
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

A Blockchain based Witness Model for Trustworthy Cloud Service Level
Agreement Enforcement

Zhou, H.; Ouyang, X.; Ren, Z.; Su, J.; de Laat, C.; Zhao, Z.
DOI
10.1109/INFOCOM.2019.8737580
Publication date
2019
Document Version
Final published version
Published in
IEEE INFOCOM 2019 - IEEE Conference on Computer Communications

Link to publication

Citation for published version (APA):
Zhou, H., Ouyang, X., Ren, Z., Su, J., de Laat, C., & Zhao, Z. (2019). A Blockchain based
Witness Model for Trustworthy Cloud Service Level Agreement Enforcement. In IEEE
INFOCOM 2019 - IEEE Conference on Computer Communications (pp. 1567-1575). IEEE.
https://doi.org/10.1109/INFOCOM.2019.8737580

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:27 Aug 2022

https://doi.org/10.1109/INFOCOM.2019.8737580
https://dare.uva.nl/personal/pure/en/publications/a-blockchain-based-witness-model-for-trustworthy-cloud-service-level-agreement-enforcement(efe3ad80-37ef-48bd-b14b-99ab14569e7f).html
https://doi.org/10.1109/INFOCOM.2019.8737580

A Blockchain based Witness Model for Trustworthy
Cloud Service Level Agreement Enforcement

Huan Zhou‡†∗, Xue Ouyang†∗, Zhijie Ren§, Jinshu Su†, Cees de Laat‡ and Zhiming Zhao‡
‡Informatics Institute, University of Amsterdam, Amsterdam, 1098 XH, the Netherlands

†National University of Defense Technology, Changsha, 410073, China
§Department of Intelligent Systems, Delft University of Technology, Delft, 2628 CD, the Netherlands

Email: h.zhou@uva.nl, ouyangxue08@nudt.edu.cn, z.ren@tudelft.nl, sjs@nudt.edu.cn, {delaat, z.zhao}@uva.nl

Abstract—Traditional cloud Service Level Agreement (SLA)
suffers from lacking a trustworthy platform for automatic
enforcement. The emerging blockchain technique brings in an
immutable solution for tracking transactions among business
partners. However, it is still very challenging to prove the credibil-
ity of possible violations in the SLA before recording them onto
the blockchain. To tackle this challenge, we propose a witness
model using game theory and the smart contract techniques.
The proposed model extends the existing service model with
a new role called “witness” for detecting and reporting service
violations. Witnesses gain revenue as an incentive for performing
these duties, and the payoff function is carefully designed in a way
that trustworthiness is guaranteed: in order to get the maximum
profit, the witness has to always tell the truth. This is analyzed
and proved through game theory using the Nash equilibrium
principle. In addition, an unbiased sortition algorithm is proposed
to ensure the randomness of the independent witnesses selection
from the decentralized witness pool, to avoid possible unfairness
or collusion. An auditing mechanism is also introduced in
the paper to detect potential irrational or malicious witnesses.
We have prototyped the system leveraging the smart contracts
of Ethereum blockchain. Experimental results demonstrate the
feasibility of the proposed model and indicate good performance
in accordance with the design expectations.

I. INTRODUCTION

Cloud computing is the most popular business model nowa-
days for sharing resources among multi-tenants. A cloud
customer can flexibly use computing, storage, and various
other resources from a remote provider as services through
the Internet. Such service model conveys great convenience
to users but also faces the challenge of “Cloud Performance
Unpredictability” [1], e.g., when migrating time-critical ap-
plications onto clouds [2]. The cloud SLA is an agreement
required between a customer and a provider on the quality of
certain services; in the case of quality violations, the customer
would get the corresponding compensations from the provider.

Traditionally, SLA is a business concept which defines the
contractual financial agreements between the roles who are
engaging in the business activity [3]. In the context of cloud
computing, it is an agreement between the cloud customer and
provider on the quality of the cloud service. For instance, the
IaaS (Infrastructure-as-a-Service) provider, Amazon Elastic
Compute Cloud (EC2), claims that the availability of its data
center is no less than 99%. If this number is not achieved, it

*The first two authors equally contributed to the paper.

will pay back 30% credits to its customer as compensation1.
However, this agreement is hard to be enforced in practice.
The major challenges that hinder the conceptual SLA to be
feasibly adopted in the real-life industry are:

• The manual verification: There lacks an automatic
mechanism to enforce SLA agreement, especially for the
compensation. EC21, e.g., requires customers to claim the
SLA violation through emails manually.

• The fairness between roles: The provider has more
rights in the current model, especially to verify the
violation and decide whether to compensate the customer.

• The proof of violation: It is hard for the customer to
prove and convince the provider that the violation has
really happened.

The blockchain [4] technology brings in new opportuni-
ties for tackling these challenges. The smart contracts in
Ethereum [5] provide a feasible way to automate the service
transactions and enforce the SLA via the blockchain. Hiroki
et al., [6] introduce a “Service Performance Monitor” role to
detect the violation and notify the user. However, the proposed
solution lacks an analysis of the credibility on the identified
violations and still faces challenges in achieving consensus
on an event that happens outside the blockchain. The bridge
between the events that on and outside the chain is called
“oracle” [7]. One of the solutions is to retrieve data from
oraclize2, a third trusted company performing as a trustful data
source. Moreover, these solutions are centralized, which suffer
from single-point of failure and are easy to be compromised.

In this paper, a novel “witness” role is introduced to improve
the existing blockchain based SLA solutions by detecting
violations with explicit credibility concerns in a decentralized
manner. The witness is designed as an anonymous participant
in the system, who desires to gain revenue through offering the
violation reporting service. The payoff function for different
actions of the witness in our agreement model is carefully
designed in a way that the witness has to always behave
honestly in order to gain the maximum profit for itself. To be
specific, the trust issue of the witness in our model is proved
by game theory by using the Nash equilibrium principle.

