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Summary 
Treatment of severe COVID-19 is currently limited by clinical heterogeneity and incomplete 
understanding of potentially druggable immune mediators of disease. To advance this, we 
present a comprehensive multi-omic blood atlas in patients with varying COVID-19 severity and 
compare with influenza, sepsis and healthy volunteers. We identify immune signatures and 
correlates of host response. Hallmarks of disease severity revealed cells, their inflammatory 
mediators and networks as potential therapeutic targets, including progenitor cells and specific 
myeloid and lymphocyte subsets, features of the immune repertoire, acute phase response, 
metabolism and coagulation. Persisting immune activation involving AP-1/p38MAPK was a 
specific feature of COVID-19. The plasma proteome enabled sub-phenotyping into patient 
clusters, predictive of severity and outcome. Tensor and matrix decomposition of the overall 
dataset revealed feature groupings linked with disease severity and specificity. Our systems-
based integrative approach and blood atlas will inform future drug development, clinical trial 
design and personalised medicine approaches for COVID-19. 
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Introduction 
The pathophysiology associated with severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) reflects a complex interplay between virus induced lung pathology and maladaptive host 
immune responses (Kuri-Cervantes et al., 2020; Mathew et al., 2020; Tay et al., 2020; Vabret et 
al., 2020). Severe COVID-19 is characterised by hypoxia, with the risk of rapid deterioration 
which may require intensive care support and, in some patients, progression to acute respiratory 
distress syndrome, multiorgan failure and death. Predisposing factors include age, gender, 
ethnicity, obesity and comorbidities. Currently, opportunities for biomarker-led timed and 
targeted precision medicine approaches are limited by an incomplete understanding of 
pathogenesis and heterogeneity among patients with severe disease (Wynants et al., 2020). A 
dysregulated hyperinflammatory state occurs in some individuals (Moore and June, 2020), 
consistent with reported benefits from glucocorticoids (dexamethasone) and inhibitors of the IL-6 
receptor (tocilizumab/sarilumab) and Janus kinases (baricitinib) in severe disease (Gordon et al., 
2021; Horby et al., 2021a; Horby et al., 2021b; Kalil et al., 2021). Nevertheless, blood-derived 
signatures of COVID-19 severity are diverse, including evidence of immune suppression, 
myeloid dysfunction, lymphopenia, interferon driven immunopathology, T cell activation as well 
as exhaustion, and immune senescence (Bost et al., 2021; Chen and Wherry, 2020; Diao et al., 
2020; Hadjadj et al., 2020; Mann et al., 2020; Schulte-Schrepping et al., 2020). In the lung, 
widespread neutrophil and macrophage infiltration, T cell cytokine production and alveolitis are 
seen with features of altered redox balance, endothelial damage and thrombosis (Grant et al., 
2021). Here, through the COvid-19 Multi-omics Blood ATlas (COMBAT) consortium, we 
characterise COVID-19 of varying severity and establish shared and specific features in 
comparison with severe influenza and non-SARS-CoV-2 sepsis. We demonstrate the 
informativeness of data-driven, systems biology approaches to identify cells, mediators and 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 11, 2021. ; https://doi.org/10.1101/2021.05.11.21256877doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2021.05.11.21256877
http://creativecommons.org/licenses/by/4.0/


Page 2 of 63 

pathways that are hallmarks of increasing severity, and to define potential therapeutic targets 
and biomarkers of the variable individual response to SARS-CoV-2 infection.  
 
Results 
 
Clinical features, severity metrices and disease stratification in COVID-19 
To characterise the peripheral blood response to COVID-19 we analysed a prospective cohort of 
adult patients with confirmed SARS-CoV-2 presenting to clinical services at the start of the 
United Kingdom pandemic (February-March 2020). We recruited 116 hospitalised COVID-19 
patients following informed consent at a single site (Oxford University Hospitals) (Table S2). The 
overall mortality rate was 23.3%. Samples were collected during the acute admission and, in 
survivors from 28 days after discharge (convalescent samples). We compared these patients 
with community COVID-19 cases in the recovery phase (never admitted to hospital), age-
matched healthy volunteers, influenza cases requiring mechanical ventilation (critically ill 
receiving intensive care), and all-cause sepsis patients (hospitalised encompassing severe and 
critical disease) recruited prior to the pandemic (Figure 1A; Table S2; Star Methods).  
 
We computed a correlation matrix of all clinical features for our hospitalised COVID-19 cohort, 
including severity scores and surrogate markers of illness response, to inform rational use in 
downstream cellular and molecular phenotyping (Figure S1A-C; Table S2; Star Methods). There 
were positive correlations (spearman’s rho >0.5) between markers of severity based on WHO 
severity scales, oxygenation status, ventilation status, Sequential Organ Failure Assessment 
(SOFA) oxygenation score, vasopressor use, length of intensive care unit (ICU) stay, days on 
mechanical ventilation, C-reactive protein (CRP) and neutrophil count (Figure S1C). We further 
investigated covariance of patient and clinical features using unsupervised machine learning to 
understand clinically derived patient groupings (Star Methods). We found that the optimal cluster 
number for hospitalised cases was 2 or 3, and these showed broad concordance to the first 
released WHO categorical criteria, namely mild (no requirement for supplemental oxygen), 
severe (oxygen saturation SaO2 <=93% on air but not requiring mechanical ventilation) and 
critical (requiring mechanical ventilation) (Figure S1D). This clustering finding persisted when we 
restricted the analysis to acute measures of physiology and clinical biomarkers, where the main 
correlates of consensus clustering related to ventilation status (Figure S1E-F). Accordingly, 
hereinafter we refer to WHO categorical criteria as our primary hospitalised COVID-19 severity 
comparator groups.  
 
COVID-19 severity is associated with differences in abundance of diverse immune cell 
populations  
We first investigated changes in cellular composition associated with COVID-19 severity. In this 
differential abundance analysis, we used one sample per patient. For patients with more than 
one time point of sampling, the sample closest to onset of maximal disease as defined by clinical 
features at the time of sampling was selected. In this ‘prioritised sample set’, we found increased 
neutrophil, and reduced T and B lymphocytes, measured in terms of both relative and absolute 
counts, in patients with more severe/critical disease, together with reduced myeloid, dendritic 
cell (DC), natural killer (NK) cell and basophil populations when we analysed whole blood using 
mass cytometry (Figures 1A,B and S1G-J; STAR Methods; Methods S1). These changes were 
also seen in patients with severe non-SARS-CoV-2 sepsis. Plasmablasts were increased in 
COVID-19 (Figure 1B). In community cases and convalescent COVID-19 samples, the 
abundance of major cell types was broadly comparable to healthy volunteers although 
differences in neutrophil and mononuclear phagocyte cell frequency persisted. To reduce 
dimensionality and identify correlates of variance in the data between patient groups, we 
performed principal component analysis (PCA). This showed separation along PC1 driven by the 
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frequency of neutrophils and plasmablasts (increased) and of plasmacytoid DCs (pDC) and 
basophils (reduced) (Figure 1C).  
 
To characterise lymphocyte and mononuclear phagocyte populations with greater resolution, we 
performed mass cytometry after granulocyte (CD66+) depletion for a second aliquot from the 
same blood draw (Star Methods). COVID-19 infection was associated with differential 
abundance of specific populations of monocytes, NK cells and plasmablasts, together with 
activated and cytotoxic CD8+ T cells (Figure 1D). We validated and further characterised these 
differences using Cellular Indexing of Transcriptomes and Epitopes by Sequencing (CITEseq) 
(Figure 1A). We annotated peripheral blood mononuclear cell (PBMC) types, subsets and 
clusters by combining information from single-cell RNA-sequencing (scRNAseq, GEX), cell 
surface protein quantification (192 antibody panel) and B/T cell V(D)J repertoire profiling (Figure 
1E; STAR Methods; Methods S2). These annotations showed a high predicted concordance with 
those from mass cytometry (Figures 1F,G and S1K,L,M). We found that cellular composition 
differed by patient group and by severity in hospitalised COVID-19 patients (Figures 1H-K and 
S1N-Q). Performing PCA for all groups, we found that PC1, which explained 21.5% of the 
variance, was associated with group membership (Pc = 2.01x10-15, ANOVA) (Figure S1N; 
Methods S2). When hospitalised COVID-19 cases were analysed alone, the first PC was 
associated with group membership, oxygenation status (SaO2/FiO2 ratio, SOFA oxygenation, 
and ventilation and oxygen status), and lymphocyte count (all Pc <0.05) (Figure 1H; Methods 
S2). The cell subsets with the largest negative loadings on PC1 (higher abundance in more 
severe disease) were platelets/CD34- megakaryocyte progenitors, haemopoietic (and progenitor) 
stem cells (HSCs), and cycling classical monocytes (cMono.cyc) (Figure 1I). 
 
Consistent with these findings, empirical Bayes analysis of differential abundance also 
demonstrated significant differences in the same cell populations in COVID-19 compared with 
age/gender-matched healthy volunteers, together with reduced DC, T, and NK cell subsets, 
particularly in COVID-19 critical cases (Figure 1J). Among hospitalised COVID-19 cases, we 
found that a higher abundance of platelets/CD34- megakaryocyte progenitors and cycling cMono 
was associated with oxygenation status (SaO2/FiO2, SOFA oxygenation score, ventilation 
status), severity (WHO ordinal), and CRP (all Pc <0.01). Higher platelet/CD34- megakaryocyte 
progenitor abundance was also associated with the occurrence of thromboembolism during 
hospitalisation (Pc = 0.036, ANOVA) (Figure 1K). 
 
Whole blood hallmarks of COVID-19 and severity involving neutrophils, progenitor cells, 
lymphocyte exhaustion, clotting, immunoglobulin and the interferon response 
We next defined global signatures of the host response to COVID-19 by performing whole blood 
total RNA-sequencing (RNA-seq) (Figure 1A; STAR Methods). We investigated overall variance 
in gene expression using the prioritised sample set. The first two PCs separated samples by 
cohort, from healthy volunteers through increasing severity among COVID-19 cases and 
patients with sepsis (Figure 2A). We then restricted the analysis to hospitalised COVID-19 
patients. Patients differed by severity group including 28-day mortality on PC1 (P=2.34x10-6, 
Kruskal-Wallis test) (Figure 2B), which also correlated with other measures of severity and 
differential cell count (Figure S2A). Topological data analysis, using the mapper algorithm with 
PC1 as the filter function, captures the geometric structure of the high-dimensional data and 
shows the connectivity of COVID-19 cases, with colour corresponding to a gradient of severity 
(Figure 2B; Star Methods). We found that genes with the highest loadings for PC1 were strongly 
enriched for immune system function, notably neutrophil degranulation (fold change (FC) 4.23, 
FDR 2.4x10-15), PD-1 signaling (FC 21.5, FDR 9.2x10-12) (consistent with lymphocyte 
exhaustion), antimicrobial peptides (FC 10.8 FDR 9.2x10-7), and clotting cascade (FC 10.6 FDR 
2.1x10-5). PC2 gene loadings showed strong enrichment for interferon signaling (FC 10.7, FDR 
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3x10-33) including key viral response network genes (IFI1-3, IFI6, IFI44, IFIT3, and OAS1-3) and 
specific immunoglobulin heavy and lambda genes (Figure S2B).  
 
Among hospitalised COVID-19 patients, the greatest distinction between mild and more severe 
disease involved T cell receptor (TCR) signaling, and for severe vs critical disease, neutrophil 
degranulation, activation of metalloproteases, antimicrobial peptides and interleukin signaling 
(Figure 2C,D). When we incorporated cell proportion into the differential expression model, the 
number of differentially expressed genes was reduced but the fold changes from both models 
remained well correlated (between critical and mild disease), with comparable pathway 
enrichment on analysis of severity as a quantitative trait (Figure S2C,D). In terms of specificity of 
the COVID-19 response, we found this was largely distinct from non-SARS-CoV-2 sepsis of 
comparable severity, as shown by PCA (Figure 2A). Specific features of COVID-19 compared to 
sepsis included a relative upregulation in COVID-19 of many immunoglobulin 
heavy/kappa/lambda genes, and unique pathway enrichments relating to cell proliferation and 
innate/adaptive immune function (Figures 2E and S2E).  
 
Next, we identified modules of genes correlated with COVID-19 severity using weighted gene 
correlation network analysis (WGCNA) (Star Methods). We found the three modules that were 
most significantly correlated with severity (P<1x10-10); genes in these modules were enriched 
for, respectively, cellular and functional neutrophil gene signatures and neutrophil count (MEblue 
module); CD8+ T cell signatures and relative lymphopenia (MEturquoise module); and 
granulocyte and common myeloid progenitor cell gene signatures, neutrophil degranulation, 
antimicrobial peptides and defensins pathways (MEGrey60 module) (Figure S2F-J). The 
MEgrey60 module was more highly expressed in critical COVID-19 than sepsis (Figure S2J), 
and in this module the ETS transcription factor related gene ERG, which regulates lineage 
plasticity, showed the highest intramodule connectivity (Figure 2F). These features support the 
MEgrey60 module representing a mixture of progenitor cells that associate with severity, 
consistent with the large severity associated loadings seen for progenitor cell abundance in 
CITEseq (Figure 1H,I). 
 
To better characterise the neutrophil populations in COVID-19, we then applied a myeloid-
marker enriched mass cytometry panel to the same samples (Table S2, STAR Methods). We 
found evidence for the presence of immature neutrophils and neutrophil progenitors (pro-
neutrophils) based on high expression of CD64 (Fc gamma receptor 1) and CD49d (integrin 
alpha 4), and decreased expression of CD10 (neutral endopeptidase) (Figure 2G) (Evrard et al., 
2018; Kwok et al., 2020; Marini et al., 2017). CD64 expression was raised in severe/critical 
COVID-19 and further elevated in sepsis, together with increased PD-L1 (CD274) expression 
(Figure S2K). Using CD64:CD10 ratio as an index score for immature neutrophil presence we 
found association with the MEblue module eigengene that correlated with neutrophil count and 
function (Figure S2L). We further determined that neutrophil CD49d expression was elevated, 
while CD43 (leukosialin) was reduced, in COVID-19 patients but was largely unchanged in 
sepsis (Figure 2G). The CD49d:CD43 ratio remained high in convalescence (Figure 2H). 
 
Shared and cell-type-specific gene expression signatures of COVID-19 include those 
related to ZFN, ribosomal and cell-cycle genes and AP-1 and IFN signaling  
We proceeded to investigate gene expression signatures in patients with COVID-19 using 
profiles from the CITEseq minor cell subsets (STAR Methods, Methods S2). PCA of all 
hospitalised and community COVID-19 cases (PBMC, prioritised sample set), revealed variance 
in gene expression across a wide range of cell subsets: cycling classical monocytes 
(cMono.cyc), naïve B cells and CD16high NK cells contributed most to the first PC while lower 
PCs were associated with classical monocytes (cMono), memory B cells, CD4+ T cells (naïve, 
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effector and effector memory), effector memory CD8+ T cells, NK cells (CD56highCD16int, 
mitochondrialhigh) and non-classical monocytes (ncMono) (Figure 2I). Inclusion of sepsis, 
influenza and healthy volunteers yielded similar results (Figure S2M) with cMono, plasmablasts, 
CD4+ T cells (naïve, effector and effector memory) and cycling NK cells contributing most to 
discriminating between groups by PCA (as exemplified in Figure 2J). 
 
We then identified sets of differentially expressed genes between patient cohorts and tested 
their enrichment for curated pathways in major cell types (Figure S2N; STAR Methods) 
(Liberzon et al., 2015). Type I and type II interferon pathways were up-regulated in the less 
severe hospitalised COVID-19 patients across cell types. Redox state (reflected by MTORC1 
signalling and oxidative phosphorylation) pathways were enriched across mononuclear 
phagocytes (MNP), T cells, NK cells and plasmablasts in more severe COVID-19, as were cell 
cycle (MYC, E2F targets, G2M checkpoint) pathways (except for MNP) while IL2-STAT5 
pathway enrichment was found in more severe disease for T cells. 
 
To further deconvolute biological pathways and cellular functions associated with COVID-19, we 
investigated gene expression for major cell subsets by applying WGCNA to the CITEseq dataset 
(all comparator groups) (Star Methods). Analysis of module co-variation identified five distinct 
module sets, shared to varying extents between CD4+ and CD8+ T cells, NK cells, B cells, 
plasmablasts, cMono and ncMono (Figures 2K and S2O; Methods S2). First, we found a set of 
type I IFN response modules with module eigengenes correlated with milder disease, better 
oxygenation status and earlier sampling from symptom onset across cell populations (Figure 
2K,L). The second module set, discovered in all cell types except plasmablasts, showed strong 
enrichment for activator protein 1 (AP-1) (FOS, JUN, ATF family genes) and the p38MAPK 
cascade. The module eigengenes were highly expressed in all COVID-19 patient groups, 
including recovery phase community cases, were distinct from influenza and sepsis, and did not 
show a consistent relationship with severity or other clinical features (Figure 2K-N). The third 
module set (found in all cell types except plasmablasts) was enriched for classical (C2H2) zinc 
finger (ZNF) genes and contained IRF2 and IL16. Expression of these eigengenes was lower in 
COVID-19 and influenza compared with healthy volunteers and sepsis cases (Figure 2K,L). The 
fourth set of modules showed enrichment for ribosomal proteins and the KEGG ‘COVID-19’ 
pathway; the top genes by membership relate to inflammasome function (including NLRP1, 
MAP3K14 and FOXP1) and were negatively correlated with COVID-19 severity in monocytes 
(Figure 2K,L,O). Finally, we found a set of “cycling” modules based on pathway enrichments and 
membership of MKI67 and TOP2A. These modules showed a weaker correlation across cell 
type. The cMono cycling module was enriched for stem cell differentiation and regulation of 
granulopoiesis, correlated with severity, and module genes included S100A8/9 which encodes 
calprotectin, a known severity biomarker (Silvin et al., 2020) (Figure 2K,L,P). We also identified 
two cell-type-specific modules sharing very similar associations to severe disease. These 
comprised of a JAK-STAT/interleukin signaling module in CD4+ T cells, and an EGFR pathway 
enriched module in cMono (Figure 2K,L,Q,R). The top gene members of the EGFR module 
included FKBP5, a factor involved in stress response and glucocorticoid receptor sensitivity, and 
CD163, a scavanger receptor modulating induced innate immune response (Figure 2K,L,R). 
 
Transcriptomic and epigenetic signatures of severity in monocyte populations 
Using the detail afforded by our high-resolution multi-modality dataset, we further investigated 
signatures of severity in specific mononuclear phagocyte populations. Consistent with the PCA 
loadings (Figure 1I), we observed an overall relative increase in the frequency of cMono and 
reduced intermediate monocytes (CD16+CD14+), ncMono (CD14-CD16+) and dendritic cells 
(pDC, cDC1 and cDC2), in hospitalised COVID-19 patients with more severe disease using 
mass cytometry (prioritised sample set) (Figure 3A,B) (Star Methods). With increasing disease 
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severity we observed a shift in the phenotype of cMono to lower expression of HLA-DR, CD33 
and CD11c, and evidence of proliferating monocytes based on expression of Ki67 and DNA 
abundance, with comparable changes in the sepsis patients (Figures 3A-C and S3A,B). Lower 
levels of pDCs and CD33lowcDC2 were found in sepsis compared with severe/critical COVID-19 
(Figure 3C).   
 
Using CITEseq (prioritised sample set) (Star Methods) we found cycling cMono, and cMono with 
high expression of the anti-oxidant metallothionein genes (MThi), were significantly elevated in 
critical COVID-19 cases, influenza and sepsis compared to healthy volunteers (Figure 3D). 
S100A8/9/12hi HMGB2-expressing cMono correlated with COVID-19 severity, and were also 
increased in sepsis. cMono expressing VCAN, which is implicated in adhesion and cytokine 
release, were specifically increased in COVID-19 and reduced in influenza, whilst complement 
component C1Q-expressing ncMono were increased in influenza and sepsis, but not in COVID-
19. Galectin-2 (LGALS2) and desmoyokin (AHNAK) expressing cMono were significantly 
reduced in influenza and sepsis but not in COVID-19. pDCs showed reduced abundance in 
more severe COVID-19, influenza and sepsis, as did CD1c+ cDCs. Consistent with the 
progressive changes in abundance according to COVID-19 severity, the frequencies of CD1c+ 
cDCs, and most significantly cycling cMono and S100A8/9/12hi HMGB2 expressing cMono, were 
associated with clinical variables relating to oxygenation and respiratory function in hospitalised 
cases (Figure 3E).  
 
In terms of gene expression, the PCs that explained the greatest variance between hospitalised 
COVID-19 cases in MNP, specifically cMono and cDC, were associated with severity measures 
including WHO ordinal scale and ventilation status (Figure S3C,D). In addition to the IFN, cycling 
and EGFR pathways highlighted by WGCNA analysis, pathway enrichment analysis of 
differentially expressed genes in cMono showed enrichment for inflammatory response/TNF 
signaling in milder disease, hypoxia and IL2_STAT5 pathways across severity groups, and 
complement, coagulation and cholesterol metabolism in more severe disease (Figures 3F and 
S3E,F). 
 
We proceeded to further investigate potential mechanistic drivers of disease by characterising 
the chromatin state of myeloid and other PBMC populations in COVID-19 patients using single-
cell ATAC-seq (Figures 1A and S3G,H; Star Methods). Overall, 750 and 303 accessible sites 
were up- and down-regulated respectively in COVID-19 patients compared to healthy volunteers 
in myeloid cells (Figure 3G). Genes linked to top differentially open chromatin peaks included 
STK24 (MAPK promoting apoptosis) and FGFRL1 (cell adhesion promoting fibroblast growth 
factor receptor) (Figure 3H). We identified specific DNA binding motif enrichments in the 
differentially accessible sites. The most significant enrichments were found for AP-1, SW1/SNF 
and BACH transcription factor family members which are involved in chromatin remodelling and 
immunity (Figure 3I). In line with this observation, motif footprint analysis revealed an increased 
accessibility of genomic regions containing FOS and JUN motifs in COVID-19 patients relative to 
healthy volunteers in myeloid cells, a signal which was also seen in convalescence (Figure 
3J,K).  
 
Severe COVID-19 is associated with clonal expansion of unmutated B cells, and 
activation of autoreactive B cells 
We next determined the relationship of B cell composition, gene expression and the B cell 
receptor (BCR) repertoire with COVID-19 severity. Mass cytometry of whole blood (prioritised 
sample set) showed significant lymphopenia in COVID-19 with reduced overall frequency and 
number of B cells, predominantly naïve B cells, but an increase in terminally differentiated 
plasmablasts (significantly higher than in sepsis) (Figures 1B and 4A and S4A,B; STAR 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 11, 2021. ; https://doi.org/10.1101/2021.05.11.21256877doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.11.21256877
http://creativecommons.org/licenses/by/4.0/


Page 7 of 63 

Methods). The greatest increase in switched memory CD11c+ B cells was in community COVID-
19 cases while unswitched memory B cells and naïve CD11c+ B cells were higher in COVID-19 
convalescent samples (Figure 4A). We observed a relatively high proportion of CLA+ 
plasmablasts in COVID-19 patients (Figure 4A) as previously observed in patients with 
respiratory infections (Seong et al., 2017). Analysis of GEX/ADT defined clusters revealed 
significant increases in plasmablasts in severe disease (Figures 4B-D and S4C,D; STAR 
Methods). Naïve CD1c+ naïve and cycling naïve B cells were reduced in COVID-19 but overall 
naïve B cells were significantly more reduced in influenza than COVID-19 of comparable 
severity (Figures 4D and S4C). In mild hospitalised COVID-19, only the IFN-responsive naïve B 
cell cluster increased significantly (Figure 4D). 
 
We then characterised differences involving the B cell immune repertoire using bulk VDJ 
sequencing of whole blood (Fig 1A) (1,206,531 filtered BCR sequences analysed) and single 
cells (CITEseq) (STAR Methods). As expected, plasmablasts showed the highest BCR 
expression in the CITEseq dataset (Figure S4E). Whereas in healthy volunteers clonal 
expansions appeared to predominate within the memory B cell population, in COVID-19 and 
sepsis patients, expansions were seen in plasmablasts, with severe and notably critical COVID-
19 patients also harbouring clones within memory populations (Figure 4E). The clonal expansion 
in plasmablasts was statistically significant, and also showed a significant association with 
COVID-19 severity, in contrast to sepsis in which there was no significant change (Figures 4F,G 
and S4F). 
 
Limited somatic hypermutation (SHM) of SARS-CoV-2 antibodies has been widely reported 
(Brouwer et al., 2020). We observed fewer somatic hypermutations in intermediate B cells in 
hospitalised mild COVID-19 but a severity-associated increase in number was found in 
plasmablasts and also seen in sepsis (Figure S4G). There were, however, COVID-19 specific 
differences in the proportion of expanded clones with few mutations (>95% IGHV identity, Figure 
4H). RNA velocity analysis suggested a differentiation directionality between naïve B cells and 
plasmablasts in COVID-19 patients that was distinct from sepsis, and consistent with a 
predominant extrafollicular B cell response in COVID-19 (accumulating fewer SHMs) (Figure 4I). 
Moreover, we observed a higher number of shared clones between plasmablasts and 
intermediate or memory B cells in severe/critical COVID-19 patients, whereas sepsis patients 
exhibited higher clonal overlap between intermediate and memory B cells (Figure S4H,I).  
 
These data together indicate that in severe/critical COVID-19 there is substantial expansion of 
unmutated B cells associated with plasmablast populations. We next explored the 
accompanying differences in B cell selection and tolerance. Firstly, in COVID-19 patients we 
observed increased BCR complementarity-determining region 3 (CDR3) lengths compared to 
sepsis (Figure 4J,K); such increases have been associated with antibody polyreactivity and 
autoimmunity (Meffre et al., 2001), notably within plasmablasts and IgG1+ B cells. Secondly, we 
found multiple differentially utilised IGHV/J genes between COVID-19 groups indicating 
differential B cell selection and/or expansion of naïve B cells, while the antigen experienced 
IgD/M mutated and class-switched B cell repertoire showed differentially utilised IGHV/J genes, 
revealing differential peripheral selection of B cells with increasing COVID-19 severity (Figure 
S4J-M). Thirdly, we tested whether B cells targeting autoantigen and red blood cell antigen are 
associated with COVID-19. We found that autoreactive IGHV4-34 BCRs, which are elevated in 
autoimmunity (Pascual et al., 1991), were significantly depleted in IGHD/M but elevated in class-
switched B cells, most notably for the IGHA2 and IGHG2 B cells (Figure 4L) consistent with 
class-switching of these autoreactive B cells during the response to SARS-CoV-2. In further 
support of this observation, the degree of class-switching, inferred from the BCR sequencing 
data (Bashford-Rogers et al., 2019), was significantly elevated between IgD/M and IgG1 and 
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IgA1, and finally to IgG2 in COVID-19 patients (Figure 4M). No detectable differences in either 
IGHV4-34 autoreactive BCR levels or class-switching were observed in sepsis cases.  
 
Previous reports indicate an unexpectedly high level of BCR convergence between unrelated 
COVID-19 patients (Galson et al., 2020). We also found clonal sharing within and between 
COVID-19 severity groups (Figures 4N and S4N-P). Comparing to known receptor-binding 
domain antibodies, we observed that most highly similar patient BCRs have a plasmablast 
phenotype (Figure S4N). Overall, our data indicate that the plasmablast expansions in severe 
COVID-19 include high levels of broadly auto-reactive B cells, consistent with an emerging role 
for B-cell driven immune pathology (Wang et al., 2020).  
 
