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Summary

Treatment of severe COVID-19 is currently limited by clinical heterogeneity and incomplete
understanding of potentially druggable immune mediators of disease. To advance this, we
present a comprehensive multi-omic blood atlas in patients with varying COVID-19 severity and
compare with influenza, sepsis and healthy volunteers. We identify immune signatures and
correlates of host response. Hallmarks of disease severity revealed cells, their inflammatory
mediators and networks as potential therapeutic targets, including progenitor cells and specific
myeloid and lymphocyte subsets, features of the immune repertoire, acute phase response,
metabolism and coagulation. Persisting immune activation involving AP-1/p38MAPK was a
specific feature of COVID-19. The plasma proteome enabled sub-phenotyping into patient
clusters, predictive of severity and outcome. Tensor and matrix decomposition of the overall
dataset revealed feature groupings linked with disease severity and specificity. Our systems-
based integrative approach and blood atlas will inform future drug development, clinical trial
design and personalised medicine approaches for COVID-19.
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Introduction

The pathophysiology associated with severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) reflects a complex interplay between virus induced lung pathology and maladaptive host
immune responses (Kuri-Cervantes et al., 2020; Mathew et al., 2020; Tay et al., 2020; Vabret et
al., 2020). Severe COVID-19 is characterised by hypoxia, with the risk of rapid deterioration
which may require intensive care support and, in some patients, progression to acute respiratory
distress syndrome, multiorgan failure and death. Predisposing factors include age, gender,
ethnicity, obesity and comorbidities. Currently, opportunities for biomarker-led timed and
targeted precision medicine approaches are limited by an incomplete understanding of
pathogenesis and heterogeneity among patients with severe disease (Wynants et al., 2020). A
dysregulated hyperinflammatory state occurs in some individuals (Moore and June, 2020),
consistent with reported benefits from glucocorticoids (dexamethasone) and inhibitors of the IL-6
receptor (tocilizumab/sarilumab) and Janus kinases (baricitinib) in severe disease (Gordon et al.,
2021; Horby et al., 2021a; Horby et al., 2021b; Kalil et al., 2021). Nevertheless, blood-derived
signatures of COVID-19 severity are diverse, including evidence of immune suppression,
myeloid dysfunction, lymphopenia, interferon driven immunopathology, T cell activation as well
as exhaustion, and immune senescence (Bost et al., 2021; Chen and Wherry, 2020; Diao et al.,
2020; Hadjadj et al., 2020; Mann et al., 2020; Schulte-Schrepping et al., 2020). In the lung,
widespread neutrophil and macrophage infiltration, T cell cytokine production and alveolitis are
seen with features of altered redox balance, endothelial damage and thrombosis (Grant et al.,
2021). Here, through the COvid-19 Multi-omics Blood ATlas (COMBAT) consortium, we
characterise COVID-19 of varying severity and establish shared and specific features in
comparison with severe influenza and non-SARS-CoV-2 sepsis. We demonstrate the
informativeness of data-driven, systems biology approaches to identify cells, mediators and
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pathways that are hallmarks of increasing severity, and to define potential therapeutic targets
and biomarkers of the variable individual response to SARS-CoV-2 infection.

Results

Clinical features, severity metrices and disease stratification in COVID-19

To characterise the peripheral blood response to COVID-19 we analysed a prospective cohort of
adult patients with confirmed SARS-CoV-2 presenting to clinical services at the start of the
United Kingdom pandemic (February-March 2020). We recruited 116 hospitalised COVID-19
patients following informed consent at a single site (Oxford University Hospitals) (Table S2). The
overall mortality rate was 23.3%. Samples were collected during the acute admission and, in
survivors from 28 days after discharge (convalescent samples). We compared these patients
with community COVID-19 cases in the recovery phase (never admitted to hospital), age-
matched healthy volunteers, influenza cases requiring mechanical ventilation (critically ill
receiving intensive care), and all-cause sepsis patients (hospitalised encompassing severe and
critical disease) recruited prior to the pandemic (Figure 1A; Table S2; Star Methods).

We computed a correlation matrix of all clinical features for our hospitalised COVID-19 cohort,
including severity scores and surrogate markers of illness response, to inform rational use in
downstream cellular and molecular phenotyping (Figure S1A-C; Table S2; Star Methods). There
were positive correlations (spearman’s rho >0.5) between markers of severity based on WHO
severity scales, oxygenation status, ventilation status, Sequential Organ Failure Assessment
(SOFA) oxygenation score, vasopressor use, length of intensive care unit (ICU) stay, days on
mechanical ventilation, C-reactive protein (CRP) and neutrophil count (Figure S1C). We further
investigated covariance of patient and clinical features using unsupervised machine learning to
understand clinically derived patient groupings (Star Methods). We found that the optimal cluster
number for hospitalised cases was 2 or 3, and these showed broad concordance to the first
released WHO categorical criteria, namely mild (no requirement for supplemental oxygen),
severe (oxygen saturation SaO, <=93% on air but not requiring mechanical ventilation) and
critical (requiring mechanical ventilation) (Figure S1D). This clustering finding persisted when we
restricted the analysis to acute measures of physiology and clinical biomarkers, where the main
correlates of consensus clustering related to ventilation status (Figure S1E-F). Accordingly,
hereinafter we refer to WHO categorical criteria as our primary hospitalised COVID-19 severity
comparator groups.

COVID-19 severity is associated with differences in abundance of diverse immune cell
populations

We first investigated changes in cellular composition associated with COVID-19 severity. In this
differential abundance analysis, we used one sample per patient. For patients with more than
one time point of sampling, the sample closest to onset of maximal disease as defined by clinical
features at the time of sampling was selected. In this ‘prioritised sample set’, we found increased
neutrophil, and reduced T and B lymphocytes, measured in terms of both relative and absolute
counts, in patients with more severe/critical disease, together with reduced myeloid, dendritic
cell (DC), natural killer (NK) cell and basophil populations when we analysed whole blood using
mass cytometry (Figures 1A,B and S1G-J; STAR Methods; Methods S1). These changes were
also seen in patients with severe non-SARS-CoV-2 sepsis. Plasmablasts were increased in
COVID-19 (Figure 1B). In community cases and convalescent COVID-19 samples, the
abundance of major cell types was broadly comparable to healthy volunteers although
differences in neutrophil and mononuclear phagocyte cell frequency persisted. To reduce
dimensionality and identify correlates of variance in the data between patient groups, we
performed principal component analysis (PCA). This showed separation along PC1 driven by the
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frequency of neutrophils and plasmablasts (increased) and of plasmacytoid DCs (pDC) and
basophils (reduced) (Figure 1C).

To characterise lymphocyte and mononuclear phagocyte populations with greater resolution, we
performed mass cytometry after granulocyte (CD66%) depletion for a second aliquot from the
same blood draw (Star Methods). COVID-19 infection was associated with differential
abundance of specific populations of monocytes, NK cells and plasmablasts, together with
activated and cytotoxic CD8" T cells (Figure 1D). We validated and further characterised these
differences using Cellular Indexing of Transcriptomes and Epitopes by Sequencing (CITEseq)
(Figure 1A). We annotated peripheral blood mononuclear cell (PBMC) types, subsets and
clusters by combining information from single-cell RNA-sequencing (scRNAseq, GEX), cell
surface protein quantification (192 antibody panel) and B/T cell V(D)J repertoire profiling (Figure
1E; STAR Methods; Methods S2). These annotations showed a high predicted concordance with
those from mass cytometry (Figures 1F,G and S1K,L,M). We found that cellular composition
differed by patient group and by severity in hospitalised COVID-19 patients (Figures 1H-K and
S1N-Q). Performing PCA for all groups, we found that PC1, which explained 21.5% of the
variance, was associated with group membership (P; = 2.01x10"°, ANOVA) (Figure S1N;
Methods S2). When hospitalised COVID-19 cases were analysed alone, the first PC was
associated with group membership, oxygenation status (SaO2/FiO- ratio, SOFA oxygenation,
and ventilation and oxygen status), and lymphocyte count (all P; <0.05) (Figure 1H; Methods
S2). The cell subsets with the largest negative loadings on PC1 (higher abundance in more
severe disease) were platelets/CD34" megakaryocyte progenitors, haemopoietic (and progenitor)
stem cells (HSCs), and cycling classical monocytes (cMono.cyc) (Figure 11).

Consistent with these findings, empirical Bayes analysis of differential abundance also
demonstrated significant differences in the same cell populations in COVID-19 compared with
age/gender-matched healthy volunteers, together with reduced DC, T, and NK cell subsets,
particularly in COVID-19 critical cases (Figure 1J). Among hospitalised COVID-19 cases, we
found that a higher abundance of platelets/CD34™ megakaryocyte progenitors and cycling cMono
was associated with oxygenation status (SaO2/FiO2, SOFA oxygenation score, ventilation
status), severity (WHO ordinal), and CRP (all P. <0.01). Higher platelet/CD34" megakaryocyte
progenitor abundance was also associated with the occurrence of thromboembolism during
hospitalisation (P: = 0.036, ANOVA) (Figure 1K).

Whole blood hallmarks of COVID-19 and severity involving neutrophils, progenitor cells,
lymphocyte exhaustion, clotting, immunoglobulin and the interferon response

We next defined global signatures of the host response to COVID-19 by performing whole blood
total RNA-sequencing (RNA-seq) (Figure 1A; STAR Methods). We investigated overall variance
in gene expression using the prioritised sample set. The first two PCs separated samples by
cohort, from healthy volunteers through increasing severity among COVID-19 cases and
patients with sepsis (Figure 2A). We then restricted the analysis to hospitalised COVID-19
patients. Patients differed by severity group including 28-day mortality on PC1 (P=2.34x10°,
Kruskal-Wallis test) (Figure 2B), which also correlated with other measures of severity and
differential cell count (Figure S2A). Topological data analysis, using the mapper algorithm with
PC1 as the filter function, captures the geometric structure of the high-dimensional data and
shows the connectivity of COVID-19 cases, with colour corresponding to a gradient of severity
(Figure 2B; Star Methods). We found that genes with the highest loadings for PC1 were strongly
enriched for immune system function, notably neutrophil degranulation (fold change (FC) 4.23,
FDR 2.4x107°), PD-1 signaling (FC 21.5, FDR 9.2x107'?) (consistent with lymphocyte
exhaustion), antimicrobial peptides (FC 10.8 FDR 9.2x107), and clotting cascade (FC 10.6 FDR
2.1x10®°). PC2 gene loadings showed strong enrichment for interferon signaling (FC 10.7, FDR
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3x107%) including key viral response network genes (IF/1-3, IFI6, IFI44, IFIT3, and OAS7-3) and
specific immunoglobulin heavy and lambda genes (Figure S2B).

Among hospitalised COVID-19 patients, the greatest distinction between mild and more severe
disease involved T cell receptor (TCR) signaling, and for severe vs critical disease, neutrophil
degranulation, activation of metalloproteases, antimicrobial peptides and interleukin signaling
(Figure 2C,D). When we incorporated cell proportion into the differential expression model, the
number of differentially expressed genes was reduced but the fold changes from both models
remained well correlated (between critical and mild disease), with comparable pathway
enrichment on analysis of severity as a quantitative trait (Figure S2C,D). In terms of specificity of
the COVID-19 response, we found this was largely distinct from non-SARS-CoV-2 sepsis of
comparable severity, as shown by PCA (Figure 2A). Specific features of COVID-19 compared to
sepsis included a relative upregulation in COVID-19 of many immunoglobulin
heavy/kappa/lambda genes, and unique pathway enrichments relating to cell proliferation and
innate/adaptive immune function (Figures 2E and S2E).

Next, we identified modules of genes correlated with COVID-19 severity using weighted gene
correlation network analysis (WGCNA) (Star Methods). We found the three modules that were
most significantly correlated with severity (P<1x107°); genes in these modules were enriched
for, respectively, cellular and functional neutrophil gene signatures and neutrophil count (MEblue
module); CD8" T cell signatures and relative lymphopenia (MEturquoise module); and
granulocyte and common myeloid progenitor cell gene signatures, neutrophil degranulation,
antimicrobial peptides and defensins pathways (MEGrey60 module) (Figure S2F-J). The
MEgrey60 module was more highly expressed in critical COVID-19 than sepsis (Figure S2J),
and in this module the ETS transcription factor related gene ERG, which regulates lineage
plasticity, showed the highest intramodule connectivity (Figure 2F). These features support the
MEgrey60 module representing a mixture of progenitor cells that associate with severity,
consistent with the large severity associated loadings seen for progenitor cell abundance in
CITEseq (Figure 1H,I).

To better characterise the neutrophil populations in COVID-19, we then applied a myeloid-
marker enriched mass cytometry panel to the same samples (Table S2, STAR Methods). We
found evidence for the presence of immature neutrophils and neutrophil progenitors (pro-
neutrophils) based on high expression of CD64 (Fc gamma receptor 1) and CD49d (integrin
alpha 4), and decreased expression of CD10 (neutral endopeptidase) (Figure 2G) (Evrard et al.,
2018; Kwok et al., 2020; Marini et al., 2017). CD64 expression was raised in severe/critical
COVID-19 and further elevated in sepsis, together with increased PD-L1 (CD274) expression
(Figure S2K). Using CD64:CD10 ratio as an index score for immature neutrophil presence we
found association with the MEblue module eigengene that correlated with neutrophil count and
function (Figure S2L). We further determined that neutrophil CD49d expression was elevated,
while CD43 (leukosialin) was reduced, in COVID-19 patients but was largely unchanged in
sepsis (Figure 2G). The CD49d:CD43 ratio remained high in convalescence (Figure 2H).

Shared and cell-type-specific gene expression signatures of COVID-19 include those
related to ZFN, ribosomal and cell-cycle genes and AP-1 and IFN signaling

We proceeded to investigate gene expression signatures in patients with COVID-19 using
profiles from the CITEseq minor cell subsets (STAR Methods, Methods S2). PCA of all
hospitalised and community COVID-19 cases (PBMC, prioritised sample set), revealed variance
in gene expression across a wide range of cell subsets: cycling classical monocytes
(cMono.cyc), naive B cells and CD16"9" NK cells contributed most to the first PC while lower
PCs were associated with classical monocytes (cMono), memory B cells, CD4" T cells (naive,
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effector and effector memory), effector memory CD8* T cells, NK cells (CD56™"CD16™,
mitochondrial™®") and non-classical monocytes (ncMono) (Figure 21). Inclusion of sepsis,
influenza and healthy volunteers yielded similar results (Figure S2M) with cMono, plasmablasts,
CD4" T cells (naive, effector and effector memory) and cycling NK cells contributing most to
discriminating between groups by PCA (as exemplified in Figure 2J).

We then identified sets of differentially expressed genes between patient cohorts and tested
their enrichment for curated pathways in major cell types (Figure S2N; STAR Methods)
(Liberzon et al., 2015). Type | and type Il interferon pathways were up-regulated in the less
severe hospitalised COVID-19 patients across cell types. Redox state (reflected by MTORC1
signalling and oxidative phosphorylation) pathways were enriched across mononuclear
phagocytes (MNP), T cells, NK cells and plasmablasts in more severe COVID-19, as were cell
cycle (MYC, E2F targets, G2M checkpoint) pathways (except for MNP) while IL2-STAT5
pathway enrichment was found in more severe disease for T cells.

To further deconvolute biological pathways and cellular functions associated with COVID-19, we
investigated gene expression for major cell subsets by applying WGCNA to the CITEseq dataset
(all comparator groups) (Star Methods). Analysis of module co-variation identified five distinct
module sets, shared to varying extents between CD4* and CD8" T cells, NK cells, B cells,
plasmablasts, cMono and ncMono (Figures 2K and S20; Methods S2). First, we found a set of
type | IFN response modules with module eigengenes correlated with milder disease, better
oxygenation status and earlier sampling from symptom onset across cell populations (Figure
2K,L). The second module set, discovered in all cell types except plasmablasts, showed strong
enrichment for activator protein 1 (AP-1) (FOS, JUN, ATF family genes) and the p38MAPK
cascade. The module eigengenes were highly expressed in all COVID-19 patient groups,
including recovery phase community cases, were distinct from influenza and sepsis, and did not
show a consistent relationship with severity or other clinical features (Figure 2K-N). The third
module set (found in all cell types except plasmablasts) was enriched for classical (C2H2) zinc
finger (ZNF) genes and contained /IRF2 and IL16. Expression of these eigengenes was lower in
COVID-19 and influenza compared with healthy volunteers and sepsis cases (Figure 2K,L). The
fourth set of modules showed enrichment for ribosomal proteins and the KEGG ‘COVID-19’
pathway; the top genes by membership relate to inflammasome function (including NLRP1,
MAP3K14 and FOXP1) and were negatively correlated with COVID-19 severity in monocytes
(Figure 2K,L,0). Finally, we found a set of “cycling” modules based on pathway enrichments and
membership of MKI67 and TOP2A. These modules showed a weaker correlation across cell
type. The cMono cycling module was enriched for stem cell differentiation and regulation of
granulopoiesis, correlated with severity, and module genes included S100A8/9 which encodes
calprotectin, a known severity biomarker (Silvin et al., 2020) (Figure 2K,L,P). We also identified
two cell-type-specific modules sharing very similar associations to severe disease. These
comprised of a JAK-STAT/interleukin signaling module in CD4* T cells, and an EGFR pathway
enriched module in cMono (Figure 2K,L,Q,R). The top gene members of the EGFR module
included FKBPS5, a factor involved in stress response and glucocorticoid receptor sensitivity, and
CD163, a scavanger receptor modulating induced innate immune response (Figure 2K,L,R).

Transcriptomic and epigenetic signatures of severity in monocyte populations

Using the detail afforded by our high-resolution multi-modality dataset, we further investigated
signatures of severity in specific mononuclear phagocyte populations. Consistent with the PCA
loadings (Figure 11), we observed an overall relative increase in the frequency of cMono and
reduced intermediate monocytes (CD16"CD14"), ncMono (CD14°CD16") and dendritic cells
(pDC, cDC1 and cDC2), in hospitalised COVID-19 patients with more severe disease using
mass cytometry (prioritised sample set) (Figure 3A,B) (Star Methods). With increasing disease
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severity we observed a shift in the phenotype of cMono to lower expression of HLA-DR, CD33
and CD11c, and evidence of proliferating monocytes based on expression of Ki67 and DNA
abundance, with comparable changes in the sepsis patients (Figures 3A-C and S3A,B). Lower
levels of pDCs and CD33°“cDC2 were found in sepsis compared with severe/critical COVID-19
(Figure 3C).

Using CITEseq (prioritised sample set) (Star Methods) we found cycling cMono, and cMono with
high expression of the anti-oxidant metallothionein genes (MT"), were significantly elevated in
critical COVID-19 cases, influenza and sepsis compared to healthy volunteers (Figure 3D).
S100A8/9/12" HMGB2-expressing cMono correlated with COVID-19 severity, and were also
increased in sepsis. cMono expressing VCAN, which is implicated in adhesion and cytokine
release, were specifically increased in COVID-19 and reduced in influenza, whilst complement
component C71Q-expressing ncMono were increased in influenza and sepsis, but not in COVID-
19. Galectin-2 (LGALSZ2) and desmoyokin (AHNAK) expressing cMono were significantly
reduced in influenza and sepsis but not in COVID-19. pDCs showed reduced abundance in
more severe COVID-19, influenza and sepsis, as did CD1c¢* cDCs. Consistent with the
progressive changes in abundance according to COVID-19 severity, the frequencies of CD1c”
cDCs, and most significantly cycling cMono and S7100A8/9/12" HMGB2 expressing cMono, were
associated with clinical variables relating to oxygenation and respiratory function in hospitalised
cases (Figure 3E).

In terms of gene expression, the PCs that explained the greatest variance between hospitalised
COVID-19 cases in MNP, specifically cMono and cDC, were associated with severity measures
including WHO ordinal scale and ventilation status (Figure S3C,D). In addition to the IFN, cycling
and EGFR pathways highlighted by WGCNA analysis, pathway enrichment analysis of
differentially expressed genes in cMono showed enrichment for inflammatory response/TNF
signaling in milder disease, hypoxia and IL2_STATS5 pathways across severity groups, and
complement, coagulation and cholesterol metabolism in more severe disease (Figures 3F and
S3E,F).

We proceeded to further investigate potential mechanistic drivers of disease by characterising
the chromatin state of myeloid and other PBMC populations in COVID-19 patients using single-
cell ATAC-seq (Figures 1A and S3G,H; Star Methods). Overall, 750 and 303 accessible sites
were up- and down-regulated respectively in COVID-19 patients compared to healthy volunteers
in myeloid cells (Figure 3G). Genes linked to top differentially open chromatin peaks included
STK24 (MAPK promoting apoptosis) and FGFRL1 (cell adhesion promoting fibroblast growth
factor receptor) (Figure 3H). We identified specific DNA binding motif enrichments in the
differentially accessible sites. The most significant enrichments were found for AP-1, SW1/SNF
and BACH transcription factor family members which are involved in chromatin remodelling and
immunity (Figure 31). In line with this observation, motif footprint analysis revealed an increased
accessibility of genomic regions containing FOS and JUN motifs in COVID-19 patients relative to
healthy volunteers in myeloid cells, a signal which was also seen in convalescence (Figure
3J,K).

Severe COVID-19 is associated with clonal expansion of unmutated B cells, and
activation of autoreactive B cells

We next determined the relationship of B cell composition, gene expression and the B cell
receptor (BCR) repertoire with COVID-19 severity. Mass cytometry of whole blood (prioritised
sample set) showed significant lymphopenia in COVID-19 with reduced overall frequency and
number of B cells, predominantly naive B cells, but an increase in terminally differentiated
plasmablasts (significantly higher than in sepsis) (Figures 1B and 4A and S4A,B; STAR
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Methods). The greatest increase in switched memory CD11c” B cells was in community COVID-
19 cases while unswitched memory B cells and naive CD11c* B cells were higher in COVID-19
convalescent samples (Figure 4A). We observed a relatively high proportion of CLA"
plasmablasts in COVID-19 patients (Figure 4A) as previously observed in patients with
respiratory infections (Seong et al., 2017). Analysis of GEX/ADT defined clusters revealed
significant increases in plasmablasts in severe disease (Figures 4B-D and S4C,D; STAR
Methods). Naive CD1c" naive and cycling naive B cells were reduced in COVID-19 but overall
naive B cells were significantly more reduced in influenza than COVID-19 of comparable
severity (Figures 4D and S4C). In mild hospitalised COVID-19, only the IFN-responsive naive B
cell cluster increased significantly (Figure 4D).

We then characterised differences involving the B cell immune repertoire using bulk VDJ
sequencing of whole blood (Fig 1A) (1,206,531 filtered BCR sequences analysed) and single
cells (CITEseq) (STAR Methods). As expected, plasmablasts showed the highest BCR
expression in the CITEseq dataset (Figure S4E). Whereas in healthy volunteers clonal
expansions appeared to predominate within the memory B cell population, in COVID-19 and
sepsis patients, expansions were seen in plasmablasts, with severe and notably critical COVID-
19 patients also harbouring clones within memory populations (Figure 4E). The clonal expansion
in plasmablasts was statistically significant, and also showed a significant association with
COVID-19 severity, in contrast to sepsis in which there was no significant change (Figures 4F,G
and S4F).

Limited somatic hypermutation (SHM) of SARS-CoV-2 antibodies has been widely reported
(Brouwer et al., 2020). We observed fewer somatic hypermutations in intermediate B cells in
hospitalised mild COVID-19 but a severity-associated increase in number was found in
plasmablasts and also seen in sepsis (Figure S4G). There were, however, COVID-19 specific
differences in the proportion of expanded clones with few mutations (>95% IGHV identity, Figure
4H). RNA velocity analysis suggested a differentiation directionality between naive B cells and
plasmablasts in COVID-19 patients that was distinct from sepsis, and consistent with a
predominant extrafollicular B cell response in COVID-19 (accumulating fewer SHMs) (Figure 41).
Moreover, we observed a higher number of shared clones between plasmablasts and
intermediate or memory B cells in severe/critical COVID-19 patients, whereas sepsis patients
exhibited higher clonal overlap between intermediate and memory B cells (Figure S4H,1).

These data together indicate that in severe/critical COVID-19 there is substantial expansion of
unmutated B cells associated with plasmablast populations. We next explored the
accompanying differences in B cell selection and tolerance. Firstly, in COVID-19 patients we
observed increased BCR complementarity-determining region 3 (CDR3) lengths compared to
sepsis (Figure 4J,K); such increases have been associated with antibody polyreactivity and
autoimmunity (Meffre et al., 2001), notably within plasmablasts and IgG1* B cells. Secondly, we
found multiple differentially utilised IGHV/J genes between COVID-19 groups indicating
differential B cell selection and/or expansion of naive B cells, while the antigen experienced
IgD/M mutated and class-switched B cell repertoire showed differentially utilised IGHV/J genes,
revealing differential peripheral selection of B cells with increasing COVID-19 severity (Figure
S4J-M). Thirdly, we tested whether B cells targeting autoantigen and red blood cell antigen are
associated with COVID-19. We found that autoreactive IGHV4-34 BCRs, which are elevated in
autoimmunity (Pascual et al., 1991), were significantly depleted in IGHD/M but elevated in class-
switched B cells, most notably for the IGHA2 and IGHG2 B cells (Figure 4L) consistent with
class-switching of these autoreactive B cells during the response to SARS-CoV-2. In further
support of this observation, the degree of class-switching, inferred from the BCR sequencing
data (Bashford-Rogers et al., 2019), was significantly elevated between IgD/M and IgG1 and
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IgA1, and finally to IgG2 in COVID-19 patients (Figure 4M). No detectable differences in either
IGHV4-34 autoreactive BCR levels or class-switching were observed in sepsis cases.

Previous reports indicate an unexpectedly high level of BCR convergence between unrelated
COVID-19 patients (Galson et al., 2020). We also found clonal sharing within and between
COVID-19 severity groups (Figures 4N and S4N-P). Comparing to known receptor-binding
domain antibodies, we observed that most highly similar patient BCRs have a plasmablast
phenotype (Figure S4N). Overall, our data indicate that the plasmablast expansions in severe
COVID-19 include high levels of broadly auto-reactive B cells, consistent with an emerging role
for B-cell driven immune pathology (Wang et al., 2020).

COVID-19 severity correlates with specific T and NK cell populations and features relating
to cell cycle, redox state and exhaustion

We proceeded to investigate T and NK cell function in COVID-19 and its relationship with
severity. Whole blood mass cytometry showed that both activated CD4* and CD8" T cells were
increased in frequency in all COVID-19 patient groups, remaining elevated in convalescence
(Figure 5A; STAR Methods). The proportion of CD27* activated CD4" T cells was higher than in
sepsis, while CD56" cytotoxic CD8" T cell frequency was reduced (Figure S5A). We
characterised the T cell subsets using markers of activation, proliferation and exhaustion. While
these markers were comparably expressed in activated CD4" T cells across acute COVID-19
cases, they increased in CD8" T cells with disease severity (Figure 5B). Multicolour flow
cytometry showed differential chemokine receptor expression in the overall memory CD4" T cell
population (Figure S5B; STAR Methods) and increased expression of the inhibitory receptor
TIM3 in activated CD8" T cells (Figure S5C). CLA* HLADR" NK cells were increased in alll
COVID-19 cases (Figure S5D). We also found evidence of significant changes in innate-like
lymphocytic cell populations with increasing COVID-19 severity including MAIT cells; with
evidence from mass cytometry of a gradient of involvement across severity in terms of cell
activation (% CD69" MAIT cells, Figure 5C).

Complementing these findings, our analysis of the CITEseq data showed an increase in cycling
and activated CD4" and CD8" T and NK cell populations in hospitalised COVID-19 cases,
including CCR4" Tregs (CD4.TREG.CCR4hi) (Figure 5D,E; STAR Methods). Conversely, we
observed a decrease in CD4" Th1, CCL5" CD8" T central memory (CD8.TCM.CCL5), CD45RA"
CD8" T effector memory (CD8.TEMRA), and NK cells with high mitochondrial gene expression
(NK.mitohi). There was little compositional variation in these cell populations by severity or
clinical covariates (Figure S5E). However, we found that, in the gene expression analysis of
hospitalised COVID-19 patients, the largest component of variance (PC1) was associated with
oxygenation status in CD4" T effector (CD4.TEFF) and CD8" T effector memory (CD8.TEM)
cells (Figure S5F-H). Activated NK cells (CD56""CD16°" XCL1/2 expressing)
(NK.CD56hi.CD16int.XCL1.2) showed a strong association with WHO ordinal and
oxygenation/ventilation status (Figure S5I). In terms of differential gene expression pathway
enrichment, we found cell cycle and redox state pathways were enriched in more severe
hospitalised COVID-19 cases across CD4", CD8" and NK cells; interferon pathways were
enriched in less severe disease; and TNF signaling was most enriched in community cases vs
healthy volunteers (Figure 5F). MAIT cells showed enrichment for TNF signalling and KRAS
across COVID-19 groups while y5 T cells showed a greater enrichment for cell cycle pathways
(Figure 5F).

