
A Blocking Algorithm for Parallel 1-D FFT
on Clusters of PCs

Daisuke Takahashi, Taisuke Boku, and Mitsuhisa Sato

Center for Computational Physics, Institute of Information Sciences and Electronics,
University of Tsukuba, 1-1-1 Tennodai, Tsukuba-shi, Ibaraki 305-8577, Japan,

{daisuke,taisuke,msato}@is.tsukuba.ac.jp

Abstract. In this paper, we propose a blocking algorithm for a par-
allel one-dimensional fast Fourier transform (FFT) on clusters of PCs.
Our proposed parallel FFT algorithm is based on the six-step FFT algo-
rithm. The six-step FFT algorithm can be altered into a block nine-step
FFT algorithm to reduce the number of cache misses. The block nine-
step FFT algorithm improves performance by utilizing the cache mem-
ory effectively. We use the block nine-step FFT algorithm to design the
parallel one-dimensional FFT algorithm. In our proposed parallel FFT
algorithm, since we use cyclic distribution, all-to-all communication is
required only once. Moreover, the input data and output data are both
can be given in natural order. We successfully achieved performance of
over 1.3GFLOPS on an 8-node dual Pentium III 1GHz PC SMP cluster.

1 Introduction

The fast Fourier transform (FFT) [1] is an algorithm widely used today in sci-
ence and engineering. Parallel FFT algorithms on distributed-memory parallel
computers have been well studied [2,3,4,5,6].

Many FFT algorithms work well when data sets fit into a cache. When a
problem size exceeds the cache size, however, the performance of these FFT
algorithms decreases dramatically. The key issue of the design for large FFTs is
to minimize the number of cache misses.

In this paper, we propose a blocking algorithm for a parallel one-dimensional
FFT algorithm on clusters of PCs.

Our proposed parallel one-dimensional FFT algorithm is based on the six-
step FFT algorithm [7,8]. The six-step FFT algorithm requires two multicolumn
FFTs and three data transpositions. The three transpose steps typically are the
chief bottlenecks in cache-based processors.

Some previously presented six-step FFT algorithms [8,9] separate the multi-
column FFTs from the transpositions.

Taking the opposite approach, we combine the multicolumn FFTs and trans-
positions to reduce the number of cache misses, and we modify the six-step FFT
algorithm to reuse data in the cache memory [10]. We call this a block six-step
FFT algorithm. The block six-step FFT algorithm can be altered into a block

B. Monien and R. Feldmann (Eds.): Euro-Par 2002, LNCS 2400, pp. 691–700.
c© Springer-Verlag Berlin Heidelberg 2002

692 D. Takahashi, T. Boku, and M. Sato

nine-step FFT algorithm to reduce the number of cache misses. We use the block
nine-step FFT algorithm to design the parallel one-dimensional FFT algorithm.

We have implemented the block nine-step FFT-based parallel one-dimensional
FFT algorithm on an 8-node dual Pentium III 1 GHz PC SMP cluster, and we
report the performance in this paper.

The rest of the paper is organized as follows. Section 2 describes the six-step
FFT algorithm. In section 3, we propose a nine-step FFT algorithm. Section 4,
we propose a block nine-step FFT algorithm used for problems that exceed the
cache size. Section 5, we propose a parallel FFT algorithm based on the block
nine-step FFT. Section 6 describes the in-cache FFT algorithm used for problems
that fit into a data cache. Section 7 gives performance results. In section 8, we
present some concluding remarks.

2 The Six-Step FFT

The discrete Fourier transform (DFT) is given by

yk =
n−1∑

j=0

xjω
jk
n , 0 ≤ k ≤ n − 1, (1)

where ωn = e−2πi/n and i =
√−1.

If n has factors n1 and n2 (n = n1 × n2), then the indices j and k can be
expressed as:

j = j1 + j2n1, k = k2 + k1n2. (2)

We can define x and y as two-dimensional arrays (in Fortran notation):

xj = x(j1, j2), 0 ≤ j1 ≤ n1 − 1, 0 ≤ j2 ≤ n2 − 1, (3)
yk = y(k2, k1), 0 ≤ k1 ≤ n1 − 1, 0 ≤ k2 ≤ n2 − 1. (4)

Substituting the indices j and k in equation (1) with those in equation (2),
and using the relation of n = n1 × n2, we can derive the following equation:

y(k2, k1) =
n1−1∑

j1=0

n2−1∑

j2=0

x(j1, j2)ωj2k2
n2

ωj1k2
n1n2

ωj1k1
n1

. (5)

This derivation leads to the following six-step FFT algorithm [7,8]:

Step 1: Transpose
x1(j2, j1) = x(j1, j2).