COVID-19 severity correlates with specific T and NK cell populations and features relating 
to cell cycle, redox state and exhaustion 
We proceeded to investigate T and NK cell function in COVID-19 and its relationship with 
severity. Whole blood mass cytometry showed that both activated CD4+ and CD8+ T cells were 
increased in frequency in all COVID-19 patient groups, remaining elevated in convalescence 
(Figure 5A; STAR Methods). The proportion of CD27+ activated CD4+ T cells was higher than in 
sepsis, while CD56+ cytotoxic CD8+ T cell frequency was reduced (Figure S5A). We 
characterised the T cell subsets using markers of activation, proliferation and exhaustion.  While 
these markers were comparably expressed in activated CD4+ T cells across acute COVID-19 
cases, they increased in CD8+ T cells with disease severity (Figure 5B). Multicolour flow 
cytometry showed differential chemokine receptor expression in the overall memory CD4+ T cell 
population (Figure S5B; STAR Methods) and increased expression of the inhibitory receptor 
TIM3 in activated CD8+ T cells (Figure S5C). CLA+ HLADR+ NK cells were increased in all 
COVID-19 cases (Figure S5D). We also found evidence of significant changes in innate-like 
lymphocytic cell populations with increasing COVID-19 severity including MAIT cells, with 
evidence from mass cytometry of a gradient of involvement across severity in terms of cell 
activation (% CD69+ MAIT cells, Figure 5C). 
 
Complementing these findings, our analysis of the CITEseq data showed an increase in cycling 
and activated CD4+ and CD8+ T and NK cell populations in hospitalised COVID-19 cases, 
including CCR4hi Tregs (CD4.TREG.CCR4hi) (Figure 5D,E; STAR Methods). Conversely, we 
observed a decrease in CD4+ Th1, CCL5+ CD8+ T central memory (CD8.TCM.CCL5), CD45RA+ 
CD8+ T effector memory (CD8.TEMRA), and NK cells with high mitochondrial gene expression 
(NK.mitohi). There was little compositional variation in these cell populations by severity or 
clinical covariates (Figure S5E). However, we found that, in the gene expression analysis of 
hospitalised COVID-19 patients, the largest component of variance (PC1) was associated with 
oxygenation status in CD4+ T effector (CD4.TEFF) and CD8+ T effector memory (CD8.TEM) 
cells (Figure S5F-H). Activated NK cells (CD56highCD16low XCL1/2 expressing) 
(NK.CD56hi.CD16int.XCL1.2) showed a strong association with WHO ordinal and 
oxygenation/ventilation status (Figure S5I). In terms of differential gene expression pathway 
enrichment, we found cell cycle and redox state pathways were enriched in more severe 
hospitalised COVID-19 cases across CD4+, CD8+ and NK cells; interferon pathways were 
enriched in less severe disease; and TNF signaling was most enriched in community cases vs 
healthy volunteers (Figure 5F). MAIT cells showed enrichment for TNF signalling and KRAS 
across COVID-19 groups while gd T cells showed a greater enrichment for cell cycle pathways 
(Figure 5F). 
 
Reduced diversity in CD8+ T cell populations on repertoire analysis 
To further investigate the effect of disease on T cell subsets, with reference to antigen 
recognition and clonality, we integrated TCR sequencing data performed across the same cell 
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subsets. Given we saw clonotypes present across populations, we merged subsets to provide 
power for downstream clonal analysis (STAR Methods). For semi-invariant T cells, differences 
observed with severity and disease group by cell cluster were supported by consistent changes 
in TCR alpha variable (TRAV) gene usage. We found that hospitalized COVID-19 and sepsis 
cases displayed significant reductions in the percentage of repertoire occupied by TRAV10, 
specific to invariant natural killer T cells, and TRAV1-2 and TRAJ33 usage, in keeping with 
reductions in MAIT cells (Figure 5G). 
 
To better understand the relationship between COVID-19 and T cell clonality, we calculated 
Shannon diversity indices across clones based on the beta chain, controlling for age. While 
CD4+ subsets showed higher diversity than CD8+ subsets, differences with disease severity 
were only seen in CD8+ T cells (Figures 5H,I and S5J,K; STAR Methods). Across disease states, 
accounting for age, CD8+ T effector memory (CD8.TEM/TEMRA), CD8+ T central memory 
(CD8.TCM/CD8.TCM.CCL5) and MAIT cell diversity was reduced in COVID-19 severe and 
critical disease with comparable changes in sepsis (Figure 5J). 
 
Recent evidence suggests that effective CD8+ T cell responses involve increased numbers of 
expanded clones (Fairfax et al., 2020). Consistent with this, we found that hospitalised COVID-
19 patients with mild disease had higher numbers of expanded clones in both CD4+ and CD8+ 
subsets (Figure 5K) and the mean clone size was higher within the CD8+ subset (Figure S5L). In 
keeping with the observation that expanded CD8 T cell clones show increased expression of 
cytotoxicity markers (Watson et al., 2020a), using a composite gene score for cytotoxicity we 
found that the number of expanded clones correlated with the average cytotoxicity score across 
all cells for that individual in both CD4+ T effector (CD4.TEFF/TEFF.prolif) and CD8+ T effector 
(CD8.TEFF/TEFF.prolif) populations (Figure S5M), and was higher in mild and community 
COVID-19 cases with reduced cytotoxicity observed in critical and severe disease (Figure 5L).  
 
To further explore whether COVID-19 leads to generalized signatures of antigen presentation 
with reciprocal effects on TCR sequence and corresponding CDR3 usage, we devised an 
approach to identify COVID-19 associated amino acid (aa) sequences (Kmers of 4 aa) within the 
beta chain CDR3 region (STAR Methods). These were compared with chains from healthy 
volunteers and sepsis patients to exclude sequences non-specifically associated with infection 
(Figure S5N). We identified 125, 4 aa Kmers (referred to as COVSeqs) enriched in COVID-19 
(Bonferroni corrected P <0.05 versus both groups), the vast majority being observed in CD8+ T 
cells (Figure S5O), with the proportion of cells with TCRs containing at least one COVSeq in the 
beta chain specifically increased in all COVID-19 patients (Figure 5M). In hospitalised patients 
we found a lower proportion of CD8+ T effector memory cells with COVSeq containing TCRs with 
increasing disease severity (Figure 5N). Critical disease was associated with naïve CD8+ T cells 
containing COVSeqs, indicating failure of the SARS-CoV-2 reactive cells in critical patients to 
expand into the effector phenotype, or possibly a distinct redistribution of the expanded cells. 
Further supporting functionality of the COVID-19 Kmer containing cells, we observed a 
significant correlation between the proportion of COVSeq containing cells and the median 
cytotoxicity of cells per individual within the COVID-19 patients (Figure 5O). Notably, COVSeq 
positive CD8+ T effector cells from critical patients showed significantly reduced cytotoxicity 
compared to those from patients with mild disease (Figure 5P). 
 
Finally, we addressed whether using previously published COVID-19 associated beta chain 
clonotypes could further resolve variation in the T cell response according to disease severity 
(STAR Methods). We observed many cells carrying such TCRs across the COVID-19 patients, 
often overlapping COVSeq-containing cells. Notably, the distribution of these cells across 
clusters varied markedly according to COVID-19 disease state (Figure 5Q). Replicating the 
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observations with COVSeq-positive cells, CD8+ T effector memory cells were relatively depleted 
for COVID-19 clonotypes in critical disease (Figure 5R,S).  
 
Correlates of severity and disease specificity in the COVID-19 plasma proteome involve 
acute phase proteins, metabolic processes and markers of tissue injury 
We aimed to complement our multi-modal cellular profiling with analysis of the COVID-19 
plasma proteome. To do this we performed high-throughput liquid chromatography with tandem 
mass spectrometry (LC-MS-MS), producing data for 105 proteins on 257 individuals (340 
samples) after QC (Figure 1A; Table S2; STAR Methods). We found differences by severity and 
aetiology on unsupervised hierarchical clustering (Figure S6A), PCA (Figure 6A) and supervised 
correlation analysis (Figure S6B). Severe disease, reflected in PC loadings (Figure 6B), was 
associated with increased acute-phase proteins and complement system proteins, including 
recognised biomarkers of inflammation (SAA1, SAA2 and CRP), complement membrane attack 
complex components (C5, C6, C9 and CFB), and functionally related protein families such as 
protease inhibitors (SERPINA3, SERPINA1 and ITIH3) and serum amyloid P-component 
(APCS) (Figure S6C). We also found differential protein abundance involving markers of tissue 
injury and necrosis, notably reduced extracellular actin scavenger plasma gelsolin (GSN); 
increased fibrinogens (FGA, FGB and FGG); and an increase in proteins implicated in IL-6 
mediated inflammation (LGALS3BP, LRG1, LBP, HP and ITIH4). We further identified protein 
clusters based on the protein-protein interaction network, including a large cluster enriched for 
biological processes involving cholesterol transport and fibrin blood clots within which individual 
proteins showed positive and negative correlations with PC1 (disease severity) and two smaller 
clusters enriched for cytolysis and complement activation, both showing negative correlations for 
all constituent proteins with PC1 (Figure 6C), thus positively correlating with disease severity. 
 
We proceeded to a functional PCA, generating a vector of biological process enrichment scores 
from single-sample Gene Set Enrichment Analysis (ssGSEA) derived from ranked intensities of 
the identified proteins. This revealed the main processes associated with differences between 
samples were acute-phase response and inflammation, metabolic (retinoid and lipoprotein) and 
cholesterol transport (Figure 6D). Reduced levels of proteins associated with lipoprotein and 
cholesterol metabolism included apolipoproteins A-I, A-II, C-I and C-II (APOA1/2 and APOC1/2) 
and transthyretin (TTR), consistent with their downregulation in systemic inflammation and 
differences in metabolic state specifically associated with disease severity. This was further 
evident on pairwise comparisons, with mild hospitalised COVID-19 patients differing from 
healthy volunteers in metabolic processes and vesicle transport of retinoid, cholesterol, 
lipoproteins, and fat-soluble vitamins; and from community cases by higher levels of complement 
activation and coagulation (Figure S6D). Severe COVID-19 patients differed from mild and from 
critically ill patients in processes relating to platelet degranulation and neutrophil degranulation 
respectively (Figure S6E-F). When we compared severe and critical COVID-19 with sepsis, 19 
out of 105 proteins showed changes specific to COVID-19 (FDR<0.05, FC>1.5), enriched in 
acute-phase response, complement activation, and receptor-mediated endocytosis (Figure 6E). 
 
Plasma cytokine and chemokine profiling shows evidence for involvement of key 
inflammatory mediators 
To further characterise inflammatory mediators of the response to SARS-CoV-2 and the biology 
of potential therapeutic targets, we analysed 51 circulating cytokine and chemokine proteins 
using the Luminex assay for 171 individuals (Figure 1A; Table S2; STAR Methods). There was 
clear clustering of hospitalised COVID-19 cases by severity on PCA of plasma protein 
abundance by severity while community cases overlapped with heathy controls and sepsis 
cases clustered separately (Figure 6F). The major proteins contributing to these axes of 
variance between groups were CXCL10, CXCL5, EGF, CCL2, S100A9, IL6, LCN2, CCL20, LF 
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and G-CSF (Figure 6F). Overall, we found 49% (25 of 51) analytes were significantly 
differentially abundant in plasma from COVID-19 cases vs healthy volunteers (Figures 6G-I and 
S6G). Amongst these, CCL2, CCL19, CCL20, CXCL10, GM-CSF, IL-6, IL-8, IL-15, S100A9 and 
SCGF (all increased abundance) were strongly correlated with severity in hospitalised COVID-
19 patients (r2>0.5, P <0.001).  
 
We further compared with sepsis and influenza to investigate disease specificity and found that 
the plasma levels of G-CSF, IL-8, LF, CD163, LCN2, CCL20, IL-6, IL-10, CCL4, CCL19, TNF 
and C5a were lower in critical and severe COVID-19 than sepsis (Figure 6J). Compared with 
influenza, serum EGF, LF and CD40L were higher in serum from patients with critical COVID-19 
while G-CSF was lower (Figure 6K). We then investigated protein-protein correlation network 
relationships of assayed plasma cytokines and chemokines. This identified S100A9, M-CSF and 
CCL2/19 as nodal proteins. When we performed protein-clinical trait correlation network analysis 
for COVID-19 severity we found strong correlations between clinical features (CRP, SaO2/FiO2 
and ventilation days) and specific nodal proteins (GM-CSF, CXCL10, TREM-1, CCL2/19, TF, IL-
6/15, MPO and S100A9) at the centre of the network (Figure 6L). 
 
Plasma proteome variation identifies patient sub-phenotypes of differing disease severity 
We next investigated the utility of plasma proteins for patient sub-phenotyping within hospitalised 
COVID-19 cases (n=122 samples) by integrating the LC-MS-MS and Luminex datasets using 
Similarity Network Fusion (SNF) (Wang et al., 2014) (STAR Methods). We first constructed a 
sample-by-sample similarity matrix from which we derived a network for each of the two data 
types. Analysing these individually in an unsupervised manner with spectral clustering, we could 
only discriminate a minority of cases (the most mild from all others). However, when we fused 
these networks into a single similarity network that maximised shared and complementary 
information, we discovered two clusters that separated mild and critical cases, and discriminated 
within the severe cases to assign similar numbers to each of the two clusters (Figure 6M,N). We 
identified 11 proteins as the main discriminatory features distinguishing the clusters (mutual 
information score >= 0.15) (Figure 6M). When we compared the two clusters, we found that 
clinical measures of disease severity were significantly different including inspired oxygen 
concentration and SOFA oxygen score (t-test Pc <0.05) (Figure S6H) and that membership of 
cluster two was associated with higher 28-day mortality (Figure 6O). The predictive protein set 
spanned key inflammatory mediators, including the cytokines and chemokines IL-6, IL-8 
(CXCL8), CCL2, CCL19, CCL20 and CXCL10 together with S100A9 (calprotectin), the acute 
phase proteins serum amyloid protein (SAA1) and protease inhibitor (SERPINA3), GM-CSF and 
the C-type lectin CLEC11A.  
 
We validated the clusters in an independent acute hospitalised COVID-19 cohort from Boston 
assayed using a different technology, targeted proteomics by Olink (Filbin et al., 2020) (STAR 
Methods). We found that clustering analysis, using the 7 out of 11 predictive proteins for which 
data was available, identified two optimal clusters (Figures 6P and S6I). These showed a clear 
relationship with measures of disease severity, including WHO ordinal score (maximum) (Figure 
S6J), and patients in cluster 1 had significantly lower mortality at 28 days (5/164=3.0%) 
compared with cluster 2 (33/105=31.4%) (Chi-squared test P <0.0001), validating the findings 
from our discovery cohort. We then explored the specificity of the clusters by extending the 
approach to include a combination of hospitalised COVID-19 and sepsis patients from COMBAT. 
This revealed three clusters, two corresponding to the clusters seen with COVID-19 cases 
analysed alone, indicating a high level of specificity (Figure S6K,L). Features that separated 
COVID-19 and sepsis included lipocalin2 (LCN2) and CCL20, which were elevated in sepsis, 
and CXCL10, APCS and fibronectin (FN1) which were higher in COVID-19. 
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Supervised machine learning identifies predictive protein biomarkers for disease severity 
We complemented our findings by using machine learning to combine the two proteomics data 
types with whole blood total RNAseq to determine which features were predictive of disease 
severity (WHO category at the time of sampling) and their relative informativeness (Figure S7A; 
STAR Methods). We first identified assay-type-specific feature scoring PCs to reduce 
dimensionality for a training sample set, and then determined the six maximally informative PCs 
(Figure 7A) and the genes or proteins maximally contributing to loadings for each PC. After 
feature elimination based on performance, we found the minimal set of cross-modality features 
to predict severity were the acute phase proteins SAA2 and CRP, an immunoglobulin (IGHG4), 
chemokines (CCL20 and CCL2), IL-6 and complement component C5a (Figures 7B and S7B); 
the combined performance of these features in the hold-out validation set showed a balanced 
accuracy of 75-80% to predict WHO category group (Figure S7C). We also used machine 
learning to search for features that distinguish hospitalised COVID-19 patients from sepsis. A 
multi-omic set of 81 features was discovered using SIMON (Tomic et al., 2021) (STAR Methods) 
(AUC 0.85 95% CI 0.59-1), identifying specific differentially abundant genes, proteins (including 
FCN1 and APCS as higher in COVID-19) and significant pathway enrichment for hematopoietic 
cell lineage and the renin-angiotensin system (Figure S7D,E).  
 
Integrated hallmarks of COVID-19 severity and specificity 
We next sought to understand the immune response to COVID-19 across all assay types and 
samples using a multi-omics tensor approach (Chang et al., 2021; Fanaee-T and Thoresen, 
2018; Taguchi, 2017), specifically the sparse decomposition of arrays (SDA) algorithm (Hore et 
al., 2016). We analysed 152 samples assayed for cellular composition, gene expression and 
plasma proteomics, and identified 381 latent SDA components, each comprising vectors of 
scores (loadings) that indicate the contribution of individual cell types, genes or proteins linked 
by that component, and thereby offer insights into shared mechanism (Figure S7F; Table S3; 
STAR Methods). We then identified components associated with specific clinical covariates, 
severity or patient group, noting that while in some instances such as gender there was a single 
associated component (involving differential sex chromosome gene expression across cell 
types, component 2), typically several components were associated (Figure S7G,H). The 
strongest association with COVID-19 severity was component 171 (Pc 5.9x10-14, rho 0.74 
Spearman) which was unusual in having a high feature contribution from plasma proteins 
whereas gene expression contributed most to the majority of the other components (Figure S7I). 
Component 171 involved myeloid cell production, recruitment and function. Features contributing 
to loading scores with high posterior inclusion probability included raised plasma chemokines 
involved in chemotaxis and activation (CXCL8, CXCL10 and CCL20) and GM-CSF together with 
acute phase activating proteins (SAA1/2 and SERPINA3), LRG1 and LBP (Figure 7C); reduced 
abundance of intermediate monocytes; high expression of cell stress chaperone CLU and 
methyltransferase METTL7B, and downregulation of IgE receptor and multiple HLA class II 
genes, and pathway enrichment for antigen presentation, TCR signaling and asthma. 
 
To further delineate COVID-19 associated SDA components, we performed pairwise contrasts 
and analysis of variance involving COVID-19 patient groups. Overall 130 of 381 components 
were significantly associated with COVID-19 versus healthy volunteers (Figure 7C and S7J). To 
identify which of these components were informative for severity and how they may be shared or 
specific for COVID-19, we clustered their median loadings across the different disease groups 
(Figure 7C). Components associated with mild and severe but not critical disease included 
component 42 (features of monocyte/granulocyte proliferation and function, elevated plasma 
proteins G-CSF, IL-2, IL-8 and IL-15, and enrichment of cell division related pathways); and 
component 256 (including upregulation of interferon response genes and down regulation of 
genes such as catalase and cytochrome c oxidase) which was specific to COVID-19 cases 
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(Figure 7C). Other components strongly associated with severe disease involved plasmablast 
proliferation, combined with increased MThi cMono and a clear DNA replication signature 
(component 289), or with widespread upregulation of immunoglobulin heavy/kappa/lambda 
genes, JCHAIN (regulating multimerization and mucosal secretion of IgM/IgA), and MZB1 
(involved in antibody secretion and integrin-mediated cell adhesion) (component 6), linking with 
possible antibody-dependent cellular toxicity (Figure 7C). 
 
We found an innate response component specific to critical COVID-19 (component 247) with 
differential expression of granulocyte activation marker (CEACAM8), neutrophil elastase 
(ELANE) and defensins (DEFA1B/4) and increased soluble CD163 scavanger protein levels, 
reflected in pathway enrichment for neutrophil functions. Neutrophil related features were also 
found in component 123 associated with COVID-19 severity, influenza and sepsis (Figure 7C). 
Other SDA components had high loading scores associated with all hospitalised COVID-19 
patients including significant upregulation of interferon pathway genes (component 235) and an 
NK-signature component with upregulation of cell cycle and proliferation genes (component 
107); as well as with hospitalised and community COVID-19 patients (component 187) (Figure 
7C). The latter was driven by differential expression in major PBMC lineages (highest loadings in 
NK, B and T cells) involving upregulation of key stress and activation response genes including 
immediate early response protein (PMAIP1), AP-1 transcription factor genes FOS and JUN, the 
early activation marker and metabolic reprogramming gene CD69, and TNFAIP3, which limits 
NFkB mediated inflammation. The cytokine-induced STAT inhibitor (CISH) and immune 
checkpoint regulator of inflammation and metabolism TNFAIP8L2 were downregulated. Pathway 
enrichment was seen for type-2 inflammation (IL4/13), TLR signaling and the ATF-2 network 
(Figure 7C). 
 
Overall, the latent component analysis identifies hallmarks of COVID-19 severity, and specificity 
with respect to sepsis and influenza. Our findings highlight key cellular populations such as 
proliferating monocytes and plasmablasts, and features of innate and adaptive mechanisms 
ranging from interferon signalling to myelopoiesis, immunoglobulin production and stress 
activation response signaling. The results prioritise and validate hallmarks seen on individual 
modality analysis such as AP-1, and generate hypotheses for how hallmarks may be related in 
terms of pathophysiology based on co-occurrence in a given component. 
 
Discussion  
Our comprehensive multi-modal integrated approach, applied to multiple well-defined cohorts of 
patients and healthy volunteers, has defined blood hallmarks of COVID-19 severity and 
specificity involving particular immune cell populations and their development, components of 
innate and adaptive immunity, and connectivity with the inflammatory response (Figure 7D). 
 
Hallmarks of severity involving myeloid related features include emergency myelopoiesis, 
immature neutrophils, increased HSC and platelet/CD34- megakaryocyte progenitors, with the 
latter associated with thromboembolism. These findings substantiate and add granularity to 
previous reports (Bernardes et al., 2020; Stephenson et al., 2021). We find evidence that ERG is 
central to a gene network linked to these cell populations, encoding a transcription factor 
important in determining lineage plasticity, modulating inflammation and maintaining an anti-
thrombotic environment (Yuan et al., 2009). We further identify hallmarks supporting the 
importance of mononuclear phagocyte dysfunction in severe disease (Bost et al., 2021; Mann et 
al., 2020; Schulte-Schrepping et al., 2020), namely proliferating cMono, and specific monocyte 
populations showing reduced HLA-DR, CD33 and CD11c expression, high expression of 
antioxidant metallothionein and S100A8/9/12 (calprotectin), together with reduced pDCs.  
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The frequency of specific T cell subsets, and their activation and exhaustion, has been 
previously implicated in severe COVID-19 (Chen and Wherry, 2020; Jouan et al., 2020; Parrot et 
al., 2020). We find evidence for increased numbers of activated CD8+ T cells and NK cell 
populations in COVID-19, and, with increasing severity, failure of clonal expansion in CD8+ T 
effector and central memory cells and depletion of COVID-19 clonotypes. We further find 
association with severity for exhaustion markers and specific activated NK and CD69+ MAIT cell 
populations. In terms of adaptive immunity (Brouwer et al., 2020; Galson et al., 2020), we find 
increased numbers of terminally differentiated plasmablasts, with expansion of unmutated B 
cells differing in selection and tolerance and a higher proportion of clonally related B cells. 
Redox state and cell cycle associate with more severe disease across cell populations. Our data 
are also consistent with the importance of the hyperinflammatory state (Moore and June, 2020) 
and interferon response (Hadjadj et al., 2020; Lei et al., 2020) but as features of less critical 
disease and earlier phase of illness. 
 
Our proteomic analysis has identified specific plasma cytokine and chemokine levels as 
biomarkers of severe disease with evidence for acute phase inflammation, complement 
activation/attack, fibrin clots, proteases, serum amyloid, tissue necrosis, receptor mediated 
endocytosis and cholesterol transport as hallmarks. Moreover, we have discovered plasma 
protein signatures that can be used to stratify acute hospitalised COVID-19 cases into disease 
sub-phenotypes, with cluster membership informative for response state and associated with 
differential 28-day mortality. We have validated our finding in an independent dataset using a 
predictive set of seven plasma proteins (cytokines IL-6, IL-8; chemokines CCL2, CCL19, CCL20, 
CXCL10; and C-type lectin CLEC11A, a key growth factor for primitive haematopoietic 
progenitor cells). Patient stratification is important given the observed clinical heterogeneity 
within severe COVID-19. Such variability has historically been a major confounder of clinical 
trials for targeted immune therapy in other severe infections (Davies et al., 2018; Marshall, 
2014).  
 
This work has demonstrated the informativeness of a multi-linear tensor approach to stratify and 
interpret the complexity of multi-omic datasets. Application of the SDA algorithm was able to 
identify latent components of variance that joined together signals from across cellular, gene 
expression and plasma protein measurements. For example, the most significant tensor 
component associated with COVID-19 severity involves myeloid chemotaxis and activation, the 
acute phase response, HLA class II downregulation and TCR signaling. Thus, our dataset 
provides a useful resource from which to develop other approaches for identifying multi-modal 
signals and associated mechanistic insights, such as those leveraging algebraic systems biology 
(Gross et al., 2016), multi-layer networks (Kivela et al., 2014), topological data analysis 
(Camara, 2017) or tensor clustering (Seigal et al., 2019). 
 
Considering features specific to COVID-19, we have found that the ratio of integrin alpha 4 
(CD49d) to leukosialin (CD43) is specifically elevated across COVID-19 patients, including into 
recovery and in convalescence, suggesting that this ratio may be an informative index score for 
neutrophil activities specific to COVID-19. Reduction in CD43 expression leads to neutrophil 
retention in the bloodstream and increased adherence to vessel walls (Woodman et al., 1998), 
and may be linked to the enhanced thrombosis observed in COVID-19 patients.  
 
Our epigenetic, gene expression and integrative SDA analyses have all identified the AP-1 p38 
MAPK pathway upregulation as a specific feature of COVID-19 disease across different immune 
subsets. Combined with evidence of proliferation and cytokine response in these populations, 
this supports systemic immune activation and proliferation as a hallmark specific to COVID-19. 
Moreover, AP-1 is a pioneer transcription factor that reversibly imprints the senescence 
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enhancer landscape following stress and can be modulated to reverse T cell exhaustion (Lynn et 
al., 2019; Martinez-Zamudio et al., 2020). This suggests a possible role for AP-1 in inappropriate 
chromatin remodelling and cellular activation/senescence in multiple cell types, with evidence of 
persisting differential chromatin accessibility, gene expression signatures and cell protein 
markers of activation that may contribute to both acute disease and post-COVID-19 syndrome. 
Our findings are in keeping with recent evidence of efficacy for baricitinib (Janus Kinase 
inhibitor) in improving recovery of hospitalised patients (Kalil et al., 2021). Baricitinib acts 
upstream of AP-1 (Zarrin et al., 2021) and controls macrophage inflammation and neutrophil 
recruitment in COVID-19 (Hoang et al., 2021).  
 
Our findings involving immune activation and proliferation are of further relevance given the key 
nodal plasma cytokines, including GM-CSF and IL-6, we identify as hallmarks of disease 
severity in proteomic and integrative analysis, targeting of which could also benefit dysfunctional 
granulopoiesis and neutrophil subsets. This supports the efficacy of tocilizumab (IL-6 receptor 
inhibitor) in severe disease (Horby et al., 2021b), moreover we find upregulation of IL6R in more 
severe disease. Our data supports the use of inhibitors of GM-CSF in current clinical trials, use 
of anti-CCL2 (Gracia-Hernandez et al., 2020), repurposing of immune checkpoint inhibitors 
(Pezeshki and Rezaei, 2021) to restore/enhance CD8+ T cell cytotoxicity, and potential targets 
such as FGFRs, which are cofactors for early stage viral infection upregulated by MERS-CoV2 
leading to lung damage and proposed as a therapeutic target (Hondermarck et al., 2020). 
 
Establishing optimal biomarkers of response and relevant sample collection, as well as timely 
availability of results, are important considerations in current immunomodulatory trial design in 
COVID-19. We find the widely used clinical biomarker CRP has predictive utility as a component 
of discriminating biomarker marker sets for severity. Total RNAseq of whole blood stabilised at 
the bedside, a tractable sample type for collection in a pandemic situation, is highly informative 
for understanding variance in disease severity while use of small volumes of rapidly fixed whole 
blood for later FACS and mass cytometry gives complementary and highly granular resolution of 
the cellular immune response state and identifies specific cell populations important in severe 
disease.  
 
