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A – Introduction and Background 

A1 – Approaches to Two-Party Decryption using PRE 

In this article, smart contracts allow delegator 𝐴 ∈ 𝒰 to delegate controlled access to its 

encrypted data to delegatee 𝐵 ∈ 𝒰 by way of an enforcing, semi-trusted intermediary 𝑅 ∈ℛ (e.g., nodes), where 𝒰 and ℛ are the set of all users and intermediaries respectively. The 

proxy re-encryption (PRE) scheme used herein – Ateniese et al.’s improved, second attempt 

[1] – can facilitate this function through a series of repeated encryption and decryption 

processes. However, this scheme, as well as others published, does not allow for secure 

two-party decryption. The following section illustrates various implementation 

possibilities and potential threats; thus, supporting the requirement of a new approach. 

A1.1 – PRE Two-Party Decryption Scenarios 

One implementation might be for 𝑅 to decrypt the ciphertext 𝑐𝐴 from 𝐴 using the re-

encryption key 𝑟𝑘𝐴→𝑅 , encrypt the resulting plaintext message 𝑚𝐴 using 𝐵’s public key 𝑝𝑘𝐵 , 

and transmit 𝑐𝐵 to 𝐵. However, this requires full confidence in 𝑅 as it now is in possession 

of 𝑚𝐴. In response, one can alter 𝑟𝑘𝐴→𝑅  to 𝑟𝑘𝐴→𝐵, necessitating the secret key of 𝐵 (𝑠𝑘𝐵) to 

decrypt the message (secret is equivalent to private, but allows shorthand distinct as 𝑠𝑘). 

This can be implemented in two ways; both with security concerns. 

The first eliminates exposure of 𝑚𝐴 to 𝑅 by using 𝑅 as a verification system that forwards 

ciphertexts and 𝑝𝑘𝐵-encrypted re-encryption keys to 𝐵 for decryption as valid under smart 

contract provisions. The issue is, once 𝐵 has 𝑟𝑘𝐴→𝐵, it can decrypt any 𝑐𝐴 (this key does not 

support encryption) without verification. Meaning, 𝐵 can decrypt, with impunity, blocks 

owned by 𝐴 after, for instance, smart contract termination. Accounting for this, the second 

approach eliminates re-encryption key exposure to 𝐵 by requiring 𝑠𝑘𝐵  be sent to 𝑅 who 

facilitates decryption. However, 𝑅 can now decrypt any 𝑐𝐴 by way of 𝑟𝑘𝐴→𝐵, decrypt and 

forge any 𝑐𝐵 using 𝑠𝑘𝐵 , and masquerade as 𝐵 in the system (e.g., sign contracts as 𝐵). 

Clearly, two challenges persist. One, how to prevent 𝑅 from gaining access to any message 𝑚𝒰, and two, how to ensure 𝐵 never possesses a re-encryption key 𝑟𝑘𝒰→𝐵 . The remainder 

of this section provides an essentials-only overview of the PRE scheme used as well as our 

extensions to address the aforementioned concerns. 

A2 – Improved Second Attempt PRE Scheme – Background 

The modified PRE scheme is Ateniese et al.’s improved “Second Attempt” [1]. In this section 

we introduce relevant components and definitions, and refer the reader to Ateniese et al. 

[1] for complete details. 

It is said that 𝑒 ∶ 𝐺1 ×  𝐺1 → 𝐺2 is a bilinear map if (1) 𝐺1, 𝐺1 are groups of the same prime 

order 𝑞; (2) for all 𝑎, 𝑏 ∈ ℤ𝑞  (ℤ𝑞 is the set of all integers mod 𝑞), 𝑔 ∈ 𝐺1, and ℎ ∈ 𝐺1, then 



𝑒(𝑔𝑎, ℎ𝑏) = 𝑒(𝑔, ℎ)𝑎𝑏 is efficiently computable; and (3) the map is nondegenerate (i.e., if 𝑔 

generates 𝐺1 and ℎ generates 𝐺1, then 𝑒(𝑔, ℎ) generates 𝐺2). 

The scheme itself is based on BBS [2] and ElGamal [3], operating over two groups 𝐺1, 𝐺2 of 

prime order 𝑞 with a defined bilinear map 𝑒 ∶ 𝐺1 × 𝐺1 → 𝐺2 (here, 𝐺1 = 𝐺1). The system 

parameters are random generators 𝑔 ∈ 𝐺1 and 𝑍 = 𝑒(𝑔, 𝑔) ∈ 𝐺2. 

The public/secret key pair for user 𝐴 is in the form 𝑝𝑘𝐴 = 𝑔𝑎 and 𝑠𝑘𝐴 = 𝑎 respectively, 

where 𝑎 is randomly selected from ℤ𝑞. The relevant enciphering of message 𝑚𝐴 is defined 

as the pairing 𝜀𝐴 = (𝑔𝑎𝑘𝐴 , 𝑐𝐴), where 𝑘𝐴 is randomly selected from ℤ𝑞 such that 𝑘𝐴 ≠ 𝑎, 𝑔𝑎𝑘𝐴  is the public cipher parameter, and 𝑐𝐴 = 𝑚𝐴𝑍𝑘𝐴  is the encrypted message from 𝐴. 

Decrypting 𝜀𝐴 can be accomplished in several ways, two of which are examined. First, 𝐴 can 

use 𝑠𝑘𝐴 in the following manner: 
𝜀𝐴1𝑒(𝜀𝐴0 ,𝑔)−𝑠𝑘𝐴 = 𝑐𝐴𝑒(𝑔𝑎𝑘𝐴 ,𝑔)−𝑎 = 𝑚𝐴𝑍𝑘𝐴𝑒(𝑔,𝑔)𝑎𝑘𝐴 𝑎⁄ = 𝑚𝐴𝑍𝑘𝐴𝑍𝑘𝐴 = 𝑚𝐴. The 

second approach relies on the re-encryption key 𝑟𝑘𝐴→𝐵 = 𝑔𝑏 𝑎⁄  , where 𝐴 delegates 

decryption rights to delegatee 𝐵. 𝐴 computes  𝑟𝑘𝐴→𝐵 = 𝑝𝑘𝐵−𝑠𝑘𝐴 = (𝑔𝑏)−𝑎 = 𝑔𝑏 𝑎⁄ . 

Decryption by 𝐵 is as follows: 
𝜀𝐴1𝑒(𝜀𝐴0 ,𝑟𝑘𝐴→𝐵)−𝑠𝑘𝐵 = 𝑐𝐴𝑒(𝑔𝑎𝑘𝐴 ,𝑔𝑏 𝑎⁄ )−𝑏 = 𝑚𝐴𝑍𝑘𝐴𝑒(𝑔,𝑔)𝑎𝑘𝐴𝑏 𝑎𝑏⁄ = 𝑚𝐴𝑍𝑘𝐴𝑍𝑘𝐴 = 𝑚𝐴. 

B – Two-Party PRE Decryption Scheme 

In this section, we submit a two-party PRE decryption scheme, which modifies the 

algorithms expressed in Section A2 to address the concerns raised in Section A1.1. This 

approach masks 𝑚𝐴 to 𝑅 and prevents 𝐵 from learning 𝑟𝑘𝐴→𝐵, and is available in full and 

fragmented-block configurations. The process is ordered, requiring 𝑅 to complete its 

intermediate re-encryption prior to 𝐵’s decryption.  

B1 – Full-Block Configuration 

Full-block configuration is an implementation option where block data are stored in a single 

container. All operations performed are done so over its entire contents. The following 

section describes the submitted PRE extensions and definitions necessary to achieve full-

block two-party PRE. 

To begin, the temporal nature of 𝑘𝐴 is revised from fixed to dynamic. Each time a message 

is encrypted, 𝑘𝐴 is randomly chosen – i.e., 𝑘𝐴𝑖  for temporal index 𝑖 ∈ 𝒯. The next step is for 𝐴 

to compute 𝑐𝐴𝑖 = 𝑚𝐴𝑖 𝑍𝑘𝐴𝑖  as previously defined. 𝐴 then calculates three parameters. The first 

is the public cipher parameter 𝑝𝑘𝑅𝑠𝑘𝐴𝑙𝐴 = 𝑔𝑟𝑎𝑙𝐴 . The second is the intermediate (𝑅) re-

encryption key 𝑟𝑘𝐴→𝑅𝐵𝑖 = 𝑒(𝑔𝑘𝐴𝑖 ,𝑝𝑘𝑅)𝑒(𝑔𝑘𝐴𝑖 ,𝑔) = 𝑒(𝑔𝑘𝐴𝑖 ,𝑔𝑟)𝑒(𝑔𝑘𝐴𝑖 ,𝑔) = 𝑒(𝑔,𝑔)𝑘𝐴𝑖 𝑟𝑒(𝑔,𝑔)𝑘𝐴𝑖 = 𝑍𝑘𝐴𝑖 𝑟𝑍𝑘𝐴𝑖 = 𝑍𝑘𝐴𝑖 (𝑟−1). The final 

parameter is the delegatee re-encryption key 𝑟𝑘𝐴𝑅→𝐵𝑖 = 𝑝𝑘𝐵𝑘𝐴𝑖 𝑠𝑘𝐴𝑙𝐴⁄ = 𝑔𝑏𝑘𝐴𝑖 𝑎𝑙𝐴⁄ , where 𝑙𝐴 is 

randomly selected from ℤ𝑞 such that 𝑙𝐴 ≠ 𝑎, 𝑘𝐴𝑖 . The addition of 𝑘𝐴𝑖  to 𝑟𝑘𝐴𝑅→𝐵𝑖  binds the key 

temporally to 𝑐𝐴𝑖 , eliminating the possibility of using the key to attack future or former 



version of the ciphertext (refer to Propositions 1 and 2) and minimizing transitivity threats 

(Propositions 3 and 4). 