Reduced diversity in CD8* T cell populations on repertoire analysis

To further investigate the effect of disease on T cell subsets, with reference to antigen
recognition and clonality, we integrated TCR sequencing data performed across the same cell
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subsets. Given we saw clonotypes present across populations, we merged subsets to provide
power for downstream clonal analysis (STAR Methods). For semi-invariant T cells, differences
observed with severity and disease group by cell cluster were supported by consistent changes
in TCR alpha variable (TRAV) gene usage. We found that hospitalized COVID-19 and sepsis
cases displayed significant reductions in the percentage of repertoire occupied by TRAV10,
specific to invariant natural killer T cells, and TRAV1-2 and TRAJ33 usage, in keeping with
reductions in MAIT cells (Figure 5G).

To better understand the relationship between COVID-19 and T cell clonality, we calculated
Shannon diversity indices across clones based on the beta chain, controlling for age. While
CD4" subsets showed higher diversity than CD8" subsets, differences with disease severity
were only seen in CD8" T cells (Figures 5H,l and S5J,K; STAR Methods). Across disease states,
accounting for age, CD8" T effector memory (CD8.TEM/TEMRA), CD8" T central memory
(CD8.TCM/CD8.TCM.CCL5) and MAIT cell diversity was reduced in COVID-19 severe and
critical disease with comparable changes in sepsis (Figure 5J).

Recent evidence suggests that effective CD8" T cell responses involve increased numbers of
expanded clones (Fairfax et al., 2020). Consistent with this, we found that hospitalised COVID-
19 patients with mild disease had higher numbers of expanded clones in both CD4* and CD8"
subsets (Figure 5K) and the mean clone size was higher within the CD8" subset (Figure S5L). In
keeping with the observation that expanded CD8 T cell clones show increased expression of
cytotoxicity markers (Watson et al., 2020a), using a composite gene score for cytotoxicity we
found that the number of expanded clones correlated with the average cytotoxicity score across
all cells for that individual in both CD4" T effector (CD4.TEFF/TEFF.prolif) and CD8" T effector
(CD8.TEFF/TEFF.prolif) populations (Figure S5M), and was higher in mild and community
COVID-19 cases with reduced cytotoxicity observed in critical and severe disease (Figure 5L).

To further explore whether COVID-19 leads to generalized signatures of antigen presentation
with reciprocal effects on TCR sequence and corresponding CDR3 usage, we devised an
approach to identify COVID-19 associated amino acid (aa) sequences (Kmers of 4 aa) within the
beta chain CDR3 region (STAR Methods). These were compared with chains from healthy
volunteers and sepsis patients to exclude sequences non-specifically associated with infection
(Figure S5N). We identified 125, 4 aa Kmers (referred to as COVSeqs) enriched in COVID-19
(Bonferroni corrected P <0.05 versus both groups), the vast majority being observed in CD8" T
cells (Figure S50), with the proportion of cells with TCRs containing at least one COVSeq in the
beta chain specifically increased in all COVID-19 patients (Figure 5M). In hospitalised patients
we found a lower proportion of CD8" T effector memory cells with COVSeq containing TCRs with
increasing disease severity (Figure 5N). Critical disease was associated with naive CD8" T cells
containing COVSegs, indicating failure of the SARS-CoV-2 reactive cells in critical patients to
expand into the effector phenotype, or possibly a distinct redistribution of the expanded cells.
Further supporting functionality of the COVID-19 Kmer containing cells, we observed a
significant correlation between the proportion of COVSeq containing cells and the median
cytotoxicity of cells per individual within the COVID-19 patients (Figure 50). Notably, COVSeq
positive CD8" T effector cells from critical patients showed significantly reduced cytotoxicity
compared to those from patients with mild disease (Figure 5P).

Finally, we addressed whether using previously published COVID-19 associated beta chain
clonotypes could further resolve variation in the T cell response according to disease severity
(STAR Methods). We observed many cells carrying such TCRs across the COVID-19 patients,
often overlapping COVSeg-containing cells. Notably, the distribution of these cells across
clusters varied markedly according to COVID-19 disease state (Figure 5Q). Replicating the
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observations with COVSeq-positive cells, CD8" T effector memory cells were relatively depleted
for COVID-19 clonotypes in critical disease (Figure 5R,S).

Correlates of severity and disease specificity in the COVID-19 plasma proteome involve
acute phase proteins, metabolic processes and markers of tissue injury

We aimed to complement our multi-modal cellular profiling with analysis of the COVID-19
plasma proteome. To do this we performed high-throughput liquid chromatography with tandem
mass spectrometry (LC-MS-MS), producing data for 105 proteins on 257 individuals (340
samples) after QC (Figure 1A; Table S2; STAR Methods). We found differences by severity and
aetiology on unsupervised hierarchical clustering (Figure S6A), PCA (Figure 6A) and supervised
correlation analysis (Figure S6B). Severe disease, reflected in PC loadings (Figure 6B), was
associated with increased acute-phase proteins and complement system proteins, including
recognised biomarkers of infammation (SAA1, SAA2 and CRP), complement membrane attack
complex components (C5, C6, C9 and CFB), and functionally related protein families such as
protease inhibitors (SERPINA3, SERPINA1 and ITIH3) and serum amyloid P-component
(APCS) (Figure S6C). We also found differential protein abundance involving markers of tissue
injury and necrosis, notably reduced extracellular actin scavenger plasma gelsolin (GSN);
increased fibrinogens (FGA, FGB and FGG); and an increase in proteins implicated in IL-6
mediated inflammation (LGALS3BP, LRG1, LBP, HP and ITIH4). We further identified protein
clusters based on the protein-protein interaction network, including a large cluster enriched for
biological processes involving cholesterol transport and fibrin blood clots within which individual
proteins showed positive and negative correlations with PC1 (disease severity) and two smaller
clusters enriched for cytolysis and complement activation, both showing negative correlations for
all constituent proteins with PC1 (Figure 6C), thus positively correlating with disease severity.

We proceeded to a functional PCA, generating a vector of biological process enrichment scores
from single-sample Gene Set Enrichment Analysis (ssGSEA) derived from ranked intensities of
the identified proteins. This revealed the main processes associated with differences between
samples were acute-phase response and inflammation, metabolic (retinoid and lipoprotein) and
cholesterol transport (Figure 6D). Reduced levels of proteins associated with lipoprotein and
cholesterol metabolism included apolipoproteins A-I, A-ll, C-l and C-Il (APOA1/2 and APOC1/2)
and transthyretin (TTR), consistent with their downregulation in systemic inflammation and
differences in metabolic state specifically associated with disease severity. This was further
evident on pairwise comparisons, with mild hospitalised COVID-19 patients differing from
healthy volunteers in metabolic processes and vesicle transport of retinoid, cholesterol,
lipoproteins, and fat-soluble vitamins; and from community cases by higher levels of complement
activation and coagulation (Figure S6D). Severe COVID-19 patients differed from mild and from
critically ill patients in processes relating to platelet degranulation and neutrophil degranulation
respectively (Figure S6E-F). When we compared severe and critical COVID-19 with sepsis, 19
out of 105 proteins showed changes specific to COVID-19 (FDR<0.05, FC>1.5), enriched in
acute-phase response, complement activation, and receptor-mediated endocytosis (Figure 6E).

Plasma cytokine and chemokine profiling shows evidence for involvement of key
inflammatory mediators

To further characterise inflammatory mediators of the response to SARS-CoV-2 and the biology
of potential therapeutic targets, we analysed 51 circulating cytokine and chemokine proteins
using the Luminex assay for 171 individuals (Figure 1A; Table S2; STAR Methods). There was
clear clustering of hospitalised COVID-19 cases by severity on PCA of plasma protein
abundance by severity while community cases overlapped with heathy controls and sepsis
cases clustered separately (Figure 6F). The major proteins contributing to these axes of
variance between groups were CXCL10, CXCL5, EGF, CCL2, S100A9, IL6, LCN2, CCL20, LF
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and G-CSF (Figure 6F). Overall, we found 49% (25 of 51) analytes were significantly
differentially abundant in plasma from COVID-19 cases vs healthy volunteers (Figures 6G-| and
S6G). Amongst these, CCL2, CCL19, CCL20, CXCL10, GM-CSF, IL-6, IL-8, IL-15, S100A9 and
SCGF (all increased abundance) were strongly correlated with severity in hospitalised COVID-
19 patients (r>>0.5, P <0.001).

We further compared with sepsis and influenza to investigate disease specificity and found that
the plasma levels of G-CSF, IL-8, LF, CD163, LCN2, CCL20, IL-6, IL-10, CCL4, CCL19, TNF
and C5a were lower in critical and severe COVID-19 than sepsis (Figure 6J). Compared with
influenza, serum EGF, LF and CD40L were higher in serum from patients with critical COVID-19
while G-CSF was lower (Figure 6K). We then investigated protein-protein correlation network
relationships of assayed plasma cytokines and chemokines. This identified S100A9, M-CSF and
CCL2/19 as nodal proteins. When we performed protein-clinical trait correlation network analysis
for COVID-19 severity we found strong correlations between clinical features (CRP, SaO2/FiO2
and ventilation days) and specific nodal proteins (GM-CSF, CXCL10, TREM-1, CCL2/19, TF, IL-
6/15, MPO and S100A9) at the centre of the network (Figure 6L).

Plasma proteome variation identifies patient sub-phenotypes of differing disease severity
We next investigated the utility of plasma proteins for patient sub-phenotyping within hospitalised
COVID-19 cases (n=122 samples) by integrating the LC-MS-MS and Luminex datasets using
Similarity Network Fusion (SNF) (Wang et al., 2014) (STAR Methods). We first constructed a
sample-by-sample similarity matrix from which we derived a network for each of the two data
types. Analysing these individually in an unsupervised manner with spectral clustering, we could
only discriminate a minority of cases (the most mild from all others). However, when we fused
these networks into a single similarity network that maximised shared and complementary
information, we discovered two clusters that separated mild and critical cases, and discriminated
within the severe cases to assign similar numbers to each of the two clusters (Figure 6M,N). We
identified 11 proteins as the main discriminatory features distinguishing the clusters (mutual
information score >= 0.15) (Figure 6M). When we compared the two clusters, we found that
clinical measures of disease severity were significantly different including inspired oxygen
concentration and SOFA oxygen score (t-test P. <0.05) (Figure S6H) and that membership of
cluster two was associated with higher 28-day mortality (Figure 60). The predictive protein set
spanned key inflammatory mediators, including the cytokines and chemokines IL-6, IL-8
(CXCLS8), CCL2, CCL19, CCL20 and CXCL10 together with S100A9 (calprotectin), the acute
phase proteins serum amyloid protein (SAA1) and protease inhibitor (SERPINA3), GM-CSF and
the C-type lectin CLEC11A.

We validated the clusters in an independent acute hospitalised COVID-19 cohort from Boston
assayed using a different technology, targeted proteomics by Olink (Filbin et al., 2020) (STAR
Methods). We found that clustering analysis, using the 7 out of 11 predictive proteins for which
data was available, identified two optimal clusters (Figures 6P and S6l). These showed a clear
relationship with measures of disease severity, including WHO ordinal score (maximum) (Figure
S6J), and patients in cluster 1 had significantly lower mortality at 28 days (5/164=3.0%)
compared with cluster 2 (33/105=31.4%) (Chi-squared test P <0.0001), validating the findings
from our discovery cohort. We then explored the specificity of the clusters by extending the
approach to include a combination of hospitalised COVID-19 and sepsis patients from COMBAT.
This revealed three clusters, two corresponding to the clusters seen with COVID-19 cases
analysed alone, indicating a high level of specificity (Figure S6K,L). Features that separated
COVID-19 and sepsis included lipocalin2 (LCN2) and CCL20, which were elevated in sepsis,
and CXCL10, APCS and fibronectin (FN1) which were higher in COVID-19.
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Supervised machine learning identifies predictive protein biomarkers for disease severity
We complemented our findings by using machine learning to combine the two proteomics data
types with whole blood total RNAseq to determine which features were predictive of disease
severity (WHO category at the time of sampling) and their relative informativeness (Figure S7A;
STAR Methods). We first identified assay-type-specific feature scoring PCs to reduce
dimensionality for a training sample set, and then determined the six maximally informative PCs
(Figure 7A) and the genes or proteins maximally contributing to loadings for each PC. After
feature elimination based on performance, we found the minimal set of cross-modality features
to predict severity were the acute phase proteins SAA2 and CRP, an immunoglobulin (IGHG4),
chemokines (CCL20 and CCL2), IL-6 and complement component C5a (Figures 7B and S7B);
the combined performance of these features in the hold-out validation set showed a balanced
accuracy of 75-80% to predict WHO category group (Figure S7C). We also used machine
learning to search for features that distinguish hospitalised COVID-19 patients from sepsis. A
multi-omic set of 81 features was discovered using SIMON (Tomic et al., 2021) (STAR Methods)
(AUC 0.85 95% CI 0.59-1), identifying specific differentially abundant genes, proteins (including
FCN1 and APCS as higher in COVID-19) and significant pathway enrichment for hematopoietic
cell lineage and the renin-angiotensin system (Figure S7D,E).

Integrated hallmarks of COVID-19 severity and specificity

We next sought to understand the immune response to COVID-19 across all assay types and
samples using a multi-omics tensor approach (Chang et al., 2021; Fanaee-T and Thoresen,
2018; Taguchi, 2017), specifically the sparse decomposition of arrays (SDA) algorithm (Hore et
al., 2016). We analysed 152 samples assayed for cellular composition, gene expression and
plasma proteomics, and identified 381 latent SDA components, each comprising vectors of
scores (loadings) that indicate the contribution of individual cell types, genes or proteins linked
by that component, and thereby offer insights into shared mechanism (Figure S7F; Table S3;
STAR Methods). We then identified components associated with specific clinical covariates,
severity or patient group, noting that while in some instances such as gender there was a single
associated component (involving differential sex chromosome gene expression across cell
types, component 2), typically several components were associated (Figure S7G,H). The
strongest association with COVID-19 severity was component 171 (P 5.9x10™", rho 0.74
Spearman) which was unusual in having a high feature contribution from plasma proteins
whereas gene expression contributed most to the majority of the other components (Figure S71).
Component 171 involved myeloid cell production, recruitment and function. Features contributing
to loading scores with high posterior inclusion probability included raised plasma chemokines
involved in chemotaxis and activation (CXCL8, CXCL10 and CCL20) and GM-CSF together with
acute phase activating proteins (SAA1/2 and SERPINA3), LRG1 and LBP (Figure 7C); reduced
abundance of intermediate monocytes; high expression of cell stress chaperone CLU and
methyltransferase METTL7B, and downregulation of IgE receptor and multiple HLA class Il
genes, and pathway enrichment for antigen presentation, TCR signaling and asthma.

To further delineate COVID-19 associated SDA components, we performed pairwise contrasts
and analysis of variance involving COVID-19 patient groups. Overall 130 of 381 components
were significantly associated with COVID-19 versus healthy volunteers (Figure 7C and S7J). To
identify which of these components were informative for severity and how they may be shared or
specific for COVID-19, we clustered their median loadings across the different disease groups
(Figure 7C). Components associated with mild and severe but not critical disease included
component 42 (features of monocyte/granulocyte proliferation and function, elevated plasma
proteins G-CSF, IL-2, IL-8 and IL-15, and enrichment of cell division related pathways); and
component 256 (including upregulation of interferon response genes and down regulation of
genes such as catalase and cytochrome c oxidase) which was specific to COVID-19 cases
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(Figure 7C). Other components strongly associated with severe disease involved plasmablast
proliferation, combined with increased MT" cMono and a clear DNA replication signature
(component 289), or with widespread upregulation of immunoglobulin heavy/kappa/lambda
genes, JCHAIN (regulating multimerization and mucosal secretion of IgM/IgA), and MZB1
(involved in antibody secretion and integrin-mediated cell adhesion) (component 6), linking with
possible antibody-dependent cellular toxicity (Figure 7C).

We found an innate response component specific to critical COVID-19 (component 247) with
differential expression of granulocyte activation marker (CEACAMS), neutrophil elastase
(ELANE) and defensins (DEFA1B/4) and increased soluble CD163 scavanger protein levels,
reflected in pathway enrichment for neutrophil functions. Neutrophil related features were also
found in component 123 associated with COVID-19 severity, influenza and sepsis (Figure 7C).
Other SDA components had high loading scores associated with all hospitalised COVID-19
patients including significant upregulation of interferon pathway genes (component 235) and an
NK-signature component with upregulation of cell cycle and proliferation genes (component
107); as well as with hospitalised and community COVID-19 patients (component 187) (Figure
7C). The latter was driven by differential expression in major PBMC lineages (highest loadings in
NK, B and T cells) involving upregulation of key stress and activation response genes including
immediate early response protein (PMAIP1), AP-1 transcription factor genes FOS and JUN, the
early activation marker and metabolic reprogramming gene CD69, and TNFAIP3, which limits
NFkB mediated inflammation. The cytokine-induced STAT inhibitor (C/ISH) and immune
checkpoint regulator of inflammation and metabolism TNFAIP8L2 were downregulated. Pathway
enrichment was seen for type-2 inflammation (IL4/13), TLR signaling and the ATF-2 network
(Figure 7C).

Overall, the latent component analysis identifies hallmarks of COVID-19 severity, and specificity
with respect to sepsis and influenza. Our findings highlight key cellular populations such as
proliferating monocytes and plasmablasts, and features of innate and adaptive mechanisms
ranging from interferon signalling to myelopoiesis, immunoglobulin production and stress
activation response signaling. The results prioritise and validate hallmarks seen on individual
modality analysis such as AP-1, and generate hypotheses for how hallmarks may be related in
terms of pathophysiology based on co-occurrence in a given component.

Discussion

Our comprehensive multi-modal integrated approach, applied to multiple well-defined cohorts of
patients and healthy volunteers, has defined blood hallmarks of COVID-19 severity and
specificity involving particular immune cell populations and their development, components of
innate and adaptive immunity, and connectivity with the inflammatory response (Figure 7D).

Hallmarks of severity involving myeloid related features include emergency myelopoiesis,
immature neutrophils, increased HSC and platelet/CD34™ megakaryocyte progenitors, with the
latter associated with thromboembolism. These findings substantiate and add granularity to
previous reports (Bernardes et al., 2020; Stephenson et al., 2021). We find evidence that ERG is
central to a gene network linked to these cell populations, encoding a transcription factor
important in determining lineage plasticity, modulating inflammation and maintaining an anti-
thrombotic environment (Yuan et al., 2009). We further identify hallmarks supporting the
importance of mononuclear phagocyte dysfunction in severe disease (Bost et al., 2021; Mann et
al., 2020; Schulte-Schrepping et al., 2020), namely proliferating cMono, and specific monocyte
populations showing reduced HLA-DR, CD33 and CD11c expression, high expression of
antioxidant metallothionein and S100A8/9/12 (calprotectin), together with reduced pDCs.

Page 13 of 63


https://doi.org/10.1101/2021.05.11.21256877
http://creativecommons.org/licenses/by/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2021.05.11.21256877; this version posted May 11, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY 4.0 International license .

The frequency of specific T cell subsets, and their activation and exhaustion, has been
previously implicated in severe COVID-19 (Chen and Wherry, 2020; Jouan et al., 2020; Parrot et
al., 2020). We find evidence for increased numbers of activated CD8" T cells and NK cell
populations in COVID-19, and, with increasing severity, failure of clonal expansion in CD8" T
effector and central memory cells and depletion of COVID-19 clonotypes. We further find
association with severity for exhaustion markers and specific activated NK and CD69" MAIT cell
populations. In terms of adaptive immunity (Brouwer et al., 2020; Galson et al., 2020), we find
increased numbers of terminally differentiated plasmablasts, with expansion of unmutated B
cells differing in selection and tolerance and a higher proportion of clonally related B cells.
Redox state and cell cycle associate with more severe disease across cell populations. Our data
are also consistent with the importance of the hyperinflammatory state (Moore and June, 2020)
and interferon response (Hadjadj et al., 2020; Lei et al., 2020) but as features of less critical
disease and earlier phase of illness.

Our proteomic analysis has identified specific plasma cytokine and chemokine levels as
biomarkers of severe disease with evidence for acute phase inflammation, complement
activation/attack, fibrin clots, proteases, serum amyloid, tissue necrosis, receptor mediated
endocytosis and cholesterol transport as hallmarks. Moreover, we have discovered plasma
protein signatures that can be used to stratify acute hospitalised COVID-19 cases into disease
sub-phenotypes, with cluster membership informative for response state and associated with
differential 28-day mortality. We have validated our finding in an independent dataset using a
predictive set of seven plasma proteins (cytokines IL-6, IL-8; chemokines CCL2, CCL19, CCL20,
CXCL10; and C-type lectin CLEC11A, a key growth factor for primitive haematopoietic
progenitor cells). Patient stratification is important given the observed clinical heterogeneity
within severe COVID-19. Such variability has historically been a major confounder of clinical
trials for targeted immune therapy in other severe infections (Davies et al., 2018; Marshall,
2014).

This work has demonstrated the informativeness of a multi-linear tensor approach to stratify and
interpret the complexity of multi-omic datasets. Application of the SDA algorithm was able to
identify latent components of variance that joined together signals from across cellular, gene
expression and plasma protein measurements. For example, the most significant tensor
component associated with COVID-19 severity involves myeloid chemotaxis and activation, the
acute phase response, HLA class Il downregulation and TCR signaling. Thus, our dataset
provides a useful resource from which to develop other approaches for identifying multi-modal
signals and associated mechanistic insights, such as those leveraging algebraic systems biology
(Gross et al., 2016), multi-layer networks (Kivela et al., 2014), topological data analysis
(Camara, 2017) or tensor clustering (Seigal et al., 2019).

Considering features specific to COVID-19, we have found that the ratio of integrin alpha 4
(CD49d) to leukosialin (CD43) is specifically elevated across COVID-19 patients, including into
recovery and in convalescence, suggesting that this ratio may be an informative index score for
neutrophil activities specific to COVID-19. Reduction in CD43 expression leads to neutrophil
retention in the bloodstream and increased adherence to vessel walls (Woodman et al., 1998),
and may be linked to the enhanced thrombosis observed in COVID-19 patients.

Our epigenetic, gene expression and integrative SDA analyses have all identified the AP-1 p38
MAPK pathway upregulation as a specific feature of COVID-19 disease across different immune
subsets. Combined with evidence of proliferation and cytokine response in these populations,
this supports systemic immune activation and proliferation as a hallmark specific to COVID-19.
Moreover, AP-1 is a pioneer transcription factor that reversibly imprints the senescence
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enhancer landscape following stress and can be modulated to reverse T cell exhaustion (Lynn et
al., 2019; Martinez-Zamudio et al., 2020). This suggests a possible role for AP-1 in inappropriate
chromatin remodelling and cellular activation/senescence in multiple cell types, with evidence of
persisting differential chromatin accessibility, gene expression signatures and cell protein
markers of activation that may contribute to both acute disease and post-COVID-19 syndrome.
Our findings are in keeping with recent evidence of efficacy for baricitinib (Janus Kinase
inhibitor) in improving recovery of hospitalised patients (Kalil et al., 2021). Baricitinib acts
upstream of AP-1 (Zarrin et al., 2021) and controls macrophage inflammation and neutrophil
recruitment in COVID-19 (Hoang et al., 2021).

Our findings involving immune activation and proliferation are of further relevance given the key
nodal plasma cytokines, including GM-CSF and IL-6, we identify as hallmarks of disease
severity in proteomic and integrative analysis, targeting of which could also benefit dysfunctional
granulopoiesis and neutrophil subsets. This supports the efficacy of tocilizumab (IL-6 receptor
inhibitor) in severe disease (Horby et al., 2021b), moreover we find upregulation of /L6R in more
severe disease. Our data supports the use of inhibitors of GM-CSF in current clinical trials, use
of anti-CCL2 (Gracia-Hernandez et al., 2020), repurposing of immune checkpoint inhibitors
(Pezeshki and Rezaei, 2021) to restore/enhance CD8" T cell cytotoxicity, and potential targets
such as FGFRs, which are cofactors for early stage viral infection upregulated by MERS-CoV2
leading to lung damage and proposed as a therapeutic target (Hondermarck et al., 2020).

Establishing optimal biomarkers of response and relevant sample collection, as well as timely
availability of results, are important considerations in current immunomodulatory trial design in
COVID-19. We find the widely used clinical biomarker CRP has predictive utility as a component
of discriminating biomarker marker sets for severity. Total RNAseq of whole blood stabilised at
the bedside, a tractable sample type for collection in a pandemic situation, is highly informative
for understanding variance in disease severity while use of small volumes of rapidly fixed whole
blood for later FACS and mass cytometry gives complementary and highly granular resolution of
the cellular immune response state and identifies specific cell populations important in severe
disease.

An important question is how the hallmarks of severe disease in COVID-19 relate to non-SARS-
CoV-2 sepsis (Beltran-Garcia et al., 2020; Olwal et al., 2021). We have compared patients with
severe or critical iliness, not only revealing shared features relating to emergency myelopoiesis
and progenitors but also identifying discriminating neutrophil markers (CD49d:CDA43 ratio) in
COVID-19 and specific ncMono and cMono phenotypes in sepsis (Figure 7D). Lymphocyte
exhaustion is proposed as a common mechanism in COVID-19 and sepsis (Boomer et al., 2012;
Diao et al., 2020). We find overall higher levels of CD4" and CD8" T cell activation, and more
marked changes in cell markers, in COVID-19, suggesting a greater degree of CD8" T cell
exhaustion. While we find no major changes in naive and transitional B cells in either condition,
in sepsis we observed an absence of terminally differentiated plasmablasts and fewer clonally
related B cells, class switching and autoreactive BCRs. We have further identified plasma
proteins discriminating COVID-19 and sepsis, for example lipopolysaccharide binding protein,
lactoferrin and lipocalin 2; and differential pathways including neutrophil degranulation,
complement, AP-1/p38MAPK, TLR, renin-angiotensin and the HSC lineage. We note that
COVID-19 induced down regulation of ACE2 may be involved in the modulation of both the
renin-angiotensin system and activation of AP-1/p38MAPK signaling (Grimes and Grimes,
2020).

Similarly, while differences in target cells and control of viral replication are recognised between
COVID-19 and influenza, shared immune responses and mechanisms are also reported
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(Flerlage et al., 2021). Our data builds on previous blood immune signatures (Lee et al., 2020;
Mudd et al., 2020; Zhu et al., 2020) to gain cellular and proteomic insights into the more severe
form of these infections. We find similar changes in frequency of major immune cell populations
between COVID-19 and influenza for HSC, the majority of T and NK cell populations,
classical/cycling monocytes and plasmablasts; but differences for many B cell populations
(differential naive, intermediate and memory B cell response) as well as specific cell subsets
notably ncMono subpopulations (Figure 7D). While the bulk of the circulating proteomic
response is shared, specific differences involved EGF, G-CSF and IL-15. We further found
extensive sharing of pathways and networks including modules involving JAK-STAT and zinc
finger proteins, as well as differences, most notably the enrichment of AP-1/MAPK specifically in
COVID-19.

In conclusion, our multi-omic integrated blood atlas comprehensively delineates the host
immune response in COVID-19 from the start of the UK pandemic, prior to clinical trial-led
implementation of approved treatments or vaccination. This provides the community a unique
reference resource for replication and meta-analysis, to interpret datasets generated from
interventional trials and includes tools for direct visualisation (https://mlv.combat.ox.ac.uk/).
Integrative approaches such as we have applied here are essential to better differentiate
COVID-19 patients according to disease severity, underlying pathophysiology and infectious
aetiology. This will be important as we seek novel therapeutic targets and the opportunity for a
precision medicine approach to treatment that is appropriately timed and targeted to those
patients most likely to benefit from a particular intervention.
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Figure legends

Figure 1. Complementary single cell compositional approaches reveal variance in specific
cell populations by clinical group and severity

(A) Study design, assay modalities and workflow. Table shows number of patients assayed, with
number of samples in brackets where more than one sample assayed. *WHO severity
categories show number of patients at time of sampling **single paired convalescent sample
assayed for n=16 COVID-19 and n=3 sepsis patients; ***10 samples assayed (8 samples for
paired acute-convalescent COVID-19 and 2 healthy). (B-G) Major cell populations in whole
blood for clinical comparator groups assayed by single cell mass cytometry (CyTOF) showing
(B,C) for non-depleted samples (3,893,390 cells) (B) cell frequencies (C) PCA with arrows
indicating drivers of variation by cell population and (D) differential abundance analysis of CD66*
depleted whole blood (7,118,158 cells assayed) by patient group (E) multimodal identification
and annotation of PBMC subpopulations based on curated intersection of CITE-seq data (F,G)
UMAP showing joint visualisation of CITE-seq and CyTOF datasets (using CITE-seq data as
reference) (F) overlaid CITE-seq (ADT) and mass cytometry (G) cell annotations transferred
between datasets and coloured by cell type where concordant (94.5% of cells) or discordant
(grey). (H-K) CITE-seq compositional analysis of minor subsets (H,I) PCA for hospitalised
COVID-19 cases (H) PC1 vs PC2 (l) analysis of loadings of minor subsets on PC1. (J)
Differential abundance analysis between clinical groups (K) Covariate analysis for clinical,

Page 16 of 63


https://doi.org/10.1101/2021.05.11.21256877
http://creativecommons.org/licenses/by/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2021.05.11.21256877; this version posted May 11, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY 4.0 International license .

demographic and experimental variables for hospitalised COVID-19 cases (with BH adjusted
ANOVA test for significance).
See Figure S1.

