFS data storage
address for calculation.

4. The data querier sends its public key to the SMPC contract, and the ciphertext result
after the homomorphic calculation is converted into the ciphertext result encrypted
by the data querier’s public key through the NTRU proxy re-encryption algorithm.
To obtain the final calculation result, the data querier only needs to decrypt the
calculation result returned by the computing network with its own private key. The
contract is carried out in a sandbox isolation environment, and the blockchain rewards
or deducts the deposit based on whether the node is honest or not.

5. At the end of the calculation, the blockchain validation node checks whether any
dishonest nodes have committed mischief before or after the calculation process. If
this does not happen, the deposit of each node will be returned as is; if this happens,
the deposit of the honest node will be returned, and the deposit of the dishonest node
will be deducted and distributed as a reward to the honest node as a punishment.

In order to enable the nodes in the scheme to reach consensus quickly while ensuring
security during the operation, the Score Grouping-practical Byzantine fault-tolerant (SG-
PBFT) consensus algorithm, which is based on a modified version of the practical Byzantine
fault-tolerant (PBFT) algorithm [17] proposed in the literature [18], is used in the scheme.

The SG-PBFT sets the initial score of N sequential random nodes as 100 points and
divides them into a consensus node set and a candidate node set. The consensus node
executes the consensus process, while the candidate node does not participate in the
consensus process and only receives the consensus results. The primary node is selected
by p = vmodCN. CN represents the agreed number of nodes. When the primary node
p is attacked or fails, the view v will be changed, and the recalculated primary node will
replace it.

When the nodes reach a consensus, the master node will send the confirmed results to
all consensus nodes and update the score of the node. If the result of the node is consistent
with the consensus result, one point will be added. Otherwise, five points will be deducted.
The m nodes with the lowest score will be removed from the consensus node set and
attached to the end of the candidate node set. The m nodes with the highest score in the
candidate set will be added to the consensus node set and renumbered.

The SG-PBFT renumbers and adjusts nodes after each agreement is reached. This
ensures that the identity of the primary node is hidden and therefore resistant to distributed
denial of service (DDoS) attacks. In the SG-PBFT, even if all malicious nodes join together,
they can only send no more than 1/3 of the total number of messages. Malicious nodes
cannot reach a consensus, therefore the SG-PBFT can resist selective attacks. The SG-PBFT
operating process is shown in Figure 3. The “x” on the line indicates that the node is a
failed node.

3.3. Algorithm Construction

The algorithms in the scheme are divided into four parts: the initialization algorithm,
the key generation algorithm, the multi-key homomorphic encryption algorithm, and the
proxy re-encryption algorithm. The operations in the scheme are all performed on the

Information 2022, 13, 481 7 of 13

ring R = Z[X]/Φm(x), over which q is a prime number, and Φm(x) is a partitioned circle
polynomial of the degree n = ϕ(m). Let Rq = R/qR.

Information 2022, 13, x FOR PEER REVIEW 7 of 13

set and attached to the end of the candidate node set. The m nodes with the highest score
in the candidate set will be added to the consensus node set and renumbered.

The SG-PBFT renumbers and adjusts nodes after each agreement is reached. This en-
sures that the identity of the primary node is hidden and therefore resistant to distributed
denial of service (DDoS) attacks. In the SG-PBFT, even if all malicious nodes join together,
they can only send no more than 1/3 of the total number of messages. Malicious nodes
cannot reach a consensus, therefore the SG-PBFT can resist selective attacks. The SG-PBFT
operating process is shown in Figure 3. The “x” on the line indicates that the node is a
failed node.

Figure 3. SG-PBFT operating diagram.

3.3. Algorithm Construction
The algorithms in the scheme are divided into four parts: the initialization algorithm,

the key generation algorithm, the multi-key homomorphic encryption algorithm, and the
proxy re-encryption algorithm. The operations in the scheme are all performed on the ring 𝑅 = ℤ[X]/𝛷 (𝑥), over which 𝑞 is a prime number, and Φ (𝑥) is a partitioned circle pol-
ynomial of the degree 𝑛 = 𝜑(𝑚). Let 𝑅 = 𝑅/𝑞𝑅.
• Initialization algorithm Setup(1) ⟶ 𝑝𝑝: Enter the security parameters’ 𝜆 to generate ring learning with er-
rors (RLWE) [19] with dimension n, the plaintext modulus 𝑝, the ciphertext modulus 𝑞,
and the ring 𝑅 distribution over the ring 𝜓, 𝜑. Vector 𝜶 and matrix 𝑩 are extracted
randomly on the uniform distributions 𝑈(𝑅) and 𝑈(𝑅 ×) of ring R, respectively, and
then a common parameter 𝑝𝑝 = (𝑛, 𝑝, 𝑞, 𝜓, 𝜑, 𝜶, 𝑩) is output.