1https://aws.amazon.com/compute/sla/
2http://www.oraclize.it

1567

In addition, an unbiased random sortition algorithm is
developed in our witness model to select a certain number
(pre-defined through negotiation between the service provider
and the customer) of witnesses in order to form a commit-
tee. The committee members are randomly selected and the
randomness cannot be dominated by any participant. This is
very important to avoid situations when the majority of the
delegates are representing the same side: either the customer
or the provider, to ensure fairness. Moreover, this algorithm
is also capable of eliminating the opportunity of collusion
because the committee members are not pre-determined, and
there is no chance for them to know each other in advance.
Last but not least, a prototype system3 using smart contracts of
the Ethereum blockchain is implemented to automate the SLA
lifecycle and empower the fairness between roles, especially
for the customer. The experiment is conducted on Rinkeby4,
which is a world-wide blockchain test net for developers to
debug the developed smart contracts. The experimental study
demonstrates the feasibility of our witness model and the
system performance.

The rest of the paper is organized as follows. Section 2
discusses the related work on cloud SLA and blockchain;
Section 3 presents the witness model design with smart con-
tracts; Section 4 details key techniques including the unbiased
random sortition algorithm and the payoff function design, the
trustworthiness of which is proved by the Nash equilibrium
principle; Section 5 introduces the prototype implementation
and experiments; Section 6 summaries the paper with conclu-
sion and future work.

II. RELATED WORK

SLA is a well-discussed research topic, specifically in the
context of cloud computing. It establishes the quality of service
agreement between the service provider and the customer,
which ensures the customer’s benefit when the agreement is
violated. A typical SLA lifecycle consists of multiple enforce-
ment phases, including negotiation, establishment, monitoring,
violation reporting and termination [3]. Most of the research
work focus on three aspects: (1) syntax definition of the SLA
terms and parameters, the goal of which is to standardize the
representation so that SLA can be easily processed online by
computer systems; (2) resource allocation techniques to ensure
the SLA. The work in this aspect focuses on the algorithm
to optimize resource allocation, thereby avoiding SLA viola-
tion from happening. SLA in this kind of work is typically
considered as constraints; (3) systems or methods to address
issues in specific phases of the SLA lifecycle. According to
a systematic survey [3] on cloud SLA, among this kind of
works, 22% are focusing on negotiation and establishment
phase, 73% are targeting at monitoring and deployment phase,
3% are interested in SLA violation management while 1%
focus on reporting. For these phases, the goal of negotiation
is to maximize either the provider’s or the customer’s revenue

3https://github.com/zh9314/SmartContract4SLA
4https://www.rinkeby.io/

through adopting some negotiation strategy [8]. Monitoring
is mainly about what to monitor and how to automate the
process [9]. However, the most challenging phases, violation
management and reporting, are seldom explored. In industry,
Amazon CloudWatch service5 is an example that the provider
automates monitoring and notification. In this case, the cus-
tomer has no choice but to trust the provider. Muller [10]
develops a platform named SALMonADA to deal with the
SLA violation at runtime. It works as a third trusted party
to perform the monitoring and violation reporting. All these
work assume that the violation reporting is trustworthy, which
is, however, the most difficult part in reality.

Smart contract is proposed to digitally facilitate, verify and
enforce a contract through a computer protocol [11]. Some
explorations, e.g., [12], combine this concept with cloud SLA
negotiation, focusing on the semantic expression of smart
contract to automate the negotiation phase. However, most of
them lack a trustworthy platform to execute the smart contract.
This is actually important because the smart contract relies
on a strong assumption that no one can tamper its execution.
Town Crier [13] and TLS-N [14] ensure the trustworthy
execution and communication environment from the hardware
and transmission protocol level, respectively. However, they
are either centralized or require special infrastructure support.

Blockchain [4] is a promising technique to be used as the
execution platform: interactions on the chain are immutable,
therefore it can ensure the trustworthiness required by the
smart contract. Ethereum [5] first realizes to execute a general-
purpose program on its blockchain. Hiroki et al., [6] leverages
Ethereum and designs a set of web APIs to automate the SLA
lifecycle enforcement on the blockchain. A new role called
“Service Performance Monitor” is introduced in their system,
which is responsible for the violation reporting. However, it
is not discussed in the paper whether the violation reports
sent to the blockchain can be trusted. Actually, this is still a
gap for blockchain based systems: how to credibly record a
random event onto the chain when the event happens outside
the blockchain. Currently, one of the dominant solutions is
using “oracle” [7] to fill this gap, an agent performing as
a “data-carrier” for the blockchain. Oraclize2 is a trusted
company acting as the third party, offering the service as
an oracle. But it exists single-point of failure and deviates
from the decentralization idea of blockchain. To cope with
this, ChainLink [15] works on distributed oracles. Distributed
oracles act in a way that, only when an agreement is achieved
among the oracles, the result data of the event can be carried
onto the chain or can trigger a transaction. This idea still faces
some downsides, such as no incentive for individuals to do the
duty, requiring individuals to be independent and trustworthy,
the consensus issue among different oracles, etc.

III. THE WITNESS MODEL USING SMART CONTRACT

The roles involved in the proposed model are introduced in
this section, specifically, the role of the witness. The overall

5https://aws.amazon.com/cloudwatch/

1568

system architecture for SLA enforcement using the smart
contract on blockchain is illustrated afterwards, followed by a
detailed description of the responsibility of the witness: service
violation detection and reporting.

A. The Witness Role and the Notations

There are mainly two roles in the traditional cloud SLA
lifecycle: the cloud provider, P , which offers cloud service;
the cloud customer, C, which consumes the cloud service and
pays the service fee. We formulate the scenario as follows
using a basic example to demonstrate our work.

In this paper, we assume an IaaS provider p providing VMs
(Virtual Machine) on demand according to the request of its
customer c with a public address IPpub. During the service
time, Tservice, only c can SSH and login to the assigned VM
through the corresponding address IPpub. In this case, SLA
can make a commitment that, during Tservice, the provisioned
VM is always accessible. If this is true, c must pay the service
fee, Fservice, to p after the service ends. However, in the case
of a SLA violation (the commitment is not realized), c must
acquire a compensation fee, Fcompensation. In other words, c
only needs to pay Fservice − Fcompensation to p in the end,
where we assume that Fservice > Fcompensation. In addition,
the case that the inaccessibility is caused by the customer’s
own network problem is excluded from being classified as a
SLA violation event.