Figure 2. Signatures of COVID-19 response from transcriptomics

(A-E) Whole blood total RNAseq (A,B) PCA (A) all clinical comparator groups (B) hospitalised
COVID-19 patients including topological data analysis (C) pathway enrichment by severity of
COVID-19 (D,E) differential gene expression (D) critical vs mild COVID-19 (E) COVID-19 vs
sepsis. (F) Intramodular hub genes for weighted gene correlation network analysis (WGCNA)
whole blood RNAseq module grey60. (G,H) Neutrophil cell surface proteins assayed by mass
cytometry shown by (G) marker (H) ratio of markers. (I,J) CITEseq gene expression analysis of
PBMC (l) association of PCs of expression variance with minor subset cell clusters in patients
with COVID-19 (J) PC plots of gene expression in classical monocytes and naive CD4+ T cells.
(K-V) WGCNA CITEseq gene expression for major cell types (K) association of module
eigengenes with disease contrasts, clinical severity scores and variables, survival and gene set
scores (*all significant associations shown, BH adjusted P < 0.05 in individual tests) (L) pathway
enrichment (M) module eigengene correlation with AP-1 family genes (N) p38MAPK.AP-1
module eigengene expression across patient groups (O-R) eigengene expression and top
eigengene-gene correlations (O) ribosomal module in cMono (P) cycling module in cMono (Q)
JAK-STAT.interleukin module in CD4 (R) FKB5.CD163 module in cMono.

See Figure S2.

Figure 3 Changes in myeloid cells associated with COVID-19 severity

(A-C) Single cell mass cytometry (A) UMAP of overall myeloid cell clusters coloured by patient
group and by Mean Metal Intensity (MMI) of HLA-DR, CD33 and CD11c (B) cell population
frequencies by patient group (C) differential abundance analysis in patients vs healthy
volunteers, and between disease categories (D-F) CITE-seq PBMC myeloid cell clusters (D-E)
cell composition (D) differential abundance analysis with box plots of cell cluster frequency by
patient group where abundance significantly differs relative to healthy volunteers (E) covariate
analysis of abundance and clinical, demographic and experimental variables for hospitalised
COVID-19 cases (with BH adjusted ANOVA test for significance) (F) scRNAseq MSigDB
hallmark gene set enrichment for cMono, ncMono and DC. (G-K) scATACseq (G) differential
chromatin accessibility in myeloid cells comparing acute COVID-19vs healthy volunteers (H)
scATACseq tracks at FGFRL1 locus comparing cell populations and condition (healthy, COVID-
19 acute and convalescent) (l) differential motif enrichment in myeloid cells, acute COVID-19 vs
healthy volunteers (J,K) transcription factor footprinting for myeloid enriched factors (J) JUN (K)
FOS.

See Figure S3.

Figure 4. B lymphocytes show changes in composition and repertoire associated with
COVID-19 severity

(A-D) Cell composition analysis comparing study groups (A) by single cell mass cytometry (B-D)
by CITE-seq clustering (B) UMAP embedding with cluster identities (C) cluster proportions and
(D) differential abundance. (E) Clonal density plots with Kernels density estimates overlaid onto
UMAP embeddings by comparator group. (F) Plasmablast repertoire clonality. (G) Mean
plasmablast diversity indices by comparator group; clonal expansion index, CEl, clonal
diversification index, CDI. (H) Mutation and expansion proportions in plasmablast clone
repertoire. (I) Partition-based graph abstraction (PAGA) plots of scRNA-seq by cell population
and patient group (weighted edges indicate degree of cell cluster connectivity). (J,K) Junction
lengths from resampled repertoires by patient group (J) per B cell cluster (left) and specifically in
plasmablasts (right) (K) for immunoglobulin constant genes (L) IGHV4-34 AVY/NHS motif usage
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in unmutated VDJ sequences shown across IGH genes (bulk BCR-seq). (M) Class switch
inference networks (RNA derived B cell repertoires) (top) Ig constant region genes per B cell
cluster (single cell VDJ data) (bottom). (N) Clonal overlap across comparator groups with total
number of convergent clones per group shown with clonal network depicting distribution of
convergent clusters (inset) and sequence logos of COVID19 exclusive clusters (with IGHV/J
usage and number of members). Significance * <0.05, ** 0.005 Kruskal Wallis.

See Figure S4.

Figure 5. Dynamic changes in T lymphocyte and NK composition and repertoire
associated with COVID-19 severity

(A-C) Single cell mass cytometry whole blood (A-B) activated CD4 and CD8 T lymphocytes (A)
frequency (B) median metal intensity of specific markers (C) frequency of activated MAIT cells
(D,E) CITEseq profiling CD4* CD8" T and NK cell clusters (D) differential abundance and (E)
frequency between comparator groups. (F) scRNAseq MSigDB hallmark gene set enrichment for
T cell populations (G) TRAV and TRAJ repertoire analysis. (H,I) UMAP of CD8" T cells and
associated clusters (H) used in repertoire analysis (I) Shannon Diversity Index of CD8" T cells by
patent group. (J) Boxplots of Shannon Diversity Index for specific cell populations by comparator
group. (K) Number of enlarged clones by comparator group in CD4* and CD8" subsets. (L)
Mean cytotoxicity score by comparator group. (M) Proportion of CD8" T cells carrying TCR
containing COVID-19 associated Kmers. (N) Frequency of COVID-19 Kmer positive cells in
CD8" naive and effector memory cells. (O) Correlation of COVID-19 Kmer containing CD8* T
cells per individual with median cytotoxicity score. (P) Cytotoxicity of CD8" T effector cells
positive for a COVID-19 associated Kmer across patient groups. (Q) UMAP of CD8" T cells by
patient group indicating density of COVID-19 Kmer positive cells (blue dashed line) and cells
with previously described COVID-19 clonotype. (R) Proportion of COVID-19 known clonotype
matching cells in CD8" naive and effector memory cells. (S) Cytotoxicity of CD8" T effector
memory cells with clonotypes matching published COVID-19 clonotypes. Wilcoxon Test age and
sample size adjusted linear model used *P<0.05, **P<0.01, ***P<0.001.

See Figure S5.

Figure 6. Plasma protein COVID-19 signatures and subphenotypes

(A-E) HT-LC-MS/MS mass spectrometry of plasma proteins (A) PCA all samples (B) proteins
contributing to PC loadings, the more negative loading values indicating higher positive
correlation with disease severity (C) clusters based on the protein-protein interaction network
with enriched GOBP terms (D) functional PCA (E) differential protein abundance COVID-19
severe or critical vs sepsis. (F-L) Luminex blood proteins (F) PCA all plasma samples (G)
summary of differential abundance of plasma proteins (H) heat map showing abundance of
plasma and serum proteins by disease groups (I-K) Volcano plots comparing differential
abundance of plasma proteins (I) COVID-19 severity groups vs healthy volunteers (J)
critical/severe COVID-19 vs sepsis (K) critical COVID-19 vs influenza (L) network of clinical
feature—protein correlations in COVID-19 patients and healthy volunteers based on highly
correlated events (r? >0.7 or <-0.5). (M-O) Similarity network fusion for hospitalised COVID-19
patients (SNF) from COMBAT (discovery) data using networks derived from sample-by-sample
similarity matrix for mass spectrometry and luminex assays of plasma proteins. Coloured by (M)
cluster group (N) severity. (O) Kaplan-Meier survival plot by SNF cluster group (95% Cls
shaded) (HR, hazard ratio calculated using Cox proportional hazard model). (P) Mass General
Hospital (Olink) validation data and COMBAT (discovery) cohorts showing groups.

See Figure S6.

Figure 7. Integrative approaches define hallmarks of COVID-19 response
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(A,B) Machine learning for COVID-19 severity showing average feature score of (A) highest-
scoring features (PCs) (B) final feature set. (C) Tensor and matrix decomposition across multi-
omic datasets (CITEseq, whole blood RNAseq, mass cytometry, luminex and mass
spectrometry) for 152 samples showing clustering of COVID-19 associated components (k-
means clustering of row-scaled median sample loadings) and relationship with disease
comparator groups, with examples of components showing component number and cluster
membership; and sample loading scores across comparator groups and features (cells, gene
expression, proteins) whose variance contributes to that component. For gene expression, cell
type and highest scoring genes listed (red upregulated, blue downregulated) together with top
pathway enrichment (FDR <0.05) with pathway genes listed within bars (features shown or
included in pathway analysis where posterior inclusion probability >0.5). More detail provided for
component 171 as exemplar. (D) Overview figure summarising key findings from this study
including hallmarks of COVID-19 severity, shared and specific features with influenza and
sepsis, and patient stratification.

See Figure S7.

Supplementary figure legends

Figure S1. Study cohorts, clinical covariates and single cell compositional approaches,
related to Figure 1

(A-F) Clinical covariates and features for studied cohorts. (A) Admission samples for hospitalised
COVID-19 (n=116) and sepsis (n=58) including total and differential cell count and clinically
assayed biomarkers CRP, D-dimer, LDH, creatine kinase, ALT, ALP. (B) Overview of
hospitalised COVID-19 sampling by time from symptom onset and WHO severity with maximal
severity indicated. (C) Correlation matrix of clinical covariates and markers of response in
hospitalised COVID-19 cases. (D,E) Unsupervised clustering of samples from hospitalised
COVID-19 patients with consensus k-means clustering followed by hierarchical clustering on the
consensus matrix based on (D) 49 clinical features (excluding WHO severity classifiers) (E)
acute measures of physiology and clinical biomarkers of response without significant
missingness (including measures of oxygenation requirements, blood cell counts, fever, ALT,
CRP). (F) Biplot illustrating for PC1 and PC2 features driving clustering, and heat map of clinical
features, coloured by three clusters identified in k-means clustering using acute measures of
physiology and clinical biomarkers of response. (G-M) Stabilized whole blood (Cytodelics) from
COVID-19 patients analysed by single cell resolution mass cytometry (Helios CyTOF system)
(including matched samples collected during convalescence from 16 COVID-19 hospitalized
patients). (G-J) Non-granulocyte depleted samples. A self-organising map algorithm (FlowSOM)
resolved 25 clusters by consensus clustering for 3,893,390 cells after down sampling to a
maximum of 40,000 cells. Clusters merged to identify broad immune cell populations (G) UMAP
(H) clustering of major cell populations (y axis) by discriminating marker (x-axis) (I) cell counts
(J) differential abundance analysis in patients compared to healthy volunteers, and different
disease states clustering major cell populations. (K) Granulocyte (CD66%) depleted whole blood
with down sampling to a maximum of 75,000 cells and 7,118,158 cells assayed showing UMAP
(L,M) Plots demonstrating cross validation mass cytometry and CITEseq cell clusters. (N-Q)
CITE-seq analysis of viability sorted peripheral blood mononuclear cells (PBMCs) from 140
samples profiled using the 10X Genomics platform. (N) PCA minor cell subsets for all patient
groups. (O,P) PCA major subsets for hospitalised COVID-19 patients (O) PC1 vs PC2 (P)
loadings of cell clusters on PC1. (Q) Differential abundance analysis in patients compared to
healthy volunteers, and between disease categories for major cell subsets.

Figure S2. Signatures of COVID-19 severity revealed by bulk and single cell RNAseq,
related to Figure 2
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(A-E) Whole blood total RNAseq for hospitalised COVID-19 patients showing (A) matrix
correlation of PCs with covariates (B) differentially expressed immunoglobulin lambda chain
gene IGLV3 and innate viral response gene OAS1 (C) pathway enrichment on analysis of
COVID-19 severity classes as a quantitative trait (mild=1, severe=2, critical=3) with and without
inclusion of cell proportion (D) correlation plot showing the influence of cell proportion on
detection of differentially expressed genes (E) pathway enrichment COVID-19 severe and critical
vs sepsis using Reactome. (F-J) Weighted gene correlation network analysis (WGCNA) whole
blood total RNAseq (F) dendrogram and heatmap of eigengene network arising from WGCNA
with hierarchical clustering (G,H) enrichment of WGCNA modules using gene expression data
for (G) 64 immune and stroma cell types (xCell) (H) msigdb canonical pathway genesets (I) heat
map showing module trait relationships on WGCNA (blue, negative correlation; red, positive
correlation) (J) module eigengene values plotted by patient group. (K) Neutrophil marker
expression whole blood assayed by mass cytometry comparing across patient groups. (L)
Correlations between whole blood total RNAseq WGCNA modules and neutrophil CyTOF
markers. (M) Association p-values between principal components of pseudobulk GEX for
specific cell clusters across all patients. (N) scRNAseq MSigDB hallmark gene set enrichment
for cell types (Liberzon et al., 2015) (O) WGCNA analysis CITEseq gene expression for all
samples showing correlation of eigengene expression (all modules in all cell types across all
patient groups) with major module groups annotated.

Figure S3. Changes in myeloid populations associated with COVID-19 severity, related to
Figure 3

(A,B) Single cell mass cytometry (A) mean Metal Intensity (MMI) of HLA-DR, CD33 and CD11c
in classical monocytes (cMono) (B) representative plot of Ki67* expression and 191Iridium
(DNA) labelling in a healthy volunteer and a COVID19 patient; two distinct population of Ki67*
proliferating cells were identified, one containing the same amount of DNA as Ki67" cells
(Ki67*DNA"") and a rarer population containing double the amount of DNA (Ki67 " DNA"") which
likely comprises proliferating cells in S, G2 and M phase. The boxplots describe the frequencies
of Ki67*DNA" and Ki67*DNA"S" across different disease states. (C) PCA of CITE-seq gene
expression in mononuclear phagocyte (MNP), major and minor cell subsets comparing all
groups (COVID-19 IP mild, severe, critical; COVID-19 community; influenza; sepsis; healthy) (D)
PCA and correlation with clinical covariates and severity measures for gene expression in MNP,
major and minor cell subsets for acute hospitalised cases only (mild, severe, critical). (E,F)
Differential gene expression in classical monocytes comparing (E) critical COVID-19 patients vs
healthy volunteers and (F) COVID-19 community cases vs healthy volunteers with volcano plots
showing significant genes (FDR < 0.01 and logFC > 2) in red. (G,H) scATACseq with cell lysis,
nuclear extraction and tagmentation on viability sorted PBMC prior to single nuclei capture and
sequencing. Data shown for 42,000 cells post QC (ArchR pipeline) for 8 COVID-19 samples
(paired acute and convalescent) and 2 healthy volunteers with (G) label transfer (unconstrained
method) to assign cell clusters based on CITEseq and (H) comparison of chromatin accessibility
(scATACseq peaks linked to genes) to CITEseq gene expression.

Figure S4. B lymphocytes show changes in composition and repertoire associated with
COVID-19 severity, related to Figure 4

(A,B) Single cell mass cytometry (CyTOF) compositional analysis showing (A) UMAP and
clustering of major cell populations (B) differential abundance analysis in patients compared to
healthy volunteers, and between disease categories. (C,D) CITE-seq compositional analysis (C)
differential abundance analysis of B and plasmablast cell clusters (D) covariate analysis of
PBMC B and plasmablast cell cluster abundance and clinical, demographic and experimental
variables in hospitalised COVID-19 cases (with BH adjusted ANOVA test for significance). (E)
UMAP embedding of all B cells from single cell VDJ dataset. Colour scale depicts log total UMIs
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per VDJ sequence. (F) Alpha diversity (derived from (Gupta et al., 2015)). Bootstrapped alpha
diversity curves are shown per study group across different orders of q. (G) IGHV total mutations
across B cell subsets per study group (naive B cells not shown, as no mutations). (H) Clonal
overlaps across B cell clusters per study group. Numbers reflect binary detection events. (1)
Clonal overlaps across constant region genes per study group. Numbers reflect binary detection
events. (J) Correlation analysis of IGHV genes detected by single cell VDJ data and RNA VDJ
data, within the (top) IGHD/M unmutated, (middle) IGHD/M mutated and (bottom) class-switched
VDJ sequences. Scatter plots, with marginal histograms, depict log proportions of repertoires
detected and missed by both datasets. Boxplots to the right depict number of IGHV genes
missed by RNA (bulk) and single cell VDJ data. (K) Heavy chain V and J gene pairing across
pairwise study group comparisons, only significant pairings shown. Dot sizes and colour depict
average log2 fold change of proportion of repertoire. (L) Volcano plots of log2 fold change of
IGHV gene usage of IGHD/M unmutated sequences (derived from single cell VDJ data),
IGHD/M mutated sequences (derived from RNA VDJ data), class-switched sequences (derived
from RNA VDJ data). Top panel depicts significant genes across pairwise comparisons of
COVID19 groups vs. healthy volunteers. Middle panel depicts significant genes across COVID19
vs sepsis groups. Bottom panel depicts significant genes across COVID19 severity groups. All
significant pairwise comparisons are derived from Dunn tests post Kruskal Wallis testing. (M)
Proportion of constant region genes across B cell clusters per study group. (N) Sequence
similarity network of VDJ sequences, from single cell VDJ data (central nodes), to published
monoclonal antibodies (peripheral nodes; references and epitopes described in legend). Edges
depict pairwise Levenshtein’s distance of CDR3s. CDR3 sequence logos are shown following
multiple sequence alignment. (O) The proportion of B cells across each B cell cluster per
disease group of sequences shared between patient groups (observed in at least 2 patients). (P)
Cumulative bar chart of the frequencies of known SARS-CoV-2 binding BCRs per patient group.
Each section represents an individual patient.

Figure S5. Dynamic changes in T lymphocyte and NK composition and repertoire
associated with COVID-19 severity, related to Figure 5.

(A) Single cell mass cytometry (CyTOF) of whole blood showing differential abundance for T and
NK cells. (B,C) Multicolour Flow Cytometry analysis of PBMC (B) boxplots, dotplots and
heatmap describing the phenotype and frequency of subsets of memory CD4 T cell subsets
defined based on the expression of CCR4, CCR6 and CXCR3 (C) frequency of
TIM3"CD38"HLADR" CD8" T cells. (D) Single cell mass cytometry frequency of CLA"THLADR*NK
cells. (E-l) CITEseq profiling of T and NK cell populations in PBMC (E) covariate analysis of cell
abundance with clinical, demographic and experimental variables in hospitalised COVID-19
cases (with BH adjusted ANOVA test for significance) (F-I) PCA and correlation with clinical
covariates and severity measures for gene expression in acute hospitalised cases (mild, severe,
critical) in (F) CD4 regulatory T cells (G) CD4 effector T cells (H) CD8 effector memory T cells (1)
activated NK cells. (J,K) UMAP of CD4+ T cells and associated clusters (J) used in repertoire
analysis (K) indicating Shannon diversity of CD8 T cells by patent group. (L) Mean clone size
CD4 and CD8. (M) Using a pre-defined cytotoxicity metric the overall cytotoxicity was calculated
per individual for both the CD4 and CD8 subsets. For each individual the number of enlarged
clones in these subsets was determined (defined as >2 cells with the same TCR chain). Mean
cytotoxicity per individual is correlated with the number of expanded clones across each
individual, irrespective of cohort origin (Pearson’s R2). (N) lllustration of the method used to
identify CD3 Kmers associated with COVID-19 compared to cells from healthy volunteers and
patients with sepsis. (O) Number of kmers comparing COVID-19 vs healthy volunteers and
sepsis.

Figure S6. Plasma protein signatures and subphenotypes of COVID-19, related to figure 6
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(A-F) Plasma proteins assayed by HT-LC-MS/MS mass spectrometry (A) unsupervised
clustering analysis all samples (B) supervised correlation analysis all samples (C) individual
protein abundance across the comparator groups. Only one sample per patient at the maximal
severity are plotted. (D,E) GOBP terms or Reactome pathways significantly enriched
(FDR<0.05) in proteins differentially abundant contrasting samples from (D) mild hospitalised
COVID-19 patients with those from healthy volunteers or from mild community COVID-19 cases
and (E) severe vs mild or critical. (F) Pairwise contrasts, severe vs mild and critical vs severe
COVID-19. (G) Individual protein abundance across the comparator groups assayed using
luminex. (H) Similarity network fusion (SNF) for hospitalised COVID-19 patients from COMBAT
(discovery) data using networks derived from sample-by-sample similarity matrix for mass
spectrometry and luminex assays of plasma proteins, and shaded by SOFA_0O2. (1,J) Mass
General Hospital (Olink) validation data and COMBAT (discovery) cohorts shaded by (I) cluster
group for COMBAT cohort only (J) shaded by WHO ordinal score (max severity) for all samples.
(K,L) SNF clusters when analysing hospitalised COVID-19 and sepsis patients shaded by (K)
cluster group (L) patient comparator group.*p< 0.05, **p< 0.01, ***p< 0.001, ****p< 0.0001 by
One-way ANOVA with Tukey’s Multicomparison Test. Data are represented as mean + SEM.

Figure S7. Integrative approaches define hallmarks of COVID-19 response, see figure 7
(A-C) Machine learning feature selection for COVID-19 severity (A) summary of process
followed (B) violin plots showing distribution of final selected predictive feature set across WHO
severity groups (C) performance of the 10 best algorithms when run on all PCs, only the top-
scored PCs, and the raw features extracted from the PCs (error bars are confidence intervals for
the cross validation runs). We also show the accuracies from training the algorithms with the
train+test sets and evaluating them on the validation set (averaged over 50 runs). (D,E) Machine
learning to discriminate between sepsis and COVID-19 using plasma proteins, whole blood total
RNAseq and mass cytometry as input variables in SIMON showing (D) enriched KEGG
pathways on all features with variable importance score >50 (E) discriminating features with
variable score >70. (F-J) Tensor analysis (F) tensor and matrix decomposition across multi-omic
datasets showing datasets including 152 samples by 8 cell lineage clusters (scRNAseq, 22
missing samples) and whole blood (total RNAseq, 9 missing samples) by 14,989 genes; cell
composition from CITEseq (152 samples by 64 pseudobulk cell types, 22 missing samples) and
CyTOF (152 samples by 10 or 51 cell types, non-granulocyte depleted and depleted whole blood
with 21 or 20 samples missing); and plasma proteins from luminex (152 samples by 51 proteins,
20 missing samples) and high throughput liquid chromatography with tandem mass
spectrometry (152 samples by 105 proteins with 17 samples missing) (G) heat map summarising
top components identified on pairwise contrasts involving clinical covariates, measures of
severity and patient group (H) tensor component 2 showing loading scores and relationship with
gender, with loading scores displayed for tensor involving differential gene expression cell
lineage clusters and whole blood (1) feature types contributing to loading scores of the top
components according to the posterior inclusion probability (J) component inclusion where
significant on analysis of variance between COVID-19 source group and healthy volunteers (BH
adjusted P <0.01) and absolute spearman’s P >= 0.5 (and BH adjusted P < 0.01) with at least
one of the contrasts between the COVID-19 groups vs healthy volunteers.
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STAR Methods
RESOURCE AVAILABILITY
Lead Contact

Further information and requests for resources and reagents should be directed to and will be
fulfilled by Julian Knight (julian.knight@well.ox.ac.uk).

Materials Availability
This study did not generate new unique reagents.

Data and Code Availability

Derived and processed data for all the datasets generated during this study and reported in this
paper will be available including through this paper and the European Genome-phenome Archive
(EGA). Web-based interfaces for visualising COMBAT datasets and outputs reported here are
available at https://mlv.combat.ox.ac.uk/ and https://shiny.combat.ox.ac.uk. All code used for
every algorithm followed in data processing and analysis is fully referenced within the specific
methods text sections and Key Resources Table.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cohorts

The study was designed to allow deep molecular, multi-omic and immunological profiling of
COVID-19 in peripheral blood at the outset of the pandemic in the United Kingdom during a public
health emergency. Samples used were derived from multiple sources to allow comparison
between adult patients with varying severities of COVID-19 and comparator disease or health
states. A summary of the cohorts included in this study is provided below followed by a description
of the methods used to define clinical parameters and handling of the blood samples.
Demographic information and clinical phenotyping for all study subjects is summarised in Table
S2, together with numbers of patients/samples assayed by cohort.

Hospitalised COVID-19 patients

Patients admitted to Oxford University Hospitals NHS Foundation Trust, UK were co-recruited into
the Sepsis Immunomics study (a prospective observational cohort study applying an integrated
immune -omic approach to understand why some patients have a severe response to infection),
and the ISARIC/WHO Clinical Characterisation Protocol for Severe Emerging Infections, if they
were found to have a syndrome consistent with COVID-19 and a positive test for SARS-CoV-2
using reverse transcriptase polymerase chain reaction (RT-PCR) from an upper respiratory tract
(nose/throat) swab tested in accredited laboratories. Written informed consent was obtained from
adults or personal/nominated consultees for patients lacking capacity, with retrospective consent
obtained from the patient once capacity was regained. Ethical approval was given by the South
Central-Oxford C Research Ethics Committee (REC) in England (Sepsis Immunomics REC
reference 19/SC/0296; ISARIC WHO Clinical Characterisation Protocol for Severe Emerging
Infections REC reference 13/SC/0149). Patients had whole blood sampled on days 1, 3 and 5 of
either hospital or intensive care admission and were recruited during the SARS-COV-2 pandemic
between 13 March and 28 April 2020. A selection of survivors were approached and asked to
provide samples with consent under both research protocols at day 28 or more following discharge
from hospital.

Healthcare workers with COVID-19
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In order to provide a time of symptom matched set of samples from individuals with mild COVID-
19 disease in the community, healthcare workers based at Oxford University Hospitals NHS
Foundation Trust, UK with symptoms consistent with mild COVID-19 and a positive test for SARS-
CoV-2 using RT-PCR from an upper respiratory tract (nose/throat) swab tested in an accredited
lab were recruited into the Gastro-intestinal illness in Oxford: COVID substudy [Sheffield REC,
reference: 16/YH/0247]. Individuals were consented and sampled at or after 7 days from the start
of symptoms when the participants were returning to work.

Hospitalised patients with all-cause sepsis

In order to include samples from patients with sources of severe sepsis other than COVID-19,
patients older than 18 years of age admitted to Oxford University Hospitals NHS Foundation Trust,
UK with symptoms and signs of established sepsis (suspected infection with an acute change in
total Sequential Organ Failure Assessment (SOFA) score of 22 points or a change in quick SOFA
score by =2 points) were consented into the Sepsis Immunomics project [Oxford REC C,
reference:19/SC/0296]) between 12 October 2019 and 13 March 2020. Patients were sampled on
days 1, 3 and 5 of either hospital or intensive care admission and a selection of survivors were
sampled, with additional consent at up to 6 months post-discharge.

Healthy volunteers

Following advertisement, interested individuals 55 years or over and self-reporting as healthy were
consented and recruited into the Genetic diversity and gene expression in white blood cells study
[South Central Oxford REC B, reference 06/Q1605/55]. Blood samples were collected on one
occasion only.

Critically unwell patients with COVID-19 and influenza in London

In order to provide comparator samples from patients critically unwell with influenza, samples were
included from patients =218 years old managed in an intensive care unit (ICU) for =24 hours
requiring ventilator support with either a diagnosis of COVID-19 or severe influenza using the
Aspergillosis in patients with severe influenza (AspiFlu ISRCTN51287266) study [Wales REC 5,
reference 19/WA/0310]. Patients had blood sampled within 72 hours of enrolment that may occur
within 7 days of admission onto ICU. Patients were recruited at one of three UK units including St
George’s University Hospitals NHS Foundation Trust, Guy’s and St Thomas’ NHS Foundation
Trust and King’s College Hospital NHS Foundation Trust. PCR diagnostics for influenza or SARS-
CoV2 performed by accredited laboratories were used for diagnosis.

Clinical phenotyping

Clinical data capture

Healthy volunteers and healthcare workers with COVID-19 had age, sex and, where possible, self-
reported ethnic background information collected. Information on previous medical history was not
collected or stored for the healthy volunteer cohort but participants were invited on the basis of
their self-reporting being ‘healthy’ and were deemed capable of self-presenting for study
assessment. Healthcare workers were asked for the date of onset of symptoms (‘when they started
to feel unwell’) and the number of days between this date and sampling was calculated for every
participant. Any healthcare worker who was admitted to hospital or required oxygen had this
information collected and retained and defined as maximal severity of illness using the World
Health Organisation Criteria (see below).