Now that the keys have been established, 𝑅 applies 𝑟𝑘𝐴→𝑅𝐵𝑖  to 𝑐𝐴𝑖  as a simple scalar, 

resulting in the re-encrypted cipher 𝑐𝐴→𝑅𝑖 = 𝑚𝐴𝑖 𝑍𝑘𝐴𝑖 𝑟 (refer to Proposition 5). Thus, 𝑚𝐴𝑖  

remains hidden from 𝑅. Delegatee 𝐵 recovers 𝑚𝐴𝑖  through a normal decryption-by-proxy 

process where 𝜀𝐴→𝑅𝑖 = (𝑔𝑟𝑎𝑙𝐴 , 𝑐𝐴→𝑅𝑖 ) and the re-encryption key is 𝑟𝑘𝐴𝑅→𝐵𝑖 = 𝑔𝑏𝑘𝐴𝑖 𝑎𝑙⁄ 𝐴  (refer 

to Proposition 6). As the public cipher parameter contains 𝑟, 𝐵 cannot compute 𝑍𝑘𝐴𝑖 , thus 

preventing it from directly decrypting 𝑐𝐴𝑖 . Only the intermediate cipher 𝑐𝐴→𝑅𝑖  can be 

decrypted, ensuring 𝑅 partakes in the transaction. Of note, if 𝐵 has access to 𝑐𝐴𝑖 , then after 

the first re-encryption, it is possible for 𝐵 to deduce 𝑟𝑘𝐴→𝑅𝐵𝑖  (refer to Proposition 7); 

bypassing the intermediary in subsequent re-encryption events on 𝑐𝐴𝑖 .  

While 𝐵 cannot use this deduced re-encryption key to decrypt any 𝑐𝐴𝑗 where 𝑗 ≠ 𝑖, to ensure 

complete security, we propose an additional encryption layer imposed by 𝑅, one in which it 

encrypts and stores 𝑐𝐴𝑖  with an ephemeral key 𝑥𝑅𝑖  (𝑐𝐴𝑖 𝑍𝑥𝑅𝑖 = 𝑐𝐴𝑅𝑖 ). The intermediate and 

delegatee phases of two-party PRE must be slightly augmented as done in Propositions 8 

and 9. As 𝑍𝑥𝑅𝑖  is a simple scalar, it is still trivial to compute 𝑟𝑘𝐴→𝑅𝐵𝑖  as shown in Proposition 

10. However, if 𝑅 re-encrypts 𝑐𝐴𝑅𝑖  under a new 𝑥𝑅𝑗  after access, this no longer poses a threat 

(see Proposition 11). This can be augmented to reduce the number of operations 

performed by the delegatee, who may be operating in a limited or constrained 

environment, without sacrificing security. The approach is quite intuitive and shown in 

Proposition 12. The ephemeral layer 𝑍𝑥𝑅𝑖  is removed by 𝑅 prior to re-encryption, then 

updated to 𝑥𝑅𝑗 . This returns the two-party PRE process to the simplified version presented 

in Propositions 5 and 6, while holding to the security of Proposition 11. Of note: it is still 

possible for the encrypted value to change without the ephemeral key if 𝐴 re-encrypts the 

data under a dynamic encryption key mode. However, this requires 𝐴’s participation, which 
cannot be guaranteed. Conversely, 𝑅 can perform this action on demand or periodically 

without access to avoid “stale” keys or if it suspects any 𝑥𝑅∗  may have been compromised. 

Proposition 1. For temporal index 𝑖 ∈ 𝒯, if 𝜀𝐴𝑖  consisting of 𝑔𝑎𝑘𝐴𝑖   and 𝑐𝐴𝑖  are public, 𝐵 can 

decrypt any 𝑐𝐴𝑖  upon learning 𝑟𝑘𝐴→𝐵. 

Proof. Let 𝜀𝐴𝑖 = (𝑔𝑎𝑘𝐴𝑖 , 𝑐𝐴𝑖 ), 𝑐𝐴𝑖 = 𝑚𝐴𝑖 𝑍𝑘𝐴𝑖 , 𝑟𝑘𝐴→𝐵 = 𝑔𝑏 𝑎⁄ , and 𝑠𝑘𝐵 = 𝑏. Thus: 𝜀𝐴𝑖,1𝑒(𝜀𝐴𝑖,0, 𝑟𝑘𝐴→𝐵)−𝑠𝑘𝐵 = 𝑐𝐴𝑖𝑒 (𝑔𝑎𝑘𝐴𝑖 , 𝑔𝑏 𝑎⁄ )−𝑏 = 𝑚𝐴𝑖 𝑍𝑘𝐴𝑖𝑒(𝑔, 𝑔)𝑎𝑘𝐴𝑖 𝑏 𝑎𝑏⁄ = 𝑚𝐴𝑖 𝑍𝑘𝐴𝑖𝑍𝑘𝐴𝑖 = 𝑚𝐴𝑖  ∀ 𝑖 ∈ 𝒯 



As 𝑍𝑘𝐴𝑖  can be computed using 𝑒 (𝑔𝑘𝐴𝑖 , 𝑔), 𝑔𝑎𝑘𝐴𝑖  requires only an inverse of 𝑎 to satisfy the 

same equation. This is fulfilled by 𝑔𝑏 𝑎⁄ , which is not bound to 𝑖. Thus, receipt of 𝑟𝑘𝐴→𝐵 once 

grants permanent decryption rights to 𝐵 regardless of the temporal index.                              ∎ 

Proposition 2. Binding 𝑟𝑘𝐴→𝐵 to 𝑖 (i.e., 𝑟𝑘𝐴→𝐵𝑖 ) addresses the problem identified in 

Proposition 1; namely that 𝑟𝑘𝐴→𝐵 can decrypt any ciphertext regardless of temporality. 

Proof. Let 𝜀𝐴𝑖 = (𝑔𝑎𝑙𝐴 , 𝑐𝐴𝑖 ) where 𝑙𝐴 is randomly selected from ℤ𝑞 such that 𝑙𝐴 ≠ 𝑎, 𝑘𝐴𝑖 ; 𝑐𝐴𝑖 =𝑚𝐴𝑖 𝑍𝑘𝐴𝑖 ; 𝑟𝑘𝐴→𝐵𝑖 = 𝑔𝑏𝑘𝐴𝑖 𝑎𝑙𝐴⁄ ; and 𝑠𝑘𝐵 = 𝑏. Thus: 𝜀𝐴𝑖,1𝑒(𝜀𝐴𝑖,0, 𝑟𝑘𝐴→𝐵𝑖 )−𝑠𝑘𝐵 = 𝑐𝐴𝑖𝑒 (𝑔𝑎𝑙𝐴 , 𝑔𝑏𝑘𝐴𝑖 𝑎𝑙𝐴⁄ )−𝑏 = 𝑚𝐴𝑖 𝑍𝑘𝐴𝑖𝑒(𝑔, 𝑔)𝑎𝑙𝐴𝑏𝑘𝐴𝑖 𝑎𝑙𝐴𝑏⁄ = 𝑚𝐴𝑖 𝑍𝑘𝐴𝑖𝑍𝑘𝐴𝑖 = 𝑚𝐴𝑖  

shows 𝑟𝑘𝐴→𝐵𝑖  still decrypts at temporal index 𝑖. The following proves this no longer holds 

when 𝑗 ≠ 𝑖: 

                    𝜀𝐴𝑗,1𝑒(𝜀𝐴𝑗,0, 𝑟𝑘𝐴→𝐵𝑖 )−𝑠𝑘𝐵 = 𝑐𝐴𝑗𝑒 (𝑔𝑎𝑙𝐴 , 𝑔𝑏𝑘𝐴𝑖 𝑎𝑙𝐴⁄ )−𝑏 = 𝑚𝐴𝑗 𝑍𝑘𝐴𝑗𝑒(𝑔, 𝑔)𝑎𝑙𝐴𝑏𝑘𝐴𝑖 𝑎𝑙𝐴𝑏⁄ = 𝑚𝐴𝑗 𝑍𝑘𝐴𝑗𝑍𝑘𝐴𝑖  

                                                        = 𝑚𝐴𝑗 𝑍𝑘𝐴𝑗 −𝑘𝐴𝑖 ≠ 𝑚𝐴𝑗                                                                                  ∎ 

Proposition 3. The re-encryption key 𝑟𝑘𝐴→𝐵 is transitive if 𝐵 colludes with 𝐶. 

Proof. Let 𝑠𝑘𝐵 = 𝑏, 𝑠𝑘𝐶 = 𝑐, 𝑟𝑘𝐴→𝐵 = 𝑔𝑏 𝑎⁄ , and 𝑟𝑘𝐴→𝐶 = 𝑔𝑐/𝑎. Thus: ((𝑟𝑘𝐴→𝐵)−𝑠𝑘𝐵)𝑠𝑘𝐶 = ((𝑔𝑏/𝑎)−𝑏)𝑐 = (𝑔𝑏/𝑎𝑏)𝑐 = (𝑔−𝑎)𝑐 = 𝑔𝑐/𝑎 = 𝑟𝑘𝐴→𝐶  

This can be done in a manner protective of 𝑠𝑘𝐶  by 𝐵 computing and sending to 𝐶 𝑔−𝑎, who 

then calculates 𝑔𝑐/𝑎.                                                                                                                                      ∎ 

Proposition 4. Binding 𝑟𝑘𝐴→𝐵 to temporal index 𝑖 ∈ 𝒯 (Proposition 2) does not prevent re-

encryption key transitivity from 𝐵 to 𝐶, but renders it mute as access is not granted beyond 

what could have been given by 𝐵. 