The public parameter 𝑝𝑝 is used as the input to the key generation algorithm for the
generation of keys by the data owner and the result querier in addition to the generation
of the computational key 𝐄𝐯𝐤 in the multi-key homomorphic encryption algorithm.
• Key generation algorithm KeyGen(𝑝𝑝) ⟶ (𝑝𝑘 , 𝑠𝑘): Randomly select 𝑢 , 𝑙 in the distribution 𝜓; it is required
that the extracted 𝑢 is reversible in 𝑅 . Calculate 𝑢 = 𝑝𝑢 + 1(mod𝑞), 𝑢 ∈ 𝑅 , and let 𝑣 = 𝑝𝑙𝑢 (mod𝑞). The error vector 𝜷 is randomly selected from the distribution 𝜑 , and

request pre-prepare prepare response reply
C

p

1

2

3

4

Consensus
Nodes Set

Candidate
Nodes Set

Figure 3. SG-PBFT operating diagram.

• Initialization algorithm

Setup
(
1λ

)
→ pp : Enter the security parameters’ λ to generate ring learning with

errors (RLWE) [19] with dimension n, the plaintext modulus p, the ciphertext modulus q,
and the ring R distribution over the ring ψ, ϕ. Vector α and matrix B are extracted randomly
on the uniform distributions U

(
Rd

q

)
and U

(
R2×m

q

)
of ring R, respectively, and then a

common parameter pp = (n, p, q, ψ, ϕ, α, B) is output.
The public parameter pp is used as the input to the key generation algorithm for the

generation of keys by the data owner and the result querier in addition to the generation of
the computational key Evk in the multi-key homomorphic encryption algorithm.

• Key generation algorithm

KeyGen(pp)→ (pki, ski) : Randomly select u′, l in the distribution ψ; it is required
that the extracted u′ is reversible in Rq. Calculate u = pu′ + 1(modq), u−1 ∈ Rq, and let
v = plu−1(modq). The error vector β is randomly selected from the distribution ϕd, and
f = −αu + β(modq) is calculated. Set u = (u, 1) ∈ R1×2

q , randomly select the error vector

β′ from the distribution ϕd′ , and calculate g = −uB + β′(modq) ∈ Rn′
q . Output the private

key sk = u and the public key pk = (v, f ,g).
The data owner and the result querier generate their respective public key pk and

private key sk by means of a key generation algorithm.

• Multi-key homomorphic encryption algorithm

The components of the multi-key homomorphic encryption algorithm include the com-
putational key generation algorithm EvkGen, the encryption algorithm Enc, the ciphertext
extension algorithm CtxtExtend, and the homomorphic computation algorithm Eval.

EvkGen(pp, pk, sk)→ Evk : Randomly select s in the distribution ϕ, randomly select
r0, β0, β1 in the distribution ϕd, calculate evk0 = vr0 + β0 + u−1sl(modq) and evk1 =
sα + β1 + ul(modq), and output the computation key Evk = [evk0|evk1] .

Information 2022, 13, 481 8 of 13

The computational key generation algorithm EvkGen generates the computational
key Evk using the public parameters, the public key pk of the data owner, and the private
key sk.

Enc(pk, m)→ c : Randomly selects r, β in the distribution ϕ, set δ = q/p, and compute
the ciphertext c = vp + β + δm(modp).

The data owner uses the encryption algorithm Enc to encrypt the data they need to
participate in the operation and then generates a cipher text and uploads it to IPFS.

CtxtExtend(c1, c2, . . . , cs)→ c∗i : Let the number of ciphertexts involved in this operation
be s and c1 =

(
c1, c2, . . . , cki

)
∈ Rki

q . The corresponding user ID set is
{

idk1 , idk2 , . . . , idki

}
,

i = 1, 2, . . . , s. Let k = max(k1, k2, . . . , ks) and output the k-dimensional ciphertext
c∗i =

(
c∗1 , c∗2 , . . . , c∗k

)
∈ Rk

q where

c∗i =

{
cj, i = id, 1 ≤ j ≤ ki

0, others
(1)

Eval(c1, c2, Evk): Calling CtxtExtend(c1, c2) gives c∗1 , c∗2 ∈ Rk
q by calculation. Then homo-

morphic addition or multiplication is performed.