An important question is how the hallmarks of severe disease in COVID-19 relate to non-SARS-
CoV-2 sepsis (Beltran-Garcia et al., 2020; Olwal et al., 2021). We have compared patients with 
severe or critical illness, not only revealing shared features relating to emergency myelopoiesis 
and progenitors but also identifying discriminating neutrophil markers (CD49d:CD43 ratio) in 
COVID-19 and specific ncMono and cMono phenotypes in sepsis (Figure 7D). Lymphocyte 
exhaustion is proposed as a common mechanism in COVID-19 and sepsis (Boomer et al., 2012; 
Diao et al., 2020). We find overall higher levels of CD4+ and CD8+ T cell activation, and more 
marked changes in cell markers, in COVID-19, suggesting a greater degree of CD8+ T cell 
exhaustion. While we find no major changes in naïve and transitional B cells in either condition, 
in sepsis we observed an absence of terminally differentiated plasmablasts and fewer clonally 
related B cells, class switching and autoreactive BCRs. We have further identified plasma 
proteins discriminating COVID-19 and sepsis, for example lipopolysaccharide binding protein, 
lactoferrin and lipocalin 2; and differential pathways including neutrophil degranulation, 
complement, AP-1/p38MAPK, TLR, renin-angiotensin and the HSC lineage. We note that 
COVID-19 induced down regulation of ACE2 may be involved in the modulation of both the 
renin-angiotensin system and activation of AP-1/p38MAPK signaling (Grimes and Grimes, 
2020). 
 
Similarly, while differences in target cells and control of viral replication are recognised between 
COVID-19 and influenza, shared immune responses and mechanisms are also reported 
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(Flerlage et al., 2021). Our data builds on previous blood immune signatures (Lee et al., 2020; 
Mudd et al., 2020; Zhu et al., 2020) to gain cellular and proteomic insights into the more severe 
form of these infections. We find similar changes in frequency of major immune cell populations 
between COVID-19 and influenza for HSC, the majority of T and NK cell populations, 
classical/cycling monocytes and plasmablasts; but differences for many B cell populations 
(differential naïve, intermediate and memory B cell response) as well as specific cell subsets 
notably ncMono subpopulations (Figure 7D). While the bulk of the circulating proteomic 
response is shared, specific differences involved EGF, G-CSF and IL-15. We further found 
extensive sharing of pathways and networks including modules involving JAK-STAT and zinc 
finger proteins, as well as differences, most notably the enrichment of AP-1/MAPK specifically in 
COVID-19.  
 
In conclusion, our multi-omic integrated blood atlas comprehensively delineates the host 
immune response in COVID-19 from the start of the UK pandemic, prior to clinical trial-led 
implementation of approved treatments or vaccination. This provides the community a unique 
reference resource for replication and meta-analysis, to interpret datasets generated from 
interventional trials and includes tools for direct visualisation (https://mlv.combat.ox.ac.uk/). 
Integrative approaches such as we have applied here are essential to better differentiate 
COVID-19 patients according to disease severity, underlying pathophysiology and infectious 
aetiology. This will be important as we seek novel therapeutic targets and the opportunity for a 
precision medicine approach to treatment that is appropriately timed and targeted to those 
patients most likely to benefit from a particular intervention. 
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Figure legends 
 
Figure 1. Complementary single cell compositional approaches reveal variance in specific 
cell populations by clinical group and severity  
(A) Study design, assay modalities and workflow. Table shows number of patients assayed, with 
number of samples in brackets where more than one sample assayed. *WHO severity 
categories show number of patients at time of sampling **single paired convalescent sample 
assayed for n=16 COVID-19 and n=3 sepsis patients; ***10 samples assayed (8 samples for 
paired acute-convalescent COVID-19 and 2 healthy). (B-G) Major cell populations in whole 
blood for clinical comparator groups assayed by single cell mass cytometry (CyTOF) showing 
(B,C) for non-depleted samples (3,893,390 cells) (B) cell frequencies (C) PCA with arrows 
indicating drivers of variation by cell population and (D) differential abundance analysis of CD66+ 
depleted whole blood (7,118,158 cells assayed) by patient group (E) multimodal identification 
and annotation of PBMC subpopulations based on curated intersection of CITE-seq data (F,G) 
UMAP showing joint visualisation of CITE-seq and CyTOF datasets (using CITE-seq data as 
reference) (F) overlaid CITE-seq (ADT) and mass cytometry (G) cell annotations transferred 
between datasets and coloured by cell type where concordant (94.5% of cells) or discordant 
(grey). (H-K) CITE-seq compositional analysis of minor subsets (H,I) PCA for hospitalised 
COVID-19 cases (H) PC1 vs PC2 (I) analysis of loadings of minor subsets on PC1. (J) 
Differential abundance analysis between clinical groups (K) Covariate analysis for clinical, 
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demographic and experimental variables for hospitalised COVID-19 cases (with BH adjusted 
ANOVA test for significance).  
See Figure S1. 
 
Figure 2. Signatures of COVID-19 response from transcriptomics 
(A-E) Whole blood total RNAseq (A,B) PCA (A) all clinical comparator groups (B) hospitalised 
COVID-19 patients including topological data analysis (C) pathway enrichment by severity of 
COVID-19 (D,E) differential gene expression (D) critical vs mild COVID-19 (E) COVID-19 vs 
sepsis. (F) Intramodular hub genes for weighted gene correlation network analysis (WGCNA) 
whole blood RNAseq module grey60. (G,H) Neutrophil cell surface proteins assayed by mass 
cytometry shown by (G) marker (H) ratio of markers. (I,J) CITEseq gene expression analysis of 
PBMC (I) association of PCs of expression variance with minor subset cell clusters in patients 
with COVID-19 (J) PC plots of gene expression in classical monocytes and naive CD4+ T cells. 
(K-V) WGCNA CITEseq gene expression for major cell types (K) association of module 
eigengenes with disease contrasts, clinical severity scores and variables, survival and gene set 
scores (*all significant associations shown, BH adjusted P < 0.05 in individual tests) (L) pathway 
enrichment (M) module eigengene correlation with AP-1 family genes (N) p38MAPK.AP-1 
module eigengene expression across patient groups (O-R) eigengene expression and top 
eigengene-gene correlations (O) ribosomal module in cMono (P) cycling module in cMono (Q) 
JAK-STAT.interleukin module in CD4 (R) FKB5.CD163 module in cMono.  
See Figure S2.   
 
Figure 3 Changes in myeloid cells associated with COVID-19 severity 
(A-C) Single cell mass cytometry (A) UMAP of overall myeloid cell clusters coloured by patient 
group and by Mean Metal Intensity (MMI) of HLA-DR, CD33 and CD11c (B) cell population 
frequencies by patient group (C) differential abundance analysis in patients vs healthy 
volunteers, and between disease categories (D-F) CITE-seq PBMC myeloid cell clusters (D-E) 
cell composition (D) differential abundance analysis with box plots of cell cluster frequency by 
patient group where abundance significantly differs relative to healthy volunteers (E) covariate 
analysis of abundance and clinical, demographic and experimental variables for hospitalised 
COVID-19 cases (with BH adjusted ANOVA test for significance)  (F) scRNAseq MSigDB 
hallmark gene set enrichment for cMono, ncMono and DC. (G-K) scATACseq (G) differential 
chromatin accessibility in myeloid cells comparing acute COVID-19vs healthy volunteers (H) 
scATACseq tracks at FGFRL1 locus comparing cell populations and condition (healthy, COVID-
19 acute and convalescent) (I) differential motif enrichment in myeloid cells, acute COVID-19 vs 
healthy volunteers (J,K) transcription factor footprinting for myeloid enriched factors (J) JUN (K) 
FOS. 
See Figure S3. 
 
Figure 4. B lymphocytes show changes in composition and repertoire associated with 
COVID-19 severity 
(A-D) Cell composition analysis comparing study groups (A) by single cell mass cytometry (B-D) 
by CITE-seq clustering (B) UMAP embedding with cluster identities (C) cluster proportions and 
(D) differential abundance. (E) Clonal density plots with Kernels density estimates overlaid onto 
UMAP embeddings by comparator group. (F) Plasmablast repertoire clonality. (G) Mean 
plasmablast diversity indices by comparator group; clonal expansion index, CEI, clonal 
diversification index, CDI. (H) Mutation and expansion proportions in plasmablast clone 
repertoire. (I) Partition-based graph abstraction (PAGA) plots of scRNA-seq by cell population 
and patient group (weighted edges indicate degree of cell cluster connectivity). (J,K) Junction 
lengths from resampled repertoires by patient group (J) per B cell cluster (left) and specifically in 
plasmablasts (right) (K) for immunoglobulin constant genes (L) IGHV4-34 AVY/NHS motif usage 
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in unmutated VDJ sequences shown across IGH genes (bulk BCR-seq). (M) Class switch 
inference networks (RNA derived B cell repertoires) (top) Ig constant region genes per B cell 
cluster (single cell VDJ data) (bottom). (N) Clonal overlap across comparator groups with total 
number of convergent clones per group shown with clonal network depicting distribution of 
convergent clusters (inset) and sequence logos of COVID19 exclusive clusters (with IGHV/J 
usage and number of members). Significance * <0.05, ** 0.005 Kruskal Wallis.  
See Figure S4. 
 
Figure 5. Dynamic changes in T lymphocyte and NK composition and repertoire 
associated with COVID-19 severity 
(A-C) Single cell mass cytometry whole blood (A-B) activated CD4 and CD8 T lymphocytes (A) 
frequency (B) median metal intensity of specific markers (C) frequency of activated MAIT cells 
(D,E) CITEseq profiling CD4+ CD8+ T and NK cell clusters (D) differential abundance and (E) 
frequency between comparator groups. (F) scRNAseq MSigDB hallmark gene set enrichment for 
T cell populations (G) TRAV and TRAJ repertoire analysis. (H,I) UMAP of CD8+ T cells and 
associated clusters (H) used in repertoire analysis (I) Shannon Diversity Index of CD8+ T cells by 
patent group. (J) Boxplots of Shannon Diversity Index for specific cell populations by comparator 
group. (K) Number of enlarged clones by comparator group in CD4+ and CD8+ subsets. (L) 
Mean cytotoxicity score by comparator group. (M) Proportion of CD8+ T cells carrying TCR 
containing COVID-19 associated Kmers. (N) Frequency of COVID-19 Kmer positive cells in 
CD8+ naïve and effector memory cells. (O) Correlation of COVID-19 Kmer containing CD8+ T 
cells per individual with median cytotoxicity score. (P) Cytotoxicity of CD8+ T effector cells 
positive for a COVID-19 associated Kmer across patient groups. (Q) UMAP of CD8+ T cells by 
patient group indicating density of COVID-19 Kmer positive cells (blue dashed line) and cells 
with previously described COVID-19 clonotype. (R) Proportion of COVID-19 known clonotype 
matching cells in CD8+ naïve and effector memory cells. (S) Cytotoxicity of CD8+ T effector 
memory cells with clonotypes matching published COVID-19 clonotypes. Wilcoxon Test age and 
sample size adjusted linear model used *P<0.05, **P<0.01, ***P<0.001. 
See Figure S5. 
 
Figure 6. Plasma protein COVID-19 signatures and subphenotypes 
(A-E) HT-LC-MS/MS mass spectrometry of plasma proteins (A) PCA all samples (B) proteins 
contributing to PC loadings, the more negative loading values indicating higher positive 
correlation with disease severity (C) clusters based on the protein-protein interaction network 
with enriched GOBP terms (D) functional PCA (E) differential protein abundance COVID-19 
severe or critical vs sepsis. (F-L) Luminex blood proteins (F) PCA all plasma samples (G) 
summary of differential abundance of plasma proteins (H) heat map showing abundance of 
plasma and serum proteins by disease groups (I-K) Volcano plots comparing differential 
abundance of plasma proteins (I) COVID-19 severity groups vs healthy volunteers (J) 
critical/severe COVID-19 vs sepsis (K) critical COVID-19 vs influenza (L) network of clinical 
feature−protein correlations in COVID−19 patients and healthy volunteers based on highly 
correlated events (r2 >0.7 or <-0.5). (M-O) Similarity network fusion for hospitalised COVID-19 
patients (SNF) from COMBAT (discovery) data using networks derived from sample-by-sample 
similarity matrix for mass spectrometry and luminex assays of plasma proteins. Coloured by (M) 
cluster group (N) severity. (O) Kaplan-Meier survival plot by SNF cluster group (95% CIs 
shaded) (HR, hazard ratio calculated using Cox proportional hazard model). (P) Mass General 
Hospital (Olink) validation data and COMBAT (discovery) cohorts showing groups. 
See Figure S6. 
 
Figure 7. Integrative approaches define hallmarks of COVID-19 response 
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(A,B) Machine learning for COVID-19 severity showing average feature score of (A) highest-
scoring features (PCs) (B) final feature set. (C) Tensor and matrix decomposition across multi-
omic datasets (CITEseq, whole blood RNAseq, mass cytometry, luminex and mass 
spectrometry) for 152 samples showing clustering of COVID-19 associated components (k-
means clustering of row-scaled median sample loadings) and relationship with disease 
comparator groups, with examples of components showing component number and cluster 
membership; and sample loading scores across comparator groups and features (cells, gene 
expression, proteins) whose variance contributes to that component. For gene expression, cell 
type and highest scoring genes listed (red upregulated, blue downregulated) together with top 
pathway enrichment (FDR <0.05) with pathway genes listed within bars (features shown or 
included in pathway analysis where posterior inclusion probability >0.5). More detail provided for 
component 171 as exemplar. (D) Overview figure summarising key findings from this study 
including hallmarks of COVID-19 severity, shared and specific features with influenza and 
sepsis, and patient stratification.  
See Figure S7. 
 
Supplementary figure legends 
 
Figure S1. Study cohorts, clinical covariates and single cell compositional approaches, 
related to Figure 1 
(A-F) Clinical covariates and features for studied cohorts. (A) Admission samples for hospitalised 
COVID-19 (n=116) and sepsis (n=58) including total and differential cell count and clinically 
assayed biomarkers CRP, D-dimer, LDH, creatine kinase, ALT, ALP. (B) Overview of 
hospitalised COVID-19 sampling by time from symptom onset and WHO severity with maximal 
severity indicated. (C) Correlation matrix of clinical covariates and markers of response in 
hospitalised COVID-19 cases. (D,E) Unsupervised clustering of samples from hospitalised 
COVID-19 patients with consensus k-means clustering followed by hierarchical clustering on the 
consensus matrix based on (D) 49 clinical features (excluding WHO severity classifiers) (E) 
acute measures of physiology and clinical biomarkers of response without significant 
missingness (including measures of oxygenation requirements, blood cell counts, fever, ALT, 
CRP). (F) Biplot illustrating for PC1 and PC2 features driving clustering, and heat map of clinical 
features, coloured by three clusters identified in k-means clustering using acute measures of 
physiology and clinical biomarkers of response. (G-M) Stabilized whole blood (Cytodelics) from 
COVID-19 patients analysed by single cell resolution mass cytometry (Helios CyTOF system) 
(including matched samples collected during convalescence from 16 COVID-19 hospitalized 
patients). (G-J) Non-granulocyte depleted samples. A self-organising map algorithm (FlowSOM) 
resolved 25 clusters by consensus clustering for 3,893,390 cells after down sampling to a 
maximum of 40,000 cells. Clusters merged to identify broad immune cell populations (G) UMAP 
(H) clustering of major cell populations (y axis) by discriminating marker (x-axis) (I) cell counts 
(J) differential abundance analysis in patients compared to healthy volunteers, and different 
disease states clustering major cell populations. (K) Granulocyte (CD66+) depleted whole blood 
with down sampling to a maximum of 75,000 cells and 7,118,158 cells assayed showing UMAP 
(L,M) Plots demonstrating cross validation mass cytometry and CITEseq cell clusters. (N-Q) 
CITE-seq analysis of viability sorted peripheral blood mononuclear cells (PBMCs) from 140 
samples profiled using the 10X Genomics platform. (N) PCA minor cell subsets for all patient 
groups. (O,P) PCA major subsets for hospitalised COVID-19 patients (O) PC1 vs PC2 (P) 
loadings of cell clusters on PC1. (Q) Differential abundance analysis in patients compared to 
healthy volunteers, and between disease categories for major cell subsets.  
 
Figure S2. Signatures of COVID-19 severity revealed by bulk and single cell RNAseq, 
related to Figure 2 
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(A-E) Whole blood total RNAseq for hospitalised COVID-19 patients showing (A) matrix 
correlation of PCs with covariates (B) differentially expressed immunoglobulin lambda chain 
gene IGLV3 and innate viral response gene OAS1 (C) pathway enrichment on analysis of 
COVID-19 severity classes as a quantitative trait (mild=1, severe=2, critical=3) with and without 
inclusion of cell proportion (D) correlation plot showing the influence of cell proportion on 
detection of differentially expressed genes (E) pathway enrichment COVID-19 severe and critical 
vs sepsis using Reactome. (F-J) Weighted gene correlation network analysis (WGCNA) whole 
blood total RNAseq (F) dendrogram and heatmap of eigengene network arising from WGCNA 
with hierarchical clustering (G,H) enrichment of WGCNA modules using gene expression data 
for (G) 64 immune and stroma cell types (xCell) (H) msigdb canonical pathway genesets (I) heat 
map showing module trait relationships on WGCNA (blue, negative correlation; red, positive 
correlation) (J) module eigengene values plotted by patient group. (K) Neutrophil marker 
expression whole blood assayed by mass cytometry comparing across patient groups. (L) 
Correlations between whole blood total RNAseq WGCNA modules and neutrophil CyTOF 
markers. (M) Association p-values between principal components of pseudobulk GEX for 
specific cell clusters across all patients. (N) scRNAseq MSigDB hallmark gene set enrichment 
for cell types (Liberzon et al., 2015) (O) WGCNA analysis CITEseq gene expression for all 
samples showing correlation of eigengene expression (all modules in all cell types across all 
patient groups) with major module groups annotated. 
 
Figure S3. Changes in myeloid populations associated with COVID-19 severity, related to 
Figure 3 
(A,B) Single cell mass cytometry (A) mean Metal Intensity (MMI) of HLA-DR, CD33 and CD11c 
in classical monocytes (cMono) (B) representative plot of Ki67+ expression and 191Iridium 
(DNA) labelling in a healthy volunteer and a COVID19 patient; two distinct population of Ki67+ 
proliferating cells were identified, one containing the same amount of DNA as Ki67- cells 
(Ki67+DNAlow) and a rarer population containing double the amount of DNA (Ki67+DNAhigh) which 
likely comprises proliferating cells in S, G2 and M phase. The boxplots describe the frequencies 
of Ki67+DNAlow and Ki67+DNAhigh across different disease states. (C) PCA of CITE-seq gene 
expression in mononuclear phagocyte (MNP), major and minor cell subsets comparing all 
groups (COVID-19 IP mild, severe, critical; COVID-19 community; influenza; sepsis; healthy) (D) 
PCA and correlation with clinical covariates and severity measures for gene expression in MNP, 
major and minor cell subsets for acute hospitalised cases only (mild, severe, critical). (E,F) 
Differential gene expression in classical monocytes comparing (E) critical COVID-19 patients vs 
healthy volunteers and (F) COVID-19 community cases vs healthy volunteers with volcano plots 
showing significant genes (FDR < 0.01 and logFC > 2) in red. (G,H) scATACseq with cell lysis, 
nuclear extraction and tagmentation on viability sorted PBMC prior to single nuclei capture and 
sequencing. Data shown for 42,000 cells post QC (ArchR pipeline) for 8 COVID-19 samples 
(paired acute and convalescent) and 2 healthy volunteers with (G) label transfer (unconstrained 
method) to assign cell clusters based on CITEseq and (H) comparison of chromatin accessibility 
(scATACseq peaks linked to genes) to CITEseq gene expression. 
 
Figure S4. B lymphocytes show changes in composition and repertoire associated with 
COVID-19 severity, related to Figure 4 
(A,B) Single cell mass cytometry (CyTOF) compositional analysis showing (A) UMAP and 
clustering of major cell populations (B) differential abundance analysis in patients compared to 
healthy volunteers, and between disease categories. (C,D) CITE-seq compositional analysis (C) 
differential abundance analysis of B and plasmablast cell clusters (D) covariate analysis of 
PBMC B and plasmablast cell cluster abundance and clinical, demographic and experimental 
variables in hospitalised COVID-19 cases (with BH adjusted ANOVA test for significance). (E) 
UMAP embedding of all B cells from single cell VDJ dataset. Colour scale depicts log total UMIs 
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per VDJ sequence. (F) Alpha diversity (derived from (Gupta et al., 2015)). Bootstrapped alpha 
diversity curves are shown per study group across different orders of q. (G) IGHV total mutations 
across B cell subsets per study group (naïve B cells not shown, as no mutations). (H) Clonal 
overlaps across B cell clusters per study group. Numbers reflect binary detection events.  (I) 
Clonal overlaps across constant region genes per study group. Numbers reflect binary detection 
events. (J) Correlation analysis of IGHV genes detected by single cell VDJ data and RNA VDJ 
data, within the (top) IGHD/M unmutated, (middle) IGHD/M mutated and (bottom) class-switched 
VDJ sequences. Scatter plots, with marginal histograms, depict log proportions of repertoires 
detected and missed by both datasets. Boxplots to the right depict number of IGHV genes 
missed by RNA (bulk) and single cell VDJ data. (K) Heavy chain V and J gene pairing across 
pairwise study group comparisons, only significant pairings shown. Dot sizes and colour depict 
average log2 fold change of proportion of repertoire. (L) Volcano plots of log2 fold change of 
IGHV gene usage of IGHD/M unmutated sequences (derived from single cell VDJ data), 
IGHD/M mutated sequences (derived from RNA VDJ data), class-switched sequences (derived 
from RNA VDJ data). Top panel depicts significant genes across pairwise comparisons of 
COVID19 groups vs. healthy volunteers. Middle panel depicts significant genes across COVID19 
vs sepsis groups. Bottom panel depicts significant genes across COVID19 severity groups. All 
significant pairwise comparisons are derived from Dunn tests post Kruskal Wallis testing. (M) 
Proportion of constant region genes across B cell clusters per study group. (N) Sequence 
similarity network of VDJ sequences, from single cell VDJ data (central nodes), to published 
monoclonal antibodies (peripheral nodes; references and epitopes described in legend). Edges 
depict pairwise Levenshtein’s distance of CDR3s. CDR3 sequence logos are shown following 
multiple sequence alignment.  (O) The proportion of B cells across each B cell cluster per 
disease group of sequences shared between patient groups (observed in at least 2 patients). (P) 
Cumulative bar chart of the frequencies of known SARS-CoV-2 binding BCRs per patient group. 
Each section represents an individual patient. 
 
Figure S5. Dynamic changes in T lymphocyte and NK composition and repertoire 
associated with COVID-19 severity, related to Figure 5.  
(A) Single cell mass cytometry (CyTOF) of whole blood showing differential abundance for T and 
NK cells. (B,C) Multicolour Flow Cytometry analysis of PBMC (B) boxplots, dotplots and 
heatmap describing the phenotype and frequency of subsets of memory CD4 T cell subsets 
defined based on the expression of CCR4, CCR6 and CXCR3 (C) frequency of 
TIM3+CD38+HLADR+ CD8+ T cells. (D) Single cell mass cytometry frequency of CLA+HLADR+NK 
cells. (E-I) CITEseq profiling of T and NK cell populations in PBMC (E) covariate analysis of cell 
abundance with clinical, demographic and experimental variables in hospitalised COVID-19 
cases (with BH adjusted ANOVA test for significance) (F-I) PCA and correlation with clinical 
covariates and severity measures for gene expression in acute hospitalised cases (mild, severe, 
critical) in (F) CD4 regulatory T cells (G) CD4 effector T cells (H) CD8 effector memory T cells (I) 
activated NK cells. (J,K) UMAP of CD4+ T cells and associated clusters (J) used in repertoire 
analysis (K) indicating Shannon diversity of CD8 T cells by patent group. (L) Mean clone size 
CD4 and CD8. (M) Using a pre-defined cytotoxicity metric the overall cytotoxicity was calculated 
per individual for both the CD4 and CD8 subsets. For each individual the number of enlarged 
clones in these subsets was determined (defined as >2 cells with the same TCR chain). Mean 
cytotoxicity per individual is correlated with the number of expanded clones across each 
individual, irrespective of cohort origin (Pearson’s R2). (N) Illustration of the method used to 
identify CD3 Kmers associated with COVID-19 compared to cells from healthy volunteers and 
patients with sepsis. (O) Number of kmers comparing COVID-19 vs healthy volunteers and 
sepsis. 
 
Figure S6. Plasma protein signatures and subphenotypes of COVID-19, related to figure 6 
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(A-F) Plasma proteins assayed by HT-LC-MS/MS mass spectrometry (A) unsupervised 
clustering analysis all samples (B) supervised correlation analysis all samples (C) individual 
protein abundance across the comparator groups. Only one sample per patient at the maximal 
severity are plotted. (D,E) GOBP terms or Reactome pathways significantly enriched 
(FDR<0.05) in proteins differentially abundant contrasting samples from (D) mild hospitalised 
COVID-19 patients with those from healthy volunteers or from mild community COVID-19 cases 
and (E) severe vs mild or critical. (F) Pairwise contrasts, severe vs mild and critical vs severe 
COVID-19. (G) Individual protein abundance across the comparator groups assayed using 
luminex. (H) Similarity network fusion (SNF) for hospitalised COVID-19 patients from COMBAT 
(discovery) data using networks derived from sample-by-sample similarity matrix for mass 
spectrometry and luminex assays of plasma proteins, and shaded by SOFA_O2. (I,J) Mass 
General Hospital (Olink) validation data and COMBAT (discovery) cohorts shaded by (I) cluster 
group for COMBAT cohort only (J) shaded by WHO ordinal score (max severity) for all samples. 
(K,L) SNF clusters when analysing hospitalised COVID-19 and sepsis patients shaded by (K) 
cluster group (L) patient comparator group.*p< 0.05, **p< 0.01, ***p< 0.001, ****p< 0.0001 by 
One-way ANOVA with Tukey’s Multicomparison Test. Data are represented as mean ± SEM.  
 
Figure S7. Integrative approaches define hallmarks of COVID-19 response, see figure 7 
(A-C) Machine learning feature selection for COVID-19 severity (A) summary of process 
followed (B) violin plots showing distribution of final selected predictive feature set across WHO 
severity groups (C) performance of the 10 best algorithms when run on all PCs, only the top-
scored PCs, and the raw features extracted from the PCs (error bars are confidence intervals for 
the cross validation runs). We also show the accuracies from training the algorithms with the 
train+test sets and evaluating them on the validation set (averaged over 50 runs). (D,E) Machine 
learning to discriminate between sepsis and COVID-19 using plasma proteins, whole blood total 
RNAseq and mass cytometry as input variables in SIMON showing (D) enriched KEGG 
pathways on all features with variable importance score >50 (E) discriminating features with 
variable score >70. (F-J) Tensor analysis (F) tensor and matrix decomposition across multi-omic 
datasets showing datasets including 152 samples by 8 cell lineage clusters (scRNAseq, 22 
missing samples) and whole blood (total RNAseq, 9 missing samples) by 14,989 genes; cell 
composition from CITEseq (152 samples by 64 pseudobulk cell types, 22 missing samples) and 
CyTOF (152 samples by 10 or 51 cell types, non-granulocyte depleted and depleted whole blood 
with 21 or 20 samples missing); and plasma proteins from luminex (152 samples  by 51 proteins, 
20 missing samples) and high throughput liquid chromatography with tandem mass 
spectrometry (152 samples by 105 proteins with 17 samples missing) (G) heat map summarising 
top components identified on pairwise contrasts involving clinical covariates, measures of 
severity and patient group (H) tensor component 2 showing loading scores and relationship with 
gender, with loading scores displayed for tensor involving differential gene expression cell 
lineage clusters and whole blood (I) feature types contributing to loading scores of the top 
components according to the posterior inclusion probability (J) component inclusion where 
significant on analysis of variance between COVID-19 source group and healthy volunteers (BH 
adjusted P <0.01) and absolute spearman’s P >= 0.5 (and BH adjusted P < 0.01) with at least 
one of the contrasts between the COVID-19 groups vs healthy volunteers.  
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STAR Methods 
 
RESOURCE AVAILABILITY 
 
Lead Contact 
Further information and requests for resources and reagents should be directed to and will be 
fulfilled by Julian Knight (julian.knight@well.ox.ac.uk). 
 