Proof. Let 𝑠𝑘𝐵 = 𝑏, 𝑠𝑘𝐶 = 𝑐, 𝑟𝑘𝐴→𝐵𝑖 = 𝑔𝑏𝑘𝐴𝑖 /𝑎, and 𝑟𝑘𝐴→𝐶𝑖 = 𝑔𝑐𝑘𝐴𝑖 /𝑎. Thus: ((𝑟𝑘𝐴→𝐵𝑖 )−𝑠𝑘𝐵)𝑠𝑘𝐶 = ((𝑔𝑏𝑘𝐴𝑖 /𝑎)−𝑏)𝑐 = (𝑔𝑏𝑘𝐴𝑖 /𝑎𝑏)𝑐 = (𝑔𝑘𝐴𝑖 /𝑎)𝑐 = 𝑔𝑐𝑘𝐴𝑖 /𝑎 = 𝑟𝑘𝐴→𝐶𝑖  

Though 𝐶 is capable of decrypting 𝑐𝐴𝑖  using 𝑟𝑘𝐴→𝐶𝑖 , it cannot do so with 𝑐𝐴𝑗 where 𝑗 ≠ 𝑖 

(Proposition 2). Thus, this is no better than 𝐵 simply giving 𝐶 𝑚𝐴𝑖 , as no privileges are 

extended to 𝐶 beyond what could be shared directly.                                                                       ∎ 

 



Proposition 5. The result of the intermediate re-encryption of 𝑐𝐴𝑖  given 𝑟𝑘𝐴→𝑅𝐵𝑖  is 𝑐𝐴→𝑅𝑖 =𝑚𝐴𝑖 𝑍𝑘𝐴𝑖 𝑟 ≠ 𝑐𝐴𝑖 , 𝑚𝐴𝑖 . 

Proof. Let 𝑐𝐴𝑖 = 𝑚𝐴𝑖 𝑍𝑘𝐴𝑖  and 𝑟𝑘𝐴→𝑅𝐵𝑖 = 𝑍𝑘𝐴𝑖 (𝑟−1). Thus:               𝑐𝐴→𝑅𝑖 = 𝑐𝐴𝑖 (𝑟𝑘𝐴→𝑅𝐵𝑖 ) = 𝑚𝐴𝑖 𝑍𝑘𝐴𝑖 (𝑍𝑘𝐴𝑖 (𝑟−1)) = 𝑚𝐴𝑖 𝑍𝑘𝐴𝑖 (𝑍𝑘𝐴𝑖 𝑟−𝑘𝐴𝑖 ) = 𝑚𝐴𝑖 𝑍𝑘𝐴𝑖 +𝑘𝐴𝑖 𝑟−𝑘𝐴𝑖                          = 𝑚𝐴𝑖 𝑍𝑘𝐴𝑖 𝑟 ≠ 𝑐𝐴𝑖 , 𝑚𝐴𝑖                                                                                                                 ∎ 

Proposition 6. The result of delegatee decryption on 𝑐𝐴→𝑅𝑖  given 𝜀𝐴→𝑅𝑖 , 𝑟𝑘𝐴𝑅→𝐵𝑖 , and 𝑠𝑘𝐵  

is 𝑚𝐴𝑖 . 

Proof. Let 𝜀𝐴→𝑅𝑖 = (𝑔𝑟𝑎𝑙𝐴 , 𝑐𝐴→𝑅𝑖 ), 𝑐𝐴→𝑅𝑖 = 𝑚𝐴𝑖 𝑍𝑘𝐴𝑖 𝑟 , 𝑟𝑘𝐴𝑅→𝐵𝑖 = 𝑔𝑏𝑘𝐴𝑖 𝑎𝑙𝐴⁄ , and 𝑠𝑘𝐵 = 𝑏. Thus: 

       𝜀𝐴→𝑅𝑖,1𝑒(𝜀𝐴→𝑅𝑖,0 , 𝑟𝑘𝐴𝑅→𝐵𝑖 )−𝑠𝑘𝐵 = 𝑐𝐴→𝑅𝑖𝑒 (𝑔𝑟𝑎𝑙𝐴 , 𝑔𝑏𝑘𝐴𝑖 𝑎𝑙𝐴⁄ )−𝑏 = 𝑚𝐴𝑖 𝑍𝑘𝐴𝑖 𝑟 𝑒(𝑔, 𝑔)𝑟𝑎𝑙𝐴𝑏𝑘𝐴𝑖 𝑎𝑙𝐴𝑏⁄ = 𝑚𝐴𝑖 𝑍𝑘𝐴𝑖 𝑟 𝑍𝑟𝑘𝐴𝑖 = 𝑚𝐴𝑖      ∎ 

Proposition 7. Using 𝑐𝐴𝑖  and 𝑐𝐴→𝑅𝑖 , 𝐵 can infer 𝑟𝑘𝐴→𝑅𝐵𝑖 .  

Proof. Let 𝑐𝐴𝑖 = 𝑚𝐴𝑖 𝑍𝑘𝐴𝑖 , 𝑐𝐴→𝑅𝑖 = 𝑚𝐴𝑖 𝑍𝑘𝐴𝑖 𝑟, and 𝑟𝑘𝐴→𝑅𝐵𝑖 = 𝑍𝑘𝐴𝑖 (𝑟−1). Thus: 

                     𝑐𝐴→𝑅𝑖𝑐𝐴𝑖 = 𝑚𝐴𝑖 𝑍𝑘𝐴𝑖 𝑟𝑚𝐴𝑖 𝑍𝑘𝐴𝑖 = 𝑍𝑘𝐴𝑖 𝑟𝑍𝑘𝐴𝑖 = 𝑍𝑘𝐴𝑖 𝑟𝑍−𝑘𝐴𝑖 = 𝑍𝑘𝐴𝑖 𝑟−𝑘𝐴𝑖 = 𝑍𝑘𝐴𝑖 (𝑟−1) = 𝑟𝑘𝐴→𝑅𝐵𝑖                      ∎ 

Proposition 8.  The result of the intermediate re-encryption of 𝑐𝐴𝑅𝑖  given 𝑟𝑘𝐴→𝑅𝐵𝑖  is 𝑐𝐴𝑅→𝑅𝑖 =𝑚𝐴𝑖 𝑍𝑘𝐴𝑖 𝑟+𝑥𝑅𝑖 ≠ 𝑐𝐴𝑖 , 𝑐𝐴𝑅𝑖 , 𝑚𝐴𝑖 . 

Proof. Let 𝑐𝐴𝑖 = 𝑚𝐴𝑖 𝑍𝑘𝐴𝑖 , 𝑐𝐴𝑅𝑖 = 𝑐𝐴𝑖 𝑍𝑥𝑅𝑖  where 𝑥𝑅𝑖  is an ephemeral, randomly selected value in ℤ𝑞 by 𝑅 for each temporal index, and 𝑟𝑘𝐴→𝑅𝐵𝑖 = 𝑍𝑘𝐴𝑖 (𝑟−1). Thus: 𝑐𝐴𝑅→𝑅𝑖 = 𝑐𝐴𝑅𝑖 (𝑟𝑘𝐴→𝑅𝐵𝑖 ) = 𝑐𝐴𝑖 𝑍𝑥𝑅𝑖 (𝑍𝑘𝐴𝑖 (𝑟−1)) = (𝑚𝐴𝑖 𝑍𝑘𝐴𝑖 ) 𝑍𝑥𝑅𝑖 (𝑍𝑘𝐴𝑖 𝑟−𝑘𝐴𝑖 ) = 𝑚𝐴𝑖 𝑍𝑘𝐴𝑖 +𝑥𝑅𝑖 +𝑘𝐴𝑖 𝑟−𝑘𝐴𝑖               = 𝑚𝐴𝑖 𝑍𝑘𝐴𝑖 𝑟+𝑥𝑅𝑖 ≠ 𝑐𝐴𝑖 , 𝑐𝐴𝑅𝑖 , 𝑚𝐴𝑖                                                                                                              ∎ 

Proposition 9. The result of delegatee decryption on 𝑐𝐴𝑅→𝑅𝑖  given 𝑟𝑘𝐴𝑅→𝐵1𝑖 , 𝑟𝑘𝐴𝑅→𝐵2𝑖 , and 𝑠𝑘𝐵  is 𝑚𝐴𝑖 . 