In order to convince both roles whether the violation indeed
happens, we bring in another new role into the traditional SLA
lifecycle, named as witness W , and leverage the blockchain
to play as the trusted party to afford a platform for these roles
and enforce these monetary transmissions. The witnesses are
also normal participants in the blockchain and volunteers to
take part in the SLA system to gain their own revenue through
offering monitoring service. In order to solve the trust issue,
a witness committee is selected to participate a specific SLA
lifecycle, consisting of N witnesses, {w1, w2, ..., wN}. They
together report the violation event, and obtain witness fee
Fwitness as rewards from both the provider and the customer.
The wallet address of a specific role on the blockchain is
denoted as .address. For instance, wk.address is the wallet
address of witness wk.

In this paper, a basic assumption is made on the witness
role, that they are always selfish and aiming at maximizing its
own revenue.

B. Overall System Architecture

Figure 1 illustrates the overall architecture we design for
cloud SLA enforcement. The proposed system consists of
two types of smart contracts based on blockchain: the smart
contract of a witness pool, which is the fundamental smart
contract of the system; the smart contract of a specific SLA,
which is for the SLA enforcement. For the witness-pool smart
contract, there are mainly three responsibilities, including
witness management, specific SLA contract generation and
witness committee sortition. Any user of the blockchain, who
has a wallet address, can register its wallet address in the

witness pool to be a member of witnesses. They can keep
themselves online and wait to be selected for some specific
SLA contract. The incentive for the witness to participant
in this system is to obtain revenue. And the more witness
participant in the system, the more reliable and trustful the
system would be.

The entire SLA lifecycle under our system then becomes as
follows. Certain provider p first leverages the smart contract
of the witness pool to generate a SLA smart contract for
itself. Prior to setting up SLA, the customer c should negotiate
with the provider p about the detailed SLA terms, including
Tservice, Fservice, Fcompensation, and etc. Thereinto, one of
the most important terms is to determine N , the number of
witnesses that would be hired for enforcing this SLA. The
more witnesses involved in a SLA, the more trustworthy
the violation detection results would be. On the other hand,
however, the more witness fee would be paid and both the
customer and the provider need to afford this fee equally.
According to the result of negotiation, the provider is able to
customize these parameters and generate a new SLA smart
contract. Afterwards, a set of N witness members can be
selected to form a witness committee through the sortition
algorithm detailed in Section IV-A, which is also implemented
by the witness-pool smart contract on the blockchain. The
algorithm is designed to be unbiased and random, guarantees
that witnesses selected in the committee are independent and
would not belong to a specific side, either c or p, achieving
mutual trust from both roles. Meanwhile, the provider pro-
visions its cloud service for the customer to use and is able
to publish its service detail in the SLA smart contract. The
witnesses committee is therefore notified to start monitoring
the service according to these details. Using previous IaaS case
as an example, the provider provisions a VM on demand and
inform all the committee members with the public address

Generate SLA
Smart Contract

Unbiased Random
Sortition

Publish Service Detail and
Setup SLA

Report
violation Enforce the

corresponding fees

…

Cloud Customer

Cloud Provider

Witnesses Pool

Witness Committee

SLA
Smart Contract Cloud Service

3

Monitor

7

Compensation
Fee

Service Fee

Witness
Fee 2

Test and adopt

Witness-Pool
Smart Contract

5a

4b

6a

1 Off-chain
negotiation

Provider
provision

4a

Accept
SLA

5b

6b

Off-chain
interaction

On-chain
interaction

(possible happening)

Fig. 1: System Overview for Cloud SLA Enforcement

IPpub and the customer through the service detail field of
the SLA smart contract. Not only the customer can use the
VM, each witness is also able to “ping” the address IPpub
constantly. If the violation happens during the service time,
i.e. the address IPpub is not accessible, the witness can report
this event immediately.

Since the first violation report, the smart contract would start
counting a time window, Treport. Within this time window, the
smart contract accept reports from other witnesses. When the
time window Treport is over, the violation is automatically
confirmed, if there are no less than M out of N reports from
the witness committee received by the smart contract. M is
also negotiated by p and c. It is then defined in the SLA
smart contract. Of course, M must be bigger than the half of
N . Furthermore, the bigger the M is, the more trustworthy
the violation confirmation is. For example, if there are N = 3
witnesses in the committee, the service violation can only be
confirmed when at least M = 2 of them report the event.
Here, it is worth to mention that the smart contract is designed
to receive the report only from the committee member. And
the second report from the same witness is refused within the
same report time window. In some sense, these N independent
witnesses constitute a n-player game, in which each witness
would like to maximize its own revenue. We specially design
the payoff function, shown in Section IV-B, and leverage the
Nash equilibrium principle of game theory to prove that the
witness has to be a honest player in this game. That is they
have to report the violation according to the real event.

Finally, the SLA ends at two cases. One case is the service
time Tservice is over and there is no violation. The other case is
that the SLA is violated. According to these different cases, the
three roles are able to withdraw corresponding fees from the
SLA smart contract. This is explained in detail in Section IV-B.

IV. KEY TECHNIQUES

In this section, we describe key techniques adopted in our
witness model in detail. This model enables the automatic
detection on the SLA violation, the results of which can
convince both sides: the provider and customer. First, the
unbiased random sortition algorithm is leveraged to guarantee
that most of witnesses selected into the committee are random
and independent. It is also important to make both sides
achieve consensus that most of the selected witnesses would
not delegate the opponent’s benefit. Based on this, we give the
payoff function for the witness model. And also through the
Nash equilibrium principle, we prove that the “player” from
the witness committee has to behave honestly and tells the
truth to maximize its revenue. Furthermore, we analyze some
possible fraudulent behaviors from a malicious witness and
demonstrate it can be audited through its action history.

A. Unbiased Random Sortition

It is crucial in the witness model that the witness sortition
for a specific SLA contract is unbiased, i.e., neither the
provider nor the customer can have advantages in the com-
mittee selection. Since Ethereum has already been introduced

as a trusted party in our model, we propose a straightforward
random sortition algorithm for committee selection shown as
Algorithm 1, which is also implemented in the witness-pool
smart contract. It is different from our previous algorithm,
whose randomness comes from participants [16].