Materials Availability 
This study did not generate new unique reagents. 
 
Data and Code Availability 
Derived and processed data for all the datasets generated during this study and reported in this 
paper will be available including through this paper and the European Genome-phenome Archive 
(EGA). Web-based interfaces for visualising COMBAT datasets and outputs reported here are 
available at https://mlv.combat.ox.ac.uk/ and https://shiny.combat.ox.ac.uk. All code used for 
every algorithm followed in data processing and analysis is fully referenced within the specific 
methods text sections and Key Resources Table. 
 
EXPERIMENTAL MODEL AND SUBJECT DETAILS 
 
Cohorts 
The study was designed to allow deep molecular, multi-omic and immunological profiling of 
COVID-19 in peripheral blood at the outset of the pandemic in the United Kingdom during a public 
health emergency. Samples used were derived from multiple sources to allow comparison 
between adult patients with varying severities of COVID-19 and comparator disease or health 
states. A summary of the cohorts included in this study is provided below followed by a description 
of the methods used to define clinical parameters and handling of the blood samples. 
Demographic information and clinical phenotyping for all study subjects is summarised in Table 
S2, together with numbers of patients/samples assayed by cohort. 
 
Hospitalised COVID-19 patients 
Patients admitted to Oxford University Hospitals NHS Foundation Trust, UK were co-recruited into 
the Sepsis Immunomics study (a prospective observational cohort study applying an integrated 
immune -omic approach to understand why some patients have a severe response to infection), 
and the ISARIC/WHO Clinical Characterisation Protocol for Severe Emerging Infections, if they 
were found to have a syndrome consistent with COVID-19 and a positive test for SARS-CoV-2 
using reverse transcriptase polymerase chain reaction (RT-PCR) from an upper respiratory tract 
(nose/throat) swab tested in accredited laboratories. Written informed consent was obtained from 
adults or personal/nominated consultees for patients lacking capacity, with retrospective consent 
obtained from the patient once capacity was regained. Ethical approval was given by the South 
Central–Oxford C Research Ethics Committee (REC) in England (Sepsis Immunomics REC 
reference 19/SC/0296; ISARIC WHO Clinical Characterisation Protocol for Severe Emerging 
Infections REC reference 13/SC/0149). Patients had whole blood sampled on days 1, 3 and 5 of 
either hospital or intensive care admission and were recruited during the SARS-COV-2 pandemic 
between 13 March and 28 April 2020. A selection of survivors were approached and asked to 
provide samples with consent under both research protocols at day 28 or more following discharge 
from hospital.  
 
Healthcare workers with COVID-19 
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In order to provide a time of symptom matched set of samples from individuals with mild COVID-
19 disease in the community, healthcare workers based at Oxford University Hospitals NHS 
Foundation Trust, UK with symptoms consistent with mild COVID-19 and a positive test for SARS-
CoV-2 using RT-PCR from an upper respiratory tract (nose/throat) swab tested in an accredited 
lab were recruited into the Gastro-intestinal illness in Oxford: COVID substudy [Sheffield REC, 
reference: 16/YH/0247]. Individuals were consented and sampled at or after 7 days from the start 
of symptoms when the participants were returning to work. 
 
Hospitalised patients with all-cause sepsis 
In order to include samples from patients with sources of severe sepsis other than COVID-19, 
patients older than 18 years of age admitted to Oxford University Hospitals NHS Foundation Trust, 
UK with symptoms and signs of established sepsis (suspected infection with an acute change in 
total Sequential Organ Failure Assessment (SOFA) score of ≥2 points or a change in quick SOFA 
score by ≥2 points) were consented into the Sepsis Immunomics project [Oxford REC C, 
reference:19/SC/0296]) between 12 October 2019 and 13 March 2020. Patients were sampled on 
days 1, 3 and 5 of either hospital or intensive care admission and a selection of survivors were 
sampled, with additional consent at up to 6 months post-discharge. 
 
Healthy volunteers 
Following advertisement, interested individuals 55 years or over and self-reporting as healthy were 
consented and recruited into the Genetic diversity and gene expression in white blood cells study 
[South Central Oxford REC B, reference 06/Q1605/55]. Blood samples were collected on one 
occasion only.  
 
Critically unwell patients with COVID-19 and influenza in London 
In order to provide comparator samples from patients critically unwell with influenza, samples were 
included from patients ≥18 years old managed in an intensive care unit (ICU) for ≥24 hours 
requiring ventilator support with either a diagnosis of COVID-19 or severe influenza using the 
Aspergillosis in patients with severe influenza (AspiFlu ISRCTN51287266) study [Wales REC 5, 
reference 19/WA/0310]. Patients had blood sampled within 72 hours of enrolment that may occur 
within 7 days of admission onto ICU. Patients were recruited at one of three UK units including St 
George’s University Hospitals NHS Foundation Trust, Guy’s and St Thomas’ NHS Foundation 
Trust and King’s College Hospital NHS Foundation Trust. PCR diagnostics for influenza or SARS-
CoV2 performed by accredited laboratories were used for diagnosis. 
 
Clinical phenotyping 
 
Clinical data capture 
Healthy volunteers and healthcare workers with COVID-19 had age, sex and, where possible, self-
reported ethnic background information collected. Information on previous medical history was not 
collected or stored for the healthy volunteer cohort but participants were invited on the basis of 
their self-reporting being ‘healthy’ and were deemed capable of self-presenting for study 
assessment. Healthcare workers were asked for the date of onset of symptoms (‘when they started 
to feel unwell’) and the number of days between this date and sampling was calculated for every 
participant. Any healthcare worker who was admitted to hospital or required oxygen had this 
information collected and retained and defined as maximal severity of illness using the World 
Health Organisation Criteria (see below).   
 
A range of clinical data was collected and stored for downstream analysis using structured 
methodology from the hospitalised patients included in the study (COVID-19, all-cause sepsis and 
influenza).  
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Patient demographics 
Sex and ethnicity were captured using electronic healthcare records (EHR). Age was calculated 
at the time of sampling or maximal severity of illness using dates of birth registered in EHR.  
 
Patient medical history and risk factors 
Smoking status was derived from clinical clerking or direct patient or next-of-kin questioning where 
possible. Estimated or calculated weight was available for the vast majority of patients. In London 
COVID-19 and influenza patients, body-mass index (BMI) was calculated through availability of 
estimated or measured height. In Oxford patients, height was rarely available and so BMI was 
estimated using sex and weight and correlation with measured BMI was acceptable in cases 
where BMI was available. BMI of 25 or over was defined as overweight. Index of multiple 
deprivation (IMD) quintile and Charlson comorbidity indices (2012 definitions) were derived from 
the EHR in Oxford and were not available for London patients. Previous medical problems in 
patients admitted to Oxford hospitals were defined using NHS UK Read Codes Clinical Terms 
Version 3 and converted into ICD10 codes using ‘TRUD’ 
(https://isd.digital.nhs.uk/trud3/user/guest/group/0/pack/9). Pre-existing medical conditions 
defined through ICD10 were defined through the consensus of at least one clinical opinion and in 
cases where there was uncertainty if a code was assigned to an acute presentation, pre-existing 
conditions were only assigned if they were present in the first episode of an admission, and not if 
they were only present in later admission episodes. For patients recruited in London, pre-existing 
diseases were defined by the study teams using clinical records and patient or relative questioning.  
 
After defining pre-existing ICD10 codes or reported diagnoses, patients were classified as having 
the following conditions: hypertension, chronic respiratory disease (not explicitly available for 
London patients), asthma (not explicitly available for London patients but chronic obstructive 
pulmonary disease was), chronic cardiovascular disease, diabetes, haematological malignancy, 
other malignancy, liver disease, neurological disease (not available for London patients), chronic 
kidney disease, solid organ transplant, rheumatological condition (not available for London 
patients), significant immunosuppression (not available for London patients) and stroke / dementia 
(not available for London patients). An OpenSafely (OS) score was calculated for all patients using 
these classifications combined with BMI and IMD (Williamson et al., 2020). An adjusted OS score 
was calculated for the London cases that did not include some missing pre-morbid conditions and 
IMD quintile and the correlation was very high with the standard OS score (r=0.98).  
 
Admission and disease timescales 
Length of hospital stay was defined using hospital records for all hospitalised patients. Length of 
intensive care admission and duration of vasopressor, ventilation or, where appropriate 
extracorporeal membrane oxygenation (ECMO) and/or renal replacement therapy were all defined 
for hospitalised patients using EHR. All intervention and maximal severity timepoints were defined 
according to the date of onset of symptoms for each patient. This was defined by at least 2 
independent clinicians through review of the clinical notes or direct questioning of the patient 
according to any unusual symptoms related to the current clinical condition. COVID-19 was 
defined by presence of at least one symptom consistent with COVID-19 and a positive 
microbiological test. Patients without symptoms were not approached for recruitment. Time 
between symptom onset and sampling was measured in days. All London patients were classified 
as critical requiring mechanical ventilation. No specific physiological observations were available 
for the London patients at the time of sampling and were only available at the time of admission 
onto ICU for calculation of the Acute Physiology and Chronic Health Evaluation (APACHE) and 
SOFA scores. Physiological observations were available from EHR for all hospitalised Oxford 
patients and were defined on the day of sampling at midday or the closest time before or after 
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midday for each patient and timepoint including oxygen saturation, delivered fraction of inspired 
oxygen (either exact or estimated depending on delivery method: 0.24 for nasal cannula, 0.28 for 
simple face mask, 0.8 for non-rebreathe mask), pulse rate and blood pressure. Oxygen saturation: 
fraction of inspired oxygen ratio (SaO2:FiO2) was calculated as a proxy for partial pressure of 
oxygen:FiO2 ratio in the absence of complete arterial blood sampling for all patients.  Days of 
oxygen therapy were defined in relation to sampling and maximal illness and total hospital stay for 
hospitalised COVID-19 patients where 2 or more timepoints of oxygen therapy were recorded. 
Fever was defined as 38.0ºC and, if present at midday, was defined at present at time of sampling. 
Highest measured temperature 24 hours prior to midday was also captured using EHR for every 
timepoint and the presence of ‘persistent fever’ more measures of temperature ≥38ºC in 24 hours 
before midday than temperatures recorded <38ºC was also recorded for all sampling timepoints 
in hospitalised Oxford patients. In those patients where persistent fever was observed the time in 
days between onset of symptoms and end of persistent fever was calculated.  
 
Maximal severity was defined for Oxford COVID-19 patients using SaO2:FiO2 ratio and the date 
of lowest value was defined through manual inspection of longitudinal physiological parameters 
available through EHR. The individual levels of SaO2, method and exact or estimated 
concentration of oxygen delivered and additional recruitment strategies such as paralysis or 
proning were captured. In cases where death occurred, this was defined as maximum severity of 
illness and time between symptom onset and maximum severity was defined thereafter.  
 
All together this information was used to define WHO categorical (mild as no oxygen, severe as 
≤93% oxygen saturation, and critical as requiring mechanical ventilation) and ordinal scales 
(https://www.who.int/blueprint/priority-diseases/key-action/COVID-
19_Treatment_Trial_Design_Master_Protocol_synopsis_Final_18022020.pdf) for each timepoint 
of sampling and maximal severity of illness and these times were all aligned in days from onset of 
symptoms.  Severity was also classified according to the WHO Ordinal scale 
(https://www.who.int/blueprint/priority-diseases/key-action/COVID-
19_Treatment_Trial_Design_Master_Protocol_synopsis_Final_18022020.pdf) and Sequential 
Organ Failure Assessment score (Ferreira et al., 2001) together with the extent of lung disease 
and compromise (SOFA oxygenation score). 
 
Other clinical and therapeutic tests and interventions 
Full blood count differentials (haemoglobin concentration, platelet count, total white cell, 
neutrophil, lymphocyte, monocyte and eosinophil counts), highest lactate, C-reactive protein 
(CRP), alkaline phosphatase (ALP), alanine transaminase (ALT) and lowest bicarbonate were 
captured at the time of sampling for all hospitalised COVID, and sepsis patients using EHR. 
Equivalent results at the time of sampling were not available for London patients. D-dimer, lactate 
dehydrogenase (LDH) creatine kinase (CK) levels at the time of admission, sampling and maximal 
severity of illness were available for hospitalised Oxford patients but not London patients. 
Decisions on maximal levels of care based on senior lead clinician decision (frequently with 
consensus from senior intensive care clinicians) was captured and patients were defined as frail 
if the plan was not to offer multi-organ support.  
 
Patients with computerised tomography (CT) images of the lungs and thorax had images assessed 
independently by three radiology or respiratory experts to define ground-glass or consolidation 
patterns of lung involvement, presence or absence of pulmonary embolus and extent of 
involvement. 
 
The clinical suspicion and/or radiological confirmation of occurrence of any major arterial (e.g. 
stroke) or venous thromboembolic (deep venous thrombosis, pulmonary embolus) event was 
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captured for each hospitalised Oxford patient and defined as a single binary outcome. Radiological 
diagnosis of pulmonary embolus was defined separately but compared to this definition to ensure 
consistency. 
 
Co-prescription of agents hypothesised or proven to be effective in the management or treatment 
of COVID-19 were logged for all patients with COVID-19. These agents included dexamethasone, 
remdesivir, interferon 1beta, tociluzumab, anakinra, azithromycin, convalescent plasma or other 
experimental immunomodulatory agents. 
 
Inclusion / Exclusion criteria and Early Stage Matching 
Patients <18 years old or those with active malignancy or receiving significant immunosuppression 
(greater than an equivalent of 40mg once a day of prednisolone) prior to admission, or those with 
a clear alternative cause for symptoms and hospital presentation were excluded from analyses. 
For most modalities, samples were prioritised following a stepwise algorithm to match for age, sex 
and severity of illness. The steps for matching were as follows: 
Select severe/critical hospitalized COVID-19 patients first 
1. As many critical samples were identified at the earliest point of their maximal severity and 
samples from patients sampled during severe disease (not defined as frail) were matched in terms 
of age, sex and time between onset of symptoms and sampling as closely as possible. 
2. Rejection sampling was used to select individuals from the comparator groups (mild COVID-19 
including both hospitalised and community healthcare workers), healthy volunteers, influenza and 
all-cause sepsis) to match confounder distributions. 
 
Some downstream analyses required multiple samples from the same individuals transiting 
through different disease states. In cases where data was available from multiple samples for the 
same individual a cross-sectional analysis involved prioritising a single sample based on 
closeness to maximal severity of illness. 
 
METHOD DETAILS 
 
Blood sample processing 
Whole blood from hospitalised Oxford patients, healthcare workers and healthy volunteers were 
sampled into Tempus tubes (Life Technologies Corporation) for extraction of whole blood total 
RNA for sequencing or DNA for genotyping or sequencing, or EDTA buffered vacutainers (Fisher 
Scientific) for processing within 4 hours of sampling. Processing consisted of mixing of whole 
blood in a 1:1 ratio with Cytodelics (Cytodelics), and then fractionated using Leucosep (Griener 
Bio-One) into peripheral blood mononuclear cells (PBMC) and EDTA-buffered plasma. PBMCs 
and plasma were frozen and thawed in batches for specific experiments to minimise the risk of 
batch effects. Tempus tubes were frozen at -80°C until extraction of RNA performed in batches. 
 
Immune cell profiling using mass cytometry 
Sample processing and antigen staining 
On the day of staining, Cytodelics stabilised samples were thawed, processed to remove red blood 
cells and fixed using Whole Blood Processing Kit (Cytodelics) as per manufacturer instruction. 
Two control samples from 2 healthy volunteers (Control A and Control B) were included to each 
batch to assess batch to batch variations. Fixed cells were distributed in 96 deep well V-bottomed 
plate, washed once with CSB containing Benzonase, and then barcoded using the Cell-ID 20-Plex 
Pd Barcoding Kit (Fluidigm). 
 
Briefly, cells were washed once with Barcode Perm Buffer, resuspended in Barcode Perm Buffer 
supplemented with Heparin to reduce nonspecific eosinophil staining artifacts (Rahman et al., 
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2016) and loaded with half the amount of metal barcodes recommended by the manufacturer.  
After 30m incubation at room temperature, cells were washed twice in CSB, pooled and counted. 
40-70% of cells in whole blood are CD66+ granulocytes, and their frequency can increase to up 
to >95% in septic patients. To maintain both the possibility to measure changes in the frequency 
of granulocytes and to analyse with a reasonable efficiency mononuclear cells in samples from 
COVID-19 and sepsis patients, each batch was split in two aliquots. The first aliquot was stained 
with no enrichment/depletion done (i.e. unaltered). The second aliquot was enriched for 
mononuclear cells using a granulocytes depletion kit based on the magnetic separation of CD66+ 
cells using beads coated with anti-CD66 antibodies (EasySep; 17882). Both granulocyte depleted 
and non-depleted samples were first stained with the surface antibody cocktail for 30m at room 
temperature), washed with CSB, then fixed with Nuclear Antigen Staining Buffer and 
permeabilized with Nuclear Antigen Staining Perm before staining with an intracellular antibody 
cocktail. After staining at room temperature for 45m cells were washed in CSB buffer, and fixed in 
1.6% FA solution before overnight incubation with Cell-ID™ Intercalator–Ir. On the day of 
acquisition, cells were washed once in CSB buffer supplemented with Benzonase, resuspended 
in water and run at an acquisition rate of <300 events/second and acquired on a Helios CyTOF 
machine. An additional aliquot of whole blood was thawed and stained for those samples where 
yield was too low after staining and acquisition. In total 31 samples were acquired twice (in different 
batches). 
 
Flow cytometry 
For flow cytometry we analysed one aliquot of the same PBMC samples at the same time they 
were being processed for 10x Genomics CITEseq. Each aliquot was split into three (to have 5-
10x105 cells/staining) and distributed in 96 well V-bottom plates. Cells were spun at 500g for 10 
min, then pellets stained form 10min at RT in PBS with 15µl live dead Aqua, diluted as per 
manufacturer’s instructions) supplemented with 165µg/well human Ig (Gammanorm, 
Octopharma), to block non-specific Fc receptors binding. Cells were washed with 200µl FACS 
buffer (PBS 10% FCS), 10min 300g and pellets were stained with each antibody mix in Brilliant 
Stain Buffer (BD Biosciences), 20min at RT. Cells were with 200µl FACS buffer, 10min 300g and 
fixed in IC Fixation Buffer (Thermo Scientific) diluted 1:2 in PBS, total 200 µl/well. Cells were fixed 
a minimum of 30min and a maximum of overnight before being acquired at the BD Symphony 
X50. 
 
Whole blood total RNAseq 
Total RNA-seq was performed with libraries prepared by Oxford Genomics Centre with the 
NEBNext Ultra II Directional RNA Library Prep Kit for Illumina after rRNA and globin depletion kits. 
Libraries sequenced as a single pool of 144 samples (124 patients) on one NovaSeq S4 flow cell 
(4 lanes) with a target of 50M 100bp read pairs per sample. Due to limited material availability 
influenza samples were sequenced used a small-bulk RNA-sequencing method in order to 
facilitate genetic demultiplexing of the CITE-seq data. 
 
Bulk BCR and TCR sequencing 
Bulk isotype-resolved B cell receptor sequencing was performed on RNA from whole blood using 
a protocol adapted from (Bashford-Rogers et al., 2019), with moderations including the use of a 
more sensitive reverse transcriptase (Superscript IV) and primer concentrations (primer 
sequences provided in Table S4). Bulk TCR sequencing was based on the same protocol adapted 
from (De Mattos-Arruda et al., 2019), in which the TRB primers were redesigned to capture the 
full productive repertoire (primer sequences provided in Table S4). Sequencing libraries were 
prepared using Illumina protocols and sequenced using 300bp paired-ended sequencing on a 
MiSeq (Illumina). 
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10x Genomics Chromium CITEseq 
To minimise batch effects, cryopreserved PBMCs were processed in ten batches of 14 samples 
per batch, with each batch containing at least one sample from each comparator group and similar 
distribution of patients age and sex across the batches. After thawing, all 14 samples were mixed 
together to form a single pool (at a ratio that yielded the same number of live cells pooled per 
sample based on live/dead counting) followed by viability staining (7-AAD dye, BioLegend 420404) 
and live/dead sorting on a BD FACSAria Fusion sorter.  
 
Post sort, each pool was incubated with FcX block (BioLegend) for ten minutes on ice, washed, 
and stained with a 192 TotalSeq-C antibody panel (BioLegend 99814) for 30 minutes on ice. Cells 
were washed three times in PBS + 1% BSA, counted on the BioRad TC20 Automated Cell Counter 
and loaded onto the 10X Genomics Chip G at 50,000 cells per channel. Each pool was loaded 
across seven channels. 
 
scVDJ-seq data generation 
scVDJ data was generated on the same cells as the scCITE-seq and GEX datasets. Cell Ranger 
software (v3.1.0) was used to process the Chromium scRNA-seq output data. The FASTQ files 
were filtered per sequence library plex (i.e. per-pool) using the 10x Genomics index-hopping-filter 
(https://support.10xgenomics.com/docs/index-hopping-filter) that implements a strategy to 
mitigate the known index hopping issue with the Illumina machines that use patterned flow cells. 
The IMGT's reference genome was used as a reference for the BCR and TCR VDJ libraries. Cell 
Ranger was also used to filter read alignments, cell barcodes and UMIs, excluding those droplets 
with low numbers of reads (e.g. erythrocytes or droplets with encapsulating ambient RNA from 
dying cells). 
 
10x Genomics scATACseq 
Similar to the CITE-seq approach, cryopreserved PBMCs were processed in two batches of five 
samples per batch with each batch containing at least one sample from each comparator group. 
Each sample underwent viability staining (7-AAD dye, BioLegend 420404) followed by live/dead 
sorting on a BD FACSAria Fusion sorter. Post sort, five samples of an equal number of cells were 
mixed together to form a single pool, and each pool underwent cell lysis and nuclear extraction 
according to the 10X demonstrated protocol Nuclei Isolation for Single Cell ATAC Sequencing 
CG000169 Rev D. Briefly, 200,000 cells from each sample were added to form the pool and cell 
lysis was performed with 100 μl chilled Lysis Buffer (10 mM Tris-HCl (pH 7.4), 10 mM NaCl, 3 mM 
MgCl2, 0.1% Tween-20, 0.1% Nonidet P40 Substitute, 0.01% digitonin and 1% BSA) for three 
minutes on ice. The lysis reaction was quenched with 1 ml chilled Wash Buffer (10 mM Tris-HCl 
(pH 7.4), 10 mM NaCl, 3 mM MgCl2, 0.1% Tween-20 and 1% BSA) and the nuclei were centrifuged 
(500g for 5 min at 4 °C). After removal of supernatant, the nuclei were resuspended in chilled 
diluted nuclei buffer (10X Genomics; 2000153) and concentration determined with the Biorad 
TC20 Automated Cell Counter. Each pool of nuclei was loaded across four channels of the 10X 
Genomics Chip E (15,000 nuclei per channel). 
 
Tims-TOF mass spectrometry 
 
Sample preparation of non-depleted plasma/serum for LC-MS/MS analysis  
Samples 
Plasma and serum samples were stored at -80°C then thawed overnight at 4°C before use.  
Protein precipitation and protein digestion using S-trap 
For the bottom-up proteomics approach, proteins were precipitated using Isopropanol (IPA) and 
loaded into the S-trap 96-well plates (Profiti, Huntington, NY, USA) where proteins were retained 
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for subsequent trypsin digestion following S-trap manufacturer instructions (Zougman et al., 2014). 
Briefly, five microliters of plasma or serum were pipetted under a category 2 fume hoods into 
standard 96-well plates pre-filled with 200 µl of isopropanol following the 96-well plate layouts. 
Precipitation plates were kept at room temperature for 1h before transferring the isopropanol – 
plasma (serum) mixture into the 96-well S-trap plates. 200 µl of S-trap binding buffer (90% 
methanol, 100mM Triethylammonium bicarbonate (TEAB)) were added into each well of the 
precipitation plate to recover any protein precipitates and transferred into the corresponding 96-
well S-trap plates. Plates were then spun at 1500g for 2 min. Protein colloidal precipitates were 
retained into the S-trap mesh. S-trap plates were then subjected to four consecutive washes with 
S-trap binding buffer (200 µl for the first wash and 350 µl the three remaining), followed by a 2 min 
spin at 1500g. 125 µl 50mM TEAB containing trypsin (Worthington) to a 1:25 wt:wt ratio was added 
into each well and incubated overnight at 37°C. Tryptic peptides were sequentially eluted from the 
S-trap into a clean 96-well plate with 80 µl of 50mM TEAB, 80 µl of 0.2 % formic acid (FA) in LC-
MS water and 80 µl of 0.2% FA in 50% acetonitrile with 2min spins at 1500 x g after each solvent 
addition. Finally, plates containing tryptic digests were dried in the speed vac and reconstituted 
with 70 µl of 0.1 % formic acid (FA) for subsequent LC-MS/MS analysis after two serial dilutions 
(1/100 and 1/10) in 0.1 % FA for a final 1/1000 dilution plate to achieve suitable peptide 
concentration for LC-MS/MS loading.   
Pools 
For quality control (QC) purposes and for repeat injections, a pool for each clinical sample group 
was created and processed as described above. In addition to the sample group pools, an 
overarching master pool for each of the plasma and serum cohorts was also built from the 
individual non-diluted tryptic peptide sample group pool with master pools built to reflect the 
contribution of each individual group to the overall study.   
 
High pH fractionation of Master pools to generate plasma/serum libraries  
To increase the depth of the non-depleted plasma/serum proteome, master pools were subjected 
to a high pH fractionation using the SOLA HRP cartridges (Thermo Fisher) with the aim to create 
a protein library. In brief, an equivalent of 150µg of peptides from each master pool was 
fractionated into eight different fractions going from 0% to 70 % Acetonitrile in 10mM ammonium 
formate at pH 10. Prior sample loading, SOLA HRP columns were conditioned with 0.1% 
triflouroacetic acid (TFA) in 70% acetonitrile and washed with 0.1% TFA. Following the sample 
loading, columns were washed with 0.1% TFA before starting the stepwise high pH fractionation 
elution with 200µl of 0%, 10%, 15%, 20%, 25%, 30%, 40% and 70% ACN in 10mM ammonium 
formate pH 10. Eluted fractions were then dried in a speed vac and reconstituted with 40µl of 0.1 
% FA prior to LC-MS analysis.    
 
LC_MS/MS using the high-throughput Evosep One - Bruker TimsTOF Pro platform 
C18 Evotips (Evosep one, Odense Denmark) were prepared following manufacturer’s instructions. 
Briefly, Evotips were conditioned with 1-propanol, washed with solvent B (0.1% FA in 100% 
acetonitrile) and equilibrated in solvent A (0.1% FA in LC-MS water) before loading them with a 
total volume of twenty microliters containing 10 µl of sample (peptides) from dilution 1/1000 plate 
(equivalent to an estimated 30 ng of peptides). Evotips were washed once with solvent A and 
stored in 100 µl solvent A till the sample injection.  
 