A range of clinical data was collected and stored for downstream analysis using structured

methodology from the hospitalised patients included in the study (COVID-19, all-cause sepsis and
influenza).
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Patient demographics
Sex and ethnicity were captured using electronic healthcare records (EHR). Age was calculated
at the time of sampling or maximal severity of illness using dates of birth registered in EHR.

Patient medical history and risk factors

Smoking status was derived from clinical clerking or direct patient or next-of-kin questioning where
possible. Estimated or calculated weight was available for the vast majority of patients. In London
COVID-19 and influenza patients, body-mass index (BMI) was calculated through availability of
estimated or measured height. In Oxford patients, height was rarely available and so BMI was
estimated using sex and weight and correlation with measured BMI was acceptable in cases
where BMI was available. BMI of 25 or over was defined as overweight. Index of multiple
deprivation (IMD) quintile and Charlson comorbidity indices (2012 definitions) were derived from
the EHR in Oxford and were not available for London patients. Previous medical problems in
patients admitted to Oxford hospitals were defined using NHS UK Read Codes Clinical Terms
Version 3 and converted into ICD10 codes using ‘TRUD’
(https://isd.digital.nhs.uk/trud3/user/guest/group/0/pack/9). Pre-existing medical conditions
defined through ICD10 were defined through the consensus of at least one clinical opinion and in
cases where there was uncertainty if a code was assigned to an acute presentation, pre-existing
conditions were only assigned if they were present in the first episode of an admission, and not if
they were only present in later admission episodes. For patients recruited in London, pre-existing
diseases were defined by the study teams using clinical records and patient or relative questioning.

After defining pre-existing ICD10 codes or reported diagnoses, patients were classified as having
the following conditions: hypertension, chronic respiratory disease (not explicitly available for
London patients), asthma (not explicitly available for London patients but chronic obstructive
pulmonary disease was), chronic cardiovascular disease, diabetes, haematological malignancy,
other malignancy, liver disease, neurological disease (not available for London patients), chronic
kidney disease, solid organ transplant, rheumatological condition (not available for London
patients), significant immunosuppression (not available for London patients) and stroke / dementia
(not available for London patients). An OpenSafely (OS) score was calculated for all patients using
these classifications combined with BMI and IMD (Williamson et al., 2020). An adjusted OS score
was calculated for the London cases that did not include some missing pre-morbid conditions and
IMD quintile and the correlation was very high with the standard OS score (r=0.98).

Admission and disease timescales

Length of hospital stay was defined using hospital records for all hospitalised patients. Length of
intensive care admission and duration of vasopressor, ventilation or, where appropriate
extracorporeal membrane oxygenation (ECMO) and/or renal replacement therapy were all defined
for hospitalised patients using EHR. All intervention and maximal severity timepoints were defined
according to the date of onset of symptoms for each patient. This was defined by at least 2
independent clinicians through review of the clinical notes or direct questioning of the patient
according to any unusual symptoms related to the current clinical condition. COVID-19 was
defined by presence of at least one symptom consistent with COVID-19 and a positive
microbiological test. Patients without symptoms were not approached for recruitment. Time
between symptom onset and sampling was measured in days. All London patients were classified
as critical requiring mechanical ventilation. No specific physiological observations were available
for the London patients at the time of sampling and were only available at the time of admission
onto ICU for calculation of the Acute Physiology and Chronic Health Evaluation (APACHE) and
SOFA scores. Physiological observations were available from EHR for all hospitalised Oxford
patients and were defined on the day of sampling at midday or the closest time before or after
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midday for each patient and timepoint including oxygen saturation, delivered fraction of inspired
oxygen (either exact or estimated depending on delivery method: 0.24 for nasal cannula, 0.28 for
simple face mask, 0.8 for non-rebreathe mask), pulse rate and blood pressure. Oxygen saturation:
fraction of inspired oxygen ratio (SaO2:FiO2) was calculated as a proxy for partial pressure of
oxygen:FiO2 ratio in the absence of complete arterial blood sampling for all patients. Days of
oxygen therapy were defined in relation to sampling and maximal illness and total hospital stay for
hospitalised COVID-19 patients where 2 or more timepoints of oxygen therapy were recorded.
Fever was defined as 38.0°C and, if present at midday, was defined at present at time of sampling.
Highest measured temperature 24 hours prior to midday was also captured using EHR for every
timepoint and the presence of ‘persistent fever’ more measures of temperature 238°C in 24 hours
before midday than temperatures recorded <38°C was also recorded for all sampling timepoints
in hospitalised Oxford patients. In those patients where persistent fever was observed the time in
days between onset of symptoms and end of persistent fever was calculated.

Maximal severity was defined for Oxford COVID-19 patients using SaO2:FiO2 ratio and the date
of lowest value was defined through manual inspection of longitudinal physiological parameters
available through EHR. The individual levels of SaO2, method and exact or estimated
concentration of oxygen delivered and additional recruitment strategies such as paralysis or
proning were captured. In cases where death occurred, this was defined as maximum severity of
illness and time between symptom onset and maximum severity was defined thereafter.

All together this information was used to define WHO categorical (mild as no oxygen, severe as
<93% oxygen saturation, and critical as requiring mechanical ventilation) and ordinal scales
(https://www.who.int/blueprint/priority-diseases/key-action/COVID-
19_Treatment_Trial_Design_Master_Protocol_synopsis_Final_18022020.pdf) for each timepoint
of sampling and maximal severity of iliness and these times were all aligned in days from onset of
symptoms. Severity was also classified according to the WHO Ordinal scale
(https://www.who.int/blueprint/priority-diseases/key-action/COVID-
19_Treatment_Trial_Design_Master_Protocol_synopsis_Final_18022020.pdf) and Sequential
Organ Failure Assessment score (Ferreira et al., 2001) together with the extent of lung disease
and compromise (SOFA oxygenation score).

Other clinical and therapeutic tests and interventions

Full blood count differentials (haemoglobin concentration, platelet count, total white cell,
neutrophil, lymphocyte, monocyte and eosinophil counts), highest lactate, C-reactive protein
(CRP), alkaline phosphatase (ALP), alanine transaminase (ALT) and lowest bicarbonate were
captured at the time of sampling for all hospitalised COVID, and sepsis patients using EHR.
Equivalent results at the time of sampling were not available for London patients. D-dimer, lactate
dehydrogenase (LDH) creatine kinase (CK) levels at the time of admission, sampling and maximal
severity of illness were available for hospitalised Oxford patients but not London patients.
Decisions on maximal levels of care based on senior lead clinician decision (frequently with
consensus from senior intensive care clinicians) was captured and patients were defined as frail
if the plan was not to offer multi-organ support.

Patients with computerised tomography (CT) images of the lungs and thorax had images assessed
independently by three radiology or respiratory experts to define ground-glass or consolidation
patterns of lung involvement, presence or absence of pulmonary embolus and extent of
involvement.

The clinical suspicion and/or radiological confirmation of occurrence of any major arterial (e.g.
stroke) or venous thromboembolic (deep venous thrombosis, pulmonary embolus) event was
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captured for each hospitalised Oxford patient and defined as a single binary outcome. Radiological
diagnosis of pulmonary embolus was defined separately but compared to this definition to ensure
consistency.

Co-prescription of agents hypothesised or proven to be effective in the management or treatment
of COVID-19 were logged for all patients with COVID-19. These agents included dexamethasone,
remdesivir, interferon 1beta, tociluzumab, anakinra, azithromycin, convalescent plasma or other
experimental immunomodulatory agents.

Inclusion / Exclusion criteria and Early Stage Matching

Patients <18 years old or those with active malignancy or receiving significant immunosuppression
(greater than an equivalent of 40mg once a day of prednisolone) prior to admission, or those with
a clear alternative cause for symptoms and hospital presentation were excluded from analyses.
For most modalities, samples were prioritised following a stepwise algorithm to match for age, sex
and severity of illness. The steps for matching were as follows:

Select severe/critical hospitalized COVID-19 patients first

1. As many critical samples were identified at the earliest point of their maximal severity and
samples from patients sampled during severe disease (not defined as frail) were matched in terms
of age, sex and time between onset of symptoms and sampling as closely as possible.

2. Rejection sampling was used to select individuals from the comparator groups (mild COVID-19
including both hospitalised and community healthcare workers), healthy volunteers, influenza and
all-cause sepsis) to match confounder distributions.

Some downstream analyses required multiple samples from the same individuals transiting
through different disease states. In cases where data was available from multiple samples for the
same individual a cross-sectional analysis involved prioritising a single sample based on
closeness to maximal severity of iliness.

METHOD DETAILS

Blood sample processing

Whole blood from hospitalised Oxford patients, healthcare workers and healthy volunteers were
sampled into Tempus tubes (Life Technologies Corporation) for extraction of whole blood total
RNA for sequencing or DNA for genotyping or sequencing, or EDTA buffered vacutainers (Fisher
Scientific) for processing within 4 hours of sampling. Processing consisted of mixing of whole
blood in a 1:1 ratio with Cytodelics (Cytodelics), and then fractionated using Leucosep (Griener
Bio-One) into peripheral blood mononuclear cells (PBMC) and EDTA-buffered plasma. PBMCs
and plasma were frozen and thawed in batches for specific experiments to minimise the risk of
batch effects. Tempus tubes were frozen at -80°C until extraction of RNA performed in batches.

Immune cell profiling using mass cytometry

Sample processing and antigen staining

On the day of staining, Cytodelics stabilised samples were thawed, processed to remove red blood
cells and fixed using Whole Blood Processing Kit (Cytodelics) as per manufacturer instruction.
Two control samples from 2 healthy volunteers (Control A and Control B) were included to each
batch to assess batch to batch variations. Fixed cells were distributed in 96 deep well V-bottomed
plate, washed once with CSB containing Benzonase, and then barcoded using the Cell-ID 20-Plex
Pd Barcoding Kit (Fluidigm).

Briefly, cells were washed once with Barcode Perm Buffer, resuspended in Barcode Perm Buffer
supplemented with Heparin to reduce nonspecific eosinophil staining artifacts (Rahman et al.,

Page 27 of 63


https://doi.org/10.1101/2021.05.11.21256877
http://creativecommons.org/licenses/by/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2021.05.11.21256877; this version posted May 11, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY 4.0 International license .

2016) and loaded with half the amount of metal barcodes recommended by the manufacturer.
After 30m incubation at room temperature, cells were washed twice in CSB, pooled and counted.
40-70% of cells in whole blood are CD66+ granulocytes, and their frequency can increase to up
to >95% in septic patients. To maintain both the possibility to measure changes in the frequency
of granulocytes and to analyse with a reasonable efficiency mononuclear cells in samples from
COVID-19 and sepsis patients, each batch was split in two aliquots. The first aliquot was stained
with no enrichment/depletion done (i.e. unaltered). The second aliquot was enriched for
mononuclear cells using a granulocytes depletion kit based on the magnetic separation of CD66+
cells using beads coated with anti-CD66 antibodies (EasySep; 17882). Both granulocyte depleted
and non-depleted samples were first stained with the surface antibody cocktail for 30m at room
temperature), washed with CSB, then fixed with Nuclear Antigen Staining Buffer and
permeabilized with Nuclear Antigen Staining Perm before staining with an intracellular antibody
cocktail. After staining at room temperature for 45m cells were washed in CSB buffer, and fixed in
1.6% FA solution before overnight incubation with Cell-ID™ Intercalator—Ir. On the day of
acquisition, cells were washed once in CSB buffer supplemented with Benzonase, resuspended
in water and run at an acquisition rate of <300 events/second and acquired on a Helios CyTOF
machine. An additional aliquot of whole blood was thawed and stained for those samples where
yield was too low after staining and acquisition. In total 31 samples were acquired twice (in different
batches).

Flow cytometry

For flow cytometry we analysed one aliquot of the same PBMC samples at the same time they
were being processed for 10x Genomics CITEseq. Each aliquot was split into three (to have 5-
10x10° cells/staining) and distributed in 96 well V-bottom plates. Cells were spun at 500g for 10
min, then pellets stained form 10min at RT in PBS with 15ul live dead Aqua, diluted as per
manufacturer's instructions) supplemented with 165ug/well human Ig (Gammanorm,
Octopharma), to block non-specific Fc receptors binding. Cells were washed with 200ul FACS
buffer (PBS 10% FCS), 10min 300g and pellets were stained with each antibody mix in Brilliant
Stain Buffer (BD Biosciences), 20min at RT. Cells were with 200ul FACS buffer, 10min 300g and
fixed in IC Fixation Buffer (Thermo Scientific) diluted 1:2 in PBS, total 200 pl/well. Cells were fixed
a minimum of 30min and a maximum of overnight before being acquired at the BD Symphony
X50.

Whole blood total RNAseq

Total RNA-seq was performed with libraries prepared by Oxford Genomics Centre with the
NEBNext Ultra Il Directional RNA Library Prep Kit for lllumina after rRNA and globin depletion kits.
Libraries sequenced as a single pool of 144 samples (124 patients) on one NovaSeq S4 flow cell
(4 lanes) with a target of 50M 100bp read pairs per sample. Due to limited material availability
influenza samples were sequenced used a small-bulk RNA-sequencing method in order to
facilitate genetic demultiplexing of the CITE-seq data.

Bulk BCR and TCR sequencing

Bulk isotype-resolved B cell receptor sequencing was performed on RNA from whole blood using
a protocol adapted from (Bashford-Rogers et al., 2019), with moderations including the use of a
more sensitive reverse transcriptase (Superscript IV) and primer concentrations (primer
sequences provided in Table S4). Bulk TCR sequencing was based on the same protocol adapted
from (De Mattos-Arruda et al., 2019), in which the TRB primers were redesigned to capture the
full productive repertoire (primer sequences provided in Table S4). Sequencing libraries were
prepared using lllumina protocols and sequenced using 300bp paired-ended sequencing on a
MiSeq (lllumina).
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10x Genomics Chromium CITEseq

To minimise batch effects, cryopreserved PBMCs were processed in ten batches of 14 samples
per batch, with each batch containing at least one sample from each comparator group and similar
distribution of patients age and sex across the batches. After thawing, all 14 samples were mixed
together to form a single pool (at a ratio that yielded the same number of live cells pooled per
sample based on live/dead counting) followed by viability staining (7-AAD dye, BioLegend 420404)
and live/dead sorting on a BD FACSAria Fusion sorter.

Post sort, each pool was incubated with FcX block (BioLegend) for ten minutes on ice, washed,
and stained with a 192 TotalSeq-C antibody panel (BioLegend 99814) for 30 minutes on ice. Cells
were washed three times in PBS + 1% BSA, counted on the BioRad TC20 Automated Cell Counter
and loaded onto the 10X Genomics Chip G at 50,000 cells per channel. Each pool was loaded
across seven channels.

scVDJ-seq data generation

scVDJ data was generated on the same cells as the scCITE-seq and GEX datasets. Cell Ranger
software (v3.1.0) was used to process the Chromium scRNA-seq output data. The FASTQ files
were filtered per sequence library plex (i.e. per-pool) using the 10x Genomics index-hopping-filter
(https://support.10xgenomics.com/docs/index-hopping-filter) that implements a strategy to
mitigate the known index hopping issue with the lllumina machines that use patterned flow cells.
The IMGT's reference genome was used as a reference for the BCR and TCR VDJ libraries. Cell
Ranger was also used to filter read alignments, cell barcodes and UMIs, excluding those droplets
with low numbers of reads (e.g. erythrocytes or droplets with encapsulating ambient RNA from
dying cells).

10x Genomics scATACseq

Similar to the CITE-seq approach, cryopreserved PBMCs were processed in two batches of five
samples per batch with each batch containing at least one sample from each comparator group.
Each sample underwent viability staining (7-AAD dye, BioLegend 420404) followed by live/dead
sorting on a BD FACSAria Fusion sorter. Post sort, five samples of an equal number of cells were
mixed together to form a single pool, and each pool underwent cell lysis and nuclear extraction
according to the 10X demonstrated protocol Nuclei Isolation for Single Cell ATAC Sequencing
CG000169 Rev D. Briefly, 200,000 cells from each sample were added to form the pool and cell
lysis was performed with 100 pl chilled Lysis Buffer (10 mM Tris-HCI (pH 7.4), 10 mM NaCl, 3 mM
MgClz, 0.1% Tween-20, 0.1% Nonidet P40 Substitute, 0.01% digitonin and 1% BSA) for three
minutes on ice. The lysis reaction was quenched with 1 ml chilled Wash Buffer (10 mM Tris-HCI
(pH 7.4), 10 mM NaCl, 3 mM MgCl2, 0.1% Tween-20 and 1% BSA) and the nuclei were centrifuged
(500g for 5 min at 4 °C). After removal of supernatant, the nuclei were resuspended in chilled
diluted nuclei buffer (10X Genomics; 2000153) and concentration determined with the Biorad
TC20 Automated Cell Counter. Each pool of nuclei was loaded across four channels of the 10X
Genomics Chip E (15,000 nuclei per channel).

Tims-TOF mass spectrometry

Sample preparation of non-depleted plasma/serum for LC-MS/MS analysis

Samples

Plasma and serum samples were stored at -80°C then thawed overnight at 4°C before use.
Protein precipitation and protein digestion using S-trap

For the bottom-up proteomics approach, proteins were precipitated using Isopropanol (IPA) and
loaded into the S-trap 96-well plates (Profiti, Huntington, NY, USA) where proteins were retained
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for subsequent trypsin digestion following S-trap manufacturer instructions (Zougman et al., 2014).
Briefly, five microliters of plasma or serum were pipetted under a category 2 fume hoods into
standard 96-well plates pre-filled with 200 ul of isopropanol following the 96-well plate layouts.
Precipitation plates were kept at room temperature for 1h before transferring the isopropanol —
plasma (serum) mixture into the 96-well S-trap plates. 200 pl of S-trap binding buffer (90%
methanol, 100mM Triethylammonium bicarbonate (TEAB)) were added into each well of the
precipitation plate to recover any protein precipitates and transferred into the corresponding 96-
well S-trap plates. Plates were then spun at 1500g for 2 min. Protein colloidal precipitates were
retained into the S-trap mesh. S-trap plates were then subjected to four consecutive washes with
S-trap binding buffer (200 pl for the first wash and 350 pl the three remaining), followed by a 2 min
spin at 1500g. 125 yl 50mM TEAB containing trypsin (Worthington) to a 1:25 wt:wt ratio was added
into each well and incubated overnight at 37°C. Tryptic peptides were sequentially eluted from the
S-trap into a clean 96-well plate with 80 pl of 50mM TEAB, 80 pl of 0.2 % formic acid (FA) in LC-
MS water and 80 pl of 0.2% FA in 50% acetonitrile with 2min spins at 1500 x g after each solvent
addition. Finally, plates containing tryptic digests were dried in the speed vac and reconstituted
with 70 pl of 0.1 % formic acid (FA) for subsequent LC-MS/MS analysis after two serial dilutions
(1/100 and 1/10) in 0.1 % FA for a final 1/1000 dilution plate to achieve suitable peptide
concentration for LC-MS/MS loading.

Pools

For quality control (QC) purposes and for repeat injections, a pool for each clinical sample group
was created and processed as described above. In addition to the sample group pools, an
overarching master pool for each of the plasma and serum cohorts was also built from the
individual non-diluted tryptic peptide sample group pool with master pools built to reflect the
contribution of each individual group to the overall study.

High pH fractionation of Master pools to generate plasma/serum libraries

To increase the depth of the non-depleted plasma/serum proteome, master pools were subjected
to a high pH fractionation using the SOLA HRP cartridges (Thermo Fisher) with the aim to create
a protein library. In brief, an equivalent of 150ug of peptides from each master pool was
fractionated into eight different fractions going from 0% to 70 % Acetonitrile in 10mM ammonium
formate at pH 10. Prior sample loading, SOLA HRP columns were conditioned with 0.1%
triflouroacetic acid (TFA) in 70% acetonitrile and washed with 0.1% TFA. Following the sample
loading, columns were washed with 0.1% TFA before starting the stepwise high pH fractionation
elution with 200ul of 0%, 10%, 15%, 20%, 25%, 30%, 40% and 70% ACN in 10mM ammonium
formate pH 10. Eluted fractions were then dried in a speed vac and reconstituted with 40ul of 0.1
% FA prior to LC-MS analysis.

LC_MS/MS using the high-throughput Evosep One - Bruker TimsTOF Pro platform

C18 Evotips (Evosep one, Odense Denmark) were prepared following manufacturer’s instructions.
Briefly, Evotips were conditioned with 1-propanol, washed with solvent B (0.1% FA in 100%
acetonitrile) and equilibrated in solvent A (0.1% FA in LC-MS water) before loading them with a
total volume of twenty microliters containing 10 ul of sample (peptides) from dilution 1/1000 plate
(equivalent to an estimated 30 ng of peptides). Evotips were washed once with solvent A and
stored in 100 pl solvent A till the sample injection.

Samples were analysed using a Evosep One LC system connected to the TimsTOF Pro mass
spectrometer (Bruker Daltonics). Peptides were analysed using the pre-built 100 samples / per
day method (Evosep) with an 11.5 min gradient (total cycle time of 14.4min) at a 1.2 pl/min flow
rate (Bache et al., 2018). In brief, tryptic peptides were transferred from the pre-loaded C18
Evotips with a pre-built gradient to a sample loop and separated on an 8cm C18 analytical column
(Evosep Pepsep, 3um beads, 100 um ID) with an overall gradient from 3 to 40% acetonitrile.
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Mass spectrometry data were acquired in PASEF mode (oTOF control v6.0.0.12). The ion mobility
window was set to 1/k0 start = 0.85 Vs/cm2 to 1/k0 end = 1.3 Vs/cm2, ramp time 100 ms with
locked duty cycle, mass range 100 - 1700 m/z. MS/MS were acquired in 4 PASEF frames (3 cycles
overlap). Target intensity was set to 6000 and threshold intensity 200. The data acquisition method
has been deposited within the raw data in the ProteomeXchange data repository (PXD023175)
(Perez-Riverol et al., 2019).

To assess the technical reproducibility, master pools were run before each sample group and
sample group pools were run after the master pools, every twenty sample runs and after the last
sample of the group. Blanks were injected in between groups to control for carry over.

Luminex assay

The concentrations of selected proteins in the plasma and serum were measured with Human
Magnetic Luminex Kits (Bio-techne) with 3 panels containing total 51 analytes: C-C motif ligand
(CCL)2/3/4/11/17/18/19/20, CD40 Ligand (CD40L), CD163, complement component 5a (C5a), C-
X-C motif chemokine ligand (CXCL)1/5/10, epidermal growth factor (EGF), basic fibroblast growth
factor (FGF2), granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage colony-
stimulating factor (GM-CSF), granzyme B (GrB), interferon (IFN)a/b/g, interleukin (IL)-
1a/1b/2/3/5/6/8/10/12/13/15/17A/23/33, lactoferrin (LF), Lipocalin-2 (LCNZ2), Lymphotoxin-alpha
(LT-a), macrophage colony-stimulating factor (M-CSF), Myeloperoxidase (MPO), beta-nerve
growth factor (b-NGF), Oncostatin M (OSM), S100 calcium-binding protein A9 (S100A9), stem cell
growth factor (SCGF), tissue factor (TF), tissue factor pathway inhibitor (TFPI), transforming
growth factor alpha (TGF-a), Thrombopoietin (THPO), tumor necrosis factor (TNF) and triggering
receptor expressed on myeloid cells 1 (TREM-1). The assays were conducted according to the
manufacturer’s instruction. Results were obtained with a Bio-Rad Bio-Plex® 200 Systems. The
data of fluorescence intensity (FI) from the assays were used for further analysis.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical and unsupervised analysis of clinical phenotyping using clustering

To analyse demographic and clinical features cohorts the following statistical tests were applied.
For approximately gaussian distributed continuous data we used the anova test (using the function
f_oneway from python’s scipy.stats package). For other distributions of continuous variables, we
used the Kruskal-Wallis-test (using the function kruskal from python’s scipy.stats package). For
categorical data we used the chi-squared test test (using the function chi2_contingency from
python’s scipy.stats package).

Unsupervised and consensus k-means clustering were used to analyse the clinical data (Moniti et
al., 2003; Seymour et al., 2019). We prepared the data by applying quantile-normalization to
counts and shift+rescaling to zero mean and unit variance to all features (applying quantile
normalization to all features, not just counts, further improves the correlation of the ordered
consensus matrix with the who severity_at_sample classes). We then ran consensus k-means
clustering to identify the best number of clusters. This means we sample from our clinical dataset
50% of the entries, run k-means clustering (where we vary k, i.e. the number of clusters), and
record how often two elements were clustered together out of the time where they were in the
50% of samples data points in a so-called consensus matrix. We repeated this process 600 times
for k=2,3,4,5,6 clusters. For each k, we computed the empirical cumulative distribution (CDF) and
the change in the area under the CDF curves for different k. The optimal cluster number is obtained
for the k after which the CDF curves (and hence the areas) do not change significantly anymore.
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We then performed an unsupervised consensus k-means clustering analysis of (subsets) of the
clinical variables (using python’s sklearn library). In order to mitigate the question of which features
are independent, we performed this analysis on the principal components (using sklearn). After
consensus clustering, we sorted the consensus matrix using hierarchical clustering. The methods
were implemented in python and used the packages numpy, scipy and pandas. We also performed
hierarchical clustering directly on the PCs, rather than on the consensus matrix (using
AgglomerativeClustering and dendrogram from sklearn).

Mass cytometry data analysis

CyTOF data pre-processing

After acquisition, data was normalised and concatenated on CyTOF Software v7.0, compensated
on CATALYST (version 1.5.3.23). Then, data was further processed for removal of beads and of
DNA negative events and for Gaussian parameters using a manual gating strategy using FlowJo
v10.6 as described in Methods S1 Figure 1. Then, samples were manually debarcoded (FlowJo
v10.6) and CD45+ events (non-depleted samples), or CD66-Siglec8-CD45+ (granulocytes-
depleted samples) events were selected for further processing. For each batch, two control
samples were run together with the patients’ samples to allow for correction for batch effects.
Batch correction was performed with CytoNorm software (version 0.0.5) separately for granulocyte
depleted and non-depleted samples. For both analyses, the training of the algorithm was done
with 20000 cells per sample and 5 clusters (parameter nClus) using one of the control samples
and the results were assessed using the other control sample. Doublet cells were removed by
manual gating on FlowJo v10.6 (Methods S1 Figure 2) and were deemed as Iridium™"Ki67" cells
to avoid removing proliferating cells. Finally, to correct for potential biases due to highly varying
cell numbers per sample, downsampling was performed to a maximum 75000 cells per sample
for the granulocyte depleted samples and 40000 for the non-depleted samples.

Clustering

Clustering analysis and the identification of the different immune cell population was done using
the analytical pipeline described in Methods S1 Figure 3. Clustering analysis was performed
separately for granulocyte depleted and non-depleted samples using a self-organising map
algorithm through an implementation of FlowSOM via the CATALYST R package (version 1.10.3).
The initial clustering was performed using a resolution of 144 clusters (dimensions 12x12) and
metacluster merging by consensus clustering was performed at a resolution of 25 clusters for both
datasets. The clusters were then manually annotated to define the populations. Three major
populations (T/NK, B/Plasmablasts and Myeloid) from the granulocyte depleted samples were
further clustered to identify finer subpopulations using a resolution of 225 (dimensions 15x15) for
T/NK and 144 (12x12) for the other two. The metacluster merging was performed at a resolution
of 50 clusters for the T/NK population, 25 for the B/Plasmablast and 30 clusters for the Myeloid
population. Clusters were manually annotated and further managed to provide cell type resolution
at two different depths - one to define major cell types, and a finer one to define subpopulations.
The cell type assigned to each cell ID in each of the three major population was then used to
reconstitute the frequency of each population inside the granulocyte depleted sample. The finer
annotation was used to evaluate the frequency of cell subtypes.

Differential abundance analysis

Differential abundance analysis was performed using code from the diffcyt package (version 1.8.8)
with the option testDA_edgeR. The analysis was adjusted for the confounding variables batch,
age and sex. For the analysis of the non-depleted samples the normalisation for composition bias
was deemed necessary to account for the pronounced differences in neutrophil proportions. For
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all other analyses no normalisation was performed. The subpopulations of the granulocyte
depleted samples were analysed independently of each other to avoid composition effects.

Manual gating and CD38 median intensity (MI)

Two subpopulations of cells were more precisely defined by manual gating rather than by
clustering. To do that, the cluster of the parent population (cMono or MAIT) was exported from the
R environment and gated in FlowJo. Also, the median intensity of CD38 expression were identified
in different cell types within the granulocyte depleted samples.

Density plots

The density plots were made by downsampling to have the same number of events across all
different conditions and using the geom_pointdensity function of the ggpointdensity package, with
an adjust of 4, to generate the ggplot.