Proof. Let 𝜀𝐴𝑅→𝑅𝑖 = (𝑔𝑟𝑎𝑙𝐴 , 𝑐𝐴𝑅→𝑅𝑖 ), 𝜀𝐴𝑅→𝑅1𝑖 = (𝑝𝑘𝑅 , 𝑐𝐴𝑅→𝑅1𝑖 ), 𝑐𝐴𝑅→𝑅𝑖 = 𝑚𝐴𝑖 𝑍𝑘𝐴𝑖 𝑟+𝑥𝑅𝑖 , 𝑐𝐴𝑅→𝑅1𝑖 =𝑚𝐴𝑖 𝑍𝑥𝑅𝑖 , 𝑟𝑘𝐴𝑅→𝐵1𝑖 = 𝑔𝑏𝑘𝐴𝑖 𝑎𝑙𝐴⁄ , 𝑟𝑘𝐴𝑅→𝐵2𝑖 = 𝑔𝑏𝑥𝑅𝑖 𝑟⁄ , and 𝑠𝑘𝐵 = 𝑏. Thus: 

Layer 1: 𝑐𝐴𝑅→𝑅1𝑖 = 𝜀𝐴𝑅→𝑅𝑖,1𝑒(𝜀𝐴𝑅→𝑅𝑖,0 ,𝑟𝑘𝐴𝑅→𝐵1𝑖 )−𝑠𝑘𝐵 = 𝑐𝐴𝑅→𝑅𝑖𝑒(𝑔𝑟𝑎𝑙𝐴 ,𝑔𝑏𝑘𝐴𝑖 𝑎𝑙𝐴⁄ )−𝑏 = 𝑚𝐴𝑖 𝑍𝑘𝐴𝑖 𝑟+𝑥𝑅𝑖  𝑒(𝑔,𝑔)𝑟𝑎𝑙𝐴𝑏𝑘𝐴𝑖 𝑎𝑙𝐴𝑏⁄ = 𝑚𝐴𝑖 𝑍𝑘𝐴𝑖 𝑟+𝑥𝑅𝑖  𝑍𝑟𝑘𝐴𝑖  

                   = 𝑚𝐴𝑖 𝑍𝑘𝐴𝑖 𝑟+𝑥𝑅𝑖 −𝑟𝑘𝐴𝑖 = 𝑚𝐴𝑖 𝑍𝑥𝑅𝑖                                                                                   



Layer 2: 
𝜀𝐴𝑅→𝑅1𝑖,1𝑒(𝜀𝐴𝑅→𝑅1𝑖,0 ,𝑟𝑘𝐴𝑅→𝐵2𝑖 )−𝑠𝑘𝐵 = 𝑐𝐴𝑅→𝑅1𝑖

𝑒(𝑝𝑘𝑅,𝑔𝑏𝑥𝑅𝑖 𝑟⁄ )−𝑏 = 𝑚𝐴𝑖 𝑍𝑥𝑅𝑖𝑒(𝑔𝑟,𝑔𝑏𝑥𝑅𝑖 𝑟⁄ )−𝑏 = 𝑚𝐴𝑖 𝑍𝑥𝑅𝑖  𝑒(𝑔,𝑔)𝑟𝑏𝑥𝑅𝑖 𝑟𝑏⁄ = 𝑚𝐴𝑖 𝑍𝑥𝑅𝑖  𝑍𝑥𝑅𝑖                                                          = 𝑚𝐴𝑖                                                                                                           ∎ 

Proposition 10. Using 𝑐𝐴𝑅𝑖  and 𝑐𝐴𝑅→𝑅𝑖 , 𝐵 can infer 𝑟𝑘𝐴→𝑅𝐵𝑖 .  

Proof. Let 𝑐𝐴𝑅𝑖 = (𝑚𝐴𝑖 𝑍𝑘𝐴𝑖 ) 𝑍𝑥𝑅𝑖 , 𝑐𝐴𝑅→𝑅𝑖 = (𝑚𝐴𝑖 𝑍𝑘𝐴𝑖 𝑟) 𝑍𝑥𝑅𝑖 , and 𝑟𝑘𝐴→𝑅𝐵𝑖 = 𝑍𝑘𝐴𝑖 (𝑟−1). Thus: 

                          𝑐𝐴𝑅→𝑅𝑖𝑐𝐴𝑅𝑖 = (𝑚𝐴𝑖 𝑍𝑘𝐴𝑖 𝑟) 𝑍𝑥𝑅𝑖(𝑚𝐴𝑖 𝑍𝑘𝐴𝑖 ) 𝑍𝑥𝑅𝑖 = 𝑍𝑘𝐴𝑖 𝑟𝑍𝑘𝐴𝑖 = 𝑍𝑘𝐴𝑖 𝑟−𝑘𝐴𝑖 = 𝑍𝑘𝐴𝑖 (𝑟−1) = 𝑟𝑘𝐴→𝑅𝐵𝑖                           ∎ 

Proposition 11. Re-encrypting 𝑐𝐴𝑅𝑖  to 𝑐𝐴𝑅𝑖,𝑗
 by 𝑅 prevents 𝐵 from computing the 

intermediate re-encryption step by way of 𝑟𝑘𝐴→𝑅𝐵𝑖  inferred via Proposition 10.  

Proof. Let 𝑐𝐴𝑅𝑖 = (𝑚𝐴𝑖 𝑍𝑘𝐴𝑖 ) 𝑍𝑥𝑅𝑖 , 𝑟𝑘𝐴→𝑅𝐵𝑖 = 𝑍𝑘𝐴𝑖 (𝑟−1) as derived by 𝐵 (Proposition 10), and 𝑥𝑅𝑗  

is an ephemeral, randomly selected value in ℤ𝑞 by 𝑅 for each temporal index such that 𝑥𝑅𝑗 ≠𝑥𝑅𝑖 . Thus: 𝑅 re-encrypts 𝑐𝐴𝑅𝑖  under 𝑥𝑅𝑗  using the scalar 𝑠𝑅𝑖→𝑗 = 𝑍𝑥𝑅𝑗 −𝑥𝑅𝑖 , yielding 𝑐𝐴𝑅𝑖,𝑗
:  𝑐𝐴𝑅𝑖,𝑗 = 𝑐𝐴𝑅𝑖 𝑠𝑅𝑖→𝑗 = (𝑚𝐴𝑖 𝑍𝑘𝐴𝑖 ) 𝑍𝑥𝑅𝑖 (𝑍𝑥𝑅𝑗 −𝑥𝑅𝑖 ) = 𝑚𝐴𝑖 𝑍𝑘𝐴𝑖 +𝑥𝑅𝑖 +𝑥𝑅𝑗 −𝑥𝑅𝑖 = 𝑚𝐴𝑖 𝑍𝑘𝐴𝑖 +𝑥𝑅𝑗  𝐵 performs the intermediate re-encryption step (Proposition 8) using 𝑟𝑘𝐴→𝑅𝐵𝑖  inferred by 

Proposition 10: 𝑐𝐴𝑅→𝑅𝑖,𝑗 = 𝑐𝐴𝑅𝑖,𝑗 (𝑍𝑘𝐴𝑖 (𝑟−1)) = (𝑚𝐴𝑖 𝑍𝑘𝐴𝑖 +𝑥𝑅𝑗 ) (𝑍𝑘𝐴𝑖 𝑟−𝑘𝐴𝑖 ) = 𝑚𝐴𝑖 𝑍𝑘𝐴𝑖 +𝑥𝑅𝑗 +𝑘𝐴𝑖 𝑟−𝑘𝐴𝑖 = 𝑚𝐴𝑖 𝑍𝑥𝑅𝑗 +𝑘𝐴𝑖 𝑟 𝐵 performs delegatee layer 1 decryption (Proposition 9): 

𝑐𝐴𝑅→𝑅1𝑖,𝑗 = 𝑐𝐴𝑅→𝑅𝑖,𝑗𝑒 (𝑔𝑟𝑎𝑙𝐴 , 𝑔𝑏𝑘𝐴𝑖 𝑎𝑙𝐴⁄ )−𝑏 = 𝑚𝐴𝑖 𝑍𝑥𝑅𝑗 +𝑘𝐴𝑖 𝑟𝑒(𝑔, 𝑔)𝑟𝑎𝑙𝐴𝑏𝑘𝐴𝑖 𝑎𝑙𝐴𝑏⁄ = 𝑚𝐴𝑖 𝑍𝑥𝑅𝑗 +𝑘𝐴𝑖 𝑟𝑍𝑟𝑘𝐴𝑖  

              = 𝑚𝐴𝑖 𝑍𝑥𝑅𝑗 +𝑘𝐴𝑖 𝑟−𝑟𝑘𝐴𝑖     = 𝑚𝐴𝑍𝑥𝑅𝑗  𝐵 performs delegatee layer 2 decryption (Proposition 9): 𝑐𝐴𝑅→𝑅1𝑖,𝑗𝑒(𝑝𝑘𝑅 , 𝑟𝑘𝐴→𝑅𝐵𝑖 )−𝑏 𝑚𝐴𝑖 𝑍𝑥𝑅𝑗𝑒 (𝑔𝑟 , 𝑔𝑏𝑥𝑅𝑖 𝑟⁄ )−𝑏 = 𝑚𝐴𝑖 𝑍𝑥𝑅𝑗𝑒(𝑔, 𝑔)𝑟𝑏𝑥𝑅𝑖 𝑟𝑏⁄ = 𝑚𝐴𝑖 𝑍𝑥𝑅𝑗  𝑍𝑥𝑅𝑖 = 𝑚𝐴𝑖 𝑍𝑥𝑅𝑗 −𝑥𝑅𝑖  ≠ 𝑚𝐴𝑖  

Thus, even if 𝐵 derives 𝑟𝑘𝐴→𝑅𝐵𝑖  via Proposition 10, if 𝑅 re-encrypts 𝑐𝐴𝑅𝑖  to 𝑐𝐴𝑅𝑖,𝑗
, 𝐵 cannot 

retrieve 𝑚𝐴𝑖 .                                                                                                                                                      ∎ 



Proposition 12. The removal of 𝑍𝑥𝑅𝑖  from 𝑐𝐴𝑅𝑖  and its subsequent update to 𝑐𝐴𝑅𝑖,𝑗
 by 𝑅 prior 

to r-encryption, results in a single-layer delegatee decryption process (Proposition 6 

instead of 9) with the same strength as the dual (Proposition 11) 