Firstly, there is a basic smart contract to manage the witness
pool. It affords a set of interfaces for any blockchain user
to register into the pool. Moreover, the registered witness is
able to turn its state to “Online” or “Offline”, in order to
indicate when it can be selected. The detailed witness state
management is shown in Section V-A. The addresses in the
witness pool are managed as a list in the registration order.

There are two interfaces designed in the smart contract to
select N witnesses from the pool. The “request” interface
is firstly invoked by a specific SLA smart contract at block
Bb. It means this transaction is involved in the bth index of
block. The hash value of this block is Bhashb . After K blocks
generated by the blockchain, another interface “sortition” can
be invoked to select N online witnesses as candidates. The

Algorithm 1 Unbiased Random Sortition

Input:
Registered witness set, RW , a list of addresses;
The the size of the list, len(RW);
The number of online witnesses, oc;
Required number, N , of members in a witness committee;
The hash value, Bhashb , of the bth block Bb at request;
The block index, Id, of current block;
Following sequential, Ks, blocks;
Confirmation, Kc, blocks;
The address of the provider, p.address;
The address of the customer, c.address

Output:
Selected witness set, SW , to form a committee.

1: assert(Id > b+Ks +Kc) && assert(oc >= 10 ∗N)
2: seed← 0
3: for all i = 0 ; i < Ks ; i+ + do
4: seed+ = Bhashb+1+i

5: end for
6: SW ← ∅
7: j ← 0
8: while j < N do
9: index← seed%len(RW)

10: if RW [index].state == Online
&& RW [index].reputation > 0
&& RW [index].address! = c.address
&& RW [index].address! = p.address then

11: RW [index].state← Candidate
12: oc−−
13: Add RW [index]⇒ SW
14: j + +
15: end if
16: seed← hash(seed)
17: end while
18: return SW

1570

sortition algorithm is shown in Algorithm 1.
It takes the hash values of the former Ks out of K blocks

mentioned above as a seed. In addition, we need to wait other
Kc blocks to confirm the adopted former ones, where Ks +
Kc = K.

• Here, Ks should be chosen such that the probability of
some parties sequentially generating Ks blocks is very
small.

• Kc needs to be chosen such that the candidate blocks
before are finally involved in the main chain with a
dominant probability.

• These two values depend on the blockchain’s own prop-
erties. Considering the main net of Ethereum, [17] shows
that the top four miners control 61% of the mining power.
Thus, we recommend Ks = 10 so that with more than
99% probability that the seed is not manipulatable and
predictable even if the top four miners collude. On the
other hand, it is commonly believed that Kc should be
12.

Only the “Online” witness with a positive reputation can
be selected by the seed from the list of witness address pool.
Anyhow, a new seed is generated based on the hash value
of the previous seed. This process is repeated until required
N witnesses are selected. In the beginning of Algorithm 1, it
is firstly checked that there are at least 10 times of available
witnesses than required N , which ensures the output of the
algorithm as well as randomness.

Considering the difficulty itself of generating hash value for
a block and combining the sequential K blocks as seed, we
can prove that the sortition algorithm is random and unbiased,
i.e., neither the provider nor the customer can manipulate the
sortition result to take advantages in the committee.

B. Payoff Function and Nash Equilibrium

Game theory targets to mathematically predict and capture
behavior in a strategic situation, where each player’s revenue
depends on the strategies of itself and also others. There is
currently a wide range of applications, including economics,
evolutionary biology, computer science, political science and
philosophy [18].

The strategic or matrix form, of a n-player game, is the
most common representation of strategic interactions in game
theory. The definition consists of a set of players, a set of
strategy profiles and a design of payoff functions. Based on the
basic type of strategic form game with complete information
in game theory, we define our witness game as follow.

Definition 1. Witness Game: It is a n-player game repre-
sented as a triple (SW , Σ, Π), where

• SW = {w1, w2, ..., wn} is a set of n players. Each
player is a selected witness and they form the witness
committee.

• Σ = Σ1 × Σ2 × ... × Σn is a set of strategy profiles,
where Σk is a set of actions for the witness wk, i.e., wk
can choose any action σk ∈ Σk. A strategy profile is

therefore a vector, σ∗ = (σ∗
1 , σ

∗
2 , ..., σ

∗
n), where σ∗

k is a
specific action of Σk, (k = 1, 2, .., n).

• Π = {π1, π2, ..., πn} is a set of payoff functions, where
πk : Σ → R is the payoff function determining the
revenue for witness wk under a certain strategy, (k =
1, 2, .., n). R is the corresponding revenue.

In addition, σ−k = {σ1, σ2, ..., σk−1, σk+1, ..., σn} is de-
fined as any strategy profile σ without player k’s action. The
full strategy can then be written as σ = {σk, σ−k}. Actually,
there are only two actions in our witness game, which is
Σk = {σ(r)

k , σ
(s)
k }. σ

(r)
k means Report the service violation to

the smart contract. σ(s)
k means do not report and keep Silence

to the smart contract. In this N -witness game, we define the
set of witnesses choosing the action of Report as, Wreport,
where ∀wk ∈ Wreport, the σ∗

k = σ
(r)
k . Respectively, Wsilence

is the set of witnesses not reporting, where ∀wk ∈ Wsilence,
the σ∗

k = σ
(s)
k . These actions determine the final state of

SLA: SLAstatus = V iolated, there is a service violation;
SLAstatus = Completed, service is completed without viola-
tion. We then define the violation confirmation as Definition 2.

Definition 2. Violation Confirmation: Based on the result of
a strategy profile in a N -witness game, the service violation
is confirmed, only when ‖Wreport‖ ≥M , where 1 < N/2 <
M < N,N,M ∈ N. Otherwise, it is treated as there is no
violation happened.

It is worth mentioning that we define N > 2 and M < N
here, in order to achieve the violation confirmation reliably
and fairly. According to our witness model, the witness is
designed to report the violation along with endorsement fee
to the SLA smart contract. Therefore, if the violation is not
confirmed, the witness cannot retrieve back its endorsement
fee as a penalty. The detailed payoff function design is shown
as Definition 3 according to above definitions and analysis.
Thereinto, the value of each function is only leveraged to
quantitatively represent the relative relationship among the
fees. Hence, 1 represents one share of profit. 10 is ten times
shares of 1. -1 means losing one share of profit.