Samples were analysed using a  Evosep One LC system connected to the TimsTOF Pro mass 
spectrometer (Bruker Daltonics). Peptides were analysed using the pre-built 100 samples / per 
day method (Evosep) with an 11.5 min gradient (total cycle time of 14.4min) at a 1.2 µl/min flow 
rate (Bache et al., 2018). In brief, tryptic peptides were transferred from the pre-loaded C18 
Evotips with a pre-built gradient to a sample loop and separated on an 8cm C18 analytical column 
(Evosep Pepsep, 3um beads, 100 um ID) with an overall gradient from 3 to 40% acetonitrile.     
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Mass spectrometry data were acquired in PASEF mode (oTOF control v6.0.0.12). The ion mobility 
window was set to 1/k0 start = 0.85 Vs/cm2 to 1/k0 end = 1.3 Vs/cm2, ramp time 100 ms with 
locked duty cycle, mass range 100 - 1700 m/z. MS/MS were acquired in 4 PASEF frames (3 cycles 
overlap). Target intensity was set to 6000 and threshold intensity 200. The data acquisition method 
has been deposited within the raw data in the ProteomeXchange data repository (PXD023175) 
(Perez-Riverol et al., 2019).  
 
To assess the technical reproducibility, master pools were run before each sample group and 
sample group pools were run after the master pools, every twenty sample runs and after the last 
sample of the group. Blanks were injected in between groups to control for carry over.    
 
Luminex assay 
The concentrations of selected proteins in the plasma and serum were measured with Human 
Magnetic Luminex Kits (Bio-techne) with 3 panels containing total 51 analytes: C-C motif ligand 
(CCL)2/3/4/11/17/18/19/20, CD40 Ligand (CD40L), CD163, complement component 5a (C5a), C-
X-C motif chemokine ligand (CXCL)1/5/10, epidermal growth factor (EGF), basic fibroblast growth 
factor (FGF2), granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage colony-
stimulating factor (GM-CSF), granzyme B (GrB), interferon (IFN)a/b/g, interleukin (IL)-
1a/1b/2/3/5/6/8/10/12/13/15/17A/23/33, lactoferrin (LF), Lipocalin-2 (LCN2), Lymphotoxin-alpha 
(LT-a), macrophage colony-stimulating factor (M-CSF), Myeloperoxidase (MPO), beta-nerve 
growth factor (b-NGF), Oncostatin M (OSM), S100 calcium-binding protein A9 (S100A9), stem cell 
growth factor (SCGF), tissue factor (TF), tissue factor pathway inhibitor (TFPI), transforming 
growth factor alpha (TGF-a), Thrombopoietin (THPO), tumor necrosis factor (TNF) and triggering 
receptor expressed on myeloid cells 1 (TREM-1). The assays were conducted according to the 
manufacturer’s instruction. Results were obtained with a Bio-Rad Bio-Plex® 200 Systems. The 
data of fluorescence intensity (FI) from the assays were used for further analysis. 
 
QUANTIFICATION AND STATISTICAL ANALYSIS 
 
Statistical and unsupervised analysis of clinical phenotyping using clustering 
 
To analyse demographic and clinical features cohorts the following statistical tests were applied. 
For approximately gaussian distributed continuous data we used the anova test (using the function 
f_oneway from python’s scipy.stats package). For other distributions of continuous variables, we 
used the Kruskal-Wallis-test (using the function kruskal from python’s scipy.stats package). For 
categorical data we used the chi-squared test test (using the function chi2_contingency from 
python’s scipy.stats package). 
 
Unsupervised and consensus k-means clustering were used to analyse the clinical data (Moniti et 
al., 2003; Seymour et al., 2019). We prepared the data by applying quantile-normalization to 
counts and shift+rescaling to zero mean and unit variance to all features (applying quantile 
normalization to all features, not just counts, further improves the correlation of the ordered 
consensus matrix with the who severity_at_sample classes). We then ran consensus k-means 
clustering to identify the best number of clusters. This means we sample from our clinical dataset 
50% of the entries, run k-means clustering (where we vary k, i.e. the number of clusters), and 
record how often two elements were clustered together out of the time where they were in the 
50% of samples data points in a so-called consensus matrix. We repeated this process 600 times 
for k=2,3,4,5,6 clusters. For each k, we computed the empirical cumulative distribution (CDF) and 
the change in the area under the CDF curves for different k. The optimal cluster number is obtained 
for the k after which the CDF curves (and hence the areas) do not change significantly anymore. 
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We then performed an unsupervised consensus k-means clustering analysis of (subsets) of the 
clinical variables (using python’s sklearn library). In order to mitigate the question of which features 
are independent, we performed this analysis on the principal components (using sklearn). After 
consensus clustering, we sorted the consensus matrix using hierarchical clustering. The methods 
were implemented in python and used the packages numpy, scipy and pandas. We also performed 
hierarchical clustering directly on the PCs, rather than on the consensus matrix (using 
AgglomerativeClustering and dendrogram from sklearn).  
 
Mass cytometry data analysis 
 
CyTOF data pre-processing 
After acquisition, data was normalised and concatenated on CyTOF Software v7.0, compensated 
on CATALYST (version 1.5.3.23). Then, data was further processed for removal of beads and of 
DNA negative events and for Gaussian parameters using a manual gating strategy using FlowJo 
v10.6 as described in Methods S1 Figure 1.  Then, samples were manually debarcoded (FlowJo 
v10.6) and CD45+ events (non-depleted samples), or CD66-Siglec8-CD45+ (granulocytes-
depleted samples) events were selected for further processing.   For each batch, two control 
samples were run together with the patients’ samples to allow for correction for batch effects. 
Batch correction was performed with CytoNorm software (version 0.0.5) separately for granulocyte 
depleted and non-depleted samples. For both analyses, the training of the algorithm was done 
with 20000 cells per sample and 5 clusters (parameter nClus) using one of the control samples 
and the results were assessed using the other control sample. Doublet cells were removed by 
manual gating on FlowJo v10.6 (Methods S1 Figure 2) and were deemed as IridiumhighKi67- cells 
to avoid removing proliferating cells. Finally, to correct for potential biases due to highly varying 
cell numbers per sample, downsampling was performed to a maximum 75000 cells per sample 
for the granulocyte depleted samples and 40000 for the non-depleted samples.   
 
Clustering 
Clustering analysis and the identification of the different immune cell population was done using 
the analytical pipeline described in Methods S1 Figure 3. Clustering analysis was performed 
separately for granulocyte depleted and non-depleted samples using a self-organising map 
algorithm through an implementation of FlowSOM via the CATALYST R package (version 1.10.3). 
The initial clustering was performed using a resolution of 144 clusters (dimensions 12x12) and 
metacluster merging by consensus clustering was performed at a resolution of 25 clusters for both 
datasets. The clusters were then manually annotated to define the populations. Three major 
populations (T/NK, B/Plasmablasts and Myeloid) from the granulocyte depleted samples were 
further clustered to identify finer subpopulations using a resolution of 225 (dimensions 15x15) for 
T/NK and 144 (12x12) for the other two. The metacluster merging was performed at a resolution 
of 50 clusters for the T/NK population, 25 for the B/Plasmablast and 30 clusters for the Myeloid 
population. Clusters were manually annotated and further managed to provide cell type resolution 
at two different depths - one to define major cell types, and a finer one to define subpopulations. 
The cell type assigned to each cell ID in each of the three major population was then used to 
reconstitute the frequency of each population inside the granulocyte depleted sample. The finer 
annotation was used to evaluate the frequency of cell subtypes. 
 
Differential abundance analysis 
Differential abundance analysis was performed using code from the diffcyt package (version 1.8.8) 
with the option testDA_edgeR. The analysis was adjusted for the confounding variables batch, 
age and sex. For the analysis of the non-depleted samples the normalisation for composition bias 
was deemed necessary to account for the pronounced differences in neutrophil proportions. For 
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all other analyses no normalisation was performed. The subpopulations of the granulocyte 
depleted samples were analysed independently of each other to avoid composition effects.  
 
Manual gating and CD38 median intensity (MI) 
Two subpopulations of cells were more precisely defined by manual gating rather than by 
clustering. To do that, the cluster of the parent population (cMono or MAIT) was exported from the 
R environment and gated in FlowJo. Also, the median intensity of CD38 expression were identified 
in different cell types within the granulocyte depleted samples. 
 
Density plots 
The density plots were made by downsampling to have the same number of events across all 
different conditions and using the geom_pointdensity function of the ggpointdensity package, with 
an adjust of 4, to generate the ggplot. 
 
Integration of CyTOF and CITE-Seq data 
The two datasets were aligned using Seurat (v3.9.9.9010) using only samples that had been 
analysed on both technologies (115 samples, after exclusion of one sample due to low number of 
cells in CITE-Seq). The integration was based on an overlapping set of 38 markers that were 
common between the CyTOF and ADT antibody sets. Both datasets were filtered to exclude cells 
with unclassified or uncertain annotations. The CITE-Seq dataset was further filtered to exclude 
potentially low-quality cells with i) number of genes, or i) number of features of ADT, or iii) number 
of total UMI (RNA) or iv) number of total UMI of ADT lower than 0.001 of their relevant distributions. 
The two datasets were then downsampled to 1000 cells per sample and the integration was 
performed on 230,000 cells in total.  
   
The anchors between the query and reference datasets were found based on a CCA with 30 
dimensions and the labels were transferred using a PCA for the weight reduction of the query 
dataset. The analysis was performed with either the CITE-Seq or the CyTOF as reference 
datasets in turn and all cells were given a predicted annotation from their counterpart dataset. 
Then the predicted annotation of the cells was compared to their original annotation and all the 
common major cell types were validated with very high accuracy (Figures S1L, S1M). Finally, the 
visualisation of the two datasets was performed with the CITE-Seq data as a reference. The 
anchors were used to impute the ADT markers for the CyTOF cells which were then merged with 
the CITE-Seq data and centred in order to run a UMAP analysis to visualise all the cells together 
(Figures 1F,G). 
 
Flow cytometry data analysis 
Data were analysed with Flowjo version 10. Cells were gated on live leukocytes and 
recompensated in Flowjo. Frequencies of individually gated populations were exported and plotted 
in Prism. Alternatively, 15000 CD3 cells per sample were concatenated and exported for 
subsequent analysis in R.  
 
Whole blood total RNAseq analysis 
 
RNA-sequencing data processing  
We trimmed adaptor sequences using TrimGalore (v0.6.2, ref 
https://github.com/FelixKrueger/TrimGalore), and aligned reads to the reference genome 
(GRCh38.100) using multi-sample 2-pass mapping with STAR v2.7.3 (Dobin et al., 2013) 
(ENCODE Best Practices recommended parameters). We quantified gene expression using 
featureCounts (v1.6.4) (Liao et al., 2014) and annotations from Ensembl (v100). We calculated 
and checked QC metrics from FastQC,mapping metrics from STAR, duplication rates and other 
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RNASeq metrics from Picard (v2.23) (http://broadinstitute.github.io/picard/) and RNASeQC 
(v2.3.5) (DeLuca et al., 2012) and checked for outliers in principal component analysis. We 
removed 1 sample with high proportions of duplicates and short reads, low exonic rate, number of 
mapped reads and number of genes identified, and which was also clearly outlying on PCA. We 
also confirmed that there were no sex mismatches that could indicate sample mix-ups based on 
sex chromosome gene expression using QTLTools (Delaneau et al., 2017). This resulted in a data 
set of 143 samples from 123 patients. We filtered out features that did not have at least 10 reads 
in at least 10 samples, retaining 23,063 features for downstream analysis. We then normalised 
the data using the trimmed mean of M-values method R package from edgeR; 
https://doi.org/10.1093/bioinformatics/btp616 and log2-transformation of counts-per-million. Code 
is available on GitHub (https://github.com/COMBATOxford/bulkrnaseq/mapping/). 
 
Exploratory analysis  
We carried out principal component analysis (PCA) on the normalised filtered data for 123 patients 
using prcomp (R v 3.6.2) with default parameters. We additionally performed PCA on just the 
samples from hospitalised COVID-19 patients (n=64). We selected informative PCs by taking the 
first n PCs that cumulatively described at least 80% of variance in the data. We explored the 
relationship between these PCs and the clinical variables available (transformed and filtered as 
described above) using Spearman correlation. Additionally, we investigated the biological 
relevance of the PCs through pathway enrichment analysis with the R package XGR (Fang et al., 
2016b) and Reactome pathways. For each PC, we took the 500 genes with the highest absolute 
loading scores as input and compared to a background of all detected genes. 
 
Differential expression  
We performed differential expression analysis on the normalised data with one sample per patient 
using the limma R package (https://doi.org/10.1093/nar/gkv007). We included age, age2 and sex 
as fixed effects and compared each patient subgroup with all others, as well as investigating 
COVID-19 severity as a quantitative trait (mild=1, severe=2, critical=3). We defined significance 
for downstream analysis as FDR <0.05 and fold change >1.5. We investigated the impact of 
variation in cell proportions across samples calculated from hospital measurements for 
neutrophils, monocytes, and lymphocytes, by adding neutrophil and monocyte proportions to the 
model and comparing the estimated fold changes to the results to the more basic model.  Pathway 
enrichment analysis was performed using Reactome pathways via the XGR R package (Fang et 
al., 2016b), with Fisher’s exact test and filtering of redundant terms by the xEnrichConciser 
function.   
 
Weighted gene correlation network analysis 
 
We applied weighted gene correlation network analysis (WGCNA) to describe modules of highly 
correlated genes within the whole blood total RNA-sequencing data (i.e. 143 samples from 123 
patients) (Langfelder and Horvath, 2008). We utilised the “cornet” pipeline to wrap the WGCNA R 
package and perform gene set enrichment analyses (https://github.com/sansomlab/cornet.git). In 
brief, a stepwise approach of correlation network construction and module detection was adopted 
using log2-transformed counts-per-million RNA-sequencing data. Using the soft thresholding 
power of 4, a signed-hybrid network was built implementing the biweight midcorrelation as the 
adjacency function. The adjacency matrix was transformed into a topological overlap matrix in 
order to calculate the dissimilarity and a dissimilarity threshold of 0.3 was used to merge modules 
with very similar expression profiles. Module eigengene values (module first principal component) 
were used to summarise modules and perform module-trait correlation analyses (Pearson 
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correlation). Gene set over representation analyses were performed using the default settings of 
the “cornet” pipeline (https://github.com/sansomlab/cornet.git). 
 
CITE-seq: pre-processing and multi-modal annotation 
 
Preprocessing of 10X Libraries (Gene expression, ADT, TCR, BCR) 
As described above a total of n=140 PBMC samples from COVID-19, sepsis, influenza and healthy 
volunteers were mixed into n=10 pools. Each pool comprised of 14 samples (each from a different 
individual) and cells from each pool were captured using n=7 10x channels (Methods S2 Figure 
1). From each channel, four libraries were generated, Gene expression (GEX), Surface proteome 
(ADT), TCR and BCR repertoires. The libraries were sequenced on an Illumina's NovaSeq 6000 
sequencer across nine S4 flowcells (4 lanes per flow cell). For each of the sample pools, n=7 GEX 
and ADT libraries were sequenced on 3 dedicated lanes (to eliminate index hopping between 
sample pools). The BCR/TCR libraries were sequenced on the remaining 6 lanes. Mapping 
indexes for the bulk and single-cell data were built using GRCh38 genome sequences and 
Ensembl version 100 annotations. FASTQ files were generated using Cellranger (v3.1.0) mkfastq 
and individually QC'ed using FastQC (Andrews, 2010). To mitigate index hopping between 
channel libraries within sample pool FASTQ files were filtered per pool using the 10x Genomics 
index-hopping-filter (https://support.10xgenomics.com/docs/index-hopping-filter) (v1.0.1). Per-
channel (n=70) GEX and CITE-seq matrices were prepared using Cellranger (v3.1.0) count. Cell 
identification was performed on the GEX modality with both Cellranger (v3.1.0) and EmptyDroplets 
(Lun et al., 2019) (1.8.0) and the union of the calls from both algorithms taken forward as the set 
of identified cells.  
 
Genetic demultiplexing of 10X GEX data 
The GATK variant calling pipeline (https://github.com/gatk-workflows/gatk4-rnaseq-germline-
snps-indels) (v4.1.7.0) was applied to the bulk RNA-seq data to identify sequence variants for the 
genetic demultiplexing of the single cell data. Minor modifications were made to the  variant calling 
pipeline to allow execution from FASTQ files, incorporate metadata into the BAM alignment files, 
and produce a block gVCF file. We applied both Demuxlet (Kang et al., 2018) (v2; 
https://github.com/statgen/popscle/commit/038044660337b50ec89b0b355493ceb707f18ecd) 
and Vireo (Huang et al., 2019) (v0.4.0; https://github.com/single-cell-
genetics/vireo/commit/4aecb54a4f2fa3a3413e2cd3e9f3515744385cba), proceeding with the 
demultiplexing calls from Vireo as they were more robust to variation in read depth. The dataset 
was demultiplexed using full genotypes (per-pool gVCF files) from the bulk sequencing. For each 
of the n=70 10x channel sequence libraries, Vireo consistently demultiplexed 60 – 75% of cells. A 
total of n=884,587 singlet cells were demultiplexed. 
 
QC of 10X GEX data and preparation of GEX matrices 
The pre-processing workflow was encapsulated in a set of CGAT python pipelines (Cribbs et al., 
2019) and version controlled. Cell quality was assessed with a suite of metrics that included total 
UMI (GEX), number of genes detected, percent mitochondrial gene expression, percent ribosomal 
gene expression, percent IgG expression, scrublet doublet score (Wolock et al., 2019) and total 
UMI (ADT). Ambient RNA was assessed. Cell QC statistics, demultiplexing assignments and cell 
and patient metadata were centrally warehoused in an sqlite database. Following inspection of the 
QC metrics the dataset was filtered to retain cells with ngenes > 300 and pct_mitochondrial < 10%. 
In total, n=836,148 cells were selected for downstream analysis. Expression data for selected cells 
was extracted from the per-channel count matrices using R and combined into a single market 
matrix with AWK. RNA velocity matrices were computed for each of the channels with Velocyto 
(http://velocyto.org/) (La Manno et al., 2018) (v0.17.5). Velocity data for selected cells was 
extracted and combined into a single matrix using the Loompy Python library (http://loompy.org).  
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Multimodal cell annotation strategy overview 
We used expert immunological knowledge to guide a curated integration of the data from the 
different modalities (GEX, ADT and VDJ) to identify and label the cell sub-populations present in 
the CITE-seq dataset (Methods S2 Figure 2). As detailed below, we first performed separate 
clustering of gene expression, clustering of surface protein expression and analyses of T and B 
cell receptor V(D)J sequences. Next, led by expert understanding of the three feature spaces we 
prioritised use of ADT surface phenotype for definition of major cell lineages and subsets where 
definitive marker expression was available. Cell types and subsets were further refined using 
information from the repertoire and GEX layers, or in the absence of definitive ADT information 
were identified by GEX cluster phenotype. Finally, the identified cell types and subsets were further 
divided by inferred functional state based on targeted assessment of information from all three 
modalities. For example, cell cycle phase was determined by GEX phenotype, T cell memory vs 
effector status was distinguished using information from both the GEX and ADT layers, while 
assignment of B cell maturation status involved use of information from all three modalities 
(including BCR mutational status). Information from all three modalities was used to identify and 
exclude doublets from downstream analysis.  
 
Alignment and clustering of 10X GEX data 
Prior to alignment data was normalised and log1p transformed using Scanpy (Wolf et al., 2018). 
The top n=3000 highly variable genes (HVG) were selected (Seurat flavour with n_top_genes set). 
The following MHC and variant immune receptor genes were excluded from HVG identification 
A/B/C/D/E/F/G]*, IGH[D/J/V]*, IGK[J/V]*, IGL[J/JCOR/L/ON/V]*, TRA[J/V]*, 
TRB[D/J/V/VA/VB]*,TRD[D/J]* and TRG[J/JP/V/VA/VB]*). Effects associated with total number of 
UMIs were regressed out and PCA components computed. We evaluated alignment with Harmony 
(Korsunsky et al., 2019), Scanorama (Hie et al., 2019) and BBKNN (Polanski et al., 2020) and 
chose to proceed with Harmony following inspection of UMAP projections of the alignment results 
(data not shown). Following inspection of the PCA scree (knee/elbow) plot, Harmony alignment of 
samples (n=140 levels) was performed in Python using the top n=65 PCs. Leiden clustering, 
marker discovery (wilcox tests) and visualisation (with violin plots, UMAPs, volcano plots, MA plots 
and heatmaps), automatic cell type identification (with singleR (Aran et al., 2019) and via over-
representation analysis of xCell (Aran et al., 2017) genesets), basic composition analysis, geneset 
over-representation analysis (including of GO, KEGG and Biocarta genesets) and visualisation of 
the aligned datasets was performed using pipeline_scxl.py (https://github.com/sansomlab/tenx). 
Neighbor graphs were built using Euclidean distance and the “HNSW” algorithm (as implemented 
in ScVelo (Bergen et al., 2020), following the example of Pegasus (Li et al., 2020)). Clustering was 
performed using Scanpy, marker discovery with Seurat (Stuart et al., 2019) and pathway over-
representation analysis with gsfisher (Croft et al., 2019) (https://github.com/sansomlab/gsfisher). 
 
After alignment of the full manifold, we iteratively divided, re-aligned and re-clustered the dataset 
to achieve high-resolution clustering of different cell subsets. Variable gene identification was 
performed separately within each subset as described above. In the first step the major cell types 
– T/NK, myeloid and B/plasmablast cells were extracted into n=3 separate subsets. Each of these 
three subsets was then separately aligned and clustered (n=45 PCs for n=482k T/NK cells; n=45 
PCs for n=279k myeloid cells; n=40 PCs for n=66k B/plasmablast cells). This process was then 
repeated with a final (third) round of alignment and clustering being performed separately on six 
subsets: (A) cells in the CD4 region of the manifold (with n=50PCs, n=302k cells), (B) cells in the 
CD8 region of the manifold (with n=45PCs, n=180k cells), (C) cells in the myeloid region of the 
manifold (with n=50PCs, n=261k cells), (D) cells in the B cell/Plasmablast cell region of the 
manifold (with n=40PCs, n=57k cells), (E) cells identified as doublets based on scrublet scores 
and marker gene expression (with n=40PCs, n=26k cells), (F) other cells types not falling into any 
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of the first five categories (with n=50PCs, n=10k cells). The clustering strategy is shown in 
Methods S2 Figure 3. Choice of principle component number was guided by inspection of the 
scree plots. 
 
Each of the cell six subsets was subject to Leiden clustering with a range of resolutions (1, 1.5, 2, 
2.5, 3, 3.5, 4, 4.5, 6, 8) and cluster phenotypes assessed using pipeline_scxl.py 
(https://github.com/sansomlab/tenx) as described above, and ADT surface phenotype. For each 
subset a base resolution was selected and sub-populations further refined by manual splitting or 
merging of clusters based on alternate cluster resolutions guided by expert knowledge of cell 
identities and phenotypes to define a total of n=131 GEX clusters. These clusters were intersected 
with information from the ADT and repertoire modalities for the final multimodal annotation of the 
dataset as described below. 
 
Pre-processing and analysis of the ADT data 
For each channel the ADT signal was normalized independently to its background, using the DSB 
algorithm (Mulè et al., 2020) taking the set of cells identified from the GEX data as the foreground 
and unassigned GEMs with log10(GEX_nUMI +1) >=1.5 as the background. The workflow was 
written in R and Python, encapsulated in CGAT pipelines and version controlled. The normalised 
ADT data was subject to hierarchical stochastic neighbour embedding (hSNE) and unsupervised 
Gaussian mean shift (GMS) clustering as implemented in Cytosplore (van Unen et al., 2017) 
(www.cytosplore.org). This analysis, which was based on the expression of all n=192 ADT tags, 
partitioned the dataset into 66 discrete clusters. Based on expression of known lineage markers 
(CD3, CD4, CD8, CD56, CD19, CD20, CD27, CD38, CD14, CD123, CD1c, CD33, CD235, CD34, 
Vd2, Va72 and CD161) these clusters were apportioned to NK cells, B cells, Plasmablasts, Vd2+ 
T cells, CD14+ Monocytes, CD123+PDC, CD1c+ DC, red blood cells (RBC), CD34+ cells and 
distinct populations of CD3+ T cells (Methods S2 Figure 4). For identification of Va25+Ja18+ 
cells (iNKT cells), Vd2-Vg9+ cells, TCRgd+ cells, Va7.2+CD161+ (MAIT) cells and non MAIT T 
cells a sequential manual gating strategy was employed. After exclusion of likely contaminant 
CD33+ CD3+ and CD56+ cells subpopulations of B cells and plasmablasts were defined by re-
clustering these cells based upon expression of CD10, CD24, CD25, CD19, CD20, CD22, HLADR, 
CD21, CD23, IgD, CD1c, IgM, CD38, CD29, CD71, CD39, CD27, HLA-ABC and IgA. In total, this 
analysis of the ADT data identified 12 T-cell subpopulations, 7 B cell/plasmablast subpopulations 
and five distinct sets of doublets (with markers of more than one major immune lineage). These 
clusters were intersected with information from the GEX and repertoire modalities for the final 
multimodal annotation of the dataset as described below. 
 
Pre-processing and analysis of 10x V(D)J B and T cell repertoire data 
T and B cell V(D)J gene usage and receptor sequences were quantified using Cellranger VDJ 
(v3.1.0) with reference sequences from the IMGT. For TCR chain usage we recorded additional 
information for each cell including (i) “clone proportion”, computed as the proportion of the entire 
T cell repertoire occupied by the clone in the sample, (ii) whether the cell was a doublet (defined 
as a singlet clone with TRA-TRA-TRB-TRB chains), (iii) whether the cell possessed an iNKT 
receptor phenotype (TRAV10 with TRAJ18), and (iv) whether the cell carried a MAIT receptor 
phenotype (TRAV1-2, with either TRAJ12/TRAJ20/TRAJ33). Immunoglobulin sequences were 
further analysed using IMGT High V-Quest. B cell/plasmablast doublets were identified as cells 
with multiple heavy chain (HC) contigs where the ratio of the number of UMIs for the top two 
ranked HC contigs was >0.125. Light chain (LC) information was not used for doublet identification 
as it is known that 1% of B cells may express dual light chains. The TCR and immunoglobulin 
chain usage information was intersected with information from the GEX and ADT modalities for 
the final annotation of the dataset as described below. 
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Multimodal cluster annotation  
As described below, we performed curated intersections of the information from the different 
modalities to discern the cellular identities and functional phenotypes of the different PBMC 
populations. Information from all three modalities was used to screen and exclude doublets: in 
addition to inspection of scrublet scores (computed from the GEX layer), lineage according to 
surface phenotype, immune receptor sequence and gene expression profile was required to be 
congruent. In total, following curated intersection of GEX, ADT and repertoire information we 
obtained n=853 clusters. Of these we retained n=346 clusters (n=787,928 cells) for downstream 
analysis. We excluded n=92 clusters (n=20391) as likely cell-cell doublets/multiplets and n=270 
clusters (n=19,801 cells) which appeared to be comprised of mixtures of cell types. A further n=128 
clusters (n=7971 cells) of uncertain phenotype were also excluded. The retained cells comprised 
of n=343 clusters that were assessed to represent genuine singlet cell clusters based on expert 
knowledge. We assigned each of these clusters to a “minor subset”, “major subset” and “cell type” 
category in order to accommodate downstream analyses at different levels of granularity as 
summarised in Methods S2 Figure 5. In addition, we retained two clusters that appeared to 
comprise monocyte-platelet doublets (n=5562 cells) and a minor, lower confidence cluster of AXL+ 
DCs (n=121 cells) for inclusion in cluster-level analyses. Scripts were written in Python and R and 
version controlled. 
 