1. HAdd
(
c∗1 , c∗2

)
: Compute and output the ciphertext c = c∗1 + c∗2(modq).

2. HMult
(
c∗1 , c∗2 , evk

)
: Calculate c′ = p/q× c∗1 ⊗ c∗2(modq) and output the ciphertext

c = Reline(c′, evk) ∈ Rk
q.

• Proxy re-encryption algorithm

Proxy re-encryption algorithms include the re-encryption key generation algorithm
RKGen, the re-encryption algorithm ReEnc, and the re-encrypted ciphertext decryption
algorithm PRDec. The algorithms are used to re-encrypt the ciphertext after the homo-
morphic encryption calculation into a ciphertext that can be decrypted by the resultant
querier’s private key.

RKGen
(
ski, pk j

)
→ rki→j : Select pk j from hj and let Hj = B + βT

2 ⊗ hj, where

β2 = (0 ‖ 1) ∈ Z2. Select Xi, n′ ≥ 2 log q + 2λ, from {0, 1}n′×d and compute and out-

put rki→j = RKi→j = Hj, Xi +

(
0

uil

)
(modq) ∈ R2×h

q .

ReEnc
(

rk1→j, . . . , rkk→j, c
)
→ c′ : Let c = (c1, . . . , ck) and calculate and output

c′ = ∑k
i=1 RKi→ju−1(ci)(modq) ∈ R2

q.
PRDec

(
sk j, c′

)
→ m: Let uj =

(
uj, 1

)
and compute and output m =

⌊
(p/q)

〈
uj, c′

〉⌉
(modp).

3.4. Security Model

The scheme uses the definition of security from the literature [5] for the MKH-PRE
scheme. The definition designs an IND-CPA security game between a challenger and an
adversary A. The re-encryption process is represented using a directed acyclic graph, such
that D is the set of edges in the re-encryption graph. During the game, the adversary can
initiate an interrogation of the challenger about the re-encryption key generation based on
the re-encryption graph. The formal definition of a secure game is as follows:

• Preparation phase

The challenger sends the generated public parameters Setup
(
1λ

)
→ pp to the adver-

sary A.
Generate honest keys. The number of honest keys received by the challenger from A

is Nh, and the challenger generates (pki, ski), i = 1, . . . , Nh and sends the pki to A. Let χh
be the set of honest public keys.

Generate non-honest keys. The number of non-honest keys received by the challenger
from A is Nd, and the challenger generates (pki, ski), i = 1, . . . , Nd and sends the pki to A.
Let χd be the set of non-honest public keys.

Information 2022, 13, 481 9 of 13

• Inquiry phase

The adversary can initiate a polynomial inquiry of any order.
Generate the re-encryption key. A sends (i, j) to the challenger. If i, j ∈ χh, and

there is a directed acyclic graph E = (χh, D ∪ (i, j)), then the challenger adds (i, j) to D and
sends the generated re-encryption key for i to j RKGen

(
ski, pk j

)
→ rki→j to A; otherwise,

⊥ is returned.
Re-encryption. A sends (i, j, c) to the challenger. If i, j ∈ χd, and = c′, the challenger

returns ⊥. Otherwise, the challenger sends a ciphertext re-encrypted with the j’s public key
cj sent to A; otherwise, ⊥ is returned.

• Challenge phase.

The plaintext space is M. Take m0, m1 ∈ M, and i′ ∈ Nh. A sends (i′, m0, m1) to the
challenger, who chooses a random bit b ∈ {0, 1}, generates c′ by Enc(pki′ , mb), and returns
it to A. A can only initiate a challenging inquiry once.

• Judgment phase.

A outputs one bit b′ ∈ {0, 1}. In this game, the advantage of adversaryA is defined as

Advind−cpa
MKH−PRE,A(λ) =| Pr

[
b′ = b

]
− 1

2
| (2)

If, for any probabilistic polynomial time adversary A there is

Advind−cpa
MKH−PRE,A(λ) = negl(λ) (3)

then, the scheme is IND-CPA safe.