Definition 3. Payoff Functions: The values of payoff functions
are designed according to the final SLA status.

• When SLAstatus = V iolated:
∀wk ∈Wreport, πk(σ

(r)
k , σ−k) = 10;

∀wk ∈Wsilence, πk(σ
(s)
k , σ−k) = 0.

• When SLAstatus = Completed:
∀wk ∈Wreport, πk(σ

(r)
k , σ−k) = −1;

∀wk ∈Wsilence, πk(σ
(s)
k , σ−k) = 1

In a n-player game, if a player knows the others’ actions,
it would choose a strategy to maximize its payoff. This is
referred as its best response. Therefore, the best response of
the witness wk can be defined as follows.

Definition 4. Witness wk’s best response: In order to maxi-
mize its revenue, wk’s best response to a strategy profile σ∗

−k

1571

is a strategy σ∗
k ∈ Σk, such that πk(σ∗

k, σ
∗
−k) ≥ πk(σk, σ

∗
−k)

for ∀σk ∈ Σk(k = 1, 2, ..., n).

A Nash equilibrium point [19] is therefore able to be defined
as a stable state, where no player has an incentive to deviate
from current strategy. It is actually a strategy under which
every player adopts its own best response.

Definition 5. Nash equilibrium point: It is a specific strategy
profile σ∗ = (σ∗

k, σ
∗
−k), if for every witness wk, σ∗

k is a
best response to σ∗

−k, i.e., ∀wk ∈ SW and ∀σk ∈ Σk(k =
1, 2, ..., n), πk(σ∗

k, σ
∗
−k) ≥ πk(σk, σ

∗
−k).

Based on the Nash equilibrium point definition and payoff
functions, we can derive the theorem below.

Theorem 1. In a witness game, the only two Nash equilibrium
points are following strategy profiles:

• σ∗ = (σ∗
1 , σ

∗
2 , ..., σ

∗
n), of which ∀wk ∈ SW , σ∗

k = σ
(r)
k ;

• σ∗ = (σ∗
1 , σ

∗
2 , ..., σ

∗
n), of which ∀wk ∈ SW , σ∗

k = σ
(s)
k .

Proof. According to Definition 1 and 2, in a N -witness game,
N ≥ 3, N/2 < M ≤ N − 1 and M ≥ 2, where N,M ∈ N.

For the strategy profile of ∀wk ∈ SW , σ∗
k = σ

(r)
k , which

means ‖Wreport‖ = N > M . The SLA violation status
is therefore violated, SLAstatus = V . According to payoff
functions design in Definition 3, for ∀wk, its revenue is
πk(σ

(r)
k , σ∗

−k) = 10. If any wk chooses the other action,
Silence, instead of Report. The final status of SLA, however,
would not be modified, due to ‖Wreport‖ = N−1 ≥M . Then,
wk’s revenue is πk(σ

(s)
k , σ∗

−k) = 0 < 10 = πk(σ
(r)
k , σ∗

−k).
According to Definition 5, this strategy profile is a Nash
equilibrium point.

Analogously, for the strategy profile of ∀wk ∈ SW ,
σ∗
k = σ

(s)
k , which means ‖Wreport‖ = 0 < 2 ≤ M . The

SLA violation status is therefore not violated, SLAstatus = C.
According to payoff functions design in Definition 3, for ∀wk,
its revenue is πk(σ

(s)
k , σ∗

−k) = 1. If any wk chooses the other
action, Report, instead of Silence. The final status of SLA,
however, would not be modified, due to ‖Wreport‖ = 1 <

2 ≤ M . Then, wk’s revenue is πk(σ
(r)
k , σ∗

−k) = −1 < 1 =

πk(σ
(s)
k , σ∗

−k). According to Definition 5, this strategy profile
is also a Nash equilibrium point.

For all the other strategy profiles, they are all a mix of
actions, Report and Silence. It means Wreport 6= ∅ and
Wsilence 6= ∅. When SLAstatus = V , i.e., ‖Wreport‖ ≥ M ,
there always ∃wk ∈ Wsilence, it can change the action to
Report. But the SLA status would not change, because of
‖Wreport‖ + 1 > M . Hence, wk increases its revenue, from
πk(σ

(s)
k , σ∗

−k) = 0 to πk(σ
(r)
k , σ∗

−k) = 10. On the other hand,
when SLAstatus = C, i.e., ‖Wreport‖ < M , there always
∃wk ∈ Wreport, it can change the action to Silence. But the
SLA status would not change, because of ‖Wreport‖−1 < M .
Hence, wk increases its revenue, from πk(σ

(r)
k , σ∗

−k) = −1 to
πk(σ

(s)
k , σ∗

−k) = 1. These counterexamples demonstrate all
these strategy profiles are not Nash equilibrium points.

Therefore, in a witness game, there are two and only two
Nash equilibrium points. They are σ∗ = (σ

(r)
1 , σ

(r)
2 , ..., σ

(r)
n)

and σ∗ = (σ
(s)
1 , σ

(s)
2 , ..., σ

(s)
n).

We take the basic three-witness game as an example,
where N = 3. Therefore, M can only equal to 2 based on
Definition 2. Table I shows payoff functions according to our
previous definitions. The value element in Table I is the vector
of corresponding payoff function values. It is represented as
(π1, π2, π3). According to Theorem 1, Nash equilibrium points
in this game are (10, 10, 10) and (1, 1, 1) respectively.

Based on above analysis, for a rational and selfish witness,
who wants to maximize its revenue through offering services,
would have to behave as follows in this game. If there is a
violation happening, the witness knows that most of other
witnesses are more likely to report this event to gain more
revenue. Hence, the higher revenue pushes the witness to
report this event. On the contrary, if there is no violation, the
witness knows that most of other witnesses are more likely
to keep silence. Although the witness wants to achieve the
highest revenue, it has to take a great risk to pay a penalty for
its fraudulent behavior. From the global view, when there is no
violation, all the witnesses prefer to keep silence in order to
stay at the Nash equilibrium point, (σ

(s)
1 , σ

(s)
2 , ..., σ

(s)
n). Then

the violation acts as a signal to push them achieving another
Nash equilibrium point, (σ

(r)
1 , σ

(r)
2 , ..., σ

(r)
n), with much higher

revenue. At the same time, they tell the truth about the service
violation.