Known T and NK cell subsets were identified by surface protein (ADT) and immune receptor (TCR) 
phenotype as recorded in Methods S2 Table 1. These identity assignments were then intersected 
with the gene expression clusters (GEX) to identify subsets of the different lineages that displayed 
distinct transcriptional phenotypes (e.g. naïve vs memory T cells). These sub-populations are 
shown for CD4 T-cells in Methods S2 Figure 6, for CD8 T-cells in Methods S2 Figure 7, for 
double positive (DP) T-cells in Methods S2 Figure 8, for double negative (DN) T-cells in Methods 
S2 Figure 9, for mucosal associated invariant T (MAIT) cells in Methods S2 Figure 10, for Vδ2+ 
gamma-delta (γδ) T cells in Methods S2 Figure 11,  Vδ2-ve Vγ9-ve γδ T-cells in Methods S2 
Figure 12, Vδ2-ve Vγ9+ve γδ T-cells in Methods S2 Figure 13 and invariant natural killer T cells 
(iNKT) in Methods S2 Figure 14. The identified NK cell subsets are shown in Methods S2 Figure 
15. 
 
B cell and plasmablasts cell subsets were defined using information from the GEX, ADT and 
immunoglobin repertoire modalities as detailed in Methods S2 Table 2 and shown in Methods 
S2 Figure 16. Sub populations of innate immune cells and other blood cells were delineated 
according to gene expression clusters and annotated based on their GEX and ADT phenotypes. 
Sub-populations of mononuclear phagocytes (MNPs) are shown in Methods S2 Figure 17, of 
haematopoietic stem (and progenitor) cells (HSCs) in Methods S2 Figure 18 and of platelets and 
erythrocytes in Methods S2 Figure 19. 
 
To assess the relative immune receptor diversity of the different T, B and plasmablast populations 
we computed repertoire Shannon and Gini indices (detailed in the Repertoire analysis section, 
and as shown in Methods S2 Figures 6-14 and 16). Because of the large variance in cell number 
between clusters we estimated the indices by bootstrapping with a sample size of n=30, n=1000 
times. Individual bootstrap samples were drawn without replacement to avoid introduction of 
artificial clonality. The indices were not estimated for clusters with fewer than n=30 cells. 
 
CITE-seq: cell composition analysis 
 
Overview 
Three samples with <500 cells in total, and three samples with confirmed or suspected 
malignancy, were excluded from all composition analyses. For the hospitalised COVID-19 and 
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sepsis clinical categories, only samples closest to maximum severity and only one sample per 
individual were included, such that for each category the following numbers of samples were 
analysed: healthy volunteers, n=10; COVID-19 acute in-patient mild (OUH), n=12; COVID-19 
acute in-patient severe (OUH), n=20; COVID-19 acute in-patient critical (OUH), n=18; COVID-19 
community COVID-19, n=12; influenza, acute in-patient, n=10; and sepsis acute in-patient, n=15. 
Scripts for all analysis were written in Python and R and version controlled. 
 
Composition analysis was performed for the different levels of cellular granularity summarised in 
Methods S2 Figure 5, including for cell types (Methods S2 Figures 20-22); major cell subsets 
(Methods S2 Figures 23-25); minor cell subsets (Methods S2 Figure 26-28); T and natural killer 
(NK) cell clusters (Methods S2 Figures 29-31); B and plasmablast (PB) cell clusters (Methods 
S2 Figure 33-34); and mononuclear phagocyte (MNPs) clusters (Methods S2 Figure 35-37). To 
initially inspect cluster abundance across clinical categories, the percentage frequencies of cell 
subpopulations were quantified per sample and visualized as boxplots. For cell types (Methods 
S2 Figure 20), major cell subsets (Methods S2 Figure 23) and minor cell subsets (Methods S2 
Figure 26), percentages were calculated out of total PBMCs. For higher resolution immune cell 
clusters, frequencies were calculated out of total T and NK cells (Methods S2 Figure 29), total B 
and PB cells (Methods S2 Figure 32), or total MNPs (Methods S2 Figure 35). Selected panels 
are reproduced in the main and supplementary figures. 
 
Principal component analysis 
Principal component analysis (PCA) was used for exploratory analysis, with pre-filtering to remove 
clusters with a count of n<10 cells in <10 individuals. Cluster counts were converted to centred 
log-ratios (CLRs) using the ALDEx2 R package, v1.18.0. Briefly, 1,000 Monte Carlo samples of 
the Dirichlet distribution were generated from the cluster counts for each sample and converted to 
CLRs. The median CLR for each cluster-sample combination was used for PCA which was 
performed using prcomp (R version 3.6.2) with default parameters. Association tests for clinical 
variables were performed using an omnibus analysis of variance (ANOVA) to test for association 
between the top 15 PCs (collectively explaining >80% of the total variance) and clinical category 
(source), age, sex, and sample pool, with the Benjamini-Hochberg procedure for multiple testing 
correction and a significance threshold of Pc<0.05. For the hospitalised COVID-19 cases, 
association tests with additional variables that were related to acute disease or were secondary 
to infection were also performed. All variables had one or no missing values. These additional 
variables included: ethnicity; weight; days from symptom to sample and from symptom to 
admission; maximum temperature in the 24 hours preceding sampling; persistent fever in the 24 
hours preceding sampling; fever, WHO ordinal, ventilation status, SaO2/FiO2 ratio, and SOFA 
oxygenation score at the time of sampling; quantile normalised white cell, neutrophil, lymphocyte, 
monocyte and platelet counts in the 24 hours before or after sampling; quantile normalised highest 
concentration of C-reactive protein in the 24 hours before or after sampling; clinical and/or 
radiological evidence of thromboembolism during hospitalisation; length of hospital stay; 
OpenSAFELY COVID-19 mortality propensity score; and death in the hospital. 

The full results of the PCA and association test results are shown in Methods S2 Figure 21 for 
the cell types; Methods S2 Figure 24 for the major cell subsets; Methods S2 Figure 27 for the 
minor cell subsets; Methods S2 Figure 30 for the T and NK clusters; Methods S2 Figure 33 for 
the B and PB clusters; and Methods S2 Figure 36 for the MNP clusters with selected panels 
reproduced in the main and supplementary figures. 

Differential abundance analysis 
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To compare cell subset/cluster abundance across clinical categories, the percentage frequencies 
of cells were quantified per sample and visualized as boxplots. For major and minor cell subsets, 
percentages were calculated out of total PBMCs. For higher resolution immune cell clusters, 
frequencies were calculated out of total myeloid cells, total B and plasmablast cells, or total T and 
natural killer (NK) cells. To determine the statistical significance of differences in cell subset/cluster 
abundance between groups, differential abundance analysis was performed using edgeR, v3.28.1 
(Amezquita et al., 2020). Cell subset/cluster counts were modelled adjusting for age, sex and 
sample pool using a quasi-likelihood negative binomial generalized log-linear model (glmQLFit 
function), with pre-filtering to remove clusters with a count of n<10 cells in <10 individuals. Counts 
were normalised by the total number of cells in each sample for the major and minor cell subset 
analyses, or by the total myeloid, the total B and plasmablast, or the total T and NK cells for higher 
resolution immune cell cluster analyses. Differential abundance testing was performed using the 
quasi-likelihood F-test. The Benjamini-Hochberg procedure was implemented to correct for the 
number of clusters and the number of pairwise clinical category comparisons, and a significance 
threshold of Pc<0.05 was used. Testing for composition effects did not provide evidence for biases 
in cluster abundance. In addition, for the hospitalised COVID-19 patients, edgeR analysis was 
performed using ANOVA to identify statistically significant associations between cluster 
abundance and patient characteristics/clinical variables (as detailed for the PCA association 
tests). 

The full results of the differential abundance and covariate analysis results are shown in Methods 
S2 Figure 22 for the cell types; Methods S2 Figure 25 for the major cell subsets; Methods S2 
Figure 28 for the minor cell subsets; Methods S2 Figure 31 for the T and NK clusters; Methods 
S2 Figure 34 for the B and PB clusters; and Methods S2 Figure 37 for the MNP clusters. 

CITE-seq: GEX PCA, differential expression and pathway analysis 
 
Data pre-processing 
Pseudobulk counts were generated for each combination of gene and sample at minor subset, 
major subset and cell type level by summing together the within-group gene counts. These were 
then converted to reads-per-million (RPM) by normalizing by the total count across all genes for 
each combination of sample and cell type. Finally, residuals were calculated by taking the log(1 + 
count) and subtracting the predicted value from a linear model with pool as the independent 
variable. The six poorly performing samples mentioned in the Composition section above were 
removed from all further processing. 
 
PCA analysis 
PCA was carried out on the residuals using the prcomp function in R. We generated PCs 
separately at minor subset, major subset and cell type level using residual values from genes with 
a mean RPM > 1 in among all sources, and with six poorly performing samples removed. Outlying 
samples (more than 5 SDs away from the mean across the top 10 PCs) were then removed and 
PCs recalculated. Plots of the top two principal components for each major subset is shown in 
Methods S2 Figure 38. To test differences in major subset PCs across categories, we used an 
omnibus ANOVA (i.e. a test of a linear model including all diagnoses/severity categories as dummy 
variables, against a model with no difference between these groups) to test for association 
between the first 10 PCs and diagnosis/severity (across all samples) and disease severity 
(measured by WHO criteria, within COVID-19 samples) (Methods S2 Figure 39). The linear 
model also includes terms for age and sex. Omnibus p-values were corrected for multiple testing 
using the Benjamini-Hochberg procedure. We also repeated the principal component analysis only 
within hospitalized COVID-19 samples and tested their association with clinical covariates. Only 
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two major subsets showed adjusted p-values < 0.01, classical monocytes and DCs, with 
association patterns shown in Methods S2 Figure 40. 
 
We generated UMAPs from the top n=10 PCs for each level of cell clustering (using the R package 
“umap”). For this analysis we excluded clusters with n=0 cells for ³10 samples and excluded 
samples with n=0 cells in remaining clusters.  The resulting plots for minor subsets, major subsets 
and cell types are shown in Methods S2 Figure 41. 
 
Differential Expression Analysis 
We carried out differential expression tests for a range of contrasts (including subgroups of 
COVID-19 against healthy volunteers, sepsis and influenza vs healthy volunteers, COVID-19 vs 
sepsis, COVID-19 vs influenza and COVID-19 subgroups against one another. These tests were 
performed using the R edgeR library (McCarthy et al., 2012). We included age, sex and pool as 
covariates, and filtered out samples with <5 cells and gene with mean RPM < 1, with significant 
genes selected based on log fold change (logFC) > 2 and false discovery rate (FDR) < 0.01 
(calculated by Benjamini-Hochberg). To test for a set of genes that differed across COVID-19 
severity categories, we also carried out a “COVID-19 omnibus” likelihood ratio test, with dummy 
variables for WHO severity and a separate variable for mild recording healthcare workers (in this 
case, genes were selected if they had logFC > 2 between any pair of categories). 
 
The number of differentially expressed genes (FDR < 0.01, absolute log-fold change > 2) in each 
cell cluster for each contrast is shown in Methods S2 Figure 42, volcano plots of differentially 
expressed genes for critical COVID-19 patients vs healthy volunteers for each major subset are 
shown in Methods S2 Figure 43, and the top 10 most differentially expressed genes for each 
contrast (across all cell clusters) are shown in Methods S2 Table 3. We also investigated the 
relationship between the frequency of a cell subset and the number of differentially expressed 
genes (Methods S2 Figure 44), and the relationship between differential composition and number 
of differentially expressed (Methods S2 Figure 45). 
 
Pathway Analysis 
Gene-set enrichment analysis GSEA of differentially expressed genes were performed using the 
FGSEA algorithm (Korotkevich et al., 2021). We performed GSEA for biological pathways from 
the MSigDB database (include for KEGG, GO, canonical pathways, regulatory sets, immune 
signatures and Hallmark genesets). Enrichment analysis was carried out separately for each pair 
of cell cluster and contrast, with genes ranked by p-value. For the Hallmark genesets, we also 
carried out a signed enrichment test (ranking by log(pvalue) x sign(logFC)), shown as a heatmap 
for major subsets and a range of contrasts in Methods S2 Figure 46. The top 10 pairs of cell 
cluster and GO term, canonical pathway and immunologic signature for critical COVID-19 vs 
healthy volunteers are shown in Methods S2 Table 4. 
 
In addition, we applied GSEA to a set of experimentally derived interferon-stimulated genes (ISGs) 
(Schoggins et al., 2011). Genes within this gene set were differentially expressed across a wide 
range of minor subsets and contrasts (Methods S2 Figure 47), with the most significant 
enrichment being seen in HSCs in critical COVID-19 patients (Methods S2 Figure 48). We 
focused in on classical dendritic cells, as this minor subset showed enrichment of differential 
expression in ISGs (p < 1e-5) in 9 out of 13 contrasts tested. Methods S2 Figure 49 shows the 
mean expression in DCs across the different disease groups of a subset of ISGs that were 
identified both as driving the ISG enrichment signature (leading edge genes) and showing 
individually strong differential expression (FDR < 0.001, absolute fold change > 3). 
 
CITE-seq: WGCNA analysis 
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We performed separate WGCNA (Langfelder and Horvath, 2008) analyses of n=7 selected “major 
cell types” consisting of cell populations that were annotated as “cell types” (B cells, Plasmablasts, 
NK cells) or “major subsets” (cMono, ncMono, CD4 T cells, CD8 T cells). For this analysis per-
patient pseudobulk-summarized RPM-normalized counts from the prioritised sample set were 
used as input. Patients with low total cell numbers (<500 cells; n=3), with confirmed or suspected 
malignancies (n=3), or from the London COVID-19 cohort (n=2) were excluded from the analysis.  
 
Input gene expression matrices were filtered to retain genes with expression above a certain 
threshold in a given minimum number of samples. Based on inspection of expression distributions 
RPM thresholds of 1 (cMono, NK cells, CD4 T cells and CD8 T) and 3 (ncMono, PB and B cells) 
were chosen for the indicated “major cell types”. The number samples that constituted the smallest 
patient group was used as the minimum number of samples. After filtering we retained 9000-12000 
genes per “major cell type”. Log2 RPM+1 values were batch corrected using the ComBat algorithm 
(sva R package v 3.36.0) (Johnson et al., 2007; Leek et al., 2012) specifying the multiplexing 
sample pool as the adjustment variable (together with an intercept term). 
 
The WGCNA analysis was performed using pipeline_wgcna.py from the 
https://github.com/sansomlab/cornet  repository, and geneset over-representation analysis was 
carried out using the gsfisher R library https://github.com/sansomlab/gsfisher. The parameters 
used for WGCNA runs are given in Methods S2 Table 5. We excluded 3 “ambient_rna” modules 
whose eigengene gene loadings correlated strongly with ambient RNA species abundance (as 
quantitated in “empty” droplets) (Spearman’s. rho ³0.83, p < 2.2 x 10-16; data not shown) and 
unassigned grey modules from downstream analysis.  
 
Modules were characterised and named by inspection of their gene membership, over-
representation of biological pathways (GP Biological Process, Go Cellular Component, KEGG, 
MsigDB REACTOME and MSigDB transcription factor motifs) and correlation with AUCell (Aibar 
et al., 2017) (v 1.12.0) expression scores for specific sets of genes. The “curated type I IFN 
response” geneset comprised of GBP2, IFI27, IFI44L, IFIT1, IFITM1, IFITM3, IFNA1, IFNA10, 
IFNA13, IFNA14, IFNA16, IFNA17, IFNA2, IFNA21, IFNA4, IFNA5, IFNA6, IFNA7, IFNA8, IFNB1, 
IRF1, IRF3, IRF7, IRF9, ISG15, MX1 MX2, OASL, RSAD2, SIGLEC1, TRIM56, USP18 and 
XAF1.The “curated AP1 TF family” geneset comprised of the genes shown in Figure 2M. The 
custom “zf-C2H2 (PF00096) domain” geneset comprised of genes containing the PF00096 
domain (Pfam database). For geneset over-representation analysis only genesets with a BH 
corrected p-value < 0.05 are reported (separate corrections performed within major cell type and 
ontology). 
 
Inter-module eigengene expression correlation (Figure S2O) was computed for the subset of n=77 
COVID-19 hospitalized patients that commonly passed filters for inclusion in the analyses for all 
“major cell types”. Module eigengene correlations with disease were computed by numerically 
coding the given x_vs_y disease groups as 1 and 0 respectively (Figure 2K). Module eigengene 
associations with variance between patient groups were assessed by ANOVA 
(COVID+HV_ANOVA, All_Groups_ANOVOA, Figure 2K). Module eigengene correlations with 
clinical variables were computed using pairwise-complete observations. Where appropriate 
clinical variables were quantile normalised as described for analysis of clinical phenotype, as 
described below. Stars in Figure 2K indicate a significant association between the contrast, 
clinical variable or geneset score and the module eigengene (BH corrected p-value < 0.05, p-value 
correction performed separately for each contrast, variable or score). 
 
Repertoire analysis  
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Strategic approach 
Here, we used both single cell (sc) and bulk cell VDJ sequencing to decipher the immune 
responses in COVID-19 patients. The benefits of scVDJ-seq is the joint analysis of the VDJ BCR 
or TCR sequence along with the gene expression and CITE-seq for each individual cell, allowing 
for a detailed linking of antigen receptor function or type with cellular phenotype or function. 
However, this is limited by the number of cells that can be captured in a single experiment, usually 
between a few 10’s to 1000’s. Therefore, bulk VDJ-seq can also be used to capture a more holistic 
view of the immune cell repertoire. While this does not capture VDJ sequences on a single cell 
level, many aspects of the repertoire may be investigated, such as changes in clonality, dynamics, 
selection and tolerance. Because bulk VDJ-seq is able to capture the immune receptors of 1000’s 
to 100,000’s of cells, this means that the resulting repertoire is more representative of the 
individual that single cell VDJ-seq, and has greater power to detect low frequency clones or 
repertoire features. Finally, through capturing a higher magnitude of BCR/TCR sequencing, 
imputing the germline IGHV/J germline alleles becomes possible, and therefore allowing for 
analyses of differential genetics between groups. 
 
Additional pre-processing of scBCR-seq data for repertoire analysis 
The BCR outputs from CellRanger were run through IMGT V-QUEST (Giudicelli et al., 2004) to 
determine the TCR chain types and annotation. In addition, only BCRs from droplets that were 
confidently annotated as (a) singlets, (b) within the B cell annotated clusters in the GEX data, and 
(c) were confidently genetically demultiplexed were included. Processed FASTA sequences, 
corresponding to high confidence VDJ contigs from 10X Genomic’s Cell Ranger v4.0.0 pipeline, 
were annotated using IMGT HIGHV-QUEST. To ensure high quality contigs, non-productive 
rearranged sequences were removed and only sequences corresponding to cell barcodes that 
past QC cut-offs for gene expression data were analysed. For B cell VDJ sequences where multi-
chains were detected, e.g. two or more heavy or light chain sequences, only contigs ranked above 
the first derivative of log10 ranked contig ratios were selected for downstream analysis. Contig 
ratios were defined by: 

𝐶𝑜𝑛𝑡𝑖𝑔'()*	,	-./0 𝐶𝑜𝑛𝑡𝑖𝑔'()*	1	-./0⁄  
 
Where multi-chains passed this quality threshold, the contig corresponding to the lowest UMIs 
detected was considered ambient RNA contamination and removed. Where multi-chains did not 
pass this threshold, we considered these to be low confidence of being true single cell droplets 
and likely to represent homotypic doublets; thus, they were removed from further analysis.  
 
Cells with filtered BCRs were concentrated in the regions annotated as B cells or 
plasmablasts/plasma cells through gene expression analysis (Figure S4E). Plasmablasts/plasma 
cells exhibited higher BCR IGH/ IGK/L expression compared to non-plasmablasts/plasma cell 
populations. 
 
Additional pre-processing of scTCR-seq data for repertoire analysis 
The TCR outputs from CellRanger were filtered based on called productivity, and chain identity 
(TRA or TRB). Only T cells that contained either (a) 1 beta chain, (b) 1 alpha and 1 beta, (c) 2 
alpha chains and 1 beta were retained. Given that bona fide T cells with UMI counts of 1 have 
been validated in previous datasets (data not shown), the minimum number of UMIs required per 
cell to accept was 1. In addition, only TCRs from droplets that were confidently annotated as (a) 
singlets, (b) within the T cell annotated clusters in the GEX data, and (c) were confidently 
genetically demultiplexed were included. 
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The IMGT annotation of cell types demonstrated that the majority of droplets for which TCRs were 
captured were able to pass the chain type filters (Methods S2 Table 1). After removal of low-
quality droplets, there remain 94 samples corresponding to the maximal disease severity per 
patient. Four samples were excluded due to low T cell capture (<200 cells). Age was used as a 
co-variate in downstream analyses. 
 
scBCR clonality measurements 
Clonal assignment was performed using a custom procedure. First, concatenated VH/VJ 
nucleotide sequences were clustered using an adapted R implementation of CD-HIT 
(https://github.com/thomasp85/FindMyFriends). Subsequently, within-cluster CDR3 normalised 
levenshtein distances were generated using the “stringdist” R package. The clonal threshold was 
set as the local minimum of the CDR3 distance distribution. Convergent clones were assigned 
using the same procedure without constraints accounting for biological replicates. The presence 
of published SARS-CoV-2 binding antibody sequences from CoV-AbDab (Raybould et al., 2020) 
within the dataset was identified by first requiring identical VH and VJ gene pairings, followed by 
CDR3 distance thresholding (as described above).  
 
The clonal expansion index (CEI) was calculated as the Gini index (unevenness) of the number 
of total BCRs per clone. The clonal diversification index (CDI) was calculated as the GINI index of 
the number of unique BCRs per clone. This is a measure of unevenness based on how many non-
identical members of each clone are diversified from their inferred germline ancestor. 
 
scTCR clonality measurements 
A clone ID was defined by a concatenation of amino acid CDR3 chains present, with cells sharing 
identical clone IDs classed as members of the same clonotype. Clonal proportions were calculated 
by dividing the number of cells in each clone per sample by the total of number of cells per sample. 
Shannon diversity was calculated from count data of clones per sample using the R package 
entropy (Hausser, 2009). Statistical analysis was performed using a linear model with covariates 
for age and sample size. 
 
For the scTCR analysis the cluster annotations were merged to create simplified clusters for 
analysis. The following reannotated clusters were used in TCR clonality analysis, with constituent 
“minor subsets” shown in brackets: CD8 T effector memory (CD8.TEMRA + CD8.TEM); CD8 T 
central memory (CD8.TCM + CD8.TCM.CCL5); CD8 T effector (CD8.TEFF + CD8.TEFF.prolif); 
CD8 naïve (CD8.NAIVE); CD4 T effector (CD4.TEFF + CD4.TEFF.prolif); MAIT (MAIT). Where 
comparisons of clone size across samples has been performed in terms of absolute number of 
member cells (e.g. Figure 5J, S5F,G) each sample was randomly down-sampled without 
replacement (n=1250 for CD4, n=250 for CD8) to generate repertoires of identical size across all 
samples. The mean size of clone was then calculated from the down-sampled repertoires. This 
process was bootstrapped 100 times and the mean size from these iterations is presented. This 
approach allows for accurate comparisons between samples containing different cell numbers and 
controls for sample size. 
 
scTCR cytotoxicity and kmer analysis  
Cytotoxicity score was calculated using the AddModuleScore function in Seurat (Butler et al., 
2018) with a gene-set of the top 50 genes that significantly correlated with IFNG expression in an 
independent single cell dataset (Watson et al., 2020b) and were identified as variable features in 
Seurat. The gene-set was then used as an input to generate phenotype scores. 
 
CDR3b sequences of T cells identified as CD4+ or CD8+ T cells were broken down into 4-amino 
acid length sequences (kmer). A Fisher’s exact test was performed per kmer across each group 
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of patients (HV, COVID-19 or sepsis patients) and p values adjusted using a Bonferroni’s 
correction, with a leave-one-out re-sampling of individuals employed to ensure inter-individual 
reliability. Kmer sequences significantly enriched in COVID-19 patients over HV or sepsis patients 
across more than 95% of the re-samples were identified as COVID-enriched kmers. The 
proportion and cellular phenotype (i.e. subset and cytotoxicity) of T cells with a CDR3b sequence 
containing a COVID-enriched kmer was subsequently compared between COMBAT clinical 
groups.  
 
Identification of SARS-CoV2 specific T cell clones using public CDR3 databases  
Putative viral antigen specificity of clonotypes within COMBAT cohort was determined using 
publicly available databases of viral antigen specific CDR3 sequences. At the time, two databases 
containing TCR sequences with reported binding to SARS-CoV-2 epitopes were available: VDJdb 
(Bagaev et al., 2019) and ImmuneCODE™ (Nolan et al., 2020). From VDJdb, all unique CDR3 
amino acid sequences (alpha as well as beta chain of human TCR) of all lengths and MHC-
restrictions with reported binding to known SARS-CoV2 associated antigens were selected. 
Sequences with low confidence scores assigned to TCR:peptide:MHC complexes or missing 
sequencing/ specificity validation data were then filtered out. ImmuneCODE™ database includes 
deeply sampled TCRb repertoires from over 1,400 subjects exposed to or infected with the SARS-
CoV-2 virus. Within these, over 135,000 TCRs were deemed to be SARS-CoV-2-specific with 
high-confidence using Multiplex Identification of Antigen-Specific T-Cell Receptors Assay (MIRA) 
and were included(Klinger et al., 2015). Unique CDR3 amino acid sequences thus identified were 
collated and interrogated against TCR sequences within COMBAT cohort for matches within 
CDR3a, CDR3a2 and CDR3b regions. A similar strategy was used to identify CMV, EBV and 
Influenza specific clones. Finally, proportions of individual repertoires occupied by viral clones 
were compared between COMBAT clinical groups. 
 
Bulk BCR and TCR quality control and filtering  
Raw sequencing reads were filtered for base quality (median Phred score >32) using QUASR 
(Watson et al., 2013). Forward and reverse reads were merged if they contained identical 
overlapping region of >50bp, or otherwise discarded. Universal barcoded regions were identified 
in reads and orientated to read from V-primer to constant region primer. The barcoded region 
within each primer was identified and checked for conserved bases. Primers and constant regions 
were trimmed from each sequence, and sequences were retained only if there was >80% per base 
sequence similarity between all sequences obtained with the same barcode, otherwise discarded. 
The constant region allele with highest sequence similarity was identified by 10-mer matching to 
the reference constant region genes from the IMGT database (Lefranc, 2011), and sequences 
were trimmed to give only the region of the sequence corresponding to the variable (VDJ) regions. 
Isotype usage information for each BCR was retained throughout the analysis hereafter. 
Sequences without complete reading frames and non-immunoglobulin/TCR sequences were 
removed and only reads with significant similarity to reference IGHTCR V and J genes from the 
IMGT database using BLAST (Altschul et al., 1990) were retained. Ig/TCR gene usages and 
sequence annotation were performed in IMGT V-QUEST, where repertoire differences were 
performed by custom scripts in Python. 
 
Bulk BCR sequencing resulted in 2,356,813 BCRs consisting of 1,905,867 unique BCR 
sequences, resulting in 79 samples passing all QC measures and with the minimum number of 
BCR sequences per sample at 1000. Bulk TCR sequencing resulted in 1,200,656 TCRs consisting 
of 1,159,363 unique TCR sequences, resulting in 77 samples passing all QC measures and with 
the minimum number of TCR sequences per sample at 1000. 
 