Proof. Let 𝑐𝐴𝑖 = 𝑚𝐴𝑖 𝑍𝑘𝐴𝑖 , 𝑐𝐴𝑅𝑖 = 𝑚𝐴𝑖 𝑍𝑘𝐴𝑖 +𝑥𝑅𝑖 , 𝑐𝐴→𝑅𝑖 = 𝑚𝐴𝑖 𝑍𝑘𝐴𝑖 𝑟 , and 𝑥𝑅𝑖  and 𝑥𝑅𝑗  be ephemeral, 

randomly selected values in ℤ𝑞 by 𝑅 for each temporal index such that 𝑥𝑅𝑖 ≠ 𝑥𝑅𝑗 . Thus: 𝑅 removes 𝑍𝑥𝑅𝑖 : 𝑐𝐴𝑅𝑖𝑍𝑥𝑅𝑖 = 𝑚𝐴𝑖 𝑍𝑘𝐴𝑖 +𝑥𝑅𝑖  𝑍𝑥𝑅𝑖 = 𝑚𝐴𝑖 𝑍𝑘𝐴𝑖 +𝑥𝑅𝑖 −𝑥𝑅𝑖 = 𝑚𝐴𝑖 𝑍𝑘𝐴𝑖 = 𝑐𝐴𝑖  𝑅 re-encrypts following Proposition 5. 𝑅 updates 𝑐𝐴𝑅𝑖  to 𝑐𝐴𝑅𝑖,𝑗
:  

𝑐𝐴𝑅𝑖,𝑗 = 𝑐𝐴𝑅𝑖 (𝑍𝑥𝑅𝑗𝑍𝑥𝑅𝑖 ) = 𝑚𝐴𝑖 𝑍𝑘𝐴𝑖 +𝑥𝑅𝑖 𝑍𝑥𝑅𝑗 −𝑥𝑅𝑖 = 𝑚𝐴𝑖 𝑍𝑘𝐴𝑖 +𝑥𝑅𝑖 +𝑥𝑅𝑗 −𝑥𝑅𝑖 = 𝑚𝐴𝑖 𝑍𝑘𝐴𝑖 +𝑥𝑅𝑗  

𝐵 decrypts following Proposition 6. 

Even if 𝐵 calculates a scalar capable of converting 𝑐𝐴𝑅𝑖  to 𝑐𝐴→𝑅𝑖  (which 𝐵 can decrypt): 

𝑠𝐴𝑅→(𝐴→𝑅)𝑖 = 𝑐𝐴→𝑅𝑖𝑐𝐴𝑅𝑖 = 𝑚𝐴𝑖 𝑍𝑘𝐴𝑖 𝑟𝑚𝐴𝑖 𝑍𝑘𝐴𝑖 +𝑥𝑅𝑖 = 𝑍𝑘𝐴𝑖 𝑟𝑍𝑘𝐴𝑖 +𝑥𝑅𝑖 = 𝑍𝑘𝐴𝑖 𝑟−𝑘𝐴𝑖 −𝑥𝑅𝑖  

it cannot decrypt 𝑐𝐴𝑅𝑖,𝑗
, thus exhibiting the same level of security as defined in Proposition 

11:    𝑐𝐴𝑅𝑖,𝑗 𝑠𝐴𝑅→(𝐴→𝑅)𝑖 = 𝑚𝐴𝑖 𝑍𝑘𝐴𝑖 +𝑥𝑅𝑗 𝑍𝑘𝐴𝑖 𝑟−𝑘𝐴𝑖 −𝑥𝑅𝑖 = 𝑚𝐴𝑖 𝑍𝑘𝐴𝑖 +𝑥𝑅𝑗 +𝑘𝐴𝑖 𝑟−𝑘𝐴𝑖 −𝑥𝑅𝑖 = 𝑚𝐴𝑖 𝑍𝑥𝑅𝑗 +𝑘𝐴𝑖 𝑟−𝑥𝑅𝑖 ≠ 𝑐𝐴→𝑅𝑖     ∎ 

B2 – Incremental Storage Mode 

Incremental storage mode is an implementation option in which block data are stored in 

individual fragments and maintained incrementally (refer to Proposition 13). Instead of 𝐴’s 
entire record being encrypted as one message, each element (e.g., an observation or 

encounter) is encrypted as an independent fragment. The benefit of this is three-fold. First, 

a logical block (i.e., the union all fragments) is of virtually limitless size. That is, it is no 

longer bound by the size of the structure storing the message (e.g., a byte array), forcing the 

creation of additional blocks. Second, it supports incremental updates, allowing 𝐴 to add 

new and update/remove existing fragments. Thus, instead of re-encrypting and 

transmitting all data (which must then be propagated by 𝑅), only block modifications are 

processed. Lastly, it allows for scalar-based re-encryption. It is good practice to update 

encryption keys when data are re-encrypted, but this generally requires re-encrypting and 

transmitting all data – a prohibitively expensive step in terms of 𝐴’s computation and 



network bandwidth consumption. However, it is possible for 𝐴 to re-encrypt all data via a 

simple scalar directly on 𝑅, avoiding the aforementioned pitfalls of key modification.  

Proposition 14 is the foundation for fragment re-encryption by 𝐴. This new approach, 

however, exposes the encryption values 𝑍𝑘𝐴𝑗  and 𝑍𝑘𝐴𝑗 +𝑥𝑅𝑖  after a single decryption by 𝐵 to 𝐵 

(refer to Proposition 15). Proposition 16 modifies the definition of 𝑅’s ephemeral key 𝑥𝑅𝑖  to 

fragment-based (i.e., 𝑥𝑅𝑓𝑖 ), which partially solves the problem. Instead of applying to all 

message fragments of temporal index 𝑗, the vulnerability affects only fragment 𝑓. This is 

removed by 𝑅 re-encrypting the fragments after each access (refer to Proposition 17). 

Proposition 13. A message 𝑚𝐴𝑖  can be encrypted and decrypted as a set of fragments ℱ. 

Proof. Let 𝑚𝐴𝑓𝑖  be a message fragment at temporal index 𝑖 such that ⋃ 𝑚𝐴𝑓𝑖𝑓∈ℱ = 𝑚𝐴𝑖  and ⋂ 𝑚𝐴𝑓𝑖 = ∅𝑓∈ℱ . Thus, encryption and decrypt is as follows. 

Encryption of 𝑚𝐴𝑓𝑖  to 𝑐𝐴𝑓𝑖  and 𝑐𝐴𝑅𝑓𝑖 : 𝑐𝐴𝑓𝑖 = 𝑚𝐴𝑓𝑖𝑍𝑘𝐴𝑖  𝑐𝐴𝑅𝑓𝑖 = 𝑚𝐴𝑓𝑖𝑍𝑘𝐴𝑖 𝑍𝑥𝑅𝑖 = 𝑚𝐴𝑓𝑖𝑍𝑘𝐴𝑖 +𝑥𝑅𝑖  

Decryption of 𝑐𝐴𝑓𝑖  and 𝑐𝐴𝑅𝑓𝑖  to 𝑚𝐴𝑓𝑖: 𝑐𝐴𝑓𝑖𝑒 (𝑔𝑎𝑘𝐴𝑖 , 𝑔)−𝑎 = 𝑚𝐴𝑓𝑖 𝑍𝑘𝐴𝑖𝑒(𝑔, 𝑔)𝑎𝑘𝐴𝑖 𝑎⁄ = 𝑚𝐴𝑓𝑖 𝑍𝑘𝐴𝑖𝑍𝑘𝐴𝑖 = 𝑚𝐴𝑓𝑖  

𝑐𝐴𝑅𝑓𝑖𝑒 (𝑔𝑎𝑘𝐴𝑖 , 𝑔)−𝑎 𝑒(𝑔, 𝑔)𝑥𝑅𝑖 = 𝑚𝐴𝑓𝑖𝑍𝑘𝐴𝑖 +𝑥𝑅𝑖𝑒(𝑔, 𝑔)𝑎𝑘𝐴𝑖 𝑎⁄ 𝑍𝑥𝑅𝑖 = 𝑚𝐴𝑓𝑖 𝑍𝑘𝐴𝑖 +𝑥𝑅𝑖𝑍𝑘𝐴𝑖 𝑍𝑥𝑅𝑖 = 𝑚𝐴𝑓𝑖𝑍𝑘𝐴𝑖 +𝑥𝑅𝑖𝑍𝑘𝐴𝑖 +𝑥𝑅𝑖 = 𝑚𝐴𝑓𝑖  
Therefore, full encryption of 𝑚𝐴𝑖  is 𝑐𝐴𝑖 = ⋃ 𝑐𝐴𝑓𝑖𝑓∈ℱ  and 𝑐𝐴𝑅𝑖 = ⋃ 𝑐𝐴𝑅𝑓𝑖𝑓∈ℱ . Full decryption of 𝑐𝐴𝑖  

is 𝑚𝐴𝑖 = ⋃ 𝑐𝐴𝑓𝑖𝑒(𝑔𝑎𝑘𝐴𝑖 ,𝑔)−𝑎𝑓∈ℱ  and 𝑐𝐴𝑅𝑖  is 𝑚𝐴𝑖 = ⋃ 𝑐𝐴𝑅𝑓𝑖(𝑔𝑎𝑘𝐴𝑖 ,𝑔)−𝑎𝑒(𝑔,𝑔)𝑥𝑅𝑖𝑓∈ℱ .                                                   ∎ 

Proposition 14. The application of re-encryption scalar 𝑠𝐴𝑖→𝑗
 (computed by 𝐴) by 𝑅 to 𝑐𝐴𝑓𝑖  

and 𝑐𝐴𝑅𝑓𝑖  respectively, updates the encryption key associated with 𝑚𝐴𝑓𝑖  to 𝑐𝐴𝑓𝑖,𝑗
 and 𝑐𝐴𝑅𝑓𝑖,𝑗,𝑖

 

respectively. 