Therefore, it is not the witness who wants to tell the truth.
Instead, it has to be honest, in order to maximize its revenue.

C. Witness Audit

The sortition algorithm, Algorithm 1, makes sure that the
selected witnesses are independent to a great extent. The
payoff function design stimulates the witness to tell the truth.
However, an auditing mechanism is still needed to ensure that
the malicious or irrational witness can be detected and kicked
out from the witness pool. As all the interactions with the
smart contract, i.e., transactions, are public and permanently
stored on the blockchain, it is possible to audit a witness
through its behavior history, instead of estimating reputation
from others’ feedback [20]. We analyze that there are two
types of malicious witnesses: lazy witness and sacrificed
witness.

Lazy witness refers to the one, who prefers not to report
the violation. Because there is a case that the higher incentive
for reporting violation is not enough to motivate the lazy one.
They can choose the strategy not to really monitor the service.

TABLE I: Payoff Functions for a three-witness Game

w1

w3

σ
(r)
3 : Report σ

(s)
3 : Silence

w2 w2

σ
(r)
2 : Report σ

(s)
2 : Silence σ

(r)
2 : Report σ

(s)
2 : Silence

σ
(r)
1 : Report (10, 10, 10) (10, 0, 10) (10, 10, 0) (-1, 1, 1)

σ
(s)
1 : Silence (0, 10, 10) (1, 1, -1) (1, -1, 1) (1, 1, 1)

1572

Then they always keep silence and never report the violation.
With this strategy, they would not pay the penalty, if the final
status of the SLA is violated. And considering violation is
not a normal event, the lazy witness is still able to gain some
revenue via multiple “games”.

Sacrificed witness refers to the one, who always reports
at a specific time stamp. For instance, wk always reports the
violation within one minute after the SLA starts. Though the
witness may pay a lot of penalty for its malicious behavior in
the beginning, it can show other witnesses its behavior pattern
from its history later on. In some sense, it is able to imply
others that it would report at some time stamp. Then, it can
most likely gain the maximum revenue, as long as others have
analyzed its behavior pattern.

To audit these fraudulent witnesses, we combine the repu-
tation value of the witness. For example, when the violation is
confirmed, the reputation of the witness, who does not report,
would decrease by 1. It is the same with the one, who reports
the violation but not finally confirmed. When the reputation
value of the witness decreases to zero, that witness would also
be blocked automatically by the sortition algorithm. The lazy
witness and sacrificed witness, therefore, are blocked soon. It
is also worth mentioning that these auditing mechanisms are
also implemented in the smart contract, in order to avoid a
third party to dominate the judgement.

V. PROTOTYPE IMPLEMENTATION AND EXPERIMENTS

According to the witness model and the payoff function
design, we implement a prototype system based on the smart
contracts of Ethereum. We leverage the programming lan-
guage, Solidity6, provided by Ethereum, to program smart
contracts. Overall, there are three roles and two types of smart
contracts in our SLA enforcement system. Roles include the
traditional P rovider and Customer, as well as the introduced
W itness. The smart contracts include the witness-pool smart
contract and the SLA smart contract. In this section, we
firstly illustrate the state transition in that two types of smart
contracts, respectively. Via this, we describe the detailed
functionalities of the interfaces in the smart contracts and show
how they are leveraged to transit the states. Afterwards, we
show some experimental studies on the transaction cost of
these interfaces on the Ethereum test net, “Rinkeby”.

Interfaces designed in both two smart contracts are named as
the text on the arrow in Figure 2 and 3. The format of the text
is ‘Rrole → [Ctype::]Ninterface’. It means that only the role
Rrole can invoke the interface, Ninterface, which is defined in
the smart contract of Ctype. This is achieved by the checking
mechanism, which is the property of the programming lan-
guage provided by Ethereum. Therefore, the smart contract
restricts that only the specified role is able to interact with the
smart contract in certain state. The representation of the Rrole
are W for W itness, P for P rovider, C for Customer, and SC
for a generated SLA Smart Contract. To express Ctype, WP
is for the witness-pool type of smart contract and SLA is for
the generated smart contract to enforce a specific SLA.

6http://solidity.readthedocs.io

A. Witness-pool Smart Contract Implementation

In this part, we focus on implementation details about the
witness-pool smart contract, especially the witness manage-
ment. Figure 2 illustrates states of a witness role defined in
the smart contract. It includes four states: “Online”, “Offline”,
“Candidate” and “Busy”. The state transition of witness is as
follows.

After registration in the witness pool, only the witness itself
can turn its state into “Online”. It is then probably selected by
certain SLA smart contract. Hence, it needs to monitor its own
state on the blockchain continuously. This is feasible, as the
read-only operation does not need any transaction fee. Once
it is selected by certain smart contract through performing
sortition algorithm 1, its state turns into “Candidate”. Within
a confirmation time window, e.g., 2 minutes, the witness can-
didate can look through the SLA smart contract, which makes
the selection, and decides whether to confirm or reject this
selection. If it rejects, the provider of the SLA smart contract
has to perform another sortition. Otherwise, its state turns into
“Busy”, after it invokes the interface, “witnessConfirm”, of
the SLA smart contract. By the end of each SLA lifecycle
iteration, the witness has the right to actively leave the SLA
contract by leveraging the interface “witnessRelease”. On the
other hand, the witness can also be passively released from
the SLA contract. Because the provider invokes the interface
“resetSLA” to dismiss the witness committee. Finally, the
witness can “turnOff” to avoid being selected when it is not
available to the Internet.

In order to prevent some malicious intentions, we bring in a
reputation value for each witness to measure their behaviors.
Firstly, each witness has an initial reputation value of Rinit
at registration, which could be a predetermined constant or a
value depending on its stake or some deposit. However, for
instance, some witness may not turn its state into “Offline”,
when it is not actually available or does not frequently check
its state. Then, when the witness is chosen by some SLA smart
contract, it would not be able to confirm the selection and
join within the confirmation time window. In this case, the
witness would not be chosen again, since its state becomes
“Candidate”. To reverse back to the state of “Online”, in which

Candidate Offline Busy

Online

WàWP::register

WàWP::turnOn

WàWP::turnOff

Confirmation
Time Window?