Integration of CyTOF and CITE-Seq data

The two datasets were aligned using Seurat (v3.9.9.9010) using only samples that had been
analysed on both technologies (115 samples, after exclusion of one sample due to low number of
cells in CITE-Seq). The integration was based on an overlapping set of 38 markers that were
common between the CyTOF and ADT antibody sets. Both datasets were filtered to exclude cells
with unclassified or uncertain annotations. The CITE-Seq dataset was further filtered to exclude
potentially low-quality cells with i) number of genes, or i) number of features of ADT, or iii) number
of total UMI (RNA) or iv) number of total UMI of ADT lower than 0.001 of their relevant distributions.
The two datasets were then downsampled to 1000 cells per sample and the integration was
performed on 230,000 cells in total.

The anchors between the query and reference datasets were found based on a CCA with 30
dimensions and the labels were transferred using a PCA for the weight reduction of the query
dataset. The analysis was performed with either the CITE-Seq or the CyTOF as reference
datasets in turn and all cells were given a predicted annotation from their counterpart dataset.
Then the predicted annotation of the cells was compared to their original annotation and all the
common major cell types were validated with very high accuracy (Figures S1L, S1M). Finally, the
visualisation of the two datasets was performed with the CITE-Seq data as a reference. The
anchors were used to impute the ADT markers for the CyTOF cells which were then merged with
the CITE-Seq data and centred in order to run a UMAP analysis to visualise all the cells together
(Figures 1F,G).

Flow cytometry data analysis

Data were analysed with Flowjo version 10. Cells were gated on live leukocytes and
recompensated in Flowjo. Frequencies of individually gated populations were exported and plotted
in Prism. Alternatively, 15000 CD3 cells per sample were concatenated and exported for
subsequent analysis in R.

Whole blood total RNAseq analysis

RNA-sequencing data processing

We trimmed adaptor sequences using TrimGalore (v0.6.2, ref
https://github.com/FelixKrueger/TrimGalore), and aligned reads to the reference genome
(GRCh38.100) using multi-sample 2-pass mapping with STAR v2.7.3 (Dobin et al., 2013)
(ENCODE Best Practices recommended parameters). We quantified gene expression using
featureCounts (v1.6.4) (Liao et al., 2014) and annotations from Ensembl (v100). We calculated
and checked QC metrics from FastQC,mapping metrics from STAR, duplication rates and other
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RNASeq metrics from Picard (v2.23) (http://broadinstitute.github.io/picard/) and RNASeQC
(v2.3.5) (DeLuca et al., 2012) and checked for outliers in principal component analysis. We
removed 1 sample with high proportions of duplicates and short reads, low exonic rate, number of
mapped reads and number of genes identified, and which was also clearly outlying on PCA. We
also confirmed that there were no sex mismatches that could indicate sample mix-ups based on
sex chromosome gene expression using QTLTools (Delaneau et al., 2017). This resulted in a data
set of 143 samples from 123 patients. We filtered out features that did not have at least 10 reads
in at least 10 samples, retaining 23,063 features for downstream analysis. We then normalised
the data using the trimmed mean of M-values method R package from edgeR;
https://doi.org/10.1093/bioinformatics/btp616 and log2-transformation of counts-per-million. Code
is available on GitHub (https://github.com/COMBAT Oxford/bulkrnaseg/mapping/).

Exploratory analysis

We carried out principal component analysis (PCA) on the normalised filtered data for 123 patients
using prcomp (R v 3.6.2) with default parameters. We additionally performed PCA on just the
samples from hospitalised COVID-19 patients (n=64). We selected informative PCs by taking the
first n PCs that cumulatively described at least 80% of variance in the data. We explored the
relationship between these PCs and the clinical variables available (transformed and filtered as
described above) using Spearman correlation. Additionally, we investigated the biological
relevance of the PCs through pathway enrichment analysis with the R package XGR (Fang et al.,
2016b) and Reactome pathways. For each PC, we took the 500 genes with the highest absolute
loading scores as input and compared to a background of all detected genes.

Differential expression

We performed differential expression analysis on the normalised data with one sample per patient
using the limma R package (https://doi.org/10.1093/nar/gkv007). We included age, age? and sex
as fixed effects and compared each patient subgroup with all others, as well as investigating
COVID-19 severity as a quantitative trait (mild=1, severe=2, critical=3). We defined significance
for downstream analysis as FDR <0.05 and fold change >1.5. We investigated the impact of
variation in cell proportions across samples calculated from hospital measurements for
neutrophils, monocytes, and lymphocytes, by adding neutrophil and monocyte proportions to the
model and comparing the estimated fold changes to the results to the more basic model. Pathway
enrichment analysis was performed using Reactome pathways via the XGR R package (Fang et
al.,, 2016b), with Fisher's exact test and filtering of redundant terms by the xEnrichConciser
function.

Weighted gene correlation network analysis

We applied weighted gene correlation network analysis (WGCNA) to describe modules of highly
correlated genes within the whole blood total RNA-sequencing data (i.e. 143 samples from 123
patients) (Langfelder and Horvath, 2008). We utilised the “cornet” pipeline to wrap the WGCNA R
package and perform gene set enrichment analyses (https://github.com/sansomlab/cornet.qit). In
brief, a stepwise approach of correlation network construction and module detection was adopted
using log2-transformed counts-per-million RNA-sequencing data. Using the soft thresholding
power of 4, a signed-hybrid network was built implementing the biweight midcorrelation as the
adjacency function. The adjacency matrix was transformed into a topological overlap matrix in
order to calculate the dissimilarity and a dissimilarity threshold of 0.3 was used to merge modules
with very similar expression profiles. Module eigengene values (module first principal component)
were used to summarise modules and perform module-trait correlation analyses (Pearson
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correlation). Gene set over representation analyses were performed using the default settings of
the “cornet” pipeline (https://github.com/sansomlab/cornet.qit).

CITE-seq: pre-processing and multi-modal annotation

Preprocessing of 10X Libraries (Gene expression, ADT, TCR, BCR)

As described above a total of n=140 PBMC samples from COVID-19, sepsis, influenza and healthy
volunteers were mixed into n=10 pools. Each pool comprised of 14 samples (each from a different
individual) and cells from each pool were captured using n=7 10x channels (Methods S2 Figure
1). From each channel, four libraries were generated, Gene expression (GEX), Surface proteome
(ADT), TCR and BCR repertoires. The libraries were sequenced on an lllumina's NovaSeq 6000
sequencer across nine S4 flowcells (4 lanes per flow cell). For each of the sample pools, n=7 GEX
and ADT libraries were sequenced on 3 dedicated lanes (to eliminate index hopping between
sample pools). The BCR/TCR libraries were sequenced on the remaining 6 lanes. Mapping
indexes for the bulk and single-cell data were built using GRCh38 genome sequences and
Ensembl version 100 annotations. FASTQ files were generated using Cellranger (v3.1.0) mkfastq
and individually QC'ed using FastQC (Andrews, 2010). To mitigate index hopping between
channel libraries within sample pool FASTQ files were filtered per pool using the 10x Genomics
index-hopping-filter (https://support.10xgenomics.com/docs/index-hopping-filter) (v1.0.1). Per-
channel (n=70) GEX and CITE-seq matrices were prepared using Cellranger (v3.1.0) count. Cell
identification was performed on the GEX modality with both Cellranger (v3.1.0) and EmptyDroplets
(Lun et al., 2019) (1.8.0) and the union of the calls from both algorithms taken forward as the set
of identified cells.

Genetic demultiplexing of 10X GEX data

The GATK variant calling pipeline (https://github.com/gatk-workflows/gatk4-rnaseg-germline-
snps-indels) (v4.1.7.0) was applied to the bulk RNA-seq data to identify sequence variants for the
genetic demultiplexing of the single cell data. Minor modifications were made to the variant calling
pipeline to allow execution from FASTQ files, incorporate metadata into the BAM alignment files,
and produce a block gVCF file. We applied both Demuxlet (Kang et al., 2018) (v2;
https://github.com/statgen/popscle/commit/038044660337b50ec89b0b355493ceb707f18ecd)
and Vireo (Huang et al., 2019) (v0.4.0; https://qgithub.com/single-cell-
genetics/vireo/commit/4aecb54a4f2fa3a3413e2cd3e9f3515744385cbha), proceeding with the
demultiplexing calls from Vireo as they were more robust to variation in read depth. The dataset
was demultiplexed using full genotypes (per-pool gVCF files) from the bulk sequencing. For each
of the n=70 10x channel sequence libraries, Vireo consistently demultiplexed 60 — 75% of cells. A
total of n=884,587 singlet cells were demultiplexed.

QC of 10X GEX data and preparation of GEX matrices

The pre-processing workflow was encapsulated in a set of CGAT python pipelines (Cribbs et al.,
2019) and version controlled. Cell quality was assessed with a suite of metrics that included total
UMI (GEX), number of genes detected, percent mitochondrial gene expression, percent ribosomal
gene expression, percent IgG expression, scrublet doublet score (Wolock et al., 2019) and total
UMI (ADT). Ambient RNA was assessed. Cell QC statistics, demultiplexing assignments and cell
and patient metadata were centrally warehoused in an sqlite database. Following inspection of the
QC metrics the dataset was filtered to retain cells with ngenes > 300 and pct_mitochondrial < 10%.
In total, n=836,148 cells were selected for downstream analysis. Expression data for selected cells
was extracted from the per-channel count matrices using R and combined into a single market
matrix with AWK. RNA velocity matrices were computed for each of the channels with Velocyto
(http://velocyto.org/) (La Manno et al., 2018) (v0.17.5). Velocity data for selected cells was
extracted and combined into a single matrix using the Loompy Python library (http:/loompy.org).
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Multimodal cell annotation strategy overview

We used expert immunological knowledge to guide a curated integration of the data from the
different modalities (GEX, ADT and VDJ) to identify and label the cell sub-populations present in
the CITE-seq dataset (Methods S2 Figure 2). As detailed below, we first performed separate
clustering of gene expression, clustering of surface protein expression and analyses of T and B
cell receptor V(D)J sequences. Next, led by expert understanding of the three feature spaces we
prioritised use of ADT surface phenotype for definition of major cell lineages and subsets where
definitive marker expression was available. Cell types and subsets were further refined using
information from the repertoire and GEX layers, or in the absence of definitive ADT information
were identified by GEX cluster phenotype. Finally, the identified cell types and subsets were further
divided by inferred functional state based on targeted assessment of information from all three
modalities. For example, cell cycle phase was determined by GEX phenotype, T cell memory vs
effector status was distinguished using information from both the GEX and ADT layers, while
assignment of B cell maturation status involved use of information from all three modalities
(including BCR mutational status). Information from all three modalities was used to identify and
exclude doublets from downstream analysis.

Alignment and clustering of 10X GEX data

Prior to alignment data was normalised and log1p transformed using Scanpy (Wolf et al., 2018).
The top n=3000 highly variable genes (HVG) were selected (Seurat flavour with n_top_genes set).
The following MHC and variant immune receptor genes were excluded from HVG identification
A/B/C/D/E/FIGT*, IGH[D/J/IVT, IGK[J/VT, IGL[J/JCOR/L/ON/VT, TRA[JNVT*,
TRBI[D/J/V/VA/NB]*, TRD[D/J]* and TRG[J/JP/V/VA/VB]*). Effects associated with total number of
UMIs were regressed out and PCA components computed. We evaluated alignment with Harmony
(Korsunsky et al., 2019), Scanorama (Hie et al., 2019) and BBKNN (Polanski et al., 2020) and
chose to proceed with Harmony following inspection of UMAP projections of the alignment results
(data not shown). Following inspection of the PCA scree (knee/elbow) plot, Harmony alignment of
samples (n=140 levels) was performed in Python using the top n=65 PCs. Leiden clustering,
marker discovery (wilcox tests) and visualisation (with violin plots, UMAPSs, volcano plots, MA plots
and heatmaps), automatic cell type identification (with singleR (Aran et al., 2019) and via over-
representation analysis of xCell (Aran et al., 2017) genesets), basic composition analysis, geneset
over-representation analysis (including of GO, KEGG and Biocarta genesets) and visualisation of
the aligned datasets was performed using pipeline_scxl.py (https:/github.com/sansomlab/tenx).
Neighbor graphs were built using Euclidean distance and the “HNSW” algorithm (as implemented
in ScVelo (Bergen et al., 2020), following the example of Pegasus (Li et al., 2020)). Clustering was
performed using Scanpy, marker discovery with Seurat (Stuart et al., 2019) and pathway over-
representation analysis with gsfisher (Croft et al., 2019) (https://github.com/sansomlab/gsfisher).

After alignment of the full manifold, we iteratively divided, re-aligned and re-clustered the dataset
to achieve high-resolution clustering of different cell subsets. Variable gene identification was
performed separately within each subset as described above. In the first step the major cell types
— T/NK, myeloid and B/plasmablast cells were extracted into n=3 separate subsets. Each of these
three subsets was then separately aligned and clustered (n=45 PCs for n=482k T/NK cells; n=45
PCs for n=279k myeloid cells; n=40 PCs for n=66k B/plasmablast cells). This process was then
repeated with a final (third) round of alignment and clustering being performed separately on six
subsets: (A) cells in the CD4 region of the manifold (with n=50PCs, n=302k cells), (B) cells in the
CD8 region of the manifold (with n=45PCs, n=180k cells), (C) cells in the myeloid region of the
manifold (with n=50PCs, n=261k cells), (D) cells in the B cell/Plasmablast cell region of the
manifold (with n=40PCs, n=57k cells), (E) cells identified as doublets based on scrublet scores
and marker gene expression (with n=40PCs, n=26k cells), (F) other cells types not falling into any
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of the first five categories (with n=50PCs, n=10k cells). The clustering strategy is shown in
Methods S2 Figure 3. Choice of principle component number was guided by inspection of the
scree plots.

Each of the cell six subsets was subject to Leiden clustering with a range of resolutions (1, 1.5, 2,
25, 3, 35 4, 45, 6, 8) and cluster phenotypes assessed using pipeline_scxl.py
(https://github.com/sansomlab/tenx) as described above, and ADT surface phenotype. For each
subset a base resolution was selected and sub-populations further refined by manual splitting or
merging of clusters based on alternate cluster resolutions guided by expert knowledge of cell
identities and phenotypes to define a total of n=131 GEX clusters. These clusters were intersected
with information from the ADT and repertoire modalities for the final multimodal annotation of the
dataset as described below.

Pre-processing and analysis of the ADT data

For each channel the ADT signal was normalized independently to its background, using the DSB
algorithm (Mulé et al., 2020) taking the set of cells identified from the GEX data as the foreground
and unassigned GEMs with log10(GEX_nUMI +1) >=1.5 as the background. The workflow was
written in R and Python, encapsulated in CGAT pipelines and version controlled. The normalised
ADT data was subject to hierarchical stochastic neighbour embedding (hSNE) and unsupervised
Gaussian mean shift (GMS) clustering as implemented in Cytosplore (van Unen et al., 2017)
(www.cytosplore.org). This analysis, which was based on the expression of all n=192 ADT tags,
partitioned the dataset into 66 discrete clusters. Based on expression of known lineage markers
(CD3, CD4, CDS8, CD56, CD19, CD20, CD27, CD38, CD14, CD123, CD1c, CD33, CD235, CD34,
Vd2, Va72 and CD161) these clusters were apportioned to NK cells, B cells, Plasmablasts, Vd2+
T cells, CD14+ Monocytes, CD123+PDC, CD1c+ DC, red blood cells (RBC), CD34+ cells and
distinct populations of CD3+ T cells (Methods S2 Figure 4). For identification of Va25+Ja18+
cells (iNKT cells), Vd2-Vg9+ cells, TCRgd+ cells, Va7.2+CD161+ (MAIT) cells and non MAIT T
cells a sequential manual gating strategy was employed. After exclusion of likely contaminant
CD33+ CD3+ and CD56+ cells subpopulations of B cells and plasmablasts were defined by re-
clustering these cells based upon expression of CD10, CD24, CD25, CD19, CD20, CD22, HLADR,
CD21, CD23, IgD, CD1c, IgM, CD38, CD29, CD71, CD39, CD27, HLA-ABC and IgA. In total, this
analysis of the ADT data identified 12 T-cell subpopulations, 7 B cell/plasmablast subpopulations
and five distinct sets of doublets (with markers of more than one major immune lineage). These
clusters were intersected with information from the GEX and repertoire modalities for the final
multimodal annotation of the dataset as described below.

Pre-processing and analysis of 10x V(D)J B and T cell repertoire data

T and B cell V(D)J gene usage and receptor sequences were quantified using Cellranger VDJ
(v3.1.0) with reference sequences from the IMGT. For TCR chain usage we recorded additional
information for each cell including (i) “clone proportion”, computed as the proportion of the entire
T cell repertoire occupied by the clone in the sample, (ii) whether the cell was a doublet (defined
as a singlet clone with TRA-TRA-TRB-TRB chains), (iii) whether the cell possessed an iINKT
receptor phenotype (TRAV10 with TRAJ18), and (iv) whether the cell carried a MAIT receptor
phenotype (TRAV1-2, with either TRAJ12/TRAJ20/TRAJ33). Immunoglobulin sequences were
further analysed using IMGT High V-Quest. B cell/plasmablast doublets were identified as cells
with multiple heavy chain (HC) contigs where the ratio of the number of UMIs for the top two
ranked HC contigs was >0.125. Light chain (LC) information was not used for doublet identification
as it is known that 1% of B cells may express dual light chains. The TCR and immunoglobulin
chain usage information was intersected with information from the GEX and ADT modalities for
the final annotation of the dataset as described below.

Page 37 of 63


https://doi.org/10.1101/2021.05.11.21256877
http://creativecommons.org/licenses/by/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2021.05.11.21256877; this version posted May 11, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY 4.0 International license .

Multimodal cluster annotation

As described below, we performed curated intersections of the information from the different
modalities to discern the cellular identities and functional phenotypes of the different PBMC
populations. Information from all three modalities was used to screen and exclude doublets: in
addition to inspection of scrublet scores (computed from the GEX layer), lineage according to
surface phenotype, immune receptor sequence and gene expression profile was required to be
congruent. In total, following curated intersection of GEX, ADT and repertoire information we
obtained n=853 clusters. Of these we retained n=346 clusters (n=787,928 cells) for downstream
analysis. We excluded n=92 clusters (n=20391) as likely cell-cell doublets/multiplets and n=270
clusters (n=19,801 cells) which appeared to be comprised of mixtures of cell types. A further n=128
clusters (n=7971 cells) of uncertain phenotype were also excluded. The retained cells comprised
of n=343 clusters that were assessed to represent genuine singlet cell clusters based on expert
knowledge. We assigned each of these clusters to a “minor subset”, “major subset” and “cell type”
category in order to accommodate downstream analyses at different levels of granularity as
summarised in Methods S2 Figure 5. In addition, we retained two clusters that appeared to
comprise monocyte-platelet doublets (n=5562 cells) and a minor, lower confidence cluster of AXL+
DCs (n=121 cells) for inclusion in cluster-level analyses. Scripts were written in Python and R and
version controlled.

Known T and NK cell subsets were identified by surface protein (ADT) and immune receptor (TCR)
phenotype as recorded in Methods S2 Table 1. These identity assignments were then intersected
with the gene expression clusters (GEX) to identify subsets of the different lineages that displayed
distinct transcriptional phenotypes (e.g. naive vs memory T cells). These sub-populations are
shown for CD4 T-cells in Methods S2 Figure 6, for CD8 T-cells in Methods S2 Figure 7, for
double positive (DP) T-cells in Methods S2 Figure 8, for double negative (DN) T-cells in Methods
S2 Figure 9, for mucosal associated invariant T (MAIT) cells in Methods S2 Figure 10, for Vd2+
gamma-delta (yd) T cells in Methods S2 Figure 11, Vd2-ve Vy9-ve yd T-cells in Methods S2
Figure 12, V52-ve Vy9+ve yd T-cells in Methods S2 Figure 13 and invariant natural killer T cells
(INKT) in Methods S2 Figure 14. The identified NK cell subsets are shown in Methods S2 Figure
15.

B cell and plasmablasts cell subsets were defined using information from the GEX, ADT and
immunoglobin repertoire modalities as detailed in Methods S2 Table 2 and shown in Methods
S2 Figure 16. Sub populations of innate immune cells and other blood cells were delineated
according to gene expression clusters and annotated based on their GEX and ADT phenotypes.
Sub-populations of mononuclear phagocytes (MNPs) are shown in Methods S2 Figure 17, of
haematopoietic stem (and progenitor) cells (HSCs) in Methods S2 Figure 18 and of platelets and
erythrocytes in Methods S2 Figure 19.

To assess the relative immune receptor diversity of the different T, B and plasmablast populations
we computed repertoire Shannon and Gini indices (detailed in the Repertoire analysis section,
and as shown in Methods S2 Figures 6-14 and 16). Because of the large variance in cell number
between clusters we estimated the indices by bootstrapping with a sample size of n=30, n=1000
times. Individual bootstrap samples were drawn without replacement to avoid introduction of
artificial clonality. The indices were not estimated for clusters with fewer than n=30 cells.

CITE-seq: cell composition analysis

Overview
Three samples with <500 cells in total, and three samples with confirmed or suspected
malignancy, were excluded from all composition analyses. For the hospitalised COVID-19 and
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sepsis clinical categories, only samples closest to maximum severity and only one sample per
individual were included, such that for each category the following numbers of samples were
analysed: healthy volunteers, n=10; COVID-19 acute in-patient mild (OUH), n=12; COVID-19
acute in-patient severe (OUH), n=20; COVID-19 acute in-patient critical (OUH), n=18; COVID-19
community COVID-19, n=12; influenza, acute in-patient, n=10; and sepsis acute in-patient, n=15.
Scripts for all analysis were written in Python and R and version controlled.

Composition analysis was performed for the different levels of cellular granularity summarised in
Methods S2 Figure 5, including for cell types (Methods S2 Figures 20-22); major cell subsets
(Methods S2 Figures 23-25); minor cell subsets (Methods S2 Figure 26-28); T and natural killer
(NK) cell clusters (Methods S2 Figures 29-31); B and plasmablast (PB) cell clusters (Methods
S2 Figure 33-34); and mononuclear phagocyte (MNPs) clusters (Methods S2 Figure 35-37). To
initially inspect cluster abundance across clinical categories, the percentage frequencies of cell
subpopulations were quantified per sample and visualized as boxplots. For cell types (Methods
S2 Figure 20), major cell subsets (Methods S2 Figure 23) and minor cell subsets (Methods S2
Figure 26), percentages were calculated out of total PBMCs. For higher resolution immune cell
clusters, frequencies were calculated out of total T and NK cells (Methods S2 Figure 29), total B
and PB cells (Methods S2 Figure 32), or total MNPs (Methods S2 Figure 35). Selected panels
are reproduced in the main and supplementary figures.

Principal component analysis

Principal component analysis (PCA) was used for exploratory analysis, with pre-filtering to remove
clusters with a count of n<10 cells in <10 individuals. Cluster counts were converted to centred
log-ratios (CLRs) using the ALDEx2 R package, v1.18.0. Briefly, 1,000 Monte Carlo samples of
the Dirichlet distribution were generated from the cluster counts for each sample and converted to
CLRs. The median CLR for each cluster-sample combination was used for PCA which was
performed using prcomp (R version 3.6.2) with default parameters. Association tests for clinical
variables were performed using an omnibus analysis of variance (ANOVA) to test for association
between the top 15 PCs (collectively explaining >80% of the total variance) and clinical category
(source), age, sex, and sample pool, with the Benjamini-Hochberg procedure for multiple testing
correction and a significance threshold of P:<0.05. For the hospitalised COVID-19 cases,
association tests with additional variables that were related to acute disease or were secondary
to infection were also performed. All variables had one or no missing values. These additional
variables included: ethnicity; weight; days from symptom to sample and from symptom to
admission; maximum temperature in the 24 hours preceding sampling; persistent fever in the 24
hours preceding sampling; fever, WHO ordinal, ventilation status, SaO./FiO; ratio, and SOFA
oxygenation score at the time of sampling; quantile normalised white cell, neutrophil, lymphocyte,
monocyte and platelet counts in the 24 hours before or after sampling; quantile normalised highest
concentration of C-reactive protein in the 24 hours before or after sampling; clinical and/or
radiological evidence of thromboembolism during hospitalisation; length of hospital stay;
OpenSAFELY COVID-19 mortality propensity score; and death in the hospital.

The full results of the PCA and association test results are shown in Methods S2 Figure 21 for
the cell types; Methods S2 Figure 24 for the major cell subsets; Methods S2 Figure 27 for the
minor cell subsets; Methods S2 Figure 30 for the T and NK clusters; Methods S2 Figure 33 for
the B and PB clusters; and Methods S2 Figure 36 for the MNP clusters with selected panels
reproduced in the main and supplementary figures.

Differential abundance analysis
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To compare cell subset/cluster abundance across clinical categories, the percentage frequencies
of cells were quantified per sample and visualized as boxplots. For major and minor cell subsets,
percentages were calculated out of total PBMCs. For higher resolution immune cell clusters,
frequencies were calculated out of total myeloid cells, total B and plasmablast cells, or total T and
natural killer (NK) cells. To determine the statistical significance of differences in cell subset/cluster
abundance between groups, differential abundance analysis was performed using edgeR, v3.28.1
(Amezquita et al., 2020). Cell subset/cluster counts were modelled adjusting for age, sex and
sample pool using a quasi-likelihood negative binomial generalized log-linear model (gImQLFit
function), with pre-filtering to remove clusters with a count of n<10 cells in <10 individuals. Counts
were normalised by the total number of cells in each sample for the major and minor cell subset
analyses, or by the total myeloid, the total B and plasmablast, or the total T and NK cells for higher
resolution immune cell cluster analyses. Differential abundance testing was performed using the
quasi-likelihood F-test. The Benjamini-Hochberg procedure was implemented to correct for the
number of clusters and the number of pairwise clinical category comparisons, and a significance
threshold of P.<0.05 was used. Testing for composition effects did not provide evidence for biases
in cluster abundance. In addition, for the hospitalised COVID-19 patients, edgeR analysis was
performed using ANOVA to identify statistically significant associations between cluster
abundance and patient characteristics/clinical variables (as detailed for the PCA association
tests).

The full results of the differential abundance and covariate analysis results are shown in Methods
S2 Figure 22 for the cell types; Methods S2 Figure 25 for the major cell subsets; Methods S2
Figure 28 for the minor cell subsets; Methods S2 Figure 31 for the T and NK clusters; Methods
S2 Figure 34 for the B and PB clusters; and Methods S2 Figure 37 for the MNP clusters.

CITE-seq: GEX PCA, differential expression and pathway analysis

Data pre-processing

Pseudobulk counts were generated for each combination of gene and sample at minor subset,
major subset and cell type level by summing together the within-group gene counts. These were
then converted to reads-per-million (RPM) by normalizing by the total count across all genes for
each combination of sample and cell type. Finally, residuals were calculated by taking the log(1 +
count) and subtracting the predicted value from a linear model with pool as the independent
variable. The six poorly performing samples mentioned in the Composition section above were
removed from all further processing.

PCA analysis

PCA was carried out on the residuals using the prcomp function in R. We generated PCs
separately at minor subset, major subset and cell type level using residual values from genes with
a mean RPM > 1 in among all sources, and with six poorly performing samples removed. Outlying
samples (more than 5 SDs away from the mean across the top 10 PCs) were then removed and
PCs recalculated. Plots of the top two principal components for each major subset is shown in
Methods S2 Figure 38. To test differences in major subset PCs across categories, we used an
omnibus ANOVA (i.e. a test of a linear model including all diagnoses/severity categories as dummy
variables, against a model with no difference between these groups) to test for association
between the first 10 PCs and diagnosis/severity (across all samples) and disease severity
(measured by WHO criteria, within COVID-19 samples) (Methods S2 Figure 39). The linear
model also includes terms for age and sex. Omnibus p-values were corrected for multiple testing
using the Benjamini-Hochberg procedure. We also repeated the principal component analysis only
within hospitalized COVID-19 samples and tested their association with clinical covariates. Only
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two major subsets showed adjusted p-values < 0.01, classical monocytes and DCs, with
association patterns shown in Methods S2 Figure 40.

We generated UMAPs from the top n=10 PCs for each level of cell clustering (using the R package
“‘umap”). For this analysis we excluded clusters with n=0 cells for >10 samples and excluded
samples with n=0 cells in remaining clusters. The resulting plots for minor subsets, major subsets
and cell types are shown in Methods S2 Figure 41.