Step 2: n1 individual n2-point multicolumn FFTs

x2(k2, j1) =
n2−1∑

j2=0

x1(j2, j1)ωj2k2
n2

.

Step 3: Twiddle-factor multiplication

A Blocking Algorithm for Parallel 1-D FFT on Clusters of PCs 693

x3(k2, j1) = x2(k2, j1)ωj1k2
n1n2

.

Step 4: Transpose
x4(j1, k2) = x3(k2, j1).

Step 5: n2 individual n1-point multicolumn FFTs

x5(k1, k2) =
n1−1∑

j1=0

x4(j1, k2)ωj1k1
n1

.

Step 6: Transpose
y(k2, k1) = x5(k1, k2).

The distinctive features of the six-step FFT algorithm can be summarized
as:

– Two multicolumn FFTs are performed, one in step 2 and the other in step
5. Each column FFT is small enough to fit into the data cache.

– The six-step FFT algorithm has three transpose steps, which typically are
the chief bottlenecks in cache-based processors.

In order to reduce the number of cache misses, the block six-step FFT algo-
rithm has been proposed [10].

3 A Nine-Step FFT Algorithm

We can extend the six-step FFT algorithm in another way into a three-dimensional
formulation. If n has factors n1, n2 and n3 (n = n1n2n3), then the indices j and
k can be expressed as:

j = j1 + j2n1 + j3n1n2,
k = k3 + k2n3 + k1n2n3.

(6)

We can define x and y as three-dimensional arrays (in Fortran notation), e.g.,

xj = x(j1, j2, j3), 0 ≤ j1 ≤ n1 − 1,

0 ≤ j2 ≤ n2 − 1, 0 ≤ j3 ≤ n3 − 1, (7)
yk = y(k3, k2, k1), 0 ≤ k1 ≤ n1 − 1,

0 ≤ k2 ≤ n2 − 1, 0 ≤ k3 ≤ n3 − 1. (8)

Substituting the indices j and k in equation (1) by those in equation (6) and
using the relation of n = n1n2n3, we can derive the following equation:

y(k3, k2, k1) =
n1−1∑

j1=0

n2−1∑

j2=0

n3−1∑

j3=0

x(j1, j2, j3)ωj3k3
n3

ωj2k3
n2n3

ωj2k2
n2

ωj1k3
n ωj1k2

n1n2
ωj1k1

n1
. (9)

694 D. Takahashi, T. Boku, and M. Sato

This derivation leads to the following nine-step FFT:

Step 1: Transpose
x1(j3, j1, j2) = x(j1, j2, j3).

Step 2: n1n2 individual n3-point multicolumn FFTs

x2(k3, j1, j2) =
n3−1∑

j3=0

x1(j3, j1, j2)ωj3k3
n3

.

Step 3: Twiddle-factor multiplication
x3(k3, j1, j2) = x2(k3, j1, j2)ωj2k3

n2n3
.

Step 4: Transpose
x4(j2, j1, k3) = x3(k3, j1, j2).

Step 5: n1n3 individual n2-point multicolumn FFTs

x5(k2, j1, k3) =
n2−1∑

j2=0

x4(j2, j1, k3)ωj2k2
n2

.

Step 6: Twiddle-factor multiplication
x6(k2, j1, k3) = x5(k2, j1, k3)ωj1k3

n ωj1k2
n1n2

.

Step 7: Transpose
x7(j1, k2, k3) = x6(k2, j1, k3).

Step 8: n2n3 individual n1-point multicolumn FFTs

x8(k1, k2, k3) =
n1−1∑

j1=0

x7(j1, k2, k3)ωj1k1
n1

.

Step 9: Transpose
y(k3, k2, k1) = x8(k1, k2, k3).

The distinctive features of the nine-step FFT algorithm can be summarized
as:

– Three multicolumn FFTs are performed in steps 2, 5 and 8. The locality
of the memory reference in the multicolumn FFT is high. Therefore, the
nine-step FFT is suitable for cache-based processors because of the high
performance which can be obtained with high hit rates in the cache memory.