WàWP::reverse
(reputationê)

out in

WàWP::reject

WàSLA:witnessRelease
SCàWP::release

PàSLA::resetSLA

Fig. 2: State Transition Diagram of a Witness in the Witness-
pool Smart Contract

1573

it can be selected, the witness has to leverage the interface,
“reverse”. However, its reputation value would decrease by 10
because of its above behavior. If this value becomes zero or
less, it would be permanently blocked by the sortition process
according to Algorithm 1.

B. SLA Smart Contract Implementation

Figure 3 shows the SLA state transition to implement a
specific SLA smart contract enforcement. This type of smart
contract is generated by the witness-pool smart contract. All
the interfaces annotated in this figure belongs to this type
of SLA smart contract. Hence, we omit the definition scope
‘Ctype::’. There are five states: “Fresh”, “Init”, “Active”,
“Violated” and “Completed”, shown as circles in Figure 3.
The dash arrows demonstrate the state transition path when
violation happens. The three squares in the figure represent
the corresponding roles in this smart contract. In the end of
SLA, they can withdraw the revenue respectively.

It is also worth mentioning that the smart contract on
blockchain cannot run itself. The state transition must be
triggered by some interfaces and it takes some cost to execute.
Therefore, we design the interface for the role, who is the
greatest beneficiary in some cases, to modify the state. Because
they have the motivation to perform the state transition. For ex-
ample, when the service duration ends normally, the provider
is the greatest beneficiary to gain the entire service fee. It
must actively leverage the interface, “providerEndNSLAand-
Withdraw”, to end the normal SLA and withdraw its own
revenue. Meanwhile, it divides the prepaid money as the
payoff function design in Section IV-B to different witnesses.
Afterwards, other roles are able to withdraw their parts of
revenue. Analogously, when there is a violation, the customer
is the most motivated one to gain the compensation fee.
It can leverage, “customerEndVSLAandWithdraw”, to end
the violated SLA and transit the state from “Violated” to
“Completed”.

C. Experimental Study

In order to test all the functionalities of our model and
system design, we deploy the implemented smart contracts

in

Active

Fresh

Init

Completed

Customer

Provider

Witness

PàsetupSLA

CàacceptSLA

WàreportViolation

PàproviderEndNSLAandWithdraw

CàcustomerEndVSLAandWithdraw

Violated

PàresetSLA

WàwitnessWithdraw

PàrestartSLA

PàsetCustomer PàpublishService …
PàrequestSortition
PàsortitionFromWP
WàwitnessConfirm
WàwitnessRelease

Service
Duration End?

out

Accept Time
Window?

in

PàcancleSLA out

CàresetWitness

Confirmed?

yes

no

Fig. 3: State Transition Diagram of SLA Lifecycle for a
Specific SLA Smart Contract

on the test net of Ethereum blockchain, “Rinkeby”. It is a
world-wide blockchain test net for developers to debug the
smart contract. The ‘Ether’, which is the cryptocurrency of
Ethereum, does not worth real value on the test net and can
be applied for debugging. Hence, we generate several accounts
on “Rinkeby” to simulate different roles, i.e., the provider,
customer and witnesses. We leverage the retrieved ‘Ether’ on
each simulated account to execute the interfaces and prepay
different types of fees according to the model. To conduct
the experiment, we first deploy the basic witness-pool smart
contract, and make all the accounts register to the witness
pool. The provider then generates a SLA smart contract to
start the SLA lifecycle with the customer. Afterwards, we test
all possible scenarios to exploit and validate the functionality
of different interfaces. The results demonstrate our system
implementation satisfies our model and payoff function design.

The trust part of the system is proved by game theory and
ensured by the unbiased sortition algorithm, whose credibility
is endorsed by the blockchain technique. Therefore, we mainly
analyze some performance information from our experimental
study. Thereinto, the performance refers to the complexity
of each interface in the smart contract. It determines the
transaction fee needed to pay the miner in Ethereum. Because
the miner needs to execute the program defined in the interface
for validation and consumes the electricity power. The more
complex of the interface is, the more transaction fee required
when it is invoked. This is measured as ‘Gas’ defined in
Ethereum, which is a unit to refer how much work taken by the
miner when executing the transaction. The transaction fee is
the product of gas consumption and the gas price for each unit.
Hence, the gas consumption is similar no matter on test net
or main net. We therefore record all the gas consumption for
each interface from the transaction history of the experiment.

Figure 4 illustrates results of the experimental study. It can
be derived that, compared with the customer and the witness,
the provider tends to require more gas in the entire SLA
lifecycle. The interfaces of customer and witness consume less.
This fits our model design and reality. Because in most cases,
the provider earns the most revenue through offering service.
It has the incentive to proceed the lifecycle. The light weight
gas consumption for witness role is also able to convince
blockchain users to take part in the system to work as a
witness. Moreover, these gas consumption values are achieved
through experiments based on current implementation. There
is still possible space to further optimize the interface imple-
mentation to lower the gas consumption.

VI. CONCLUSION

In this paper, a witness model is proposed for cloud SLA
enforcement and the payoff function is specially designed for
each witness. We leverage the game theory to analysis that
the witness has to offer honest monitoring service in order
to maximize its own revenue. Finally, a prototype system
is fully implemented using smart contracts of Ethereum to
realize the witness model. Not only the SLA enforcement
lifecycle but also the witness management of a witness pool

regis
ter turnO

n
turnO

ff rejec
t
rever

se
setCu

stom
er

setSe
rvice

Dura
tion

publi
shSer

vice

reque
stSor

tition

sortit
ionFr

omW
P

setup
SLA
cancl

eSLA

provi
derEn

dNSL
Aand

Withdra
w

provi
derW

ithdra
w

restar
tSLAresetS

LA
accep

tSLA
resetW

itness

custo
merE

ndVS
LAan

dWithdra
w

custo
merW

ithdra
w

witne
ssCo

nfirm

repor
tViol

ation

witne
ssWithdra

w

witne
ssRel

ease
0

20000

40000

60000

80000

100000

120000

140000
G
as

 C
on

su
m

pt
io

n
Witness-pool Smart Contract SLA Smart Contract

113596

48390

17958

33247
38784

44074

27266
34587

65991

125097

55275

26202

127003

21028

73319 72144 71536

27437

95511

20941

78855

64376

21342

33499

Provider Interface
Customer Interface
Witness Interface

Fig. 4: The Gas Consumption of Each Interface in Smart Contracts

are implemented with the smart contract. The experimental
study demonstrates the feasibility of our model and shows
the system performance. Via this way, the trust problem is
transferred into economic issues. It is not the witness itself
would like to be honest, but the economic principles force
them to tell the truth. To the best of our knowledge, this is also
the first work that applies economic principles to achieving
trustworthy consensus among “oracles”, who carry the event
data onto the blockchain.