Differential Expression Analysis

We carried out differential expression tests for a range of contrasts (including subgroups of
COVID-19 against healthy volunteers, sepsis and influenza vs healthy volunteers, COVID-19 vs
sepsis, COVID-19 vs influenza and COVID-19 subgroups against one another. These tests were
performed using the R edgeR library (McCarthy et al., 2012). We included age, sex and pool as
covariates, and filtered out samples with <5 cells and gene with mean RPM < 1, with significant
genes selected based on log fold change (logFC) > 2 and false discovery rate (FDR) < 0.01
(calculated by Benjamini-Hochberg). To test for a set of genes that differed across COVID-19
severity categories, we also carried out a “COVID-19 omnibus” likelihood ratio test, with dummy
variables for WHO severity and a separate variable for mild recording healthcare workers (in this
case, genes were selected if they had logFC > 2 between any pair of categories).

The number of differentially expressed genes (FDR < 0.01, absolute log-fold change > 2) in each
cell cluster for each contrast is shown in Methods S2 Figure 42, volcano plots of differentially
expressed genes for critical COVID-19 patients vs healthy volunteers for each major subset are
shown in Methods S2 Figure 43, and the top 10 most differentially expressed genes for each
contrast (across all cell clusters) are shown in Methods S2 Table 3. We also investigated the
relationship between the frequency of a cell subset and the number of differentially expressed
genes (Methods S2 Figure 44), and the relationship between differential composition and number
of differentially expressed (Methods S2 Figure 45).

Pathway Analysis

Gene-set enrichment analysis GSEA of differentially expressed genes were performed using the
FGSEA algorithm (Korotkevich et al., 2021). We performed GSEA for biological pathways from
the MSigDB database (include for KEGG, GO, canonical pathways, regulatory sets, immune
signatures and Hallmark genesets). Enrichment analysis was carried out separately for each pair
of cell cluster and contrast, with genes ranked by p-value. For the Hallmark genesets, we also
carried out a signed enrichment test (ranking by log(pvalue) x sign(logFC)), shown as a heatmap
for major subsets and a range of contrasts in Methods S2 Figure 46. The top 10 pairs of cell
cluster and GO term, canonical pathway and immunologic signature for critical COVID-19 vs
healthy volunteers are shown in Methods S2 Table 4.

In addition, we applied GSEA to a set of experimentally derived interferon-stimulated genes (ISGs)
(Schoggins et al., 2011). Genes within this gene set were differentially expressed across a wide
range of minor subsets and contrasts (Methods S2 Figure 47), with the most significant
enrichment being seen in HSCs in critical COVID-19 patients (Methods S2 Figure 48). We
focused in on classical dendritic cells, as this minor subset showed enrichment of differential
expression in ISGs (p < 1e-5) in 9 out of 13 contrasts tested. Methods S2 Figure 49 shows the
mean expression in DCs across the different disease groups of a subset of ISGs that were
identified both as driving the ISG enrichment signature (leading edge genes) and showing
individually strong differential expression (FDR < 0.001, absolute fold change > 3).

CITE-seq: WGCNA analysis
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We performed separate WGCNA (Langfelder and Horvath, 2008) analyses of n=7 selected “major
cell types” consisting of cell populations that were annotated as “cell types” (B cells, Plasmablasts,
NK cells) or “major subsets” (cMono, ncMono, CD4 T cells, CD8 T cells). For this analysis per-
patient pseudobulk-summarized RPM-normalized counts from the prioritised sample set were
used as input. Patients with low total cell numbers (<500 cells; n=3), with confirmed or suspected
malignancies (n=3), or from the London COVID-19 cohort (n=2) were excluded from the analysis.

Input gene expression matrices were filtered to retain genes with expression above a certain
threshold in a given minimum number of samples. Based on inspection of expression distributions
RPM thresholds of 1 (cMono, NK cells, CD4 T cells and CD8 T) and 3 (ncMono, PB and B cells)
were chosen for the indicated “major cell types”. The number samples that constituted the smallest
patient group was used as the minimum number of samples. After filtering we retained 9000-12000
genes per “maijor cell type”. Log2 RPM+1 values were batch corrected using the ComBat algorithm
(sva R package v 3.36.0) (Johnson et al., 2007; Leek et al., 2012) specifying the multiplexing
sample pool as the adjustment variable (together with an intercept term).

The WGCNA analysis was performed using pipeline_wgcna.py from the
https://github.com/sansomlab/cornet_ repository, and geneset over-representation analysis was
carried out using the gsfisher R library https://github.com/sansomlab/gsfisher. The parameters
used for WGCNA runs are given in Methods S2 Table 5. We excluded 3 “ambient_rna” modules
whose eigengene gene loadings correlated strongly with ambient RNA species abundance (as
quantitated in “empty” droplets) (Spearman’s. rho >0.83, p < 2.2 x 107'%; data not shown) and
unassigned grey modules from downstream analysis.

Modules were characterised and named by inspection of their gene membership, over-
representation of biological pathways (GP Biological Process, Go Cellular Component, KEGG,
MsigDB REACTOME and MSigDB transcription factor motifs) and correlation with AUCell (Aibar
et al., 2017) (v 1.12.0) expression scores for specific sets of genes. The “curated type | IFN
response” geneset comprised of GBP2, IFI27, IFI44L, IFIT1, IFITM1, IFITM3, IFNA1, IFNA10,
IFNA13, IFNA14, IFNA16, IFNA17, IFNA2, IFNA21, IFNA4, IFNAS5, IFNAG, IFNA7, IFNAS8, IFNB1,
IRF1, IRF3, IRF7, IRF9, ISG15, MX1 MX2, OASL, RSAD2, SIGLEC1, TRIM56, USP18 and
XAF1.The “curated AP1 TF family” geneset comprised of the genes shown in Figure 2M. The
custom “zf-C2H2 (PF00096) domain” geneset comprised of genes containing the PF00096
domain (Pfam database). For geneset over-representation analysis only genesets with a BH
corrected p-value < 0.05 are reported (separate corrections performed within major cell type and
ontology).

Inter-module eigengene expression correlation (Figure S20) was computed for the subset of n=77
COVID-19 hospitalized patients that commonly passed filters for inclusion in the analyses for all
“‘major cell types”. Module eigengene correlations with disease were computed by numerically
coding the given x_vs_y disease groups as 1 and 0 respectively (Figure 2K). Module eigengene
associations with variance between patient groups were assessed by ANOVA
(COVID+HV_ANOVA, All_Groups_ANOVOA, Figure 2K). Module eigengene correlations with
clinical variables were computed using pairwise-complete observations. Where appropriate
clinical variables were quantile normalised as described for analysis of clinical phenotype, as
described below. Stars in Figure 2K indicate a significant association between the contrast,
clinical variable or geneset score and the module eigengene (BH corrected p-value < 0.05, p-value
correction performed separately for each contrast, variable or score).

Repertoire analysis
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Strategic approach

Here, we used both single cell (sc) and bulk cell VDJ sequencing to decipher the immune
responses in COVID-19 patients. The benefits of scVDJ-seq is the joint analysis of the VDJ BCR
or TCR sequence along with the gene expression and CITE-seq for each individual cell, allowing
for a detailed linking of antigen receptor function or type with cellular phenotype or function.
However, this is limited by the number of cells that can be captured in a single experiment, usually
between a few 10’s to 1000’s. Therefore, bulk VDJ-seq can also be used to capture a more holistic
view of the immune cell repertoire. While this does not capture VDJ sequences on a single cell
level, many aspects of the repertoire may be investigated, such as changes in clonality, dynamics,
selection and tolerance. Because bulk VDJ-seq is able to capture the immune receptors of 1000’s
to 100,000’s of cells, this means that the resulting repertoire is more representative of the
individual that single cell VDJ-seq, and has greater power to detect low frequency clones or
repertoire features. Finally, through capturing a higher magnitude of BCR/TCR sequencing,
imputing the germline IGHV/J germline alleles becomes possible, and therefore allowing for
analyses of differential genetics between groups.

Additional pre-processing of scBCR-seq data for repertoire analysis

The BCR outputs from CellRanger were run through IMGT V-QUEST (Giudicelli et al., 2004) to
determine the TCR chain types and annotation. In addition, only BCRs from droplets that were
confidently annotated as (a) singlets, (b) within the B cell annotated clusters in the GEX data, and
(c) were confidently genetically demultiplexed were included. Processed FASTA sequences,
corresponding to high confidence VDJ contigs from 10X Genomic’s Cell Ranger v4.0.0 pipeline,
were annotated using IMGT HIGHV-QUEST. To ensure high quality contigs, non-productive
rearranged sequences were removed and only sequences corresponding to cell barcodes that
past QC cut-offs for gene expression data were analysed. For B cell VDJ sequences where multi-
chains were detected, e.g. two or more heavy or light chain sequences, only contigs ranked above
the first derivative of log10 ranked contig ratios were selected for downstream analysis. Contig
ratios were defined by:

Contigrank 2 umis/ CONtiGrank 1 umis

Where multi-chains passed this quality threshold, the contig corresponding to the lowest UMIs
detected was considered ambient RNA contamination and removed. Where multi-chains did not
pass this threshold, we considered these to be low confidence of being true single cell droplets
and likely to represent homotypic doublets; thus, they were removed from further analysis.

Cells with filtered BCRs were concentrated in the regions annotated as B cells or
plasmablasts/plasma cells through gene expression analysis (Figure S4E). Plasmablasts/plasma
cells exhibited higher BCR IGH/ IGK/L expression compared to non-plasmablasts/plasma cell
populations.

Additional pre-processing of scTCR-seq data for repertoire analysis

The TCR outputs from CellRanger were filtered based on called productivity, and chain identity
(TRA or TRB). Only T cells that contained either (a) 1 beta chain, (b) 1 alpha and 1 beta, (c) 2
alpha chains and 1 beta were retained. Given that bona fide T cells with UMI counts of 1 have
been validated in previous datasets (data not shown), the minimum number of UMIs required per
cell to accept was 1. In addition, only TCRs from droplets that were confidently annotated as (a)
singlets, (b) within the T cell annotated clusters in the GEX data, and (c) were confidently
genetically demultiplexed were included.
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The IMGT annotation of cell types demonstrated that the majority of droplets for which TCRs were
captured were able to pass the chain type filters (Methods S2 Table 1). After removal of low-
quality droplets, there remain 94 samples corresponding to the maximal disease severity per
patient. Four samples were excluded due to low T cell capture (<200 cells). Age was used as a
co-variate in downstream analyses.

scBCR clonality measurements

Clonal assignment was performed using a custom procedure. First, concatenated VH/\VJ
nucleotide sequences were clustered using an adapted R implementation of CD-HIT
(https://github.com/thomasp85/FindMyFriends). Subsequently, within-cluster CDR3 normalised
levenshtein distances were generated using the “stringdist” R package. The clonal threshold was
set as the local minimum of the CDR3 distance distribution. Convergent clones were assigned
using the same procedure without constraints accounting for biological replicates. The presence
of published SARS-CoV-2 binding antibody sequences from CoV-AbDab (Raybould et al., 2020)
within the dataset was identified by first requiring identical VH and VJ gene pairings, followed by
CDRa3 distance thresholding (as described above).

The clonal expansion index (CEIl) was calculated as the Gini index (unevenness) of the number
of total BCRs per clone. The clonal diversification index (CDI) was calculated as the GINI index of
the number of unique BCRs per clone. This is a measure of unevenness based on how many non-
identical members of each clone are diversified from their inferred germline ancestor.

scTCR clonality measurements

A clone ID was defined by a concatenation of amino acid CDR3 chains present, with cells sharing
identical clone IDs classed as members of the same clonotype. Clonal proportions were calculated
by dividing the number of cells in each clone per sample by the total of number of cells per sample.
Shannon diversity was calculated from count data of clones per sample using the R package
entropy (Hausser, 2009). Statistical analysis was performed using a linear model with covariates
for age and sample size.

For the scTCR analysis the cluster annotations were merged to create simplified clusters for
analysis. The following reannotated clusters were used in TCR clonality analysis, with constituent
“minor subsets” shown in brackets: CD8 T effector memory (CD8.TEMRA + CD8.TEM); CD8 T
central memory (CD8.TCM + CD8.TCM.CCL5); CD8 T effector (CD8.TEFF + CD8.TEFF.prolif);
CD8 naive (CD8.NAIVE); CD4 T effector (CD4.TEFF + CD4.TEFF.prolif); MAIT (MAIT). Where
comparisons of clone size across samples has been performed in terms of absolute number of
member cells (e.g. Figure 5J, S5F,G) each sample was randomly down-sampled without
replacement (n=1250 for CD4, n=250 for CD8) to generate repertoires of identical size across all
samples. The mean size of clone was then calculated from the down-sampled repertoires. This
process was bootstrapped 100 times and the mean size from these iterations is presented. This
approach allows for accurate comparisons between samples containing different cell numbers and
controls for sample size.

scTCR cytotoxicity and kmer analysis

Cytotoxicity score was calculated using the AddModuleScore function in Seurat (Butler et al.,
2018) with a gene-set of the top 50 genes that significantly correlated with IFNG expression in an
independent single cell dataset (Watson et al., 2020b) and were identified as variable features in
Seurat. The gene-set was then used as an input to generate phenotype scores.

CDR3b sequences of T cells identified as CD4+ or CD8+ T cells were broken down into 4-amino
acid length sequences (kmer). A Fisher’s exact test was performed per kmer across each group
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of patients (HV, COVID-19 or sepsis patients) and p values adjusted using a Bonferroni’s
correction, with a leave-one-out re-sampling of individuals employed to ensure inter-individual
reliability. Kmer sequences significantly enriched in COVID-19 patients over HV or sepsis patients
across more than 95% of the re-samples were identified as COVID-enriched kmers. The
proportion and cellular phenotype (i.e. subset and cytotoxicity) of T cells with a CDR3b sequence
containing a COVID-enriched kmer was subsequently compared between COMBAT clinical
groups.

Identification of SARS-CoV2 specific T cell clones using public CDR3 databases

Putative viral antigen specificity of clonotypes within COMBAT cohort was determined using
publicly available databases of viral antigen specific CDR3 sequences. At the time, two databases
containing TCR sequences with reported binding to SARS-CoV-2 epitopes were available: VDJdb
(Bagaev et al., 2019) and ImmuneCODE™ (Nolan et al., 2020). From VDJdb, all unique CDR3
amino acid sequences (alpha as well as beta chain of human TCR) of all lengths and MHC-
restrictions with reported binding to known SARS-CoV2 associated antigens were selected.
Sequences with low confidence scores assigned to TCR:peptide:MHC complexes or missing
sequencing/ specificity validation data were then filtered out. ImmuneCODE™ database includes
deeply sampled TCRb repertoires from over 1,400 subjects exposed to or infected with the SARS-
CoV-2 virus. Within these, over 135,000 TCRs were deemed to be SARS-CoV-2-specific with
high-confidence using Multiplex Identification of Antigen-Specific T-Cell Receptors Assay (MIRA)
and were included(Klinger et al., 2015). Unique CDR3 amino acid sequences thus identified were
collated and interrogated against TCR sequences within COMBAT cohort for matches within
CDR3a, CDR3a2 and CDR3b regions. A similar strategy was used to identify CMV, EBV and
Influenza specific clones. Finally, proportions of individual repertoires occupied by viral clones
were compared between COMBAT clinical groups.

Bulk BCR and TCR quality control and filtering

Raw sequencing reads were filtered for base quality (median Phred score >32) using QUASR
(Watson et al.,, 2013). Forward and reverse reads were merged if they contained identical
overlapping region of >50bp, or otherwise discarded. Universal barcoded regions were identified
in reads and orientated to read from V-primer to constant region primer. The barcoded region
within each primer was identified and checked for conserved bases. Primers and constant regions
were trimmed from each sequence, and sequences were retained only if there was >80% per base
sequence similarity between all sequences obtained with the same barcode, otherwise discarded.
The constant region allele with highest sequence similarity was identified by 10-mer matching to
the reference constant region genes from the IMGT database (Lefranc, 2011), and sequences
were trimmed to give only the region of the sequence corresponding to the variable (VDJ) regions.
Isotype usage information for each BCR was retained throughout the analysis hereafter.
Sequences without complete reading frames and non-immunoglobulin/TCR sequences were
removed and only reads with significant similarity to reference IGHTCR V and J genes from the
IMGT database using BLAST (Altschul et al., 1990) were retained. Ig/TCR gene usages and
sequence annotation were performed in IMGT V-QUEST, where repertoire differences were
performed by custom scripts in Python.

Bulk BCR sequencing resulted in 2,356,813 BCRs consisting of 1,905,867 unique BCR
sequences, resulting in 79 samples passing all QC measures and with the minimum number of
BCR sequences per sample at 1000. Bulk TCR sequencing resulted in 1,200,656 TCRs consisting
of 1,159,363 unique TCR sequences, resulting in 77 samples passing all QC measures and with
the minimum number of TCR sequences per sample at 1000.

Isotype frequencies, somatic hypermutation, CDR3 lengths and IGHV gene usages
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Analysis methods are based on (Bashford-Rogers et al., 2019). To account for the greater
numbers of BCR RNA molecules per plasmablast compared to other B cell subsets, the
normalised isotype usages, defined as the percentage unique VDJ sequences per isotype, thus
controlling for differential RNA per cell and reducing potential biases from differential RNA per cell.
Similarly, mean somatic hypermutation levels and CDR3 lengths were calculated per unique VDJ
region sequence to reduce potential biases from differential RNA per cell. IGHV gene usages were
determined using IMGT, and proportions were calculated per unique VDJ region sequence. The
representation of IGHV genes in the BCR repertoire reflects their presence in the germline, the
naive repertoire and their expansion after antigenic exposure. We therefore compared the
frequency of IGHV gene use in PBMC-derived BCRs identified by sequence as being enriched for
naive (IgM+D+SHM-: >78% naive B cells by flow cytometry) and antigen-experienced B cells
(including both unswitched (IgM+D+SHM+) and class-switched memory (IgA+/G+/E+) subsets)
as shown in (Bashford-Rogers et al., 2019).

Bulk BCR class-switching event analyses

Relative class-switch event frequency was the frequency of unique VDJ regions expressed as two
isotypes (i.e. from more than one B cell, where one has undergone class-switch recombination).
This was determined as proportion of unique BCRs present as both isotypes IgX and IgY within a
random subsample of 8000 BCRs, where the mean of 1000 repeats was generated. This provides
information on the frequency of BCRs observed associated with any two isotypes (class-switching
events) while accounting for total read depth, but not accounting for differences in the relative
frequencies of BCRs per isotype.

The per-isotype normalized class-switch event frequencies determines frequency of unique VDJ
regions expressed as two isotypes whilst normalizing for differences in isotype frequencies. To
account for differences in isotype proportions, BCRs from each isotype were randomly
subsampled to a fixed depth of 100 BCRs, and the proportion of unique VDJ sequences present
between each pair of isotypes was counted. The mean of 1000 repeats was generated.

RNA-velocity B cell analysis

The single-cell RNA-seq data sets were subjected to the standard RNA-velocity pipeline, and the
trailing analyses were performed using the scVelo package (v0.1.24). The scVelo package was
used to normalize the counts and select highly variable genes based on spliced counts. Following
this, the dynamical model implemented in scVelo was used to estimate the RNA velocity for the
cells. The estimated velocities were then visualized using Partition-based graph abstraction
(PAGA) plots using the previously computed UMAP embeddings.

scATACseq data analysis

Raw data pre-processing was performed with Cell Ranger ATAC (10X Genomics). ‘cellranger-
atac count’ pipeline was used to align reads and generate single-cell accessibility counts for the
cells. The reference genome assembly file was Ensembl GRCh38 v100 Primary Assembly
corresponding to hg38, downloaded from http://ftp.ensembl.org/pub/release-
100/fasta’lhomo_sapiens/dna/Homo_sapiens.GRCh38.dna.primary_assembly.fa.gz. This file was
used as reference genome file for alignment and generation of single-cell accessibility counts.
Annotations were from Ensembl GRCh38 v100 Gene Annotation downloaded from
http://ftp.ensembl.org/pub/release-100/gtf/homo_sapiens/Homo_sapiens.GRCh38.100.gtf.gz.
VIREO (Huang et al., 2019) and demuxlet (Kang et al., 2018) packages were used to demultiplex
patient samples within a channel and identify inter-sample nuclei doublets. Concordantly filtered
barcodes from individualised samples were then used to create individual fragment files for each
patient using HTSlib —c function. Following the creation of fragment files, downstream analysis of
the scATACseq data was performed using the ArchR v0.9.3 R package (Granja et al., 2021).
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Fragment files were first checked using the reformatFragmentFiles function. Arrow files were then
generated by reading each sample’s specific fragment files and a tile matrix was created using
500-bp bins. Cells with a transcription start site enrichment score < 4, with fewer than 1000
detected fragments or containing intra-sample nuclei doublets were removed, resulting in ~46000
cells, which were subjected to dimensionality reduction with iterative Latent Semantic Indexing
(LSI) and Singular Value Decomposition (SVD), followed by Uniform Manifold Approximation and
Projection (UMAP) embedding calculation to visualize the data structure in the two-dimensions.
~4000 cells were manually removed at this stage, as we identified putative batch effects. The
resulting ~42000 cells were subjected to UMAP and were clustered using the implementation from
Seurat R package (Stuart et al., 2019). Cluster-specific gene activity scores were identified based
on the local chromatin state, and marker genes were identified (FDR < 0.01 & Log2FC = 1.25).
Unconstrained integration with cognate scRNA-seq profiles was performed using the
addGenelntegrationMatrix (ArchR) method and scRNA-seq cell type annotations were used to
label scATAC-seq clusters. We performed peak calling using MACS2 with the
addReproduciblePeakSet (ArchR) function using pseudo-bulk replicates. Such replicates were
grouped with different variables, such as cell-type, condition and patient, as well as a combination
of these variables. Differentially accessible peaks (FDR <= 0.1 & Log2FC >= 0.5) were identified
between pairwise comparisons, and peak-to-gene linkages were calculated using the
addPeak2GeneLinks (ArchR) method using a correlation cut-off of 0.45 and resolution = 1000.
We then used the ‘cisbp’ motif set to annotate motifs in accessible peaks using the
addMotifAnnotations (ArchR) function. Motif enrichments in differentially accessible peaks were
calculated using the peakAnnoEnrichment (ArchR) method. Finally, motif footprinting was
performed by measuring Tn5 insertions in genome-wide motifs and normalized by subtracting the
Tn5 bias from the footprinting signal.

Luminex data analysis

Cytokine enrichment profile analysis

The concentrations of 51 circulating proteins in plasma were presented as mean Fl + SEM and
compared between HV and each disease severity group of COVID-19 using unpaired student’s t-
test, and then depicted with Prism.

Principal Component Analysis (PCA)

PCA on 171 plasma samples was conducted with the Scater package in R Programme. The values
of FI were normalised with logNormCounts function, and then calculated with the RunPCA
function. The loadings were generated by the value of first two components of eigenvectors
multiplied by 10.

Heatmap

The heatmap was coloured by the log10 of the fold-change in the natural log of the fluorescence
intensity (FI), normalised against the mean value of HV for the plasma cohort and HS for the serum
cohort. When comparing mortality in severe and critical COVID-19 patients, the data is normalised
to the survivor group. The colour-scale is bounded at +5 fold change (0.7 in log10), with an
increased Fl shaded red; decreased Fl shaded green; unchanged Fl shaded yellow.

Volcano plots

The p-values in the Volcano plots are calculated using a two-tailed two-sample unpaired T-test
(ttest2, MATLAB). The T-test was taken for the natural log of the FI of the test and control
conditions. The p-values are plotted against the log2 of the fold-change in the natural log of the
fluorescence intensity (FI) between the test and control conditions.
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Uniform manifold approximation (UMAP)

The UMAPs [L. Mclnnes, J. Healy, J. Melville, (2018) UMAP: Uniform Manifold Approximation and
Projection for dimension reduction, arXiv:1802.03426v2] were calculated using the MATLAB
package of Meehan, Meehan and Moore [Connor Meehan, Stephen Meehan, and Wayne Moore
(2020). Uniform Manifold Approximation and Projection (UMAP)
(https://www.mathworks.com/matlabcentral/fileexchange/71902),  MATLAB  Central File
Exchange.] The UMAP is partially supervised, with 2/3rds of the patients in each condition
randomly chosen to train the network. The UMAPs are set to have 45 nearest neighbours, with a
minimum distance of 0.3 with a correlation metric. The UMAP was reduced over 2000 epochs.

Linear correlation between analytes / Linear correlation between clinical traits

The correlation coefficient, r, was calculated using a Pearson correlation coefficient (corcoeff,
MATLAB). All quoted r values have an associated p-value (also computed by corcoeff) of less
than 0.05.

Correlation network analysis

All values used for the correlation network analysis were the FlI of Luminex results and/or the
clinical readout. Severities were scored as HV=0, CH=1, CM=2, CS=3 and CC=4. Quality control
(QC) was conducted on the matrix of expression values. Seven out of total 51 proteins were
removed from the correlation analysis due to their low FI (<10 after subtracting FI in blank) and
small SD (<10). Pearson correlation coefficient was performed using pairwise-complete
correlation. Correlation matrix plots were generated using a modified package corrplot. Correlation
matrix summary plots were made manually by R. Network plots were created by ggraph.

Tims-TOF mass spectrometry analysis

Primary data analysis (ldentification and Quantitation)

Data was analysed by the Fragpipe pipeline consisting of Fragpipe 13.0 (Kong et al., 2017),
MSFragger 3.0, Philosopher 3.2.9 (da Veiga Leprevost et al., 2020) and Python 3.8.2. Blank runs
were excluded and each file defined as experiment to facilitate LFQ. Data were searched against
a fused target/decoy database generated by Philosopher and consisting of human UniProt
SwissProt sequences and UniProt SARS-nCov02 (retrieved 17/07/2020), plus common
contaminants. The database had 40860 entries (including 50% decoy entries). MSFragger
parameters were set to allow a precursor mass tolerance of plus/minus 10ppm and a fragment
tolerance of 20ppm. Isotope error was left at 0/1/2 and masses were set to re-calibrate. Protein
digestion was set to semi specific trypsin with up to 2 allowed missed cleavage sites, allowing
peptides between 7 and 50 residues and mass range 500 to 5000 Da. N-terminal protein
acetylation and Methionine oxidation were set as variable modifications. ID validation was done
with PeptideProphet and ProteinProphet (Nesvizhskii et al., 2003) with default settings.

Label free quantitation was conducted with lonQuant (Yu et al., 2020) and Match-Between-Runs
enabled (with default parameters) and using Top-3 quantitation. Feature detection tolerance was
set to 10ppm and RT Window to 0.6 minutes with an IM Window of 0.05 1/k0. For matching, ion,
peptide and protein FDRs were relaxed to 0.1 and min correlation set to 0 in order to allow pre-
fractionated library samples to be included. MBR top runs was set to 600.

Data Handling

The proteomics dataset was processed as follows: (1) Protein filtering such that proteins with at
least 50% of valid values in one group were kept; (2) Sample filtering such that samples with more
than 50% of missing values were removed from the dataset; (3) Data normalization with logz
transformation and median-centring of the dataset. Imputation of missing values was performed
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using a mixed model that combines a K-Nearest Neighbour approach (KNN) when at least 60%
of valid values are present, otherwise a Minimum probability approach is used where missing
values are randomly drawn from a Gaussian distribution (shift=1.8, nstd=0.3). The resulting data
matrix contains 353 samples and 105 proteins. Thirteen samples were further excluded from
analysis for malignancy, immunosuppression, or being alternative samples.

Statistical analysis

Unsupervised hierarchical clustering was performed based on Euclidean distance and Ward’s
method for calculating linkage. Differential abundance analysis was performed by fitting protein
abundance in linear models with the limma package, using only one sample at the maximal
severity of the patient and including age and sex as covariates. The Benjamini-Hochberg
procedure was applied to correct for multiple comparisons. FDR < 0.05 and fold change > 1.5 was
taken as statistical significance. Pathway enrichment analysis was performed using the XGR
package with annotations either from Gene Ontology Biological Process or the Reactome pathway
database. Significantly enriched terms were defined by FDR < 0.05 in hypergeometric tests with
all proteins detected in plasma (including in library samples) as the background. Statistical analysis
was performed in R.

Protein-protein interaction network

Protein-protein interaction data was retrieved from STRING v11 database with a confidence score
cut-off of 0.7 and zero additional interactors. The network was visualised through Cytoscape
v3.8.0 platform (Shannon et al., 2003) using perfuse force directed layout, and divided into clusters
with the Markov cluster algorithm applied in the “clusterMaker” plugin. Node colour was mapped
to Pearson’s correlation coefficients of PC1 scores and the protein level across samples, as lower
PC1 score was shown to correlate with higher disease severity.

Clinical knowledge graph

The MS-based proteomics data were also analysed using the Clinical Knowledge Graph (CKG)
(Santos et al., 2020). CKG provides a Python framework for downstream analysis and visualization
of proteomics data: protein ranking, dimensionality reduction, functional Principal Component
Analysis (PCA), Analysis of Variance (ANOVA), protein-clinical variable correlation analysis and
network summarization.