4. Proof of Safety

Here, we demonstrate the safety of the MKH-PRE scheme. If the RLWE assump-
tion, the decisional small polynomial ratio (DSPR) [20] assumption, and the cyclic safety
assumption are difficult, then the MKHE scheme in this paper is IND-CPA safe.

The security of the PRE process is considered below. Here, we demonstrate the
security of the PRE process through an IND-CPA security game between a challenger and
an adversary A. A is an adversary in arbitrary probabilistic polynomial time, which has
access to the re-encryption key generation and evolution RKGen and the re-encryption
oracle machine ReEnc and can only initiate queries for generating re-encryption keys based
on the re-encryption graph. Consider the following set of security games:

Game 0. The IND-CPA safe game was defined in the previous section. Assuming
χh = {1, . . . , N}, χb = {N + 1, . . . , M}. According to the topological order determined
by the re-encryption graph, if i < j, then there are no edges from i to j, i.e., A can only be
initiated in the i > j case of a re-encryption key rki→j of the query.

Divide Game k, k = 1, . . . , N, into two categories, Game. 1 k and Game. 2 k.
Game. 1 k. When A initiates a query to generate an honest key, for all i < k, the

challenger randomly draws vi and gi in the uniform distributions Rq and Rn′
q , respectively,

to generate the public key; for all k < i ≤ N, the challenger generates the public key by
KeyGen(pp)→ (vi, gi) . The rest of the operation is the same as Game. 2 k-1.

Game. 2 k. When A initiates the query to generate the re-encryption key, the chal-
lenger generates the re-encryption key rki→j by drawing a random matrix from R2×n’

q
for all j < i ≤ k; for k < i, j ≤ N, the challenger generates the re-encryption key by
RKGen

(
ski, pk j

)
→ rki→j . The rest of the operation is the same as Game. 2 k.

Game End. WhenA initiates a challenge query, the challenger generates the ciphertext
c through random sampling, and the rest of the operation is the same as Game. 2 N.

The strengths of A in each game are assessed separately as follows:

Information 2022, 13, 481 10 of 13

Because Game 0 is an IND-CPA safe game of the original MKH-PRE scheme,

Advind−cpa
MKH−PRE,A(λ) = AdvGame 0

A (λ) (4)

In Game. 1 k, the re-encryption key rkk→i generated by the challenger satisfies

rkk→i = RKk→i = Hi, Xk +

(
0

ukl

)
(modq) when i < k, where Xk is randomly selected

in the uniform distribution of {0, 1}n′×d and n′ ≥ 2 log q + 2λ. Since hi and B are randomly
selected from the uniform distribution when i < k, Hi = B + βT

2 ⊗ hi is also subject to the
uniform distribution. According to the residual hash lemma, H and X are subject to uniform
distributions, so Hi and Xk are statistically indistinguishable from a matrix randomly drawn
from a uniform distribution. The results show that rkk→i is statistically indistinguishable
from the random matrix extracted from the uniform distribution, meaning that Game. 1 k
and Game. 2 k are statistically indistinguishable. Therefore, there is∣∣∣AdvGame.1 k

A (λ) −AdvGame.2 k
A (λ)

∣∣∣ = negl(λ) (5)

Adversary A constructs a PPT algorithm Q to distinguish the RLWE distribution
from the uniform distribution, and the sample x ∈ R2 input to Q comes from the RLWE
distribution or one of the uniform distributions.

• Preparation phase

Q calculates B =
(
xT

1 ‖ . . . ‖ xT
n′
)

and randomly extracts vk, gk from the uniform

distribution Rq, Rn′
q . Q sends B = B +

(
0

dk

)
to A.

Generate honest keys
When A initiates an honest key generation query, the response of Q is as follows:
When i < k, Q randomly selects vi, gi from the uniform distribution Rq, Rn′

q and lets
pki = (vi, gi).

When i = k, Q lets pki = (vk, gk).
When i > k, Q generates the public key by KeyGen(pp)→ (pki, ski) .
Finally, Q sends pki, i ∈ {1, . . . , k} to A.
Generate dishonest keys
WhenA initiates a generate dishonest keys query,Q calculates KeyGen(B)→ (pki, ski)

and sends (pki, ski) to A.

• Inquiry phase.

Generate re-encryption keys
When A initiates a generate re-encryption key query (i, j), if i, j < k, then Q returns

RKi→j ∈ R2×h
q randomly selected from the uniform distribution; if i, j > k, then Q returns

RKGen
(
ski, pk j

)
→ RKi→j .