– The matrix transposition takes place four times.

For extremely large FFTs, we should switch to a four-dimensional formula-
tion and higher approaches.

4 A Block Nine-Step FFT Algorithm

We combine the multicolumn FFTs and transpositions to reduce the number of
cache misses, and we modify the nine-step FFT algorithm to reuse data in the

A Blocking Algorithm for Parallel 1-D FFT on Clusters of PCs 695

COMPLEX*16 X(N1,N2,N3),Y(N3,N2,N1)
COMPLEX*16 U2(N3,N2),U3(N1,N2,N3)
COMPLEX*16 YWORK(N2+NP,NB),ZWORK(N3+NP,NB)
DO J=1,N2

DO II=1,N1,NB
DO KK=1,N3,NB

DO I=II,II+NB-1
DO K=KK,KK+NB-1

ZWORK(K,I-II+1)=X(I,J,K)
END DO

END DO
END DO
DO I=1,NB

CALL IN CACHE FFT(ZWORK(1,I),N3)
END DO
DO K=1,N3

DO I=II,II+NB-1
X(I,J,K)=ZWORK(K,I-II+1)*U2(K,J)

END DO
END DO

END DO
END DO
DO K=1,N3

DO II=1,N1,NB
DO JJ=1,N2,NB

DO I=II,II+NB-1
DO J=JJ,JJ+NB-1

YWORK(J,I-II+1)=X(I,J,K)
END DO

END DO
END DO
DO I=1,NB

CALL IN CACHE FFT(YWORK(1,I),N2)
END DO
DO J=1,N2

DO I=II,II+NB-1
X(I,J,K)=YWORK(J,I-II+1)*U3(I,J,K)

END DO
END DO

END DO
DO J=1,N2

CALL IN CACHE FFT(X(1,J,K),N1)
END DO

END DO
DO II=1,N1,NB

DO JJ=1,N2,NB
DO KK=1,N3,NB

DO I=II,II+NB-1
DO J=JJ,JJ+NB-1

DO K=KK,KK+NB-1
Y(K,J,I)=X(I,J,K)

END DO
END DO

END DO
END DO

END DO
END DO

Fig. 1. A Block Nine-Step FFT Algorithm

cache memory. As in the nine-step FFT above, it is assumed in the following
that n = n1n2n3 and that nb is the block size. We assume that each processor
has a multi-level cache memory. A block nine-step FFT algorithm can be stated
as follows.

1. Consider the data in main memory as an n1×n2×n3 complex array X. Fetch
and transpose the data nb rows at a time into an n3 × nb work array ZWORK.
The n3 × nb work array ZWORK fits into the L2 cache.

2. For each nb columns, perform nb individual n3-point multicolumn FFTs on
the n3 × nb array ZWORK in the L2 cache. Each column FFT fits into the L1
data cache.

3. Multiply the resulting data in each of the n3 × nb complex matrices by the
twiddle factors U2. Then transpose each of the resulting n3 × nb matrices,
and return the resulting nb rows to the same locations in the main memory
from which they were fetched.

4. Fetch and transpose the data nb rows at a time into an n2 × nb work array
YWORK.

5. Perform nb individual n2-point multicolumn FFTs on the n2×nb work array
YWORK in the L2 cache. Each column FFT fits into the L1 data cache.

6. Multiply the resulting data in each of the n2 × nb complex matrices by the
twiddle factors U3. Then transpose each of the resulting n2 × nb matrices,
and return the resulting nb rows to the same locations in the main memory
from which they were fetched.

696 D. Takahashi, T. Boku, and M. Sato

7. Perform n3n2 individual n1-point multicolumn FFTs on the n1 × n2 × n3
array X. Each column FFT fits into the L1 data cache.

8. Transpose and store the resulting data on an n3 × n2 × n1 complex matrix.

We note that this algorithm is a three-pass algorithm. Fig. 1 gives the pseudo-
code for this block nine-step FFT algorithm. Here the twiddle factors ωj2k3

n2n3

and ωj1k3
n ωj1k2

n1n2
are stored in arrays U2 and U3, respectively. The arrays YWORK

and ZWORK are the work arrays. The parameters NB and NP are the blocking
parameter and the padding parameter, respectively. If an out-of-place algorithm
(e.g. Stockham autosort algorithm [11]) is used for the individual FFTs, the
additional scratch requirement for performing the individual FFTs in steps 2, 5
and 7 is O(n1/3) at most.