Proof. Let 𝑐𝐴𝑓𝑖 = 𝑚𝐴𝑓𝑖𝑍𝑘𝐴𝑖  (Proposition 13), 𝑐𝐴𝑅𝑓𝑖 = 𝑚𝐴𝑓𝑖𝑍𝑘𝐴𝑖 +𝑥𝑅𝑖  (Proposition 13), and scalar 𝑠𝐴𝑖→𝑗 = 𝑍𝑘𝐴𝑗 −𝑘𝐴𝑖 . Thus, re-encrypted 𝑐𝐴𝑓𝑖  is 𝑐𝐴𝑓𝑖,𝑗
 and 𝑐𝐴𝑅𝑓𝑖  is 𝑐𝐴𝑅𝑓𝑖,𝑗,𝑖

: 𝑐𝐴𝑓𝑖,𝑗 = 𝑐𝐴𝑓𝑖𝑠𝐴𝑖→𝑗 = (𝑚𝐴𝑓𝑖𝑍𝑘𝐴𝑖 ) 𝑍𝑘𝐴𝑗 −𝑘𝐴𝑖 = 𝑚𝐴𝑓𝑖𝑍𝑘𝐴𝑖 +𝑘𝐴𝑗 −𝑘𝐴𝑖 = 𝑚𝐴𝑓𝑖 𝑍𝑘𝐴𝑗  



                 𝑐𝐴𝑅𝑓𝑖,𝑗,𝑖 = 𝑐𝐴𝑅𝑓𝑖 𝑠𝐴𝑖→𝑗 = (𝑚𝐴𝑓𝑖 𝑍𝑘𝐴𝑖 +𝑥𝑅𝑖 ) 𝑍𝑘𝐴𝑗 −𝑘𝐴𝑖 = 𝑚𝐴𝑓𝑖 𝑍𝑘𝐴𝑖 +𝑥𝑅𝑖 +𝑘𝐴𝑗 −𝑘𝐴𝑖 = 𝑚𝐴𝑓𝑖𝑍𝑘𝐴𝑗 +𝑥𝑅𝑖                 ∎ 

Proposition 15. Re-encrypting message fragments exposes 𝑍𝑘𝐴𝑗  and 𝑍𝑘𝐴𝑗 +𝑥𝑅𝑖  if 𝑚𝐴𝑓𝑖  is 

known, allowing for any message fragment 𝑚𝐴∗  to be decrypted. 

Proof. Let 𝑐𝐴𝑓𝑖,𝑗 = 𝑚𝐴𝑓𝑖𝑍𝑘𝐴𝑗   and 𝑐𝐴𝑅𝑓𝑖,𝑗,𝑖 = 𝑚𝐴𝑓𝑖𝑍𝑘𝐴𝑗 +𝑥𝑅𝑖  per Proposition 14. Once in possession of 𝑚𝐴𝑓𝑖  via Proposition 13, 𝑍𝑘𝐴𝑗  and 𝑍𝑘𝐴𝑗 +𝑥𝑅𝑖  can be computed as follows: 𝑐𝐴𝑓𝑖,𝑗𝑚𝐴𝑓𝑖 = 𝑚𝐴𝑓𝑖 𝑍𝑘𝐴𝑗𝑚𝐴𝑓𝑖 = 𝑍𝑘𝐴𝑗  

𝑐𝐴𝑅𝑓𝑖,𝑗,𝑖𝑚𝐴𝑓𝑖 = 𝑚𝐴𝑓𝑖𝑍𝑘𝐴𝑗 +𝑥𝑅𝑖𝑚𝐴𝑓𝑖 = 𝑍𝑘𝐴𝑗 +𝑥𝑅𝑖  

Thus, any message fragment at any temporal index encrypted under 𝑗 (i.e., 𝑚𝐴∗ ) can be 

decrypted:   𝑐𝐴∗∗,𝑗𝑍𝑘𝐴𝑗 = 𝑚𝐴∗ 𝑍𝑘𝐴𝑗𝑍𝑘𝐴𝑗 = 𝑚𝐴∗  

                                                              𝑐𝐴𝑅∗∗,𝑗,𝑖𝑍𝑘𝐴𝑗 +𝑥𝑅𝑖 = 𝑚𝐴∗ 𝑍𝑘𝐴𝑗 +𝑥𝑅𝑖𝑍𝑘𝐴𝑗 +𝑥𝑅𝑖 = 𝑚𝐴∗                                                              ∎ 

Proposition 16. In a fragmented environment, assigning the ephemeral value to each 

fragment (i.e., 𝑥𝑅𝑓∗ ), prevents the negative outcome in Proposition 15 – i.e., the decryption of 

any message fragment at any temporal index encrypted under 𝑗. 

Proof. Let 𝑐𝐴𝑅𝑓𝑖,𝑗,𝑖 = 𝑚𝐴𝑓𝑖 𝑍𝑘𝐴𝑗 +𝑥𝑅𝑓𝑖
. Once in possession of 𝑚𝐴𝑓𝑖  via Proposition 13, 𝑍𝑘𝐴𝑗 +𝑥𝑅𝑓𝑖

 can be 

computed as follows: 𝑐𝐴𝑅𝑓𝑖,𝑗,𝑖𝑚𝐴𝑓𝑖 = 𝑚𝐴𝑓𝑖𝑍𝑘𝐴𝑗 +𝑥𝑅𝑓𝑖𝑚𝐴𝑓𝑖 = 𝑍𝑘𝐴𝑗 +𝑥𝑅𝑓𝑖
 

While this allows for the decryption of 𝑚𝐴𝑓∗  at any temporal index: 𝑐𝐴𝑅𝑓∗,𝑗,𝑖𝑍𝑘𝐴𝑗 +𝑥𝑅𝑓𝑖 = 𝑚𝐴𝑓∗𝑍𝑘𝐴𝑗 +𝑥𝑅𝑓𝑖𝑍𝑘𝐴𝑗 +𝑥𝑅𝑓𝑖 = 𝑚𝐴𝑓∗  

it does not allow for the decryption of any other fragment 𝑚𝐴𝑡∗ , where 𝑡 ≠ 𝑓:   

                         𝑐𝐴𝑅𝑡∗,𝑗,𝑖𝑍𝑘𝐴𝑗 +𝑥𝑅𝑓𝑖 = 𝑚𝐴𝑡∗𝑍𝑘𝐴𝑗 +𝑥𝑅𝑡𝑖𝑍𝑘𝐴𝑗 +𝑥𝑅𝑓𝑖 = 𝑚𝐴𝑡∗𝑍𝑘𝐴𝑗 +𝑥𝑅𝑡𝑖−𝑘𝐴𝑗 −𝑥𝑅𝑓𝑖 = 𝑚𝐴𝑡∗𝑍𝑥𝑅𝑡𝑖−𝑥𝑅𝑓𝑖 ≠ 𝑚𝐴𝑡∗                           ∎ 



Proposition 17. Re-encrypting 𝑐𝐴𝑅𝑓𝑖,𝑗,𝑖
 to 𝑐𝐴𝑅𝑓𝑖,𝑗,𝑗

 prevents the computation of 𝑚𝐴𝑓∗  from 

Proposition 16. 

Proof. Let 𝑐𝐴𝑅𝑓𝑖,𝑗,𝑖 = 𝑚𝐴𝑓𝑖 𝑍𝑘𝐴𝑗 +𝑥𝑅𝑓𝑖
, 𝑠𝑅𝑖→𝑗 = 𝑍𝑥𝑅𝑓𝑗−𝑥𝑅𝑓𝑖

, and 𝑍𝑘𝐴𝑗 +𝑥𝑅𝑓𝑖
 be the decryption value 

computed in Proposition 16. Thus: 𝑐𝐴𝑅𝑓𝑖,𝑗,𝑗 = 𝑐𝐴𝑅𝑓𝑖,𝑗.𝑖𝑠𝑅𝑖→𝑗 = (𝑚𝐴𝑓𝑖𝑍𝑘𝐴𝑗 +𝑥𝑅𝑓𝑖) 𝑍𝑥𝑅𝑓𝑗−𝑥𝑅𝑓𝑖 = 𝑚𝐴𝑓𝑖𝑍𝑘𝐴𝑗 +𝑥𝑅𝑓𝑖+𝑥𝑅𝑓𝑗−𝑥𝑅𝑓𝑖 = 𝑚𝐴𝑓𝑖𝑍𝑘𝐴𝑗 +𝑥𝑅𝑓𝑗
 

This cannot be decrypted by the computed scalar in Proposition 16:   

                        𝑐𝐴𝑅𝑓𝑖,𝑗,𝑗𝑍𝑘𝐴𝑗 +𝑥𝑅𝑓𝑖 = 𝑚𝐴𝑓𝑖𝑍𝑘𝐴𝑗 +𝑥𝑅𝑓𝑗𝑍𝑘𝐴𝑗 +𝑥𝑅𝑓𝑖 = 𝑚𝐴𝑓𝑖𝑍𝑘𝐴𝑗 +𝑥𝑅𝑓𝑗−𝑘𝐴𝑗 −𝑥𝑅𝑓𝑖 = 𝑚𝐴𝑡∗𝑍𝑥𝑅𝑓𝑗−𝑥𝑅𝑓𝑖 ≠ 𝑚𝐴𝑓𝑖                         ∎ 

C – Sign-Verify Scheme 

The sign and verify process ensures the integrity and origins of a message. Signing makes 

use of a value reasonably considered to be known only to the signee. Verification, on the 

other hand, is done using publicly held information on the signee. In proxy re-encryption, 

this corresponds to secret and public keys via encryption and decryption respectively. The 

logic behind this process is as follows. If the verifier can verify the message using the signee’s public key and a hash of the message, then it must have originated with the signee – as only it has access to the secret key necessary to produce the signed message – and the 

message has not been altered. 

The proposed scheme is effectively a digital signature algorithm. Digital signatures provide 

for message integrity (protects against message alteration), authentication (signed by the 

signee), and non-repudiation (the signee cannot claim the message was forged) through 

hashing and asymmetric primitives. The implemented process is as follows.  