Re-encryption
WhenA initiates a re-encryption query (i1, . . . , is, j, c),Q returns .ReEnc(RKi1→j, . . . ,

RKis→j, c)→ cj. to A.

• Challenge phase.

m0, m1 ∈ M, and i′ ∈ Nh are selected. A starts the query (i′, m0, m1), andQ randomly
selects a bit b ∈ {0, 1}, generating c′ by Enc(pki′ , mb) and returning it to A.

• Judgment phase.

A ceases the query and outputs bits b
′ ∈ {0, 1}. Then, Q outputs 1 if b = b′, or 0

otherwise.
If the RLWE distribution is entered inQ, thenQ simulates Game. 2 k−1. The first rows

of B and gk are both random quantities that obey a uniform distribution, so B also obeys
a uniform distribution. In addition, the distributions of gk ≈ −(f ||1)B are the same as in

Information 2022, 13, 481 11 of 13

the actual game. In the previous game, rki→j was replaced by a randomly selected matrix
from a uniform distribution, where B simulates Game. 2 k-1. If the uniform distribution is
entered in Q, then B simulates Game.1 k. From the above analysis, the RLWE assumption,
and the DSPR assumption, it follows that:∣∣∣AdvGame.2 k−1

A (λ) −AdvGame.1 k
A (λ)

∣∣∣ = negl(λ) (6)

The ciphertext in Game End is drawn randomly from a uniform distribution; in Game.
2 N, all public keys are replaced in the previous games with vectors drawn randomly from
a uniform distribution, and the polynomial drawn randomly from a uniform distribution
is statistically indistinguishable from the ciphertext output by the encryption algorithm
under the RLWE assumption; therefore, Game. 2 N is statistically indistinguishable from
Game End. ∣∣∣AdvGame.2 N

A (λ) −AdvGame End
A (λ)

∣∣∣ = negl(λ) (7)

The advantages of Q in Game End are:

AdvGame End
A (λ) = negl(λ) (8)

Based on the above analysis, it can be concluded that

(Advind−cpa
MKH−PRE,A (λ)

≤
N

∑
k=1

∣∣∣AdvGame.2 k−1
A (λ) −AdvGame.1 k

A (λ)
∣∣∣+ ∣∣∣AdvGame.2 N

A (λ) −AdvGame End
A (λ)

∣∣∣
+AdvGame End

A (λ) = negl(λ)

(9)

Therefore, the solution in this paper is IND-CPA safe.

5. Comparison of Programs

Constructed by Y. Wu et al., to address the problem of secure execution of collabo-
rative computing tasks in cloud computing, a generic server-assisted secure multi-party
computing protocol [8] was proposed without complicity between the server and client;
however, the scheme also relies on the participation of trusted third parties, cannot prevent
complicity, and does not have a reliable means of verification of the computing process. To
make the scheme verifiable, researchers have used the properties of the blockchain to add
verifiability to the scheme while providing privacy protection by introducing the blockchain
in the scheme construction. Examples include H. Gao et al.’s blockchain-based BFR-MPC
scheme [9], Y. Yang et al.’s SMPC scheme Block-SMPC [10], and Liu et al.’s BPLSM [11], a
secure multi-party computing protocol for ubiquitous data privacy protection combined
with the blockchain technology. The above schemes make improvements to the scheme via
the blockchain but require joint decryption by multiple querying parties when obtaining
the results. T. Wang et al. [12] proposed a sharing and multi-party computation mode
scheme in combination with the blockchain, using proxy re-encryption for data sharing
so that querying parties can carry out decryption individually, but none of the encryption
methods used in the above schemes are resistant to quantum attacks.

This scheme performs multi-party secure computation on the blockchain and pays a
deposit during the computation of a transaction via a smart contract to prevent complicity
between participants. The NTRU-based scheme design provides the scheme with resistance
to quantum attacks. The decryption of ciphertext results by the result querier alone is
achieved through proxy re-encryption, and the data owner can go offline after uploading
the data and public key. The specific performance comparison is shown in Table 1. As can
be seen from the table, the scheme can meet the requirements of not relying on trusted
third parties, being verifiable, having privacy protection, being anti-complicity, being
individually decryptable by the querier, and being resistant to quantum attacks.

Information 2022, 13, 481 12 of 13

Table 1. Performance comparison of this paper with other SMPC solutions.