If we do not require an ordered transform, the n3 × n2 × n1 complex matrix
(the array Y in Fig. 1) and the transposition in step 8 can be omitted.

5 Parallel FFT Algorithm
Based on the Block Nine-Step FFT

We can adopt the idea of the block nine-step FFT as described in section 4.
Let N have factors N1, N2 and N3 (N = N1 × N2 × N3). The original one-

dimensional array x(N) can be defined as a three-dimensional array x(N1,N2,N3)
(in Fortran notation). On a distributed-memory parallel computer which has P
nodes, the array x(N1, N2, N3) is distributed along the first dimension N1. If
N1 is divisible by P , each node has distributed data of size N/P . We introduce
the notation N̂r ≡ Nr/P and we denote the corresponding index as Ĵr which
indicates that the data along Jr are distributed across all P nodes. Here, we
use the subscript r to indicate that this index belongs to dimension r. The
distributed array is represented as x̂(N̂1, N2, N3). At node m, the local index
Ĵr(m) corresponds to the global index as the cyclic distribution:

Jr = Ĵr(m) × P + m, 0 ≤ m ≤ P − 1, 1 ≤ r ≤ 3. (10)

To illustrate the all-to-all communication it is convenient to decompose Ni into
two dimensions Ñi and Pi, where Ñi ≡ Ni/Pi. Although Pi is the same as P ,
we are using the subscript i to indicate that this index belongs to dimension i.

Starting with the initial data x̂(N̂1, N2, N3), the nine-step FFT-based par-
allel FFT can be performed according to the following steps:

Step 1: Transpose
x̂1(J3, Ĵ1, J2) = x̂(Ĵ1, J2, J3).

Step 2: (N1/P) · N2 individual N3-point multicolumn FFTs

x̂2(K3, Ĵ1, J2) =
N3−1∑

J3=0

x̂1(J3, Ĵ1, J2)ωJ3K3
N3

.

Step 3: Twiddle-factor multiplication and rearrangement

A Blocking Algorithm for Parallel 1-D FFT on Clusters of PCs 697

x̂3(Ĵ1, J2, K̃3, P3) = x̂2(P3, K̃3, Ĵ1, J2)ωJ2K3
N2N3

≡ x̂2(K3, Ĵ1, J2)ωJ2K3
N2N3

.

Step 4: All-to-all communication
x̂4(J̃1, J2, K̂3, P1) = x̂3(Ĵ1, J2, K̃3, P3).

Step 5: Rearrangement
x̂5(J2, J̃1, K̂3, P1) = x̂4(J̃1, J2, K̂3, P1).

Step 6: N1 · (N3/P) individual N2-point multicolumn FFTs

x̂6(K2, J̃1, K̂3, P1) =
N2−1∑

J2=0

x̂5(J2, J̃1, K̂3, P1)ωJ2K2
N2

.

Step 7: Twiddle-factor multiplication and rearrangement
x̂7(J1, K2, K̂3) ≡ x̂7(P1, J̃1, K2, K̂3)

= x̂6(K2, J̃1, K̂3, P1)ω
J1(K̂3+K2N3)
N .

Step 8: N2 · (N3/P) individual N1-point multicolumn FFTs

x̂8(K1, K2, K̂3) =
N1−1∑

J1=0

x̂7(J1, K2, K̂3)ωJ1K1
N1

.

Step 9: Transpose
ŷ(K̂3, K2, K1) = x̂8(K1, K2, K̂3).

The distinctive features of the nine-step FFT-based parallel FFT algorithm
can be summarized as:

– N2/3/P individual N1/3-point multicolumn FFTs are performed in steps 2,
6 and 8 for the case of N1 = N2 = N3 = N1/3.

– The all-to-all communication occurs just once. Moreover, the input data x
and the output data y are both can be given natural order.

If both of N1 and N3 are divisible by P , the workload on each node is also
uniform.