Given a message 𝑚𝐴𝑖 , 𝐴 generates the signed output 𝑚𝐴𝜓𝑖 = 𝑚𝐴𝑖 𝑍𝑥𝐴𝑖  (where 𝑥𝐴𝑖  is an 

ephemeral, random number in ℤ𝑞 such that 𝑥𝐴𝑖 ≠ 𝑎, 𝑘𝐴𝑖 , 𝑙𝐴), a hash 𝐻(𝑚𝐴𝑖 ) = 𝑚𝐴𝜏𝑖  of the 

message using any one-way cryptographic hashing function 𝐻(∙) mapped to ℤ𝑞, and a 

public verification parameter 𝑔𝑥𝐴𝑖 (𝑠𝑘𝐴+𝐻(𝑚𝐴𝑖 )) ⁄ = 𝑔𝑥𝐴𝑖 (𝑎+𝑚𝐴𝜏𝑖) ⁄
. Signing with 𝑠𝑘𝐴 alone is 

insufficient as is incorporating the hash via the power of its inverse as opposed to addition 

(see Proposition 18 for the former and Propositions 19 and 20 for the latter). 

Any user in 𝒰 can verify 𝑚𝐴𝜓𝑖  by first computing the decryption parameter using 𝐴’s public 
key and the message hash, 𝑝𝑘𝐴𝑔𝑚𝐴𝜏𝑖  = 𝑔𝑎𝑔𝑚𝐴𝜏𝑖  = 𝑔𝑎+𝑚𝐴𝜏𝑖  , solving 

𝑚𝐴𝑖 𝑍𝑥𝐴𝑖𝑒(𝑔𝑥𝐴𝑖 (𝑎+𝑚𝐴𝜏𝑖) ⁄ ,𝑔𝑎+𝑚𝐴𝜏𝑖 ) = 𝑚𝐴𝑖 , 

then hashing the derived message and comparing it to the given hash. If they match, the 

message if verified. The verification process is formalized in Proposition 21.  



Proposition 18. If 𝐴’s signature is 𝑍𝑠𝑘𝐴, given only 𝑝𝑘𝐴, any user in 𝒰 can trivially compute 𝑍𝑎 and forge messages as if 𝐴. 

Proof. Let 𝐴’s signature be 𝑍𝑠𝑘𝐴 = 𝑍𝑎. Thus, any user (e.g., forger 𝐹 ∈ 𝒰 ≠ 𝐴) can compute 𝑍𝑠𝑘𝐴 = 𝑍𝑎: 𝑒(𝑝𝑘𝐴, 𝑔) = 𝑒(𝑔𝑎, 𝑔) = 𝑒(𝑔, 𝑔)𝑎 = 𝑍𝑎 

Hence, 𝐹 can sign any message 𝑚𝐹∗  as if 𝐴 (𝑚𝐹𝜓∗ = 𝑚𝐹∗ 𝑍𝑎  and 𝐻(𝑚𝐹∗ ) = 𝑚𝐹𝜏∗), which will 

verify as if originating with 𝐴: 𝑚𝐹𝜓∗𝑒(𝑝𝑘𝐴, 𝑔) = 𝑚𝐹∗ 𝑍𝑎𝑒(𝑔𝑎, 𝑔) = 𝑚𝐹∗ 𝑍𝑎𝑒(𝑔, 𝑔)𝑎 = 𝑚𝐹∗ 𝑍𝑎𝑍𝑎 = 𝑚𝐹∗  

As 𝐻(𝑚𝐹∗ ) computed from the derived message is 𝑚𝐹𝜏∗ , the message verifies as if from 𝐴.     ∎ 

Proposition 19. If 𝐴’s public verification parameter incorporates 𝑚𝐴𝜏𝑖  using the power of its 

inverse, any user in 𝒰 can trivially compute 𝑍𝑥𝐴𝑖  and 𝑔𝑥𝐴𝑖 𝑎⁄  (if in possession of a signed 

message from 𝐴) and forge messages as if 𝐴. 

Proof. Let 𝑠𝑘𝐴 = 𝑎 be the secret key for 𝐴 ∈ 𝒰;  𝑥𝐴𝑖  an ephemeral key in ℤ𝑞 such that 𝑥𝐴𝑖 ≠𝑎, 𝑘𝐴𝑖 , 𝑙𝐴; 𝑚𝐴𝜓𝑖 = 𝑚𝐴𝑖 𝑍𝑥𝐴𝑖  the signed message; 𝑝𝑘𝐴 = 𝑔𝑎 the public key for 𝐴; 𝐻(𝑚𝐴𝑖 ) = 𝑚𝐴𝜏𝑖  the 

message hash; and (𝑔𝑥𝐴𝑖 𝑠𝑘𝐴⁄ )−𝑚𝐴𝜏𝑖 = 𝑔𝑥𝐴𝑖 𝑎𝑚𝐴𝜏𝑖⁄  (which incorporates the hash using the power 

of its inverse) the public verification parameter. Thus, any user (e.g., forger 𝐹 ∈ 𝒰 ≠ 𝐴) can 

compute 𝑍𝑥𝐴𝑖  and 𝑔𝑥𝐴𝑖 𝑎⁄  if in possession of a signed message from 𝐴: 𝑒 (𝑔𝑥𝐴𝑖 𝑎𝑚𝐴𝜏𝑖⁄ , 𝑝𝑘𝐴𝑚𝐴𝜏𝑖 ) = 𝑒 (𝑔𝑥𝐴𝑖 𝑎𝑚𝐴𝜏𝑖⁄ , 𝑔𝑎𝑚𝐴𝜏𝑖 ) = 𝑒(𝑔, 𝑔)𝑥𝐴𝑖 𝑎𝑚𝐴𝜏𝑖 𝑎𝑚𝐴𝜏𝑖⁄ = 𝑍𝑥𝐴𝑖  𝐹 then removes the message binding from the public verification parameter: 

(𝑔𝑥𝐴𝑖 𝑎𝑚𝐴𝜏𝑖⁄ )𝑚𝐴𝜏𝑖 = 𝑔𝑥𝐴𝑖 𝑚𝐴𝜏𝑖 𝑎𝑚𝐴𝜏𝑖⁄ = 𝑔𝑥𝐴𝑖 𝑎⁄  

𝐹 can now forge any message 𝑚𝐹∗  as if 𝐴 (𝑚𝐹𝜓∗ = 𝑚𝐹∗ 𝑍𝑥𝐴𝑖 , 𝐻(𝑚𝐹∗ ) = 𝑚𝐹𝜏∗ , and (𝑔𝑥𝐴𝑖 𝑎⁄ )−𝑚𝐹𝜏∗ =𝑔𝑥𝐴𝑖 𝑎𝑚𝐹𝜏∗⁄ ), which will verify as if originating with 𝐴: 𝑚𝐹𝜓∗𝑒 (𝑔𝑥𝐴𝑖 𝑎𝑚𝐹𝜏∗⁄ , 𝑝𝑘𝐴𝑚𝐹𝜏∗ ) = 𝑚𝐹∗ 𝑍𝑥𝐴𝑖  𝑒 (𝑔𝑥𝐴𝑖 𝑎𝑚𝐹𝜏∗⁄ , 𝑔𝑎𝑚𝐹𝜏∗ ) = 𝑚𝐹∗ 𝑍𝑥𝐴𝑖  𝑒(𝑔, 𝑔)𝑥𝐴𝑖 𝑎𝑚𝐹𝜏∗ 𝑎𝑚𝐹𝜏∗⁄ 𝑚𝐹∗ 𝑍𝑥𝐴𝑖𝑍𝑥𝐴𝑖 = 𝑚𝐹∗  

As 𝐻(𝑚𝐹∗ ) computed from the derived message is 𝑚𝐹𝜏∗ , the message verifies as if from 𝐴.     ∎ 

 



Proposition 20. Incorporating the hash using the sum of 𝑠𝑘𝐴 and 𝑚𝐴𝜏𝑖 , (resulting in 𝑔𝑥𝐴𝑖 (𝑎+𝑚𝐴𝜏𝑖)⁄
), prevents forging of message signatures without knowledge of 𝑠𝑘𝐴 and 𝑥𝐴𝑖 . 

Proof. Let 𝑠𝑘𝐴 = 𝑎 be the secret key for 𝐴 ∈ 𝒰;  𝑥𝐴𝑖  an ephemeral key in ℤ𝑞 such that 𝑥𝐴𝑖 ≠𝑎, 𝑘𝐴𝑖 , 𝑙𝐴; 𝑚𝐴𝜓𝑖 = 𝑚𝐴𝑖 𝑍𝑥𝐴𝑖  the signed message; 𝑝𝑘𝐴 = 𝑔𝑎 the public key for 𝐴; 𝐻(𝑚𝐴𝑖 ) = 𝑚𝐴𝜏𝑖  the 

message hash; 𝑔 a public parameter; and 𝑔𝑥𝐴𝑖 (𝑠𝑘𝐴+𝐻(𝑚𝐴𝑖 ))⁄ = 𝑔𝑥𝐴𝑖 (𝑎+𝑚𝐴𝜏𝑖)⁄
  (which 

incorporates the hash using the sum of 𝑠𝑘𝐴 and 𝑚𝐴𝜏𝑖) the public verification parameter. 