Literature Not Relying on
Trusted Third Parties Verifiable Privacy Anti-Conspiracy Individual Decryption

Available to Enquirers

Resistant to
Quantum
Attacks

[8] × ×
√

× × ×
[9]

√ √ √ √
× ×

[10]
√ √ √ √

× ×
[11]

√ √ √
- × ×

[12]
√ √ √

-
√

×
This paper

√ √ √ √ √ √

In the table, “
√

” means that the scheme can meet this requirement, “×” means that the scheme cannot meet this
requirement, and “-” means that the literature does not describe whether the scheme can meet this requirement.

6. Conclusions

In this paper, to solve the problem that the encryption schemes used in most current
secure multi-party computation schemes are not resistant to quantum attacks, and the
secure multi-party computation schemes constructed via MKFHE cannot be decrypted by
the result querier alone when the result is obtained, an NTRU-type multi-key fully homo-
morphic proxy re-encryption secure multi-party computation scheme in the blockchain
environment was proposed. By designing a multi-key fully homomorphic encryption
algorithm and a proxy re-encryption algorithm under the NTRU cryptosystem, the scheme
meets the requirements of individual decryption by the querier, offline access by the data
owner after uploading encrypted data, and resistance to quantum attacks. At the same time,
the decentralized, immutable, open, and transparent nature of the blockchain provides a
trusted execution environment for the scheme, providing a traceable and verifiable means
of data. The blockchain’s incentives encourage honest cooperation between the various
computing participants and prevent complicity.

The security of the scheme is based on the RLWE problem and the DSPR assumption,
which is not a standard cryptographic assumption. Although there is no efficient way to
break the DSPR assumption for the small-modulus case, it can be assumed that the DSPR
assumption is secure, but this issue needs attention. Therefore, how to construct a secure
multi-party computation scheme with NTRU-type multi-key fully homomorphic proxy
re-encryption whose security depends only on the RLWE problem requires further research.
In addition, how to apply the scheme proposed in this paper in the actual multi-party
computation scenario is also an important research direction.

Author Contributions: Conceptualization, Y.J. and Y.Z.; formal analysis, Y.J., Y.Z. and T.F.; supervi-
sion, Y.J., Y.Z. and T.F.; validation, Y.J. and Y.Z.; writing—original draft, Y.J. and Y.Z.; writing—review
and editing, T.F. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China, grant
numbers 62162039 and 61762060, and the Foundation for the Key Research and Development Program
of Gansu Province, China, grant number 20YF3GA016.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Yang, Y.; Huang, X.; Liu, X. A Comprehensive Survey on Secure Outsourced Computation and Its Applications. IEEE Access 2019,

7, 159426–159465. [CrossRef]
2. Akl, S.G.; Assem, I. Fully homomorphic encryption: A general framework and implementations. Int. J. Parallel Emergent Distribted

Syst. 2020, 35, 493–498. [CrossRef]
3. López-Alt, A.; Tromer, E.; Vaikuntanathan, V. Multikey fully homomorphic encryption and applications. SIAM J. Comput. 2017,

46, 1827–1892. [CrossRef]

http://doi.org/10.1109/ACCESS.2019.2949782
http://doi.org/10.1080/17445760.2018.1553041
http://doi.org/10.1137/14100124X

Information 2022, 13, 481 13 of 13

4. Yasuda, S.; Koseki, Y.; Hiromasa, R. Multi-key homomorphic proxy re-encryption. In Proceedings of the International Conference
on Information Security, Guildford, UK, 9–12 September 2018; Springer: Berlin/Heidelberg, Germany, 2018; pp. 328–346.
[CrossRef]

5. Stehlé, D.; Steinfeld, R. Making NTRU as secure as worst-case problems over ideal lattices. In Proceedings of the Annual
International Conference on the Theory and Applications of Cryptographic Techniques, Tallinn, Estonia, 15–19 May 2011;
Springer: Berlin/Heidelberg, Germany, 2011; pp. 27–47. [CrossRef]

6. Yao, A.C. Protocols for secure computations. In Proceedings of the 23rd Annual Symposium on Foundations of Computer Science,
Chicago, IL, USA, 3–5 November 1982; pp. 160–164. [CrossRef]

7. Micali, S.; Goldreich, O.; Wigderson, A. How to play any mental game. In Proceedings of the Nineteenth ACM Symp. on Theory
of Computing, STOC, NY, USA, 25–27 May 1987; ACM: New York, NY, USA, 1987; pp. 218–229. [CrossRef]