6 In-Cache FFT Algorithm

We use the radix-2, 4 and 8 Stockham autosort algorithm for in-cache FFTs.
Table 1 shows the number of operations required for radix-2, 4 and 8 FFT

kernels on Pentium III processor. The higher radices are more efficient in terms
of both memory and floating-point operations. A high ratio of floating-point
instructions to memory operations is particularly important in a cache-based
processor. In view of the high ratio of floating-point instructions to memory
operations, the radix-8 FFT is more advantageous than the radix-4 FFT. A
power-of-two FFT (except for 2-point FFT) can be performed by a combination
of radix-8 and radix-4 steps containing at most two radix-4 steps. That is, the
power-of-two FFTs can be performed as a length n = 2p = 4q8r (p ≥ 2, 0 ≤ q ≤
2, r ≥ 0).

698 D. Takahashi, T. Boku, and M. Sato

Table 1. Real inner-loop operations for radix-2, 4 and 8 FFT kernels based on the
Stockham autosort algorithm on Pentium III processor

Radix-2 Radix-4 Radix-8
Loads and stores 8 16 32
Multiplications 4 12 32
Additions 6 22 66
Total floating-point operations (n log2 n) 5.000 4.250 4.083
Floating-point instructions 10 34 98
Floating-point/memory ratio 1.250 2.125 3.063

7 Performance Results

To evaluate the block nine-step FFT-based parallel FFT, we compared its per-
formance against that of the block nine-step FFT-based parallel FFT and that
of the FFT library of the FFTW (version 2.1.3) [12] which is known as one of
the fastest FFT libraries for many processors. We averaged the elapsed times
obtained from 10 executions of complex forward FFTs. These parallel FFTs were
performed on double-precision complex data and the table for twiddle factors
was prepared in advance.

An 8-node dual Pentium III 1 GHz PC SMP cluster (i840 chipset, 1 GB
RDRAM main memory per node, Linux 2.2.16) was used. The nodes on the
PC SMP cluster are interconnected through a 1000Base-SX Gigabit Ethernet
switch.

MPICH-SCore [13] was used as a communication library. We used an intra-
node MPI library for the PC SMP cluster.

For the block nine-step FFT-based parallel FFT, the compiler used was g77
version 2.95.2. For the FFTW, the compiler used was gcc version 2.95.2.

Table 2 compares the block nine-step FFT-based parallel FFT and the FFTW
in terms of their run times and MFLOPS. The first column of a table indicates
the number of processors. The second column gives the problem size. The next
four columns contain the average elapsed time in seconds and the average exe-
cution performance in MFLOPS. The MFLOPS value is based on 5N log2 N for
a transform of size N = 2m.

Table 3 shows the results of the all-to-all communication timings on the
dual Pentium III PC SMP cluster. The first column of a table indicates the
number of processors. The second column gives the problem size. The next two
columns contain the average elapsed time in seconds and the average bandwidth
in MB/sec.

For N = 226 and P = 8×2, the block nine-step FFT-based parallel FFT runs
about 2.75 times faster than the FFTW, as shown in Table 2.

In Tables 2 and 3, we can clearly see that all-to-all communication overhead
dominates the execution time. Although the FFTW requires three all-to-all com-
munication steps, the block nine-step FFT-based parallel FFT requires only one
all-to-all communication step. Moreover, the performance of the block nine-step

A Blocking Algorithm for Parallel 1-D FFT on Clusters of PCs 699

Table 2. Performance of parallel one-dimensional FFTs on dual Pentium III PC SMP
cluster

P
N

Block Nine-Step FFT FFTW
(Nodes×CPUs) Time MFLOPS Time MFLOPS

1×1 223 5.40606 178.45 10.50152 91.86
1×2 223 3.33968 288.86 7.49437 128.72
2×1 224 7.46566 269.67 16.55127 121.64
2×2 224 4.99214 403.29 11.96556 168.26
4×1 225 8.22695 509.82 17.79209 235.74
4×2 225 6.01907 696.84 15.44108 271.63
8×1 226 8.68712 1004.26 19.33295 451.26
8×2 226 6.58020 1325.82 18.06414 482.95

Table 3. All-to-all communication performance on dual Pentium III PC SMP cluster

P
N Time MB/sec(Nodes×CPUs)

1×2 223 0.46537 72.10
2×1 224 2.18825 30.67
2×2 224 2.00209 25.14
4×1 225 2.48046 40.58
4×2 225 2.60625 22.53
8×1 226 3.01393 38.97
8×2 226 3.46417 18.16

FFT-based parallel FFT remains at a high level even for the larger problem size,
owing to cache blocking. This is the reason why the block nine-step FFT-based
parallel FFT is most advantageous with the dual Pentium III PC SMP cluster.