For the future work, there are mainly two directions: on-
chain and off-chain. For the on-chain part of work, we are
going to further optimize the interface implementation to
reduce the gas consumption and enrich the functionalities of
our smart contracts. In addition, some more scenarios should
be considered to apply our model. For the off-chain part of
work, user-friendly tools are going to be developed for each
role in the system to monitor the state on the chain and perform
their corresponding interactions. On the other hand, it can also
be combined with our cloud application DevOps framework,
CloudsStorm7 [21], to construct the witness ecosystem. The
vision is to insure the cloud performance and reduce the risks
for applications through automated SLA.

ACKNOWLEDGMENT

This research is funded by the EU Horizon 2020 research
and innovation program under grant agreements 825134 (AR-
TICONF project), 654182 (ENVRIPLUS project) and 824068
(ENVRI-FAIR project).

REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica et al., “A view of cloud
computing,” Communications of the ACM, vol. 53, no. 4, pp. 50–58,
2010.

[2] Z. Zhao, A. Taal, A. Jones, I. Taylor, V. Stankovski, I. G. Vega, F. J.
Hidalgo, G. Suciu, A. Ulisses, P. Ferreira et al., “A software workbench
for interactive, time critical and highly self-adaptive cloud applications
(switch),” in Cluster, Cloud and Grid Computing (CCGrid), 2015 15th
IEEE/ACM International Symposium on. IEEE, 2015, pp. 1181–1184.

[3] F. Faniyi and R. Bahsoon, “A systematic review of service level
management in the cloud,” ACM Computing Surveys (CSUR), vol. 48,
no. 3, p. 43, 2016.

7https://cloudsstorm.github.io/

[4] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[5] V. Buterin et al., “A next-generation smart contract and decentralized

application platform,” white paper, 2014.
[6] H. Nakashima and M. Aoyama, “An automation method of sla contract

of web apis and its platform based on blockchain concept,” in Cognitive
Computing (ICCC), 2017 IEEE International Conference on. IEEE,
2017, pp. 32–39.

[7] (2014) Ethereum and Oracles. [Online]. Available: https://blog.
ethereum.org/2014/07/22/ethereum-and-oracles/

[8] A. F. M. Hani, I. V. Paputungan, and M. F. Hassan, “Renegotiation in
service level agreement management for a cloud-based system,” ACM
Computing Surveys (CSUR), vol. 47, no. 3, p. 51, 2015.

[9] N. Ghosh and S. K. Ghosh, “An approach to identify and monitor sla
parameters for storage-as-a-service cloud delivery model,” in Globecom
Workshops (GC Wkshps), 2012 IEEE. IEEE, 2012, pp. 724–729.

[10] C. Muller, M. Oriol, X. Franch, J. Marco, M. Resinas, A. Ruiz-Cortes,
and M. Rodriguez, “Comprehensive explanation of sla violations at
runtime,” IEEE Transactions on Services Computing, vol. 7, no. 2, pp.
168–183, 2014.

[11] C. D. Clack, V. A. Bakshi, and L. Braine, “Smart contract templates:
foundations, design landscape and research directions,” arXiv preprint
arXiv:1608.00771, 2016.

[12] V. Scoca, R. B. Uriarte, and R. De Nicola, “Smart contract negotiation
in cloud computing,” in Cloud Computing (CLOUD), 2017 IEEE 10th
International Conference on. IEEE, 2017, pp. 592–599.

[13] F. Zhang, E. Cecchetti, K. Croman, A. Juels, and E. Shi, “Town crier: An
authenticated data feed for smart contracts,” in Proceedings of the 2016
aCM sIGSAC conference on computer and communications security.
ACM, 2016, pp. 270–282.

[14] H. Ritzdorf, K. Wüst, A. Gervais, G. Felley, and S. Čapkun, “Tls-
n: Non-repudiation over tls enabling ubiquitous content signing for
disintermediation,” IACR ePrint report, vol. 578, 2017.

[15] S. Ellis, A. Juels, and S. Nazarov, “Chainlink: A decentralized oracle
network,” white paper, 2017.

[16] H. Zhou, C. de Laat, and Z. Zhao, “Trustworthy cloud service level
agreement enforcement with blockchain based smart contract,” in 2018
IEEE International Conference on Cloud Computing Technology and
Science (CloudCom). IEEE, 2018, pp. 255–260.

[17] A. E. Gencer, S. Basu, I. Eyal, R. van Renesse, and E. G. Sirer,
“Decentralization in bitcoin and ethereum networks,” arXiv preprint
arXiv:1801.03998, 2018.

[18] K. Binmore, Game theory: a very short introduction. Oxford University
Press, 2007, vol. 173.

[19] J. F. Nash et al., “Equilibrium points in n-person games,” Proceedings
of the national academy of sciences, vol. 36, no. 1, pp. 48–49, 1950.

[20] X. Wang, J. Su, X. Hu, C. Wu, and H. Zhou, “Trust model for cloud
systems with self variance evaluation,” in Security, Privacy and Trust in
Cloud Systems. Springer, 2014, pp. 283–309.

[21] H. Zhou, Y. Hu, J. Su, C. de Laat, and Z. Zhao, “Cloudsstorm: An
application-driven framework to enhance the programmability and con-
trollability of cloud virtual infrastructures,” in International Conference
on Cloud Computing. Springer, 2018, pp. 265–280.

1575