Isotype frequencies, somatic hypermutation, CDR3 lengths and IGHV gene usages 
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Analysis methods are based on (Bashford-Rogers et al., 2019). To account for the greater 
numbers of BCR RNA molecules per plasmablast compared to other B cell subsets, the 
normalised isotype usages, defined as the percentage unique VDJ sequences per isotype, thus 
controlling for differential RNA per cell and reducing potential biases from differential RNA per cell. 
Similarly, mean somatic hypermutation levels and CDR3 lengths were calculated per unique VDJ 
region sequence to reduce potential biases from differential RNA per cell. IGHV gene usages were 
determined using IMGT, and proportions were calculated per unique VDJ region sequence. The 
representation of IGHV genes in the BCR repertoire reflects their presence in the germline, the 
naïve repertoire and their expansion after antigenic exposure. We therefore compared the 
frequency of IGHV gene use in PBMC-derived BCRs identified by sequence as being enriched for 
naive (IgM+D+SHM-: >78% naïve B cells by flow cytometry) and antigen-experienced B cells 
(including both unswitched (IgM+D+SHM+) and class-switched memory (IgA+/G+/E+) subsets) 
as shown in (Bashford-Rogers et al., 2019). 
 
Bulk BCR class-switching event analyses 
Relative class-switch event frequency was the frequency of unique VDJ regions expressed as two 
isotypes (i.e. from more than one B cell, where one has undergone class-switch recombination). 
This was determined as proportion of unique BCRs present as both isotypes IgX and IgY within a 
random subsample of 8000 BCRs, where the mean of 1000 repeats was generated. This provides 
information on the frequency of BCRs observed associated with any two isotypes (class-switching 
events) while accounting for total read depth, but not accounting for differences in the relative 
frequencies of BCRs per isotype. 
 
The per-isotype normalized class-switch event frequencies determines frequency of unique VDJ 
regions expressed as two isotypes whilst normalizing for differences in isotype frequencies. To 
account for differences in isotype proportions, BCRs from each isotype were randomly 
subsampled to a fixed depth of 100 BCRs, and the proportion of unique VDJ sequences present 
between each pair of isotypes was counted. The mean of 1000 repeats was generated. 
 
RNA-velocity B cell analysis 
The single-cell RNA-seq data sets were subjected to the standard RNA-velocity pipeline, and the 
trailing analyses were performed using the scVelo package (v0.1.24). The scVelo package was 
used to normalize the counts and select highly variable genes based on spliced counts. Following 
this, the dynamical model implemented in scVelo was used to estimate the RNA velocity for the 
cells. The estimated velocities were then visualized using Partition-based graph abstraction 
(PAGA) plots using the previously computed UMAP embeddings. 
 
scATACseq data analysis 
Raw data pre-processing was performed with Cell Ranger ATAC (10X Genomics). ‘cellranger-
atac count’ pipeline was used to align reads and generate single-cell accessibility counts for the 
cells. The reference genome assembly file was Ensembl GRCh38 v100 Primary Assembly 
corresponding to hg38, downloaded from http://ftp.ensembl.org/pub/release-
100/fasta/homo_sapiens/dna/Homo_sapiens.GRCh38.dna.primary_assembly.fa.gz. This file was 
used as reference genome file for alignment and generation of single-cell accessibility counts. 
Annotations were from Ensembl GRCh38 v100 Gene Annotation downloaded from 
http://ftp.ensembl.org/pub/release-100/gtf/homo_sapiens/Homo_sapiens.GRCh38.100.gtf.gz. 
VIREO (Huang et al., 2019) and demuxlet (Kang et al., 2018) packages were used to demultiplex 
patient samples within a channel and identify inter-sample nuclei doublets. Concordantly filtered 
barcodes from individualised samples were then used to create individual fragment files for each 
patient using HTSlib –c function. Following the creation of fragment files, downstream analysis of 
the scATACseq data was performed using the ArchR v0.9.3 R package (Granja et al., 2021). 
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Fragment files were first checked using the reformatFragmentFiles function. Arrow files were then 
generated by reading each sample’s specific fragment files and a tile matrix was created using 
500-bp bins. Cells with a transcription start site enrichment score < 4, with fewer than 1000 
detected fragments or containing intra-sample nuclei doublets were removed, resulting in ~46000 
cells, which were subjected to dimensionality reduction with iterative Latent Semantic Indexing 
(LSI) and Singular Value Decomposition (SVD), followed by Uniform Manifold Approximation and 
Projection (UMAP) embedding calculation to visualize the data structure in the two-dimensions. 
~4000 cells were manually removed at this stage, as we identified putative batch effects. The 
resulting ~42000 cells were subjected to UMAP and were clustered using the implementation from 
Seurat R package (Stuart et al., 2019). Cluster-specific gene activity scores were identified based 
on the local chromatin state, and marker genes were identified (FDR ≤ 0.01 & Log2FC ≥ 1.25). 
Unconstrained integration with cognate scRNA-seq profiles was performed using the 
addGeneIntegrationMatrix (ArchR) method and scRNA-seq cell type annotations were used to 
label scATAC-seq clusters. We performed peak calling using MACS2 with the 
addReproduciblePeakSet (ArchR) function using pseudo-bulk replicates. Such replicates were 
grouped with different variables, such as cell-type, condition and patient, as well as a combination 
of these variables. Differentially accessible peaks (FDR <= 0.1 & Log2FC >= 0.5) were identified 
between pairwise comparisons, and peak-to-gene linkages were calculated using the 
addPeak2GeneLinks (ArchR) method using a correlation cut-off of 0.45 and resolution = 1000.  
We then used the ‘cisbp’ motif set to annotate motifs in accessible peaks using the 
addMotifAnnotations (ArchR) function. Motif enrichments in differentially accessible peaks were 
calculated using the peakAnnoEnrichment (ArchR) method. Finally, motif footprinting was 
performed by measuring Tn5 insertions in genome-wide motifs and normalized by subtracting the 
Tn5 bias from the footprinting signal.  
 
Luminex data analysis 
 
Cytokine enrichment profile analysis 
The concentrations of 51 circulating proteins in plasma were presented as mean FI ± SEM and 
compared between HV and each disease severity group of COVID-19 using unpaired student’s t-
test, and then depicted with Prism. 
  
Principal Component Analysis (PCA) 
PCA on 171 plasma samples was conducted with the Scater package in R Programme. The values 
of FI were normalised with logNormCounts function, and then calculated with the RunPCA 
function. The loadings were generated by the value of first two components of eigenvectors 
multiplied by 10. 
  
Heatmap 
The heatmap was coloured by the log10 of the fold-change in the natural log of the fluorescence 
intensity (FI), normalised against the mean value of HV for the plasma cohort and HS for the serum 
cohort. When comparing mortality in severe and critical COVID-19 patients, the data is normalised 
to the survivor group. The colour-scale is bounded at ±5 fold change (0.7 in log10), with an 
increased FI shaded red; decreased FI shaded green; unchanged FI shaded yellow.  
 
Volcano plots 
The p-values in the Volcano plots are calculated using a two-tailed two-sample unpaired T-test 
(ttest2, MATLAB). The T-test was taken for the natural log of the FI of the test and control 
conditions. The p-values are plotted against the log2 of the fold-change in the natural log of the 
fluorescence intensity (FI) between the test and control conditions.  
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Uniform manifold approximation (UMAP) 
The UMAPs [L. McInnes, J. Healy, J. Melville, (2018) UMAP: Uniform Manifold Approximation and 
Projection for dimension reduction, arXiv:1802.03426v2] were calculated using the MATLAB 
package of Meehan, Meehan and Moore [Connor Meehan, Stephen Meehan, and Wayne Moore 
(2020). Uniform Manifold Approximation and Projection (UMAP) 
(https://www.mathworks.com/matlabcentral/fileexchange/71902), MATLAB Central File 
Exchange.] The UMAP is partially supervised, with 2/3rds of the patients in each condition 
randomly chosen to train the network. The UMAPs are set to have 45 nearest neighbours, with a 
minimum distance of 0.3 with a correlation metric. The UMAP was reduced over 2000 epochs.    
 
Linear correlation between analytes / Linear correlation between clinical traits  
The correlation coefficient, r, was calculated using a Pearson correlation coefficient (corcoeff, 
MATLAB). All quoted r values have an associated p-value (also computed by corcoeff) of less 
than 0.05.   
 
Correlation network analysis 
All values used for the correlation network analysis were the FI of Luminex results and/or the 
clinical readout. Severities were scored as HV=0, CH=1, CM=2, CS=3 and CC=4. Quality control 
(QC) was conducted on the matrix of expression values. Seven out of total 51 proteins were 
removed from the correlation analysis due to their low FI (<10 after subtracting FI in blank) and 
small SD (<10). Pearson correlation coefficient was performed using pairwise-complete 
correlation. Correlation matrix plots were generated using a modified package corrplot. Correlation 
matrix summary plots were made manually by R. Network plots were created by ggraph. 
 
Tims-TOF mass spectrometry analysis 
 
Primary data analysis (Identification and Quantitation)  
Data was analysed by the Fragpipe pipeline consisting of Fragpipe 13.0 (Kong et al., 2017), 
MSFragger 3.0, Philosopher 3.2.9 (da Veiga Leprevost et al., 2020) and Python 3.8.2. Blank runs 
were excluded and each file defined as experiment to facilitate LFQ. Data were searched against 
a fused target/decoy database generated by Philosopher and consisting of human UniProt 
SwissProt sequences and UniProt SARS-nCov02 (retrieved 17/07/2020), plus common 
contaminants. The database had 40860 entries (including 50% decoy entries). MSFragger 
parameters were set to allow a precursor mass tolerance of plus/minus 10ppm and a fragment 
tolerance of 20ppm. Isotope error was left at 0/1/2 and masses were set to re-calibrate. Protein 
digestion was set to semi specific trypsin with up to 2 allowed missed cleavage sites, allowing 
peptides between 7 and 50 residues and mass range 500 to 5000 Da. N-terminal protein 
acetylation and Methionine oxidation were set as variable modifications. ID validation was done 
with PeptideProphet and ProteinProphet (Nesvizhskii et al., 2003) with default settings.  
 
Label free quantitation was conducted with IonQuant (Yu et al., 2020) and Match-Between-Runs 
enabled (with default parameters) and using Top-3 quantitation. Feature detection tolerance was 
set to 10ppm and RT Window to 0.6 minutes with an IM Window of 0.05 1/k0. For matching, ion, 
peptide and protein FDRs were relaxed to 0.1 and min correlation set to 0 in order to allow pre-
fractionated library samples to be included. MBR top runs was set to 600.  
 
Data Handling  
The proteomics dataset was processed as follows: (1) Protein filtering such that proteins with at 
least 50% of valid values in one group were kept; (2) Sample filtering such that samples with more 
than 50% of missing values were removed from the dataset; (3) Data normalization with log2 
transformation and median-centring of the dataset. Imputation of missing values was performed 
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using a mixed model that combines a K-Nearest Neighbour approach (KNN) when at least 60% 
of valid values are present, otherwise a Minimum probability approach is used where missing 
values are randomly drawn from a Gaussian distribution (shift=1.8, nstd=0.3). The resulting data 
matrix contains 353 samples and 105 proteins. Thirteen samples were further excluded from 
analysis for malignancy, immunosuppression, or being alternative samples. 
 
Statistical analysis 
Unsupervised hierarchical clustering was performed based on Euclidean distance and Ward’s 
method for calculating linkage. Differential abundance analysis was performed by fitting protein 
abundance in linear models with the limma package, using only one sample at the maximal 
severity of the patient and including age and sex as covariates. The Benjamini-Hochberg 
procedure was applied to correct for multiple comparisons. FDR < 0.05 and fold change > 1.5 was 
taken as statistical significance. Pathway enrichment analysis was performed using the XGR 
package with annotations either from Gene Ontology Biological Process or the Reactome pathway 
database. Significantly enriched terms were defined by FDR < 0.05 in hypergeometric tests with 
all proteins detected in plasma (including in library samples) as the background. Statistical analysis 
was performed in R. 
 
Protein-protein interaction network 
Protein-protein interaction data was retrieved from STRING v11 database with a confidence score 
cut-off of 0.7 and zero additional interactors. The network was visualised through Cytoscape 
v3.8.0 platform (Shannon et al., 2003) using perfuse force directed layout, and divided into clusters 
with the Markov cluster algorithm applied in the “clusterMaker” plugin. Node colour was mapped 
to Pearson’s correlation coefficients of PC1 scores and the protein level across samples, as lower 
PC1 score was shown to correlate with higher disease severity. 
 
Clinical knowledge graph 
The MS-based proteomics data were also analysed using the Clinical Knowledge Graph (CKG) 
(Santos et al., 2020). CKG provides a Python framework for downstream analysis and visualization 
of proteomics data: protein ranking, dimensionality reduction, functional Principal Component 
Analysis (PCA), Analysis of Variance (ANOVA), protein-clinical variable correlation analysis and 
network summarization. 
  
CKG runs 3 feature reduction algorithms: Principal Component Analysis (PCA), Uniform Manifold 
Approximation and Projection (UMAP) and functional PCA. The functional PCA is based on the 
results of the method single-sample Gene Set Enrichment Analysis (Subramanian et al., 2005), 
which identifies enrichment of Biological processes (Gene Ontology) (GOBP) in single samples 
derived from the ranked intensities of the identified proteins. This method generates a vector of 
biological processes enrichment scores for each sample. Loadings of the top 15 proteins and 
GOBP driving the separation of the conditions studied are included in the PCA and functional PCA 
respectively. In this analysis, the drivers are biological processes such as acute-phase response 
and inflammation and retinoid and lipoprotein metabolic processes and cholesterol transport.  
  
We performed ANOVA analysis to identify differentially regulated proteins across conditions. 
Further, we run posthoc analysis (pairwise t-test) to show specific differences when comparing 
disease conditions to healthy volunteers or community COVID-19 and also between severity 
levels.  
  
We performed functional enrichment analysis (Fisher’s exact test) to identify enriched GO among 
the up- and down-regulated proteins in each pairwise comparison. Enrichments are plotted as 
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scatterplots showing up- or down-regulated enriched GOBP and their adjusted p-values 
(Benjamini-Hochberg FDR: cutoff 0.05). 
  
CKG performed a Spearman correlation analysis using the clinical metadata and the proteomics 
dataset. This Protein-clinical correlation is shown in a network where nodes are either clinical 
variables (diamond shape) or proteins (circle shape), and edges represent correlation 
(red=positive correlation, blue=negative correlation; Spearman correlation cutoff>=0.5; Benjamini-
Hochberg FDR: cutoff 0.05). CKG applied a clustering algorithm (Louvain community detection) 
to identify clusters of highly connected nodes (nodes coloured by cluster). 
  
The results from all CKG analyses are summarized in a single visualization all the findings in the 
different analyses and all relevant biomedical context associated (diseases, drugs, biological 
processes, pathways, protein complexes, publications). The summarization algorithm prioritizes 
what nodes are shown in the network based on betweenness centrality. The top 15 central nodes 
are shown for each node type. 
 
Similarity network fusion analysis 
 
The similarity network fusion (SNF) analysis was performed using the function in CKG that makes 
use of the python library pySNF. The method is used to analysed the proteomics datasets (MS-
based proteomics and luminex) in combination to identify in an unsupervised manner clusters of 
similar patients. The number of clusters was not defined initially and optimized using the eigengap 
method and the clusters identified using Spectral clustering. The SNF analysis used Euclidean 
distance to calculate similarity (k_affinity=20, mu_affinity=0.6). The function returns the clusters 
and a mutual information score for each feature included in the analysis (MIscore). We used this 
score to prioritize a reduced number of features mainly driving the separation of the clusters (11 
features) (MIscore>=0.15). The clusters are visualized using PCA plots. 
  
SNF Cluster validation 
In order to validate the identified clusters using SNF on the proteomics data, we used an 
independent cohort studied using a different technology, namely targeted proteomics by Olink 
(Filbin et al., 2020). Access to the dataset was granted by Olink https://info.olink.com/mgh-covid-
study-overview-page. The processing of the data was done using CKG analytics core functions to 
map protein identifiers to names, transform the data into wide format and impute missing values 
using a mixed model as previously described. The clustering on these data followed a similar 
approach to how the SNF clusters were calculated (optimal clusters and Spectral clustering) but 
using only the selected features in the SNF analysis (7/11 features). 
  
SNF clusters survival analysis 
To evaluate the clinical relevance of the identified clusters in COMBAT, we performed a survival 
analysis and plotted the Kaplan-Meier curve using R packages survival (Therneau and Grambsch, 
2000) and survminer. The input data is a data frame specifying the time to event, the event (death 
or end of observation) and the groups (SNF clusters). The comparison of the survival distributions 
between clusters was performed and the p value given using log-rank test. The hazard ratio was 
calculated using Cox proportional hazard model. In the Olink dataset survival status is only 
available at 4 timepoints: 0, 3, 7 and 28 days. Deaths at these time points were collected according 
to WHO category 1, defined as death, in these timepoints (WHO 0, WHO 3, WHO 7 and WHO 
28). We compared the 28-day mortality between the two SNF clusters by chi-squared test. 
  
Olink and COMBAT correlation analysis 
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To evaluate the robustness of the identified clusters between technologies/studies and to eliminate 
that only the 7 selected features used for the clustering of the Olink data were similar, we 
calculated the correlation (Pearson correlation) of fold-changes between clusters for all the 
common proteins in these studies (n=43). 
 
Topological data analysis 
 
Mapper is an algorithm in Topological Data Analysis for multiscale clustering and attempts to 
capture the topology of complex high-dimensional data (Singh et al., 2007; van Veen et al., 2019). 
We analysed the whole blood total RNAseq with a filter function (L2 norm) of principal component 
1 to produce a Mapper graph. We used 25 evenly spaced bins with 50% overlap of the filter 
functions image. We used DBSCAN with eps=70, minpts=1 (equivalent to single-linkage with 
threshold 70). The clustering algorithm is applied separately to each preimage of each bin under 
the filter function. These clusters are the vertices of the final graph. As the bins are overlapping, 
the clusters between the preimage of different bins may share points. When this happens, an edge 
is drawn between the clusters that share a point. The resulting graph is the Mapper output with 
the vertices of this graph coloured by the average filter function value on that cluster. 
 
Tensor and matrix decomposition 
 
A tensor and matrix decomposition method, Sparse Decomposition of Arrays (SDA), as defined in 
(Hore et al., 2016), was used to integrate 152 samples from the different ‘omics datasets defined 
above, allowing that some samples were missing certain ‘omics data.   
 
The whole blood total RNAseq (9 missing samples) and the pseudobulk from 10x CITEseq 
scRNAseq (22 missing samples) were combined into a three dimensional tensor consisting of 152 
samples by 9 tissue types by 14,989 genes (which passed QC in both datasets). This expression 
was normalised by sample in each tissue type by log2-transformation of counts-per-million + 1.   
 
The number of cells per cell types as defined by 10x CITE-seq (a two-dimensional matrix of 152 
samples by 97 cell types, with 22 samples missing) and mass cytometry (CyTOF) (One two-
dimensional matrix of 152 samples by 10 cell types for the all cells dataset, with 21 samples 
missing. Another two-dimensional matrices of 152 samples by 51 cell types for the granulocytes-
depleted cells dataset, with 20 samples missing). We filtered out any samples with fewer than 500 
cells in any matrix. The data in each matrix was normalised by a log2 transformation of counts-
per-million + 1.   
 
The proteomics data from Luminex (in a two-dimensional matrix of 152 samples by 51 proteins, 
with 20 samples missing) and mass spectrometry (Tims-TOF) (in a two-dimensional matrix of 152 
samples by 105 proteins, with 17 samples missing) were used, with the data normalised as 
described in the Luminex and Tims-TOF sections.  
 
As described in (Hore et al., 2016), to find robust components we ran the tensor and matrix 
decomposition ten times for 1000 components. Each time around 290 components were estimated 
to be zero. Once again, similar to the (Hore et al., 2016) method the absolute correlation (r) was 
calculated for the sample scores for each pair of components, clustered using Hierarchical 
clustering on 1-r (dissimilarity measure) and formed flat clusters in which the components in each 
flat cluster have no greater a cophenetic distance than 0.4. We chose the flat clusters that had 
components from at least 5 of the 10 runs. The final sample, tissue and gene or protein or cell 
score was the mean of all the components within the chosen clusters. This resulted in 381 clusters. 
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Components were identified as associated with COVID-19 if they (1) showed significant variation 
(BH adjusted p < 0.01) in an analysis of variance between the COVID-19 categories and healthy 
volunteers and (2) showed a significant |spearman’s rho| >= 0.5 (and Benjamini/Hochberg 
adjusted p < 0.01) in at least one of the contrasts between the COVID-19 groups vs healthy 
volunteers (in total we found n=130 such components; Figure 7C). To identify COVID-19 specific 
components the median loadings of the components for the different comparator (source) groups 
(i.e. including influenza and all-cause sepsis) were clustered (k-means). Individual component 
associations, for example with comparator group, severity or clinical features were assessed with 
Spearman correlation (between component loadings and numerical variables) or ANOVA 
(between component loadings and categorical variables). The overview heatmap (Figure S7G) 
was generated by combining the top significant (Benjamini/Hochberg adjusted p < 0.05, abs(r) > 
0.5, max 10) components from each of the individual analyses. Pathway enrichment of the genes 
expression highlighted (those with posterior inclusion probability > 0.5, weighted by their ranking 
in loading score magnitude) in components was done using gene set enrichment analysis as 
implemented in Pi’s xPierGSEA (Fang et al., 2019). 
 
Integrated data analysis of multi-omics data using machine learning feature selection to 
distinguish COVID-19 severity groups 
 
We used supervised machine learning (from sklearn) to classify samples according to their WHO 
severity based on PCs obtained from data across the different modalities (timsTOF, luminex, and 
total RNAseq) (Figure S7A). We performed permutation feature scoring to find the most important 
PCs to predict severity. After that, we extract the most important features of the most important 
PCs and rerun the algorithm directly on these features, again ranking them according to their 
importance. 
 
Machine learning using SIMON to distinguish COVID-19 and sepsis 
 
Generation of an integrated COMBAT dataset 
The pre-processed data from individual COMBAT assay datasets were automatically processed 
using the standard extract-transform-load (ETL) procedure to generate an integrated dataset. 
Datasets were merged using shared variable, the COMBAT sample ID and assay-specific sample 
IDs. Next, we generated novel features, such as name of specific assays to indicate if a sample 
was analysed in a specific assay (yes/no), ordering of samples shared between assays 
(first_sample_across_assays), day when sample was obtained from the maximum disease 
(day_sampling_from_max_disease), state of the disease when sample was acquired 
(recovered/ongoing), hospitalized, ventilation, oxygenation, sampling (<=10 days as early or >10 
days as late phase of the disease), samples acquired before or after maximum disease 
(sampling_from_max_disease) and disease progress for longitudinal samples (deterioration or 
recovery). Donors that were excluded or frail were not included in the integrated dataset. We 
standardized names of the immune cells subsets and analytes to reflect the measurement, such 
as frequency (freq_cell subsets) or intensity (Luminex parameter_intens). In total, the integrated 
COMBAT dataset contained information on 428 samples from 268 donors on more than a million 
parameters. 
 
Data pre-processing 
For the multi-omics data integration, after filtering for samples not analysed across all assay 
modalities and restricting to the first available sample after admission from sepsis and hospitalized 
COVID-19 patients, the final dataset included 15 sepsis patients and 53 hospitalized COVID-19 
patients with 184 features analysed using CyTOF, 79 using FACS, 8 using GSA, 105 mass 
spectrometry, 102 Luminex and 23,063 features from whole blood total  RNAseq. The data for 
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each assay was cantered and scaled, missing values were imputed, features with zero-variance 
and near-zero-variance were removed and finally, highly correlated features with cut-off 0.85 were 
also removed. 
 
Feature selection process 
To avoid ‘curse of dimensionality’, reduce overfitting and improve accuracy, we implemented a 
wrapper approach as described (Kohavi and John, 1997). Briefly, the initial dataset containing all 
68 donors was partitioned into training (52 donors) and test set (16 donors) with balanced class 
distribution of sepsis and COVID-19 patients using the data partitioning function (Kuhn, 2008) as 
described previously (Tomic et al., 2019). The same training/testing dataset split was used for 
each assay. The reduction of features using the recursive feature elimination (RFE) algorithm was 
performed on the training set and the model was evaluated using the 10-fold cross-validation 
repeated 5 times. For whole blood total RNAseq, prior to training the model using RFE algorithm, 
we have performed analysis of differentially expressed genes between sepsis and hospitalized 
COVID-19 patients, reducing the number of genes to 2,989 based on the FDR <0.05 and fold 
change >1.5, and accounted for age and sex in the model. The RFE method removes the features 
that do not contribute to the final model, while it keeps the features that contribute the most to the 
final model as evaluated using the variable importance score (Kuhn and Johnson, 2019). Finally, 
after the RFE analysis, the selected features from each assay (36 features from CyTOF, 20 from 
FACS, 20 from Luminex, 32 from mass spectroscopy, 28 from whole blood total RNAseq and 1 
from GSA dataset) were merged in the final training dataset containing 52 donors and 137 
features. 
 
Machine learning using SIMON 
To identify immunological and molecular signature that can discriminate between sepsis and 
COVID-19 patients, we used SIMON (Sequential Iterative Modeling “Over Night”) (Tomic et al., 
2019). SIMON is a free and open-source software that provides a standardized ML method for 
data pre-processing, data partitioning, building predictive models, evaluation of model 
performance and selection of features. For the analysis, we applied four machine learning 
algorithms, naïve Bayes, Shrinkage discriminant analysis (sda), Support vector machine with 
linear kernel (‘svmLinear2’) and C5.0 decision tree. Since the entire ML process in SIMON is 
unified, resulting models built with different algorithms can be compared and the best performing 
models can be selected. First, models are built on training set and the performance is evaluated 
using a 10-fold cross-validation repeated five times and cumulative error rate is calculated. To 
prevent overfitting, in the second step, each model is evaluated on the withheld test set. The 
performance of classification models was determined by calculating the area under the receiver 
operating characteristic curve (AUROC) for test set (test AUROC). The best performing model 
was built using the naïve Bayes (testing AUROC 0.85, 95% CI 0.59-1.00). In the final step, SIMON 
calculated the contribution of each feature to the model as variable importance score (scaled to 
maximum value of 100). 
 
Data management 
 
To support consistent and coherent communication of data and metadata within the project, a 
unified identifier system for all samples was implemented. The COMBAT sample identifier system 
encodes information regarding the sample providence in terms of cohort, de-identified patient ID, 
location where the sample was taken, the time point of the sample relative to the initial collection 
and details regarding the processing of the sample itself.  
 
Datasets from each modality were stored within the consortium via the COMBAT datawarehouse, 
consisting of over 100TB of fast storage connected to a research computing cluster. This enabled 
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data processing to occur within the datawarehouse, reducing the risk of duplication of datasets 
and the possibility of uncontrolled changes. Once datasets were ready to be shared within the 
consortium, to support (for example) data integration work, they were formally given a unique 
identifier and placed in a dedicated dataset directory. The existence of this deposition and its 
associated metadata, including information regarding associated samples and status was then 
made available via a web application which captures this information in a back-end database. This 
application allows consortium members to search by modality and status, providing information 
about the purpose of each dataset and its location in the datawarehouse.  
 
The governance of data management was supported by the existence of a short but well-defined 
Data Access Agreement, which all consortium members were required to sign before gaining 
access to the datawarehouse. Furthermore, granular permissions within the datawarehouse 
enabled careful access controls to be applied to particularly sensitive data (such as rich clinical 
data). Web applications supporting the consortium are all protected by a federated Shibboleth-
based authentication approach, allowing collaborators from outside of Oxford to gain access as 
required. 
 