8. Wu, Y.; Wang, X.; Susilo, W. Generic server-aided secure multi-party computation in cloud computing. Comput. Stand. Interfaces
2022, 79, 103552. [CrossRef]

9. Gao, H.; Ma, Z.; Luo, S.; Wang, Z. BFR-MPC: A Blockchain-Based Fair and Robust Multi-Party Computation Scheme. IEEE Access
2019, 7, 110439–110450. [CrossRef]

10. Yang, Y.; Wei, L.; Wu, J. Block-smpc: A blockchain-based secure multi-party computation for privacy-protected data sharing.
In Proceedings of the 2020 2nd International Conference on Blockchain Technology 2020, Hilo, HI, USA, 12–14 March 2020;
pp. 46–51. [CrossRef]

11. Liu, F.; Yang, J.; Kong, D.; Qi, J. A Secure Multi-party Computation Protocol Combines Pederson Commitment with Schnorr
Signature for Blockchain. In Proceedings of the 2020 IEEE 20th International Conference on Communication Technology (ICCT),
Nanning, China, 28–31 October 2020; pp. 57–63. [CrossRef]

12. Liu, F.; Yang, J.; Li, Z.; Qi, J. A secure multi-party computation protocol for universal data privacy protection based on blockchain.
J. Computer. Res. Dev. 2021, 58, 281–290.

13. Che, X.; Zhou, T.; Li, N. Optimization of NTRU multi-key homomorphic encryption scheme. Eng. Sci. Technol. 2020, 52, 186–193.
14. Che, X.; Zhou, T.; Li, N. Modified multi-key fully homomorphic encryption based on NTRU cryptosystem without key-switching.

Tsinghua Sci. Technol. 2020, 25, 564–578. [CrossRef]
15. Daniel, E.; Tschorsch, F. IPFS and Friends: A Qualitative Comparison of Next Generation Peer-to-Peer Data Networks. IEEE

Commun. Surveys. Tutor. 2022, 24, 31–52. [CrossRef]
16. Hua, W.; Gao, Y.; Lyu, M.; Xie, P. Research on Bloom filter: A survey. J. Comput. Appl. 2022, 42, 1729–1747.
17. Wan, S.; Li, M.; Liu, G.; Wang, C. Recent advances in consensus protocols for blockchain: A survey. Wirel. Netw. 2020, 26,

5579–5593. [CrossRef]
18. Xu, G.; Bai, H.; Xing, J. SG-PBFT: A secure and highly efficient distributed blockchain PBFT consensus algorithm for intelligent

Internet of vehicles. J. Parallel Distrib. Comput. 2022, 164, 1–11. [CrossRef]
19. Lyubashevsky, V.; Peikert, C.; Regev, O. On ideal lattices and learning with errors over rings. In Theory and Application of

Cryptographic Techniques; Springer: Berlin/Heidelberg, Germany, 2010; Volume 6110, pp. 1–23. [CrossRef]
20. López-Alt, A.; Tromer, E.; Vaikuntanathan, V. On-the-fly multiparty computation on the cloud via multikey fullyhomomorphic

encryption. In Proceedings of the Forty-Fourth Annual ACM Symposium on Theory of Computing, New York, NY, USA,
20–22 May 2012; pp. 1219–1234. [CrossRef]

http://doi.org/10.1007/978-3-319-99136-8_18
http://doi.org/10.1007/978-3-642-20465-4_4
http://doi.org/10.1109/sfcs.1982.38
http://doi.org/10.1145/28395.28420
http://doi.org/10.1016/j.csi.2021.103552
http://doi.org/10.1109/ACCESS.2019.2934147
http://doi.org/10.1145/3390566.3391664
http://doi.org/10.1109/icct50939.2020.9295819
http://doi.org/10.26599/TST.2019.9010076
http://doi.org/10.1109/COMST.2022.3143147
http://doi.org/10.1007/s11276-019-02195-0
http://doi.org/10.1016/j.jpdc.2022.01.029
http://doi.org/10.1007/978-3-642-13190-5_1
http://doi.org/10.1145/2213977.2214086

	Introduction
	Motivation and Contribution
	Paper Structure

	Related Work
	SMPC Scheme with Multi-Key Fully Homomorphic Proxy Re-Encryption
	System Model
	Program Steps
	Algorithm Construction
	Security Model

	Proof of Safety
	Comparison of Programs
	Conclusions
	References