These results clearly indicate that the block nine-step FFT-based parallel
FFT is superior to the FFTW.

We note that on an 8-node dual Pentium III 1 GHz PC SMP cluster, over
1.3 GFLOPS was realized with size N = 226 in the block nine-step FFT-based
parallel FFT as in Table 2.

8 Conclusion

In this paper, we proposed a blocking algorithm for parallel one-dimensional
FFT on clusters of PCs. We reduced the number of cache misses for the six-step
FFT algorithm. In our proposed parallel FFT algorithm, since we use cyclic
distribution, all-to-all communication is required only once. Moreover, the input
data and output data are both can be given in natural order.

Our block nine-step FFT-based parallel one-dimensional FFT algorithm has
resulted in high-performance one-dimensional parallel FFT transforms suitable
for clusters of PCs. The block nine-step FFT-based parallel FFT is most advan-

700 D. Takahashi, T. Boku, and M. Sato

tageous with processors that have a considerable gap between the speed of the
cache memory and that of the main memory.

We successfully achieved performance of over 1.3 GFLOPS on an 8-node dual
Pentium III 1 GHz PC SMP cluster. The performance results demonstrate that
the block nine-step FFT-based parallel FFT has low communication cost, and
utilize cache memory effectively.

Implementation of the extended split-radix FFT algorithm [?], which has
a lower operation count than radix-8 FFT on clusters of PCs is one of the
important problems for the future.

The proposed block nine-step FFT-based parallel one-dimensional FFT rou-
tines can be obtained in the “FFTE” package at http://www.ffte.jp.

References

1. Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex
Fourier series. Math. Comput. 19 (1965) 297–301

2. Swarztrauber, P.N.: Multiprocessor FFTs. Parallel Computing 5 (1987) 197–210
3. Agarwal, R.C., Gustavson, F.G., Zubair, M.: A high performance parallel algo-

rithm for 1-D FFT. In: Proc. Supercomputing ’94. (1994) 34–40
4. Hegland, M.: A self-sorting in-place fast Fourier transform algorithm suitable for

vector and parallel processing. Numerische Mathematik 68 (1994) 507–547
5. Edelman, A., McCorquodale, P., Toledo, S.: The future fast Fourier transform?

SIAM J. Sci. Comput. 20 (1999) 1094–1114
6. Mirković, D., Johnsson, S, L.: Automatic performance tuning in the UHFFT li-

brary. In: Proc. 2001 International Conference on Computational Science (ICCS
2001). Volume 2073 of Lecture Notes in Computer Science., Springer-Verlag (2001)
71–80

7. Bailey, D.H.: FFTs in external or hierarchical memory. The Journal of Supercom-
puting 4 (1990) 23–35

8. Van Loan, C.: Computational Frameworks for the Fast Fourier Transform. SIAM
Press, Philadelphia, PA (1992)

9. Wadleigh, K.R.: High performance FFT algorithms for cache-coherent multipro-
cessors. The International Journal of High Performance Computing Applications
13 (1999) 163–171

10. Takahashi, D.: A blocking algorithm for FFT on cache-based processors. In: Proc.
9th International Conference on High Performance Computing and Networking
Europe (HPCN Europe 2001). Volume 2110 of Lecture Notes in Computer Sci-
ence., Springer-Verlag (2001) 551–554

11. Swarztrauber, P.N.: FFT algorithms for vector computers. Parallel Computing 1
(1984) 45–63

12. Frigo, M., Johnson, S.G.: The fastest Fourier transform in the west. Technical
Report MIT-LCS-TR-728, MIT Lab for Computer Science (1997)

13. Sumimoto, S., Tezuka, H., Hori, A., Harada, H., Takahashi, T., Ishikawa, Y.: High
performance communication using a commodity network for cluster systems. In:
Proc. Ninth International Symposium on High Performance Distributed Comput-
ing (HPDC-9). (2000) 139–146

14. Takahashi, D.: An extended split-radix FFT algorithm. IEEE Signal Processing
Letters 8 (2001) 145–147

	1 Introduction
	2 The Six-Step FFT
	3 A Nine-Step FFT Algorithm
	4 A Block Nine-Step FFT Algorithm
	5 Parallel FFT Algorithm Based on the Block Nine-Step FFT
	6 In-Cache FFT Algorithm
	7 Performance Results
	8 Conclusion
	References