Thus, only users with knowledge of 𝑠𝑘𝐴 and 𝑥𝐴𝑖  can sign messages as 𝐴: 

(𝑔𝑥𝐴𝑖 )−(𝑠𝑘𝐴+𝐻(𝑚𝐴𝑖 )) = (𝑔𝑥𝐴𝑖 )−(𝑎+𝑚𝐴𝜏𝑖) = 𝑔𝑥𝐴𝑖 (𝑎+𝑚𝐴𝜏𝑖)⁄
 

Even though any user (e.g., forger 𝐹 ∈ 𝒰 ≠ 𝐴) can compute 𝑍𝑥𝐴𝑖 , which is used to encrypt 

the forged message 𝑚𝐹∗  (𝑚𝐹∗ 𝑍𝑥𝐴𝑖 ): 𝑒 (𝑔𝑥𝐴𝑖 (𝑎+𝑚𝐴𝜏𝑖)⁄ , 𝑝𝑘𝐴𝑔𝑚𝐴𝜏𝑖 ) = 𝑒 (𝑔𝑥𝐴𝑖 (𝑎+𝑚𝐴𝜏𝑖)⁄ , 𝑔𝑎𝑔𝑚𝐴𝜏𝑖 ) = 𝑒 (𝑔𝑥𝐴𝑖 (𝑎+𝑚𝐴𝜏𝑖)⁄ , 𝑔𝑎+𝑚𝐴𝜏𝑖 )                                                                   = 𝑒(𝑔, 𝑔)𝑥𝐴𝑖 (𝑎+𝑚𝐴𝜏𝑖) (𝑎+𝑚𝐴𝜏𝑖)⁄ = 𝑍𝑥𝐴𝑖                                                         𝐹 does not possess 𝑠𝑘𝐴 or 𝑥𝐴𝑖  and therefore cannot generate a valid public verification 

parameter. Hence, signed messages cannot be forged using the sum approach.                       ∎ 

Proposition 21. The signed message 𝑚𝐴𝜓𝑖  is verifiable to any user in 𝒰 given 𝑝𝑘𝐴, a 

message hash 𝑚𝐴𝜏𝑖 , and a public verification parameter 𝑔𝑥𝐴𝑖 (𝑎+𝑚𝐴𝜏𝑖)⁄
; the output of which is 

the verification set 𝑚𝐴𝜐𝑖 . 
Proof. Let 𝑠𝑘𝐴 = 𝑎 be the secret key for 𝐴 ∈ 𝒰; 𝑥𝐴𝑖  an ephemeral key in ℤ𝑞 such that 𝑥𝐴𝑖 ≠𝑎, 𝑘𝐴𝑖 , 𝑙𝐴; 𝑚𝐴𝜓𝑖 = 𝑚𝐴𝑖 𝑍𝑥𝐴𝑖  the signed message; 𝑝𝑘𝐴 = 𝑔𝑎 the public key for 𝐴; 𝐻(𝑚𝐴𝑖 ) = 𝑚𝐴𝜏𝑖  the 

message hash; 𝑔 a public parameter; and 𝑔𝑥𝐴𝑖 (𝑠𝑘𝐴+𝐻(𝑚𝐴𝑖 ))⁄ = 𝑔𝑥𝐴𝑖 (𝑎+𝑚𝐴𝜏𝑖)⁄
 the public 

verification parameter. Thus: 

  
𝑚𝐴𝜓𝑖𝑒 (𝑔𝑥𝐴𝑖 (𝑠𝑘𝐴+𝐻(𝑚𝐴𝑖 ))⁄ , 𝑝𝑘𝐴𝑔𝑚𝐴𝜏𝑖 ) = 𝑚𝐴𝑖 𝑍𝑥𝐴𝑖  𝑒 (𝑔𝑥𝐴𝑖 (𝑎+𝑚𝐴𝜏𝑖)⁄ , 𝑔𝑎𝑔𝑚𝐴𝜏𝑖 ) = 𝑚𝐴𝑖 𝑍𝑥𝐴𝑖  𝑒 (𝑔𝑥𝐴𝑖 (𝑎+𝑚𝐴𝜏𝑖)⁄ , 𝑔𝑎+𝑚𝐴𝜏𝑖 )                                                       = 𝑚𝐴𝑖 𝑍𝑥𝐴𝑖  𝑒(𝑔, 𝑔)𝑥𝐴𝑖 (𝑎+𝑚𝐴𝜏𝑖) (𝑎+𝑚𝐴𝜏𝑖)⁄ = 𝑚𝐴𝑖 𝑍𝑥𝐴𝑖  𝑍𝑥𝐴𝑖 = 𝑚𝐴𝑖                         

                                                  𝑚𝐴𝜐𝑖 = {{valid, 𝑚𝐴𝑖 },     if 𝐻(𝑚𝐴𝑖 ) = 𝑚𝐴𝜏𝑖  {invalid, ∅},    if 𝐻(𝑚𝐴𝑖 ) ≠ 𝑚𝐴𝜏𝑖                                                  ∎
 

This is trivially extended to an incremental storage configuration. 



D – Encrypt-Sign and Decrypt-Verify Scheme 

The sign-verify allows any user to verify the signed message 𝑚𝐴𝜓𝑖 . This limits it use to public 

messages only, as one cannot designate a recipient of 𝑚𝐴𝜓𝑖  for verification. Consider the 

following example. 𝐴 would like to send 𝐵 a private message and 𝐵 wants confirmation it is 

indeed from 𝐴. 𝐴 can sign the message and send it to 𝐵, but anyone able to intercept 𝑚𝐴𝜓𝑖  
can retrieve 𝑚𝐴𝑖 ; hence, 𝑚𝐴𝑖  is not secured. The solution is for 𝐴 to encrypt the signed 

message using 𝑝𝑘𝐵. As only the holder of 𝑠𝑘𝐵 can decrypt the resulting cipher, 𝐴 is 

relatively certain 𝐵 alone has access to the message. 𝐵 can then verify the authenticity of 

the message. The encrypt-sign and decrypt-verify processes can be achieved 

simultaneously with a simple modification to the sign-verify functions. 

To encrypt-sign a message, 𝐴 incorporates 𝑝𝑘𝐵  into the computation of the public 

verification parameter: 𝑝𝑘𝐵𝑥𝐴𝑖 (𝑠𝑘𝐴+𝐻(𝑚𝐴𝑖 ))⁄ = 𝑔𝑏𝑥𝐴𝑖 (𝑎+𝑚𝐴𝜏𝑖)⁄
. The verification of the encrypt-

signed cipher 𝑐𝐴𝜓𝑖 = 𝑚𝐴𝑖 𝑍𝑥𝐴𝑖   requires 𝑠𝑘𝐵  in addition to 𝑝𝑘𝐴 (refer to Proposition 22). As 

such, this configuration ensures only 𝐵 can decrypt the message and it must have 

originated with 𝐴.  

Proposition 22. The encrypt-signed message 𝑐𝐴𝜓𝑖 can only be decrypt-verified by 𝐵 if 

signed by 𝐴; the output of which is the decrypt-verified set 𝑚𝐴𝜐𝑖 . 
Proof. Let 𝑠𝑘𝐵 = 𝑏 be the secret key for 𝐵 ∈ 𝒰, 𝑥𝐴𝑖  an ephemeral key in ℤ𝑞 such that 𝑥𝐴𝑖 ≠𝑎, 𝑘𝐴𝑖 , 𝑙𝐴, 𝑐𝐴𝜓𝑖 = 𝑚𝐴𝑖 𝑍𝑥𝐴𝑖  the encrypt-signed cipher, 𝑝𝑘𝐴 = 𝑔𝑎 the public key for 𝐴, 𝑝𝑘𝐵 = 𝑔𝑏  

the public key for 𝐵, 𝐻(𝑚𝐴𝑖 ) = 𝑚𝐴𝜏𝑖  the message hash, 𝑔 a public parameter, and 𝑔𝑝𝑘𝐵𝑥𝐴𝑖 (𝑠𝑘𝐴+𝐻(𝑚𝐴𝑖 ))⁄ = 𝑔𝑏𝑥𝐴𝑖 (𝑎+𝑚𝐴𝜏𝑖)⁄
 the public verification parameter. Thus: 𝑐𝐴𝜓𝑖𝑒 (𝑔𝑝𝑘𝐵𝑥𝐴𝑖 (𝑠𝑘𝐴+𝐻(𝑚𝐴𝑖 ))⁄ , 𝑝𝑘𝐴𝑔𝑚𝐴𝜏𝑖 )−𝑠𝑘𝐵 = 𝑚𝐴𝑖 𝑍𝑥𝐴𝑖  𝑒 (𝑔𝑏𝑥𝐴𝑖 (𝑎+𝑚𝐴𝜏𝑖)⁄ , 𝑔𝑎𝑔𝑚𝐴𝜏𝑖 )−𝑏               

                              = 𝑚𝐴𝑖 𝑍𝑥𝐴𝑖  𝑒 (𝑔𝑏𝑥𝐴𝑖 (𝑎+𝑚𝐴𝜏𝑖)⁄ , 𝑔𝑎+𝑚𝐴𝜏𝑖 )−𝑏 = 𝑚𝐴𝑖 𝑍𝑥𝐴𝑖  𝑒(𝑔, 𝑔)𝑏𝑥𝐴𝑖 (𝑎+𝑚𝐴𝜏𝑖) 𝑏(𝑎+𝑚𝐴𝜏𝑖)⁄ = 𝑚𝐴𝑖 𝑍𝑥𝐴𝑖  𝑍𝑥𝐴𝑖 = 𝑚𝐴𝑖  
                                                 𝑚𝐴𝜐𝑖 = {{valid, 𝑚𝐴𝑖 },    if 𝐻(𝑚𝐴𝑖 ) = 𝑚𝐴𝜏𝑖  {invalid, ∅},    if 𝐻(𝑚𝐴𝑖 ) ≠ 𝑚𝐴𝜏𝑖                                                     ∎

 

This is trivially extended to an incremental storage configuration. 
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