CKG runs 3 feature reduction algorithms: Principal Component Analysis (PCA), Uniform Manifold
Approximation and Projection (UMAP) and functional PCA. The functional PCA is based on the
results of the method single-sample Gene Set Enrichment Analysis (Subramanian et al., 2005),
which identifies enrichment of Biological processes (Gene Ontology) (GOBP) in single samples
derived from the ranked intensities of the identified proteins. This method generates a vector of
biological processes enrichment scores for each sample. Loadings of the top 15 proteins and
GOBP driving the separation of the conditions studied are included in the PCA and functional PCA
respectively. In this analysis, the drivers are biological processes such as acute-phase response
and inflammation and retinoid and lipoprotein metabolic processes and cholesterol transport.

We performed ANOVA analysis to identify differentially regulated proteins across conditions.
Further, we run posthoc analysis (pairwise t-test) to show specific differences when comparing
disease conditions to healthy volunteers or community COVID-19 and also between severity
levels.

We performed functional enrichment analysis (Fisher’s exact test) to identify enriched GO among
the up- and down-regulated proteins in each pairwise comparison. Enrichments are plotted as
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scatterplots showing up- or down-regulated enriched GOBP and their adjusted p-values
(Benjamini-Hochberg FDR: cutoff 0.05).

CKG performed a Spearman correlation analysis using the clinical metadata and the proteomics
dataset. This Protein-clinical correlation is shown in a network where nodes are either clinical
variables (diamond shape) or proteins (circle shape), and edges represent correlation
(red=positive correlation, blue=negative correlation; Spearman correlation cutoff>=0.5; Benjamini-
Hochberg FDR: cutoff 0.05). CKG applied a clustering algorithm (Louvain community detection)
to identify clusters of highly connected nodes (nodes coloured by cluster).

The results from all CKG analyses are summarized in a single visualization all the findings in the
different analyses and all relevant biomedical context associated (diseases, drugs, biological
processes, pathways, protein complexes, publications). The summarization algorithm prioritizes
what nodes are shown in the network based on betweenness centrality. The top 15 central nodes
are shown for each node type.

Similarity network fusion analysis

The similarity network fusion (SNF) analysis was performed using the function in CKG that makes
use of the python library pySNF. The method is used to analysed the proteomics datasets (MS-
based proteomics and luminex) in combination to identify in an unsupervised manner clusters of
similar patients. The number of clusters was not defined initially and optimized using the eigengap
method and the clusters identified using Spectral clustering. The SNF analysis used Euclidean
distance to calculate similarity (k_affinity=20, mu_affinity=0.6). The function returns the clusters
and a mutual information score for each feature included in the analysis (MIscore). We used this
score to prioritize a reduced number of features mainly driving the separation of the clusters (11
features) (MIscore>=0.15). The clusters are visualized using PCA plots.

SNF Cluster validation

In order to validate the identified clusters using SNF on the proteomics data, we used an
independent cohort studied using a different technology, namely targeted proteomics by Olink
(Filbin et al., 2020). Access to the dataset was granted by Olink https://info.olink.com/mgh-covid-
study-overview-page. The processing of the data was done using CKG analytics core functions to
map protein identifiers to names, transform the data into wide format and impute missing values
using a mixed model as previously described. The clustering on these data followed a similar
approach to how the SNF clusters were calculated (optimal clusters and Spectral clustering) but
using only the selected features in the SNF analysis (7/11 features).

SNF clusters survival analysis

To evaluate the clinical relevance of the identified clusters in COMBAT, we performed a survival
analysis and plotted the Kaplan-Meier curve using R packages survival (Therneau and Grambsch,
2000) and survminer. The input data is a data frame specifying the time to event, the event (death
or end of observation) and the groups (SNF clusters). The comparison of the survival distributions
between clusters was performed and the p value given using log-rank test. The hazard ratio was
calculated using Cox proportional hazard model. In the Olink dataset survival status is only
available at 4 timepoints: 0, 3, 7 and 28 days. Deaths at these time points were collected according
to WHO category 1, defined as death, in these timepoints (WHO 0, WHO 3, WHO 7 and WHO
28). We compared the 28-day mortality between the two SNF clusters by chi-squared test.

Olink and COMBAT correlation analysis
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To evaluate the robustness of the identified clusters between technologies/studies and to eliminate
that only the 7 selected features used for the clustering of the Olink data were similar, we
calculated the correlation (Pearson correlation) of fold-changes between clusters for all the
common proteins in these studies (n=43).

Topological data analysis

Mapper is an algorithm in Topological Data Analysis for multiscale clustering and attempts to
capture the topology of complex high-dimensional data (Singh et al., 2007; van Veen et al., 2019).
We analysed the whole blood total RNAseq with a filter function (L2 norm) of principal component
1 to produce a Mapper graph. We used 25 evenly spaced bins with 50% overlap of the filter
functions image. We used DBSCAN with eps=70, minpts=1 (equivalent to single-linkage with
threshold 70). The clustering algorithm is applied separately to each preimage of each bin under
the filter function. These clusters are the vertices of the final graph. As the bins are overlapping,
the clusters between the preimage of different bins may share points. When this happens, an edge
is drawn between the clusters that share a point. The resulting graph is the Mapper output with
the vertices of this graph coloured by the average filter function value on that cluster.

Tensor and matrix decomposition

A tensor and matrix decomposition method, Sparse Decomposition of Arrays (SDA), as defined in
(Hore et al., 2016), was used to integrate 152 samples from the different ‘omics datasets defined
above, allowing that some samples were missing certain ‘omics data.

The whole blood total RNAseq (9 missing samples) and the pseudobulk from 10x CITEseq
scRNAseq (22 missing samples) were combined into a three dimensional tensor consisting of 152
samples by 9 tissue types by 14,989 genes (which passed QC in both datasets). This expression
was normalised by sample in each tissue type by log2-transformation of counts-per-million + 1.

The number of cells per cell types as defined by 10x CITE-seq (a two-dimensional matrix of 152
samples by 97 cell types, with 22 samples missing) and mass cytometry (CyTOF) (One two-
dimensional matrix of 152 samples by 10 cell types for the all cells dataset, with 21 samples
missing. Another two-dimensional matrices of 152 samples by 51 cell types for the granulocytes-
depleted cells dataset, with 20 samples missing). We filtered out any samples with fewer than 500
cells in any matrix. The data in each matrix was normalised by a log2 transformation of counts-
per-million + 1.

The proteomics data from Luminex (in a two-dimensional matrix of 152 samples by 51 proteins,
with 20 samples missing) and mass spectrometry (Tims-TOF) (in a two-dimensional matrix of 152
samples by 105 proteins, with 17 samples missing) were used, with the data normalised as
described in the Luminex and Tims-TOF sections.

As described in (Hore et al., 2016), to find robust components we ran the tensor and matrix
decomposition ten times for 1000 components. Each time around 290 components were estimated
to be zero. Once again, similar to the (Hore et al., 2016) method the absolute correlation (r) was
calculated for the sample scores for each pair of components, clustered using Hierarchical
clustering on 1-r (dissimilarity measure) and formed flat clusters in which the components in each
flat cluster have no greater a cophenetic distance than 0.4. We chose the flat clusters that had
components from at least 5 of the 10 runs. The final sample, tissue and gene or protein or cell
score was the mean of all the components within the chosen clusters. This resulted in 381 clusters.
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Components were identified as associated with COVID-19 if they (1) showed significant variation
(BH adjusted p < 0.01) in an analysis of variance between the COVID-19 categories and healthy
volunteers and (2) showed a significant |[spearman’s rho|>= 0.5 (and Benjamini/Hochberg
adjusted p < 0.01) in at least one of the contrasts between the COVID-19 groups vs healthy
volunteers (in total we found n=130 such components; Figure 7C). To identify COVID-19 specific
components the median loadings of the components for the different comparator (source) groups
(i.e. including influenza and all-cause sepsis) were clustered (k-means). Individual component
associations, for example with comparator group, severity or clinical features were assessed with
Spearman correlation (between component loadings and numerical variables) or ANOVA
(between component loadings and categorical variables). The overview heatmap (Figure S7G)
was generated by combining the top significant (Benjamini/Hochberg adjusted p < 0.05, abs(r) >
0.5, max 10) components from each of the individual analyses. Pathway enrichment of the genes
expression highlighted (those with posterior inclusion probability > 0.5, weighted by their ranking
in loading score magnitude) in components was done using gene set enrichment analysis as
implemented in Pi’'s xPierGSEA (Fang et al., 2019).

Integrated data analysis of multi-omics data using machine learning feature selection to
distinguish COVID-19 severity groups

We used supervised machine learning (from sklearn) to classify samples according to their WHO
severity based on PCs obtained from data across the different modalities (timsTOF, luminex, and
total RNAseq) (Figure S7A). We performed permutation feature scoring to find the most important
PCs to predict severity. After that, we extract the most important features of the most important
PCs and rerun the algorithm directly on these features, again ranking them according to their
importance.

Machine learning using SIMON to distinquish COVID-19 and sepsis

Generation of an integrated COMBAT dataset

The pre-processed data from individual COMBAT assay datasets were automatically processed
using the standard extract-transform-load (ETL) procedure to generate an integrated dataset.
Datasets were merged using shared variable, the COMBAT sample ID and assay-specific sample
IDs. Next, we generated novel features, such as name of specific assays to indicate if a sample
was analysed in a specific assay (yes/no), ordering of samples shared between assays
(first_sample_across_assays), day when sample was obtained from the maximum disease
(day_sampling_from_max_disease), state of the disease when sample was acquired
(recovered/ongoing), hospitalized, ventilation, oxygenation, sampling (<=10 days as early or >10
days as late phase of the disease), samples acquired before or after maximum disease
(sampling_from_max_disease) and disease progress for longitudinal samples (deterioration or
recovery). Donors that were excluded or frail were not included in the integrated dataset. We
standardized names of the immune cells subsets and analytes to reflect the measurement, such
as frequency (freq_cell subsets) or intensity (Luminex parameter_intens). In total, the integrated
COMBAT dataset contained information on 428 samples from 268 donors on more than a million
parameters.

Data pre-processing

For the multi-omics data integration, after filtering for samples not analysed across all assay
modalities and restricting to the first available sample after admission from sepsis and hospitalized
COVID-19 patients, the final dataset included 15 sepsis patients and 53 hospitalized COVID-19
patients with 184 features analysed using CyTOF, 79 using FACS, 8 using GSA, 105 mass
spectrometry, 102 Luminex and 23,063 features from whole blood total RNAseq. The data for
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each assay was cantered and scaled, missing values were imputed, features with zero-variance
and near-zero-variance were removed and finally, highly correlated features with cut-off 0.85 were
also removed.

Feature selection process

To avoid ‘curse of dimensionality’, reduce overfitting and improve accuracy, we implemented a
wrapper approach as described (Kohavi and John, 1997). Briefly, the initial dataset containing all
68 donors was partitioned into training (52 donors) and test set (16 donors) with balanced class
distribution of sepsis and COVID-19 patients using the data partitioning function (Kuhn, 2008) as
described previously (Tomic et al., 2019). The same training/testing dataset split was used for
each assay. The reduction of features using the recursive feature elimination (RFE) algorithm was
performed on the training set and the model was evaluated using the 10-fold cross-validation
repeated 5 times. For whole blood total RNAseq, prior to training the model using RFE algorithm,
we have performed analysis of differentially expressed genes between sepsis and hospitalized
COVID-19 patients, reducing the number of genes to 2,989 based on the FDR <0.05 and fold
change >1.5, and accounted for age and sex in the model. The RFE method removes the features
that do not contribute to the final model, while it keeps the features that contribute the most to the
final model as evaluated using the variable importance score (Kuhn and Johnson, 2019). Finally,
after the RFE analysis, the selected features from each assay (36 features from CyTOF, 20 from
FACS, 20 from Luminex, 32 from mass spectroscopy, 28 from whole blood total RNAseq and 1
from GSA dataset) were merged in the final training dataset containing 52 donors and 137
features.

Machine learning using SIMON

To identify immunological and molecular signature that can discriminate between sepsis and
COVID-19 patients, we used SIMON (Sequential Iterative Modeling “Over Night”) (Tomic et al.,
2019). SIMON is a free and open-source software that provides a standardized ML method for
data pre-processing, data partitioning, building predictive models, evaluation of model
performance and selection of features. For the analysis, we applied four machine learning
algorithms, naive Bayes, Shrinkage discriminant analysis (sda), Support vector machine with
linear kernel (‘svmLinear2’) and C5.0 decision tree. Since the entire ML process in SIMON is
unified, resulting models built with different algorithms can be compared and the best performing
models can be selected. First, models are built on training set and the performance is evaluated
using a 10-fold cross-validation repeated five times and cumulative error rate is calculated. To
prevent overfitting, in the second step, each model is evaluated on the withheld test set. The
performance of classification models was determined by calculating the area under the receiver
operating characteristic curve (AUROC) for test set (test AUROC). The best performing model
was built using the naive Bayes (testing AUROC 0.85, 95% CI1 0.59-1.00). In the final step, SIMON
calculated the contribution of each feature to the model as variable importance score (scaled to
maximum value of 100).

Data management

To support consistent and coherent communication of data and metadata within the project, a
unified identifier system for all samples was implemented. The COMBAT sample identifier system
encodes information regarding the sample providence in terms of cohort, de-identified patient ID,
location where the sample was taken, the time point of the sample relative to the initial collection
and details regarding the processing of the sample itself.

Datasets from each modality were stored within the consortium via the COMBAT datawarehouse,
consisting of over 100TB of fast storage connected to a research computing cluster. This enabled
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data processing to occur within the datawarehouse, reducing the risk of duplication of datasets
and the possibility of uncontrolled changes. Once datasets were ready to be shared within the
consortium, to support (for example) data integration work, they were formally given a unique
identifier and placed in a dedicated dataset directory. The existence of this deposition and its
associated metadata, including information regarding associated samples and status was then
made available via a web application which captures this information in a back-end database. This
application allows consortium members to search by modality and status, providing information
about the purpose of each dataset and its location in the datawarehouse.

The governance of data management was supported by the existence of a short but well-defined
Data Access Agreement, which all consortium members were required to sign before gaining
access to the datawarehouse. Furthermore, granular permissions within the datawarehouse
enabled careful access controls to be applied to particularly sensitive data (such as rich clinical
data). Web applications supporting the consortium are all protected by a federated Shibboleth-
based authentication approach, allowing collaborators from outside of Oxford to gain access as
required.

Data visualisation

Multi-locus viewer

In order to visualise the data from the different modalities (experiments), a module, Multi
Experiment Viewer (MEV https://github.com/Hughes-Genome-Group/MEV) was built for Multi
Locus View (MLV DOI 10.1101/2020.06.15.151837) such that the data was pivoted on sample
rather than genome location. The data was loaded in from each modality and for the CITEseq
data, psuedobulk values (on a sample/cell type basis) were used. In order to compare radically
different datatypes (read counts, fluorescence, % cell type etc.), percentiles for each observation
were calculated from the 10th to the 90th, in steps of 10. Values were then placed into 10 bins,
e.g., if a value was <=10th percentile it would be given a value of 1 and if >2nd and <=3rd, it would
get a value of 2 etc. This was used as the default value, although depending on the modality other
values e.g, raw counts, log transformed values were also added and can be selected by the user.
Users can create their own views by searching for genes or loading in specific data sets and then
combine them with a limited set of clinical data. Charts such as histograms, heatmaps and scatter
plots can then be added and cross-filtered to identify samples or features of interest. An instance
can be found at https://mlv.combat.ox.ac.uk/, with links to predefined views of the data.

Shiny apps

Shiny apps (https://shiny.combat.ox.ac.uk) were developed using the R package shiny to display
the results of the whole blood total RNAseq differential expression analysis and the principal
component analysis. In each, derived data are loaded (limma fitted models and pre-calculated
principal components respectively) together with limited metadata, and plots are generated within
the app using ggplot2.

ADDITIONAL RESOURCES
KEY RESOURCES TABLE
SUPPLEMENTAL INFORMATION

Table S1. COVID-19 Multi-omic Blood Atlas (COMBAT) Consortium author details
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Table S2. Demographics and clinical features for overall cohorts and hospitalised COVID-
19 patients

Table S3. Tensor and matrix decomposition analysis. Data for 152 samples across modality
types and all patient groups, including significant associations of components with group
memberships, gender, detail of sample loading scores and pathway enrichment.

Table S4. Primers used for BCR and TCR sequencing

Methods S1. Supporting figures for mass cytometry, related to STAR Methods. Data
analysis supplement including gating strategies, analysis pipeline and phenotyping.

Methods S2. Supporting figures and tables for CITE-seq, related to STAR Methods.
Experimental design and cell capture, multimodal annotation of PBMC sub-populations,
compositional analysis, PCA, differential expression analysis and pathway analysis.

Methods S3. COVID-19 Multi-omic Blood Atlas (COMBAT) Consortium author
contributions
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KEY RESOURCES TABLE

REAGENT or RESOURCE | SOURCE | IDENTIFIER
Antibodies
Mass cytometry panel antibodies (*:intracellular)
Cat# 3089003,
CD45 (HI30)-89Y Fluidigm RRID:AB_ 2661851
Catt# 302247,
CD19 (HIB19)-111Cd BioLegend RRID:AB_ 2562815
Catt# 300438,
RRID:AB_1114699
CD3 (UCHT1)-112Cd BioLegend 1
Catt#t 410701,
IgG (M1310G05)-113Cd BioLegend RRID:AB 2565624
Catt#t 300570,
CD4 (RPA-T4)-114Cd BioLegend RRID:AB 2810427

HLADR (G46-6)-116Cd

BD Bioscience

Cat# 556642,
RRID:AB_396508

Cat# 322325,

CD57 (HCD57)-115In BioLegend RRID:AB 2563757
Cat#t 337202,
CD11c (Bu15)-141Pr BioLegend RRID:AB 1236381
Cat#t 658702,
BCL2 (100)-142Ngd” BioLegend RRID:AB 2562959
Cat#t 304102,
CD45RA (HI100)-143Nd BioLegend RRID:AB 314406
Cat## ab103159,
RRID:AB_1071524
GZB (CLB-GB11)-144Nd” Abcam 2
Cat#t 366602,
CD33 (P67.6)-145Nd BioLegend RRID:AB 2565538
Vd2 (123R3.5B8)-146Nd Miltenyi Custom made
Cat#t 302343,
CD20 (2H7)-147Sm BioLegend RRID:AB 2562816

CD66 (B1.1/CD66)-149Sm

BD Bioscience

Cat# 551354,
RRID:AB_394166

Cat# 310902,

CD69 (FN50)-150Nd BioLegend RRID:AB_314837
Cat# 3151011B,
CD103 (Ber-ACT8)-151Eu Fludigm RRID:AB_2756418
Cat# 31520088,
TCRgd (11F2)-152Sm* Fluidigm RRID:AB_2687643
Cat# 348235,
IgD (1A6-2)-152Sm BioLegend RRID:AB_2563775
Cat# 3153024B;
Va7.2 (3C10)-153Eu Fluidigm RRID: N/A
Cat# 368602,
KLRG1 (14C2A07)-154Sm BioLegend RRID:AB_2566256
Cat# 31550098,
PD1 (EH12.2H7)-155Gd Fluidigm RRID:AB_2811087

Page 1 of 16



https://doi.org/10.1101/2021.05.11.21256877
http://creativecommons.org/licenses/by/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2021.05.11.21256877; this version posted May 11, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY 4.0 International license .

Cat# 339902,

CD161 (HP-3G10)-156Gd BioLegend RRID:AB_1501090
Cat# 3158010B,
CD27 (L128)-158Gd Fluidigm RRID:AB_ 2858231
Cat# 14-4776-82,
FoxP3 (PCH101)-159Tb" eBioscence RRID:AB 467554
Cat# 301843,
CD14 (M5E2)-160Gd BioLegend RRID:AB_2562813
Cat# 14-1529-82,
CTLA-4 (14D3)-161Dy eBioscence RRID:AB_ 467512
Siglec-8 (837535)-162Dy R&D Cat# MAB7975

CD28 (L293)-163Dy

BD Bioscience

Cat# 340975,
RRID:AB_400197

Cat# 350523,

Ki67 (Ki-67)-164Dy* BioLegend RRID:AB_2562838
Cat# 304202,
CD45R0O (UCHL1)-165Ho BioLegend RRID:AB_314418

CD56 (NCAM16.2)-166Er

BD Bioscience

Cat# 559043,
RRID:AB_397180

Cat# MAB197,

CCRY7 (150503)-167Er R&D RRID:AB_2072803
Cat# 351302,
RRID:AB_1071851
CD127 (A019D5)-168Er BioLegend 3
Cat# 303502,
CD38 (HIT2)-169Tm BioLegend RRID:AB_314354
Cat# 318002,
CD99 (HCD99)-170Er BioLegend RRID:AB_604112
Cat# 306002,
CD123 (6H6)-171Yb BioLegend RRID:AB_314576
Cat# 356102,
CD25 (M-A251)-172Yb BioLegend RRID:AB_2561752
Cat# 344102,
CD141 (M80)-173Yb BioLegend RRID:AB_2201808
Cat# 321302,
CLA (HECA-452)-174YDb BioLegend RRID:AB_492894
Cat# 328202,
CD39 (A1)-175Lu BioLegend RRID:AB_940438
Cat# 341602,
CX3CR1 (2A9-1)-176Yb BioLegend RRID:AB_1595422
Cat# 301018,
CD8 (RPA-T8)-198Pt BioLegend RRID:AB_314136
Cat# 3209002B,
CD16 (3G8)-209 Bi Fluidigm RRID:AB_2756431
Flow Cytometry Antibody Panels
Panel 1
Cat#101222,RRID:
CD11b-Alexa700 (M1/70) BioLegend AB_493705

Page 2 of 16



https://doi.org/10.1101/2021.05.11.21256877
http://creativecommons.org/licenses/by/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2021.05.11.21256877; this version posted May 11, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY 4.0 International license .

Cat#354206,RRID:
BDCA2-APC (201A) BioLegend AB_11150412
Cat#307618,RRID:
HLADR-APCCy7 (L243) BioLegend AB_493586
Cat#564544,RRID:
CD86-BB515 (FUN-1) BD Bioscience AB_2744453
CD33-BB630 (WM-53) BD Bioscience Custom made
CD38-BB790 (HIT2) BD Bioscience Custom made
Cat#551062,RRID:
IgM-BUV395 (G20-127) BD Bioscience AB_398487
Cat#749954,RRID:
CD20-BUV496 (2H7) BD Bioscience AB_2874186
Cat#748610,RRID:
CD56-BUV563 (MY31) BD Bioscience AB_ 2873017
Cat#751185,RRID:
PDL1-BUV615-P (MIH1) BD Bioscience AB_2875207
Cat#612964,RRID:
CD3-BUV661 (UCHT1) BD Bioscience AB_2870239
Cat#305222,RRID:
CD80-BV421 (2D10) BioLegend AB_2564407
Cat#302242,RRID:
CD19-BV510 (HIB19) BioLegend AB_2561668
Cat#301834,RRID:
CD14-BV605 (M5E2) BioLegend AB_2563798
Cat#563313,RRID:
IgD-BV605 (IA6-2) BD Bioscience AB_2738134
Cat#302042,RRID:
CD16-BV650 (3G8) BioLegend AB_2563801
Cat#334334,RRID:
CD40-BV711 (5C3) BioLegend AB_2564212
Cat#306032,RRID:
CD123-BV786 (6H6) BioLegend AB_2566448
Cat#124210,RRID:
CD27-PE (LG.3A10) BioLegend AB_1236459
Cat#309826,RRID:
CD137-PECF594 (4B4-1) BioLegend AB_2566260
Cat#331516,RRID:
CD1c-PECy7 (L161) BioLegend AB_2275574
Cat#344112,RRID:
CD141-PerCPCy5.5 (M80) BioLegend AB_2561625
Panel 2
Cat#302026,RRID:
CD16-Alexa700 (3G8) BioLegend AB_2278418
Cat#339912,RRID:
CD161-APC (HP3G10) BioLegend AB_10900826
Cat#353212,RRID:
CCR7-APCCy7 (G043H7) BioLegend AB_10916390
Cat#564552,RRID:
CD45RA-BB515 (HI100) BD Bioscience AB_2738841
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TCRgd-BB700 (11F2)

BD Bioscience

Cat#745944 RRID:
AB 2743364

CD38-BB790 (HIT2)

BD Bioscience

Custom made

Cat#748501,RRID:

CD103-BUV (Ber-ACT8) BD Bioscience AB_2872912
Cat#745724,RRID:
CD26-BUV395 (L272) BD Bioscience AB_2743201
Cat#612942,RRID:
CD8-BUV496 (RPA-T8) BD Bioscience AB_2870223
Cat#748610,RRID:
CD56-BUV563 (MY31) BD Bioscience AB_ 2873017
Cat#612987,RRID:
CD4-BUV615-P (SK3) BD Bioscience AB_2870258
Cat#750268,RRID:
6B11-BUV661 (6B11) BD Bioscience AB_2874460
Cat#741861,RRID:
CD137-BUV737 (4B4-1) BD Bioscience AB_2871191
Cat#310930,RRID:
CD69-BV421 (FN50) BioLegend AB_2561909
Cat#301841,RRID:
CD14-BV510 (M5E2) BioLegend AB_2561379
Cat#302242,RRID:
CD19-BV510 (HIB19) BioLegend AB_2561668
Cat#351720,RRID:
Va7.2-BV605 (3C10) BioLegend AB_2563991
Cat#348231,RRID:
IgD-BV605 (1A6-2) BioLegend AB_2563336
Cat#300468,RRID:
CD3-BV650 (UCHT1) BioLegend AB_2629574
Cat#328228,RRID:
CD39-BV711 (A1) BioLegend AB_2632894
Cat#307642,RRID:
HLADR-BV786 (L243) BioLegend AB_2563461
Cat#563422,RRID:
TIM3-PE (7D3) BD Bioscience AB_2716866
Cat#329940,RRID:
PD1-PECF594 (EH12 2H7) BioLegend AB_2563659
Cat#302612,RRID:
CD25-PECy7 (BC96) BioLegend AB_314282
Panel 3
Cat#313509,RRID:
CD27-Alexa700 (0323) BioLegend AB_416333
Cat#313509,RRID:
ICOS-APC (C398.4A) BioLegend AB_416333
Cat#565096,RRID:
CD25-BB515 (M-A251) BD Bioscience AB_2739065

CD38-BB790 (HIT2)

BD Bioscience

Custom made

CD8-BUV496 (RPA-T8)

BD Bioscience

Cat#612942,RRID:
AB_2870223
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CD4-BUV615-P (SK3)

BD Bioscience

Cat#612987,RRID:
AB 2870258

Cat#353715,RRID:

CXCR3-BV421 (G025H7) BioLegend AB_11124720
Cat#301841,RRID:
CD14-BV510 (M5E2) BioLegend AB_2561379
Cat#302242,RRID:
CD19-BV510 (HIB19) BioLegend AB_2561668
Cat#359417,RRID:
CCR4-BV605 (L291H4) BioLegend AB_2562482
Cat#304138,RRID:
CD45RA-BV711 (HI100) BioLegend AB_2563815
Cat#307642,RRID:
HLADR-BV786 (L243) BioLegend AB_2563461
Cat#351303,RRID:
CD127-PE (A019D5) BioLegend AB_10719960
Cat#329940,RRID:
PD1-PECF594 (EH12 2H7) BioLegend AB_2563659
Cat#302813,RRID:
CCR6-PECy7 (29-2L17) BioLegend AB_493756
Cat#356910,RRID:
CXCR5-PerCPCy5.5 (J252D4 ) BioLegend AB_2561819
CITE-seq antibody panel
192 TotalSeq-C antibody panel, as detailed below: | BioLegend Cat# 99814
anti-human CD80 (clone 2D10) BioLegend Cat# 99814
anti-human CD86 (clone 1T2.2) BioLegend Cat# 99814
anti-human CD274 (B7-H1, PD-L1) (clone 29E.2A3) | BioLegend Cat# 99814
anti-human CD273 (B7-DC, PD-L2) (clone
24F.10C12) BioLegend Cat# 99814
anti-human CD275 (B7-H2, ICOSL) (clone 2D3) BioLegend Cat# 99814
anti-mouse/human CD11b (clone M1/70) BioLegend Cat# 99814
anti-human CD252 (OX40L) (clone 11C3.1) BioLegend Cat# 99814
anti-human CD137L (4-1BB Ligand) (clone 5F4) BioLegend Cat# 99814
anti-human CD155 (PVR) (clone SKIl.4) BioLegend Cat# 99814
anti-human CD112 (Nectin-2) (clone TX31) BioLegend Cat# 99814
anti-human CD47 (clone CC2C6) BioLegend Cat# 99814
anti-human CD70 (clone 113-16) BioLegend Cat# 99814
anti-human CD30 (clone BY88) BioLegend Cat# 99814
anti-human CD40 (clone 5C3) BioLegend Cat# 99814
anti-human CD154 (clone 24-31) BioLegend Cat# 99814
anti-human CD52 (clone HI186) BioLegend Cat# 99814
anti-human CD3 (clone UCHT1) BioLegend Cat# 99814
anti-human CD8 (clone SK1) BioLegend Cat# 99814
anti-human CD56 (NCAM) (clone 5.1H11) BioLegend Cat# 99814
anti-human CD19 (clone HIB19) BioLegend Cat# 99814
anti-human CD33 (clone P67.6) BioLegend Cat# 99814
anti-human CD11c¢ (clone S-HCL-3) BioLegend Cat# 99814
anti-human CD34 (clone 581) BioLegend Cat# 99814
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anti-human CD269 (BCMA) (clone 19F2) BioLegend Cat# 99814
anti-human HLA-A,B,C (clone W6/32) BioLegend Cat# 99814
anti-human CD90 (Thy1) (clone 5E10) BioLegend Cat# 99814
anti-human CD117 (c-kit) (clone 104D2) BioLegend Cat# 99814
anti-human CD10 (clone HI10a) BioLegend Cat# 99814
anti-human CD45RA (clone HI100) BioLegend Cat# 99814
anti-human CD123 (clone 6H6) BioLegend Cat# 99814
anti-human CD7 (clone CD7-6B7) BioLegend Cat# 99814
anti-human/mouse CD49f (clone GoH3) BioLegend Cat# 99814
anti-human CD194 (CCR4) (clone L291H4) BioLegend Cat# 99814
anti-human CD4 (clone RPA-T4) BioLegend Cat# 99814
anti-mouse/human CD44 (clone IM7) BioLegend Cat# 99814
anti-human CD14 (clone M5E2) BioLegend Cat# 99814
anti-human CD16 (clone 3G8) BioLegend Cat# 99814
anti-human CD25 (clone BC96) BioLegend Cat# 99814
anti-human CD45RO (clone UCHL1) BioLegend Cat# 99814
anti-human CD279 (PD-1) (clone EH12.2H7) BioLegend Cat# 99814
anti-human TIGIT (VSTM3) (clone A15153G) BioLegend Cat# 99814
Mouse IgG1, k isotype Ctrl (clone MOPC-21) BioLegend Cat# 99814
Mouse 1gG2a, K isotype Ctrl (clone MOPC-173) BioLegend Cat# 99814
Mouse IgG2Db, k isotype Ctrl (clone MPC-11) BioLegend Cat# 99814
Rat IgG2b, Kk Isotype Ctrl (clone RTK4530) BioLegend Cat# 99814
anti-human CD20 (clone 2H7) BioLegend Cat# 99814
anti-human CD335 (NKp46) (clone 9E2) BioLegend Cat# 99814
anti-human CD294 (CRTH2) (clone BM16) BioLegend Cat# 99814
anti-human CD326 (Ep-CAM) (clone 9C4) BioLegend Cat# 99814
anti-human CD31 (clone WM59) BioLegend Cat# 99814
anti-Human Podoplanin (clone NC-08) BioLegend Cat# 99814
anti-human CD146 (clone P1H12) BioLegend Cat# 99814
anti-human CD324 (E-Cadherin) (clone 67A4) BioLegend Cat# 99814
anti-human IgM (clone MHM-88) BioLegend Cat# 99814
anti-human CD5 (clone UCHT2) BioLegend Cat# 99814
anti-human TCR y/d (clone B1) BioLegend Cat# 99814
anti-human CD183 (CXCR3) (clone G025H7) BioLegend Cat# 99814
anti-human CD195 (CCR5) (clone J418F1) BioLegend Cat# 99814
anti-human CD32 (clone FUN-2) BioLegend Cat# 99814
anti-human CD196 (CCR®6) (clone GO34E3) BioLegend Cat# 99814
anti-human CD185 (CXCRYS) (clone J252D4) BioLegend Cat# 99814
anti-human CD103 (Integrin aE) (clone Ber-ACT8) | BioLegend Cat# 99814
anti-human CD69 (clone FN50) BioLegend Cat# 99814
anti-human CD62L (clone DREG-56) BioLegend Cat# 99814
anti-human CD197 (CCR7) (clone G043H7) BioLegend Cat# 99814
anti-human CD161 (clone HP-3G10) BioLegend Cat# 99814
anti-human CD152 (CTLA-4) (clone BNI3) BioLegend Cat# 99814
anti-human CD223 (LAG-3) (clone 11C3C65) BioLegend Cat# 99814
anti-human KLRG1 (MAFA) (clone SA231A2) BioLegend Cat# 99814
anti-human CD27 (clone O323) BioLegend Cat# 99814
anti-human CD107a (LAMP-1) (clone H4A3) BioLegend Cat# 99814
anti-human CD95 (Fas) (clone DX2) BioLegend Cat# 99814
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anti-human HLA-DR (clone L243) BioLegend Cat# 99814
anti-human CD1c (clone L161) BioLegend Cat# 99814
anti-human CD64 (clone 10.1) BioLegend Cat# 99814
anti-human CD141 (Thrombomodulin) (clone M80) | BioLegend Cat# 99814
anti-human CD1d (clone 51.1) BioLegend Cat# 99814
anti-human CD314 (NKG2D) (clone 1D11) BioLegend Cat# 99814
anti-human CD66b (clone 6/40c) BioLegend Cat# 99814
anti-human CD35 (clone E11) BioLegend Cat# 99814
anti-human CD57 Recombinant (clone QA17A04) | BioLegend Cat# 99814
anti-human CD366 (Tim-3) (clone F38-2E2) BioLegend Cat# 99814
anti-human CD272 (BTLA) (clone MIH26) BioLegend Cat# 99814
anti-human/mouse/rat CD278 (ICOS) (clone

C398.4A) BioLegend Cat# 99814
anti-human CD58 (LFA-3) (clone TS2/9) BioLegend Cat# 99814
anti-human CD96 (TACTILE) (clone NK92.39) BioLegend Cat# 99814
anti-human CD39 (clone A1) BioLegend Cat# 99814
anti-human CD178 (Fas-L) (clone NOK-1) BioLegend Cat# 99814
anti-human CX3CR1 (clone KO124E1) BioLegend Cat# 99814
anti-human CD24 (clone ML5) BioLegend Cat# 99814
anti-human CD21 (clone Bu32) BioLegend Cat# 99814
anti-human CD11a (clone TS2/4) BioLegend Cat# 99814
anti-human IgA (clone HP6123) BioLegend Cat# 99814
anti-human CD79b (IgB) (clone CB3-1) BioLegend Cat# 99814
anti-human CD66a/c/e (clone ASL-32) BioLegend Cat# 99814
anti-human CD244 (2B4) (clone C1.7) BioLegend Cat# 99814
anti-human CD235ab (clone HIR2) BioLegend Cat# 99814
anti-human CD206 (MMR) (clone 15-2) BioLegend Cat# 99814
anti-human CD169 (Sialoadhesin, Siglec-1) (clone

7-239) BioLegend Cat# 99814
anti-human CD370 (CLEC9A/DNGR1) (clone 8F9) | BioLegend Cat# 99814
anti-human XCR1 (clone S15046E) BioLegend Cat# 99814
anti-human/mouse integrin 37 (clone FIB504) BioLegend Cat# 99814
anti-human CD268 (BAFF-R) (clone 11C1) BioLegend Cat# 99814
anti-human CD54 (clone HA58) BioLegend Cat# 99814
anti-human CD62P (P-Selectin) (clone AK4) BioLegend Cat# 99814
anti-human TCR o/ (clone 1P26) BioLegend Cat# 99814
anti-human CD106 (clone STA) BioLegend Cat# 99814
anti-human CD122 (IL-2R) (clone TU27) BioLegend Cat# 99814
anti-human CD267 (TACI) (clone 1A1) BioLegend Cat# 99814
anti-human FceRla (clone AER-37 (CRA-1)) BioLegend Cat# 99814
anti-human CD41 (clone HIP8) BioLegend Cat# 99814
anti-human CD137 (4-1BB) (clone 4B4-1) BioLegend Cat# 99814
anti-human CD254 (TRANCE, RANKL) (clone

MIH24) BioLegend Cat# 99814
anti-human CD163 (clone GHI/61) BioLegend Cat# 99814
anti-human CD83 (clone HB15¢) BioLegend Cat# 99814
anti-human CD357 (GITR) (clone 108-17) BioLegend Cat# 99814
anti-human CD309 (VEGFR2) (clone 7D4-6) BioLegend Cat# 99814
anti-human CD124 (IL-4Ra) (clone GO77F6) BioLegend Cat# 99814
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anti-human CD184 (CXCR4) (clone 12G5) BioLegend Cat# 99814
anti-human CD2 (clone TS1/8) BioLegend Cat# 99814
anti-human CD226 (DNAM-1) (clone 11A8) BioLegend Cat# 99814
anti-human CD29 (clone TS2/16) BioLegend Cat# 99814
anti-human CD303 (BDCA-2) (clone 201A) BioLegend Cat# 99814
anti-human CD49b (clone P1E6-C5) BioLegend Cat# 99814
anti-human CD81 (TAPA-1) (clone 5A6) BioLegend Cat# 99814
anti-human CD98 (clone MEM-108) BioLegend Cat# 99814
anti-human IgG Fc (clone M1310G05) BioLegend Cat# 99814
anti-human IgD (clone 1A6-2) BioLegend Cat# 99814
anti-human CD18 (clone TS1/18) BioLegend Cat# 99814
anti-human CD28 (clone CD28.2) BioLegend Cat# 99814
anti-human TSLPR (TSLP-R) (clone 1D3) BioLegend Cat# 99814
anti-human CD38 (clone HIT2) BioLegend Cat# 99814
anti-human CD127 (IL-7Ra) (clone A019D5) BioLegend Cat# 99814
anti-human CD45 (clone HI30) BioLegend Cat# 99814
anti-human CD15 (SSEA-1) (clone W6D3) BioLegend Cat# 99814
anti-human CD22 (clone S-HCL-1) BioLegend Cat# 99814
anti-human CD71 (clone CY1G4) BioLegend Cat# 99814
anti-human B7-H4 (clone MIH43) BioLegend Cat# 99814
anti-human CD26 (clone BA5b) BioLegend Cat# 99814
anti-human CD193 (CCR3) (clone 5E8) BioLegend Cat# 99814
anti-human CD204 (clone 7C9C20) BioLegend Cat# 99814
anti-human CD144 (VE-Cadherin) (clone BV9) BioLegend Cat# 99814
anti-human CD1a (clone HI149) BioLegend Cat# 99814
anti-human CD304 (Neuropilin-1) (clone 12C2) BioLegend Cat# 99814
anti-human CD36 (clone 5-271) BioLegend Cat# 99814
anti-human CD158 (KIR2DL1/S1/S3/S5) (clone HP-

MA4) BioLegend Cat# 99814
anti-mouse/human CD207 (clone 4C7) BioLegend Cat# 99814
anti-human CD49d (clone 9F10) BioLegend Cat# 99814
anti-human CD73 (Ecto-5'-nucleotidase) (clone

AD2) BioLegend Cat# 99814
anti-human TCR Va7.2 (clone 3C10) BioLegend Cat# 99814
anti-human TCR V&2 (clone B6) BioLegend Cat# 99814
anti-human TCR Vy9 (clone B3) BioLegend Cat# 99814
anti-human TCR Vo24-Ja18 (iINKT cell) (clone

6B11) BioLegend Cat# 99814
anti-human CD305 (LAIR1) (clone NKTA255) BioLegend Cat# 99814
anti-human LOX-1 (clone 15C4) BioLegend Cat# 99814
anti-human CD158b (KIR2DL2/L3, NKAT2) (clone

DX27) BioLegend Cat# 99814
anti-human CD133 (clone S16016B) BioLegend Cat# 99814
anti-human CD209 (DC-SIGN) (clone 9E9A8) BioLegend Cat# 99814
anti-human CD158e1 (KIR3DL1, NKB1) (clone

DX9) BioLegend Cat# 99814
anti-human CD158f (KIR2DL5) (clone UP-R1) BioLegend Cat# 99814
anti-human CD337 (NKp30) (clone P30-15) BioLegend Cat# 99814
anti-human CD336 (NKp44) (clone P44-8) BioLegend Cat# 99814
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anti-human CD307d (FcRL4) (clone 413D12) BioLegend Cat# 99814
anti-human CD307e (FcRL5) (clone 509f6) BioLegend Cat# 99814
anti-human CD319 (CRACC) (clone 162.1) BioLegend Cat# 99814
anti-human CD138 (Syndecan-1) (clone DL-101) BioLegend Cat# 99814
anti-human CD99 (clone 3B2/TA8) BioLegend Cat# 99814
anti-human CLEC12A (clone 50C1) BioLegend Cat# 99814
anti-Tau Phospho (Thr181) (clone M7004D06) BioLegend Cat# 99814
anti-human CD257 (BAFF, BLYS) (clone 1D6) BioLegend Cat# 99814
anti-human CD94 (clone DX22) BioLegend Cat# 99814
anti-human CD150 (SLAM) (clone A12 (7D4)) BioLegend Cat# 99814
anti-human Ig light chain k (clone MHK-49) BioLegend Cat# 99814
anti-mouse/human Mac-2 (Galectin-3) (clone
M3/38) BioLegend Cat# 99814
anti-human CD85j (ILT2) (clone GHI/75) BioLegend Cat# 99814
anti-human CD23 (clone EBVCS-5) BioLegend Cat# 99814
anti-human Ig light chain A (clone MHL-38) BioLegend Cat# 99814
anti-human HLA-A2 (clone BB7.2) BioLegend Cat# 99814
anti-human GARP (LRRC32) (clone 7B11) BioLegend Cat# 99814
anti-human CD328 (Siglec-7) (clone 6-434) BioLegend Cat# 99814
anti-human TCR Vf13.1 (clone H131) BioLegend Cat# 99814
anti-human CD82 (clone ASL-24) BioLegend Cat# 99814
anti-human CD101 (BB27) (clone BB27) BioLegend Cat# 99814
anti-human CD360 (IL-21R) (clone 4B2.9) BioLegend Cat# 99814
anti-human CD88 (C5aR) (clone S5/1) BioLegend Cat# 99814
anti-human HLA-F (clone 3D11/HLA-F) BioLegend Cat# 99814
anti-human NLRP2 (clone 8F10B51) BioLegend Cat# 99814
anti-human Podocalyxin (clone mAb 84) BioLegend Cat# 99814
anti-human CD224 (clone KF29) BioLegend Cat# 99814
anti-c-Met (clone 12.1) BioLegend Cat# 99814
anti-human CD258 (LIGHT) (clone T5-39) BioLegend Cat# 99814
anti-human DR3 (TRAMP) (clone JD3) BioLegend Cat# 99814
Biological Samples

|
Chemicals, Peptides, and Recombinant Proteins
Water, LiChrosolv grade Merck 1-15333.2500
Acetonitrile, LiChrosolv grade Merck 1.00030.2500
Methanol, LiChrosolv grade Merck 1.06035.2500
Formic Acid Optima LC-MS grade Fisher Scientific 10596814
1-Propanoilol Sigma-Aldrich 34871-1L
Trifluoroacetic acid (TFA) Sigma-Aldrich 74664-10ml
Triethylammonium bicarbonate buffer (TEAB, 1M) | Sigma-Aldrich T7408-100ml
Ammonium formate Sigma-Aldrich 70221-1009g
TPCK treated Trypsin (100ug) Worthington LS003740
C18 Evotips Evosep One EV-2001

(Odense, Denmark)

96-well S-trap Profiti (Huntington, C02-96wel

NY, USA)
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PQ500 reference peptide

Biognosys

K-3019

SOLA HRP SPE 10mg/1ml

Fisher Scientific

11879163

Cat# 88700; RRID:

Benzonase Thermo Scientific N/A

Cat# 201068;
Maxpar® Cell Staining Buffer Fluidigm RRID: N/A

Cat# 201063;
Maxpar® Nuclear Antigen Staining Buffer Set Fluidigm RRID: N/A

Cat# 00-8222-49;
eBioscience™ |IC Fixation Buffer Thermo Scientific RRID: N/A

Cat# 201198;
Cell-ID Cisplatin Pt198 Fluidigm RRID: N/A

Cat# 201192B;
Cell-ID Intercalator-Ir Fluidigm RRID: N/A

Cat# 201078;
EQ Four Element Calibration Beads Fluidigm RRID: N/A

Cat# 201240;
Maxpar Cell Acquisition Solution (CAS) Fluidigm RRID; N/A

Cat# 201069;
Maxpar Water Fluidigm RRID: N/A

Trace Sciences

Metal isotopes as chloride salts (In-115) International Customized

Cat# 131125,
Protein Stabilizer PBS Candor Bioscience RRID: N/A

Cat# 563794;
Brilliant stain buffer BD Bioscience RRID: N/A
7-AAD dye BioLegend Cat# 420404
FcX BioLegend Cat# 422301
Diluted Nuclei Buffer 10x Genomics Cat# 2000153
Critical Commercial Assays

C001-500; RRID:
Whole blood (human) processing kit Cytodelics N/A

Cat# 201060;
Cell-ID 20-Plex Pd Barcoding Kit Fluidigm RRID: N/A
EasySep™ HLA Chimerism Whole Blood CD66b Cat# 17882; RRID:
Positive Selection Kit Easysep N/A

Cat# 201060;
Cell-ID 20-Plex Pd Barcoding Kit Fluidigm RRID: N/A

Cat# 201110A;
Maxpar MCP9 Antibody Labeling Kit -=110Cd Fluidigm RRID: N/A

Cat# 201111A;
Maxpar MCP9 Antibody Labeling Kit -=111Cd Fluidigm RRID: N/A

Cat# 201112A;
Maxpar MCP9 Antibody Labeling Kit -112Cd Fluidigm RRID: N/A

Cat# 201113A;
Maxpar MCP9 Antibody Labeling Kit -113Cd Fluidigm RRID: N/A

Cat# 201114A;
Maxpar MCP9 Antibody Labeling Kit -114Cd Fluidigm RRID: N/A
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Cat# 201300;
Maxpar X8 Multimetal Labeling Kit (40 rxn) Fluidigm RRID: N/A
Cat# 423102;
Zombie Violet™ Fixable Viability Kit BioLegend RRID: N/A
NEBNext® Globin & rRNA Depletion Kit | New England E7750X
(Human/Mouse/Rat) Biolabs
NEBNext® Ultra™ Il Directional RNA Library Prep | New England
. : . E7760L
Kit for lllumina® Biolabs
New England
NEBNext Poly(A) mRNA Magnetic Isolation Module | Biolabs E7490L
MiSeq Reagent Nano Kit v2 (300-cycles): MS-103- | lllumina Cambridge MS-103-1001
1001 Ltd
lllumina Cambridge
MiSeq Reagent Kit v3 (600-cycle): MS-102-3003 | Ltd MS-102-3003
lllumina Cambridge
NextSeq 500/550 High Output Kit v2.5 (150 Cycles) | Ltd 20024907
NovaSeq 6000 S4 Reagent Kit (200 cycles): | lllumina Cambridge
20027466 Ltd 20027466
NovaSeq 6000 S2 Reagent Kit (200 cycles): | lllumina Cambridge
20012861 Ltd 20012861
NovaSeq 6000 SP Reagent Kit (200 cycles): | lllumina Cambridge
20040326 Ltd 20040326
NovaSeq 6000 SP Reagent Kit (300 cycles): | lllumina Cambridge
20027465 Ltd 20027465
lllumina Cambridge
NovaSeq XP 2-Lane Kit Ltd 20021664
lllumina Cambridge
NovaSeq Xp 4-Lane Kit: 20021665 Ltd 20021665
Nextera® XT DNA Sample Preparation Kit (96 .
Samples) lllumina UK Ltd FC-131-1096
Single Index Kit T Set A, 96 rxns 10XGenomics 1000213
g)grrc;rrgumm Single Cell 5' Library Construction Kit, 10XGenomics 1000020
Chromiym Next GEM Single Cell 5' Library and Gel 10XGenomics 1000165
Bead Kit v1.1, 16 rxns
Chromium Next GEM Chip G Single Cell Kit 10XGenomics 1000127
Chromium™ Single Cell V(D)J Enrichment Kit, 10XGenomics 1000005
Human T Cell, 96 rxns
Chromium™ Single Cell V(D)J Enrichment Kit, 10XGenomics 1000016
Human B Cell, 96 rxns
Single Index Kit N Set A, 96 rxns 10XGenomics 1000212
Chromlum Single Cell 5' Feature Barcode Library 10XGenomics 1000080
Kit, 16 rxns
Chromium Next GEM Chip H Single Cell Kit 10XGenomics 1000162
Chromium Next GEM Single Cell ATAC Library & 10XGenomics 1000176
Gel Bead Kit v1.1
(T;c:ilcSquTM_C Custom Human panel - All Ab's BioLegend 99814
KAPA dual Indexed Adapter Kit Roche KK8722
KAPA Hyper Prep Kit Roche KK8504
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Human Magnetic Luminex Assay kit Biotechne LXSAHM-04
Human Magnetic Luminex Assay kit Biotechne LXSAHM-23
Human Magnetic Luminex Assay kit Biotechne LXSAHM-24
Deposited Data

Raw and processed data all modalities This paper In  process. For

deposition at EGA,;
proteomics (mass
spectrometry) also
at PRIDE Archive

PXD023175

Experimental Models: Cell Lines

Oligonucleotides

Primers for repertoire analysis, see Table S4 This paper N/A

Recombinant DNA

Software and Algorithms

ALDEx2 (Fernandes et al., | v1.18.0

2013)

ArchR (Granja et al., 2021) | v0.9.3
https://www.archrp
roject.com/

AUCell (Aibar et al., 2017) v1.12.0

BBKNN (Polanski et al., | https://github.com/

2020) Teichlab/bbknn

BLAST (Altschul et al., 1990) | https://blast.ncbi.nl
m.nih.gov/Blast.cqgi

CATALYST (Nowicka et al, | v1.10.3

2017)

CD-HIT https://github.com/t
homasp85/FindMy
Friends

Cell Ranger 10x genomics v3.1.0

Cell Ranger ATAC

10x genomics

https://support.10x
genomics.com/sin
gle-cell-
atac/software/over
view/welcome

Cellranger VDJ

10x genomics

v3.1.0

Clinical Knowledge Graph

(Santos et al., 2020)

https://doi.org/10.1
101/2020.05.09.08
4897

corrplot

Wei and Simko 2017

v0.84
https://qithub.com/t
aiyun/corrplot
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CoV-AbDab

(Raybould et al.,
2020)

http://opig.stats.ox.
ac.uk/webapps/cov
abdab/

CyTOF Software

v7.0
https://www.fluidig
m.com/software

CytoNorm (Van Gassen et al., | v0.0.5
2020)
Cytoscape (Shannon et al, |v3.8.0
2003)
Cytosplore (van Unen et al., | www.cytosplore.or
2017) g
demuxlet (Kang et al., 2018) v2
https://github.com/
statgen/demuxlet
diffcyt (Weber et al., 2019) | v1.8.8
edgeR (Robinson et al., | v3.28.1
2010) https://bioconducto
r.org/packages/rel
ease/bioc/html/edg
eR.html
EmptyDroplets (Lun etal., 2019) v1.8.0
Entropy (Hausser, 2009) http://www.strimme
rlab.org/software/e
ntropy/
eXploring Genomic Relations (XGR) (Fang et al., 2016b) | http://galahad.well.
ox.ac.uk/XGR
Fastcluster (Mulner, 2013) v1.1.25
FastQC (Andrews, 2010) v0.11.9
https://github.com/
s-andrews/FastQC
featureCounts (Liao et al., 2014) v1.6.4
fgsea (Korotkevich et al., | https://bioconducto
2021) r.org/packages/rel
ease/bioc/html/fgs
ea.html
FlowJo BD Biosciences v10.6
https://lwww.flowjo.
com
Fragpipe (Yu et al., 2021) v13.0
GATK variant calling (Van der Auweraand | v4.1.7.0
O’Connor, 2020)
ggraph Pedersen v2.05
https://github.com/t
homasp85/ggraph
gsfisher (Croft et al., 2019) https://github.com/

sansomlab/gsfishe
r
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Harmony (Korsunsky et al., | https://github.com/i
2019) mmunogenomics/h
armony

HTSlib v1.10.2 Samtools http://www.htslib.or
g/

imagesc MATLAB https://uk.mathwor
ks.com/help/matla
b/refimagesc.html

IMGT database (Lefranc, 2011) http://www.imgt.or
g/

IMGT V-QUEST (Giudicelli et al., | http://www.imgt.or

2004) g/IMGTindex/V-
QUEST.php

InstantClue (Nolte et al., 2018) v0.5.3
http://www.instantc
lue.uni-koeln.de/

lonQuant (Yu et al., 2020) https://ionquant.ne
svilab.org/

KeplerMapper (van Veen et al., | https://reposhub.co

2019) m/python/data-
validation/scikit-
tda-kepler-
mapper.html

Limma (Ritchie et al., 2015) | https://bioconducto
r.org/packages/rel
ease/bioc/html/lim
ma.html

MATLAB https://uk.mathwor
ks.com/help/matla
b/

Matplotlib (Hunter, 2007) https://matplotlib.or
g/

MSFragger (Kong et al., 2017) v3.0

MSigDB (Subramanian et al., | https://www.gsea-

2005) msigdb.org/gsea/m
sigdb/index.jsp

Pandas v1.2.4
https://pandas.pyd
ata.org/

Pegasus (Li etal., 2020) https://pegasus.rea
dthedocs.io/en/sta
ble/index.html

PeptideProphet (Keller et al., 2002) | Embedded in
Fragpipe

Perseus 1.6.14.0 (Tyanova and Cox, | https://maxquant.n

2018) et/perseus/

Philosopher (da Veiga Leprevost | v3.2.9

et al., 2020)
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Picard http://broadinstitute. | v2.23
github.io/picard/ https://github.com/
broadinstitute/picar
d
prcomp v3.6.2

https://www.rdocu
mentation.org/pack
ages/stats/version
s/3.6.2/topics/prco
mp

Priority Index (Pi) (Fang et al., 2016a) | http://galahad.well.
ox.ac.uk/Pi
ProteinProphet (Nesvizhskii et al., | Embedded in
2003) Fragpipe
Python v3.8.2
https://www.python
.org/
QTLtools (Delaneau et al., | https://qtltools.gith
2017) ub.io/qgtltools/
QUASR (Watson et al., 2013) | http://sourceforge.

net/projects/quasr/

R Studio and R environment

The R project for
Statistical
Computing

https://rstudio.com/
and https://cran.r-
project.org/

RNASeQC (DeLuca et al., 2012) | v2.3.5
https://github.com/
getzlab/rnaseqc

Scanorama (Hie et al., 2019) https://github.com/
brianhie/scanoram
a

Scanpy (Wolf et al., 2018) https://github.com/t
heislab/scanpy

Scater (McCarthy et al., | v3.12

2017) http://bioconductor.
org/packages/relea
se/bioc/html/scater
.html

Scikit-learn (Pedregosa et al., | https://github.com/

2011) scikit-learn/scikit-
learn

Scipy (Virtanen et al., | https://www.scipy.

2020) org/

ScVelo (Bergen et al., 2020) | v0.1.24

https://github.com/t
heislab/scvelo

Sparse Decomposition of Arrays

(Hore et al., 2016)

https://jmarchini.or
g/sda/

Seaborn

Waskom

v0.11.1
https://seaborn.pyd
ata.org/
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2007; Leek et al.,
2012)

Seurat (Stuart et al.,, 2019) | v3.9.9.9010

SIMON (Tomic et al., 2019) | https://genular.org/

singleR (Aran et al., 2019) https://github.com/
dviraran/SingleR

STAR (Dobin et al., 2013) | v2.7.3

stringdist (van der Loo, 2014) | https://github.com/
markvanderloo/stri
ngdist

Survival (Therneau and | v3.2-11

Grambsch, 2000)
Survminer Kassambara v0.4.8
sva R (Johnson et al., | v3.36.0

Swissprot human Proteome database + SARSCov2

https://www.uniprot
.org/ retrieved
17/07/2020

TrimGalore

Krueger

v0.6.2
https://github.com/
FelixKrueger/Trim
Galore

ttest2

MATLAB

http://uk.mathwork
s.com/help/stats/tt
est2.heml

UMAP

Mclnnes,
Melville

Healy,

arXiv:1802.03426v
2

Velocyto

(La Manno et al.,
2018)

http://velocyto.org/

Vireo

(Huang et al., 2019)

v0.4.0
https://huangyh09.
github.io/vireo-
manual/about.html

WGCNA

(Langfelder and

Horvath, 2008)

https://horvath.gen
etics.ucla.edu/html
/CoexpressionNet
work/Rpackages/
WGCNA/

xCell

(Aran et al., 2017)

https://github.com/
dviraran/xCell

Other
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