Data visualisation 
 
Multi-locus viewer 
In order to visualise the data from the different modalities (experiments), a module, Multi 
Experiment Viewer (MEV  https://github.com/Hughes-Genome-Group/MEV) was built for Multi 
Locus View (MLV DOI 10.1101/2020.06.15.151837) such that the data was pivoted on sample 
rather than genome location. The data was loaded in from each modality and for the CITEseq 
data, psuedobulk values (on a sample/cell type basis) were used. In order to compare radically 
different datatypes (read counts, fluorescence, % cell type etc.), percentiles for each observation 
were calculated from the 10th to the 90th, in steps of 10. Values were then placed into 10 bins, 
e.g., if a value was <=10th percentile it would be given a value of 1 and if >2nd and <=3rd, it would 
get a value of 2 etc. This was used as the default value, although depending on the modality other 
values e.g, raw counts, log transformed values were also added and can be selected by the user. 
Users can create their own views by searching for genes or loading in specific data sets and then 
combine them with a limited set of clinical data. Charts such as histograms, heatmaps and scatter 
plots can then be added and cross-filtered to identify samples or features of interest. An instance 
can be found at https://mlv.combat.ox.ac.uk/, with links to predefined views of the data. 
 
Shiny apps 
Shiny apps (https://shiny.combat.ox.ac.uk) were developed using the R package shiny to display 
the results of the whole blood total RNAseq differential expression analysis and the principal 
component analysis. In each, derived data are loaded (limma fitted models and pre-calculated 
principal components respectively) together with limited metadata, and plots are generated within 
the app using ggplot2. 
 
ADDITIONAL RESOURCES 
 
KEY RESOURCES TABLE 
 
SUPPLEMENTAL INFORMATION 
 
Table S1. COVID-19 Multi-omic Blood Atlas (COMBAT) Consortium author details 
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Table S2. Demographics and clinical features for overall cohorts and hospitalised COVID-
19 patients  
 
Table S3. Tensor and matrix decomposition analysis. Data for 152 samples across modality 
types and all patient groups, including significant associations of components with group 
memberships, gender, detail of sample loading scores and pathway enrichment. 
 
Table S4. Primers used for BCR and TCR sequencing 
 
Methods S1.  Supporting figures for mass cytometry, related to STAR Methods. Data 
analysis supplement including gating strategies, analysis pipeline and phenotyping.  
 
Methods S2. Supporting figures and tables for CITE-seq, related to STAR Methods. 
Experimental design and cell capture, multimodal annotation of PBMC sub-populations, 
compositional analysis, PCA, differential expression analysis and pathway analysis. 
 
Methods S3. COVID-19 Multi-omic Blood Atlas (COMBAT) Consortium author 
contributions 
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KEY RESOURCES TABLE 

REAGENT or RESOURCE SOURCE IDENTIFIER 
Antibodies 
Mass cytometry panel antibodies (^:intracellular) 

CD45 (HI30)-89Y Fluidigm 
Cat# 3089003, 
RRID:AB_2661851 

CD19 (HIB19)-111Cd  BioLegend 
Cat# 302247, 
RRID:AB_2562815 

CD3 (UCHT1)-112Cd BioLegend 

Cat# 300438, 
RRID:AB_1114699
1 

IgG (M1310G05)-113Cd BioLegend 
Cat# 410701, 
RRID:AB_2565624 

CD4 (RPA-T4)-114Cd BioLegend 
Cat# 300570, 
RRID:AB_2810427 

HLADR (G46-6)-116Cd BD Bioscience 
Cat# 556642, 
RRID:AB_396508 

CD57 (HCD57)-115In BioLegend 
Cat# 322325, 
RRID:AB_2563757 

CD11c (Bu15)-141Pr BioLegend 
Cat# 337202, 
RRID:AB_1236381 

BCL2 (100)-142Nd^ BioLegend 
Cat# 658702, 
RRID:AB_2562959 

CD45RA (HI100)-143Nd BioLegend 
 Cat# 304102, 
RRID:AB_314406 

GZB (CLB-GB11)-144Nd^ Abcam 

Cat# ab103159, 
RRID:AB_1071524
2 

CD33 (P67.6)-145Nd BioLegend 
Cat# 366602, 
RRID:AB_2565538 

Vd2 (123R3.5B8)-146Nd Miltenyi Custom made 

CD20 (2H7)-147Sm BioLegend 
Cat# 302343, 
RRID:AB_2562816 

CD66 (B1.1/CD66)-149Sm BD Bioscience 
Cat# 551354, 
RRID:AB_394166 

CD69 (FN50)-150Nd BioLegend 
Cat# 310902, 
RRID:AB_314837 

CD103 (Ber-ACT8)-151Eu Fludigm 
Cat# 3151011B, 
RRID:AB_2756418 

TCRgd (11F2)-152Sm^ Fluidigm 
Cat# 3152008B, 
RRID:AB_2687643 

IgD (IA6-2)-152Sm BioLegend 
Cat# 348235, 
RRID:AB_2563775 

Va7.2 (3C10)-153Eu Fluidigm 
Cat# 3153024B; 
RRID: N/A 

KLRG1 (14C2A07)-154Sm BioLegend 
Cat# 368602, 
RRID:AB_2566256 

PD1  (EH12.2H7)-155Gd Fluidigm 
Cat# 3155009B, 
RRID:AB_2811087 
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CD161  (HP-3G10)-156Gd BioLegend 
Cat# 339902, 
RRID:AB_1501090 

CD27 (L128)-158Gd Fluidigm 
Cat# 3158010B, 
RRID:AB_2858231 

FoxP3 (PCH101)-159Tb^ eBioscence 
Cat# 14-4776-82, 
RRID:AB_467554 

CD14 (M5E2)-160Gd BioLegend 
Cat# 301843, 
RRID:AB_2562813 

CTLA-4 (14D3)-161Dy eBioscence 
Cat# 14-1529-82, 
RRID:AB_467512 

Siglec-8 (837535)-162Dy R&D Cat# MAB7975 

CD28  (L293)-163Dy BD Bioscience 
Cat# 340975, 
RRID:AB_400197 

Ki67 (Ki-67)-164Dy^ BioLegend 
Cat# 350523, 
RRID:AB_2562838 

CD45RO (UCHL1)-165Ho BioLegend 
Cat# 304202, 
RRID:AB_314418 

CD56 (NCAM16.2)-166Er BD Bioscience 
Cat# 559043, 
RRID:AB_397180 

CCR7 (150503)-167Er R&D 
Cat# MAB197, 
RRID:AB_2072803 

CD127 (A019D5)-168Er BioLegend 

Cat# 351302, 
RRID:AB_1071851
3 

CD38 (HIT2)-169Tm BioLegend 
Cat# 303502, 
RRID:AB_314354 

CD99 (HCD99)-170Er BioLegend 
Cat# 318002, 
RRID:AB_604112 

CD123 (6H6)-171Yb BioLegend 
Cat# 306002, 
RRID:AB_314576 

CD25 (M-A251)-172Yb BioLegend 
Cat# 356102, 
RRID:AB_2561752 

CD141 (M80)-173Yb BioLegend 
Cat# 344102, 
RRID:AB_2201808 

CLA (HECA-452)-174Yb BioLegend 
Cat# 321302, 
RRID:AB_492894 

CD39 (A1)-175Lu BioLegend 
Cat# 328202, 
RRID:AB_940438 

CX3CR1 (2A9-1)-176Yb BioLegend 
Cat# 341602, 
RRID:AB_1595422 

CD8 (RPA-T8)-198Pt BioLegend 
Cat# 301018, 
RRID:AB_314136 

CD16 (3G8)-209 Bi Fluidigm 
Cat# 3209002B, 
RRID:AB_2756431 

   
Flow Cytometry Antibody Panels   
Panel 1   

CD11b-Alexa700 (M1/70) BioLegend 
Cat#101222,RRID:
AB_493705 
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BDCA2-APC (201A) BioLegend 
Cat#354206,RRID:
AB_11150412 

HLADR-APCCy7 (L243) BioLegend 
Cat#307618,RRID:
AB_493586 

CD86-BB515 (FUN-1) BD Bioscience 
Cat#564544,RRID:
AB_2744453 

CD33-BB630 (WM-53) BD Bioscience Custom made 
CD38-BB790 (HIT2) BD Bioscience Custom made 

IgM-BUV395 (G20-127) BD Bioscience 
Cat#551062,RRID:
AB_398487 

CD20-BUV496 (2H7) BD Bioscience 
Cat#749954,RRID:
AB_2874186 

CD56-BUV563 (MY31) BD Bioscience 
Cat#748610,RRID:
AB_2873017 

PDL1-BUV615-P (MIH1) BD Bioscience 
Cat#751185,RRID:
AB_2875207 

CD3-BUV661 (UCHT1) BD Bioscience 
Cat#612964,RRID:
AB_2870239 

CD80-BV421 (2D10) BioLegend 
Cat#305222,RRID:
AB_2564407 

CD19-BV510 (HIB19) BioLegend 
Cat#302242,RRID:
AB_2561668 

CD14-BV605 (M5E2) BioLegend 
Cat#301834,RRID:
AB_2563798 

IgD-BV605 (IA6-2) BD Bioscience 
Cat#563313,RRID:
AB_2738134 

CD16-BV650 (3G8) BioLegend 
Cat#302042,RRID:
AB_2563801 

CD40-BV711 (5C3) BioLegend 
Cat#334334,RRID:
AB_2564212 

CD123-BV786 (6H6) BioLegend 
Cat#306032,RRID:
AB_2566448 

CD27-PE (LG.3A10) BioLegend 
Cat#124210,RRID:
AB_1236459 

CD137-PECF594 (4B4-1) BioLegend 
Cat#309826,RRID:
AB_2566260 

CD1c-PECy7 (L161) BioLegend 
Cat#331516,RRID:
AB_2275574 

CD141-PerCPCy5.5 (M80) BioLegend 
Cat#344112,RRID:
AB_2561625 

Panel 2   

CD16-Alexa700 (3G8) BioLegend 
Cat#302026,RRID:
AB_2278418 

CD161-APC (HP3G10) BioLegend 
Cat#339912,RRID:
AB_10900826 

CCR7-APCCy7 (G043H7) BioLegend 
Cat#353212,RRID:
AB_10916390 

CD45RA-BB515 (HI100) BD Bioscience 
Cat#564552,RRID:
AB_2738841 
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TCRgd-BB700 (11F2) BD Bioscience 
Cat#745944,RRID:
AB_2743364 

CD38-BB790 (HIT2) BD Bioscience Custom made 

CD103-BUV (Ber-ACT8) BD Bioscience 
Cat#748501,RRID:
AB_2872912 

CD26-BUV395 (L272) BD Bioscience 
Cat#745724,RRID:
AB_2743201 

CD8-BUV496 (RPA-T8) BD Bioscience 
Cat#612942,RRID:
AB_2870223 

CD56-BUV563 (MY31) BD Bioscience 
Cat#748610,RRID:
AB_2873017 

CD4-BUV615-P (SK3) BD Bioscience 
Cat#612987,RRID:
AB_2870258 

6B11-BUV661 (6B11) BD Bioscience 
Cat#750268,RRID:
AB_2874460 

CD137-BUV737 (4B4-1) BD Bioscience 
Cat#741861,RRID:
AB_2871191 

CD69-BV421 (FN50) BioLegend 
Cat#310930,RRID:
AB_2561909 

CD14-BV510 (M5E2) BioLegend 
Cat#301841,RRID:
AB_2561379 

CD19-BV510 (HIB19) BioLegend 
Cat#302242,RRID:
AB_2561668 

Va7.2-BV605 (3C10) BioLegend 
Cat#351720,RRID:
AB_2563991 

IgD-BV605 (IA6-2) BioLegend 
Cat#348231,RRID:
AB_2563336 

CD3-BV650 (UCHT1) BioLegend 
Cat#300468,RRID:
AB_2629574 

CD39-BV711 (A1) BioLegend 
Cat#328228,RRID:
AB_2632894 

HLADR-BV786 (L243) BioLegend 
Cat#307642,RRID:
AB_2563461 

TIM3-PE (7D3) BD Bioscience 
Cat#563422,RRID:
AB_2716866 

PD1-PECF594 (EH12 2H7) BioLegend 
Cat#329940,RRID:
AB_2563659 

CD25-PECy7 (BC96) BioLegend 
Cat#302612,RRID:
AB_314282 

Panel 3   

CD27-Alexa700 (O323) BioLegend 
Cat#313509,RRID:
AB_416333 

ICOS-APC (C398.4A) BioLegend 
Cat#313509,RRID:
AB_416333 

CD25-BB515 (M-A251) BD Bioscience 
Cat#565096,RRID:
AB_2739065 

CD38-BB790 (HIT2) BD Bioscience Custom made 

CD8-BUV496 (RPA-T8) BD Bioscience 
Cat#612942,RRID:
AB_2870223 
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CD4-BUV615-P (SK3) BD Bioscience 
Cat#612987,RRID:
AB_2870258 

CXCR3-BV421 (G025H7) BioLegend 
Cat#353715,RRID:
AB_11124720 

CD14-BV510 (M5E2) BioLegend 
Cat#301841,RRID:
AB_2561379 

CD19-BV510 (HIB19) BioLegend 
Cat#302242,RRID:
AB_2561668 

CCR4-BV605 (L291H4) BioLegend 
Cat#359417,RRID:
AB_2562482 

CD45RA-BV711 (HI100) BioLegend 
Cat#304138,RRID:
AB_2563815 

HLADR-BV786 (L243) BioLegend 
Cat#307642,RRID:
AB_2563461 

CD127-PE (A019D5) BioLegend 
Cat#351303,RRID:
AB_10719960 

PD1-PECF594 (EH12 2H7) BioLegend 
Cat#329940,RRID:
AB_2563659 

CCR6-PECy7 (29-2L17) BioLegend 
Cat#302813,RRID:
AB_493756 

CXCR5-PerCPCy5.5 (J252D4 ) BioLegend 
Cat#356910,RRID:
AB_2561819 

   
CITE-seq antibody panel   
192 TotalSeq-C antibody panel, as detailed below: BioLegend Cat# 99814 
anti-human CD80 (clone 2D10) BioLegend Cat# 99814 
anti-human CD86 (clone IT2.2) BioLegend Cat# 99814 
anti-human CD274 (B7-H1, PD-L1) (clone 29E.2A3) BioLegend Cat# 99814 
anti-human CD273 (B7-DC, PD-L2) (clone 
24F.10C12) BioLegend Cat# 99814 
anti-human CD275 (B7-H2, ICOSL) (clone 2D3) BioLegend Cat# 99814 
anti-mouse/human CD11b (clone M1/70) BioLegend Cat# 99814 
anti-human CD252 (OX40L) (clone 11C3.1) BioLegend Cat# 99814 
anti-human CD137L (4-1BB Ligand) (clone 5F4) BioLegend Cat# 99814 
anti-human CD155 (PVR) (clone SKII.4) BioLegend Cat# 99814 
anti-human CD112 (Nectin-2) (clone TX31) BioLegend Cat# 99814 
anti-human CD47 (clone CC2C6) BioLegend Cat# 99814 
anti-human CD70 (clone 113-16) BioLegend Cat# 99814 
anti-human CD30 (clone BY88) BioLegend Cat# 99814 
anti-human CD40 (clone 5C3) BioLegend Cat# 99814 
anti-human CD154 (clone 24-31) BioLegend Cat# 99814 
anti-human CD52 (clone HI186) BioLegend Cat# 99814 
anti-human CD3 (clone UCHT1) BioLegend Cat# 99814 
anti-human CD8 (clone SK1) BioLegend Cat# 99814 
anti-human CD56 (NCAM) (clone 5.1H11) BioLegend Cat# 99814 
anti-human CD19 (clone HIB19) BioLegend Cat# 99814 
anti-human CD33 (clone P67.6) BioLegend Cat# 99814 
anti-human CD11c (clone S-HCL-3) BioLegend Cat# 99814 
anti-human CD34 (clone 581) BioLegend Cat# 99814 
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anti-human CD269 (BCMA) (clone 19F2) BioLegend Cat# 99814 
anti-human HLA-A,B,C (clone W6/32) BioLegend Cat# 99814 
anti-human CD90 (Thy1) (clone 5E10) BioLegend Cat# 99814 
anti-human CD117 (c-kit) (clone 104D2) BioLegend Cat# 99814 
anti-human CD10 (clone HI10a) BioLegend Cat# 99814 
anti-human CD45RA (clone HI100) BioLegend Cat# 99814 
anti-human CD123 (clone 6H6) BioLegend Cat# 99814 
anti-human CD7 (clone CD7-6B7) BioLegend Cat# 99814 
anti-human/mouse CD49f (clone GoH3) BioLegend Cat# 99814 
anti-human CD194 (CCR4) (clone L291H4) BioLegend Cat# 99814 
anti-human CD4 (clone RPA-T4) BioLegend Cat# 99814 
anti-mouse/human CD44 (clone IM7) BioLegend Cat# 99814 
anti-human CD14 (clone M5E2) BioLegend Cat# 99814 
anti-human CD16 (clone 3G8) BioLegend Cat# 99814 
anti-human CD25 (clone BC96) BioLegend Cat# 99814 
anti-human CD45RO (clone UCHL1) BioLegend Cat# 99814 
anti-human CD279 (PD-1) (clone EH12.2H7) BioLegend Cat# 99814 
anti-human TIGIT (VSTM3) (clone A15153G) BioLegend Cat# 99814 
Mouse IgG1, κ isotype Ctrl (clone MOPC-21) BioLegend Cat# 99814 
Mouse IgG2a, κ isotype Ctrl (clone MOPC-173) BioLegend Cat# 99814 
Mouse IgG2b, κ isotype Ctrl (clone MPC-11) BioLegend Cat# 99814 
Rat IgG2b, κ Isotype Ctrl (clone RTK4530) BioLegend Cat# 99814 
anti-human CD20 (clone 2H7) BioLegend Cat# 99814 
anti-human CD335 (NKp46) (clone 9E2) BioLegend Cat# 99814 
anti-human CD294 (CRTH2) (clone BM16) BioLegend Cat# 99814 
anti-human CD326 (Ep-CAM) (clone 9C4) BioLegend Cat# 99814 
anti-human CD31 (clone WM59) BioLegend Cat# 99814 
anti-Human Podoplanin (clone NC-08) BioLegend Cat# 99814 
anti-human CD146 (clone P1H12) BioLegend Cat# 99814 
anti-human CD324 (E-Cadherin) (clone 67A4) BioLegend Cat# 99814 
anti-human IgM (clone MHM-88) BioLegend Cat# 99814 
anti-human CD5 (clone UCHT2) BioLegend Cat# 99814 
anti-human TCR γ/δ (clone B1) BioLegend Cat# 99814 
anti-human CD183 (CXCR3) (clone G025H7) BioLegend Cat# 99814 
anti-human CD195 (CCR5) (clone J418F1) BioLegend Cat# 99814 
anti-human CD32 (clone FUN-2) BioLegend Cat# 99814 
anti-human CD196 (CCR6) (clone G034E3) BioLegend Cat# 99814 
anti-human CD185 (CXCR5) (clone J252D4) BioLegend Cat# 99814 
anti-human CD103 (Integrin αE) (clone Ber-ACT8) BioLegend Cat# 99814 
anti-human CD69 (clone FN50) BioLegend Cat# 99814 
anti-human CD62L (clone DREG-56) BioLegend Cat# 99814 
anti-human CD197 (CCR7) (clone G043H7) BioLegend Cat# 99814 
anti-human CD161 (clone HP-3G10) BioLegend Cat# 99814 
anti-human CD152 (CTLA-4) (clone BNI3) BioLegend Cat# 99814 
anti-human CD223 (LAG-3) (clone 11C3C65) BioLegend Cat# 99814 
anti-human KLRG1 (MAFA) (clone SA231A2) BioLegend Cat# 99814 
anti-human CD27 (clone O323) BioLegend Cat# 99814 
anti-human CD107a (LAMP-1) (clone H4A3) BioLegend Cat# 99814 
anti-human CD95 (Fas) (clone DX2) BioLegend Cat# 99814 
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anti-human HLA-DR (clone L243) BioLegend Cat# 99814 
anti-human CD1c (clone L161) BioLegend Cat# 99814 
anti-human CD64 (clone 10.1) BioLegend Cat# 99814 
anti-human CD141 (Thrombomodulin) (clone M80) BioLegend Cat# 99814 
anti-human CD1d (clone 51.1) BioLegend Cat# 99814 
anti-human CD314 (NKG2D) (clone 1D11) BioLegend Cat# 99814 
anti-human CD66b (clone 6/40c) BioLegend Cat# 99814 
anti-human CD35 (clone E11) BioLegend Cat# 99814 
anti-human CD57 Recombinant (clone QA17A04) BioLegend Cat# 99814 
anti-human CD366 (Tim-3) (clone F38-2E2) BioLegend Cat# 99814 
anti-human CD272 (BTLA) (clone MIH26) BioLegend Cat# 99814 
anti-human/mouse/rat CD278 (ICOS) (clone 
C398.4A) BioLegend Cat# 99814 
anti-human CD58 (LFA-3) (clone TS2/9) BioLegend Cat# 99814 
anti-human CD96 (TACTILE) (clone NK92.39) BioLegend Cat# 99814 
anti-human CD39 (clone A1) BioLegend Cat# 99814 
anti-human CD178 (Fas-L) (clone NOK-1) BioLegend Cat# 99814 
anti-human CX3CR1 (clone K0124E1) BioLegend Cat# 99814 
anti-human CD24 (clone ML5) BioLegend Cat# 99814 
anti-human CD21 (clone Bu32) BioLegend Cat# 99814 
anti-human CD11a (clone TS2/4) BioLegend Cat# 99814 
anti-human IgA (clone HP6123) BioLegend Cat# 99814 
anti-human CD79b (Igβ) (clone CB3-1) BioLegend Cat# 99814 
anti-human CD66a/c/e (clone ASL-32) BioLegend Cat# 99814 
anti-human CD244 (2B4) (clone C1.7) BioLegend Cat# 99814 
anti-human CD235ab (clone HIR2) BioLegend Cat# 99814 
anti-human CD206 (MMR) (clone 15-2) BioLegend Cat# 99814 
anti-human CD169 (Sialoadhesin, Siglec-1) (clone 
7-239) BioLegend Cat# 99814 
anti-human CD370 (CLEC9A/DNGR1) (clone 8F9) BioLegend Cat# 99814 
anti-human XCR1 (clone S15046E) BioLegend Cat# 99814 
anti-human/mouse integrin β7 (clone FIB504) BioLegend Cat# 99814 
anti-human CD268 (BAFF-R) (clone 11C1) BioLegend Cat# 99814 
anti-human CD54 (clone HA58) BioLegend Cat# 99814 
anti-human CD62P (P-Selectin) (clone AK4) BioLegend Cat# 99814 
anti-human TCR α/β (clone IP26) BioLegend Cat# 99814 
anti-human CD106 (clone STA) BioLegend Cat# 99814 
anti-human CD122 (IL-2Rβ) (clone TU27) BioLegend Cat# 99814 
anti-human CD267 (TACI) (clone 1A1) BioLegend Cat# 99814 
anti-human FcεRIα (clone AER-37 (CRA-1)) BioLegend Cat# 99814 
anti-human CD41 (clone HIP8) BioLegend Cat# 99814 
anti-human CD137 (4-1BB) (clone 4B4-1) BioLegend Cat# 99814 
anti-human CD254 (TRANCE, RANKL) (clone 
MIH24) BioLegend Cat# 99814 
anti-human CD163 (clone GHI/61) BioLegend Cat# 99814 
anti-human CD83 (clone HB15e) BioLegend Cat# 99814 
anti-human CD357 (GITR) (clone 108-17) BioLegend Cat# 99814 
anti-human CD309 (VEGFR2) (clone 7D4-6) BioLegend Cat# 99814 
anti-human CD124 (IL-4Rα) (clone G077F6) BioLegend Cat# 99814 
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anti-human CD184 (CXCR4) (clone 12G5) BioLegend Cat# 99814 
anti-human CD2 (clone TS1/8) BioLegend Cat# 99814 
anti-human CD226 (DNAM-1) (clone 11A8) BioLegend Cat# 99814 
anti-human CD29 (clone TS2/16) BioLegend Cat# 99814 
anti-human CD303 (BDCA-2) (clone 201A) BioLegend Cat# 99814 
anti-human CD49b (clone P1E6-C5) BioLegend Cat# 99814 
anti-human CD81 (TAPA-1) (clone 5A6) BioLegend Cat# 99814 
anti-human CD98 (clone MEM-108) BioLegend Cat# 99814 
anti-human IgG Fc (clone M1310G05) BioLegend Cat# 99814 
anti-human IgD (clone IA6-2) BioLegend Cat# 99814 
anti-human CD18 (clone TS1/18) BioLegend Cat# 99814 
anti-human CD28 (clone CD28.2) BioLegend Cat# 99814 
anti-human TSLPR (TSLP-R) (clone 1D3) BioLegend Cat# 99814 
anti-human CD38 (clone HIT2) BioLegend Cat# 99814 
anti-human CD127 (IL-7Rα) (clone A019D5) BioLegend Cat# 99814 
anti-human CD45 (clone HI30) BioLegend Cat# 99814 
anti-human CD15 (SSEA-1) (clone W6D3) BioLegend Cat# 99814 
anti-human CD22 (clone S-HCL-1) BioLegend Cat# 99814 
anti-human CD71 (clone CY1G4) BioLegend Cat# 99814 
anti-human B7-H4 (clone MIH43) BioLegend Cat# 99814 
anti-human CD26 (clone BA5b) BioLegend Cat# 99814 
anti-human CD193 (CCR3) (clone 5E8) BioLegend Cat# 99814 
anti-human CD204 (clone 7C9C20) BioLegend Cat# 99814 
anti-human CD144 (VE-Cadherin) (clone BV9) BioLegend Cat# 99814 
anti-human CD1a (clone HI149) BioLegend Cat# 99814 
anti-human CD304 (Neuropilin-1) (clone 12C2) BioLegend Cat# 99814 
anti-human CD36 (clone 5-271) BioLegend Cat# 99814 
anti-human CD158 (KIR2DL1/S1/S3/S5) (clone HP-
MA4) BioLegend Cat# 99814 
anti-mouse/human CD207 (clone 4C7) BioLegend Cat# 99814 
anti-human CD49d (clone 9F10) BioLegend Cat# 99814 
anti-human CD73 (Ecto-5'-nucleotidase) (clone 
AD2) BioLegend Cat# 99814 
anti-human TCR Vα7.2 (clone 3C10) BioLegend Cat# 99814 
anti-human TCR Vδ2 (clone B6) BioLegend Cat# 99814 
anti-human TCR Vγ9 (clone B3) BioLegend Cat# 99814 
anti-human TCR Vα24-Jα18 (iNKT cell) (clone 
6B11) BioLegend Cat# 99814 
anti-human CD305 (LAIR1) (clone NKTA255) BioLegend Cat# 99814 
anti-human LOX-1 (clone 15C4) BioLegend Cat# 99814 
anti-human CD158b (KIR2DL2/L3, NKAT2) (clone 
DX27) BioLegend Cat# 99814 
anti-human CD133 (clone S16016B) BioLegend Cat# 99814 
anti-human CD209 (DC-SIGN) (clone 9E9A8) BioLegend Cat# 99814 
anti-human CD158e1 (KIR3DL1, NKB1) (clone 
DX9) BioLegend Cat# 99814 
anti-human CD158f (KIR2DL5) (clone UP-R1) BioLegend Cat# 99814 
anti-human CD337 (NKp30) (clone P30-15) BioLegend Cat# 99814 
anti-human CD336 (NKp44) (clone P44-8) BioLegend Cat# 99814 
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anti-human CD307d (FcRL4) (clone 413D12) BioLegend Cat# 99814 
anti-human CD307e (FcRL5) (clone 509f6) BioLegend Cat# 99814 
anti-human CD319 (CRACC) (clone 162.1) BioLegend Cat# 99814 
anti-human CD138 (Syndecan-1) (clone DL-101) BioLegend Cat# 99814 
anti-human CD99 (clone 3B2/TA8) BioLegend Cat# 99814 
anti-human CLEC12A (clone 50C1) BioLegend Cat# 99814 
anti-Tau Phospho (Thr181) (clone M7004D06) BioLegend Cat# 99814 
anti-human CD257 (BAFF, BLYS) (clone 1D6) BioLegend Cat# 99814 
anti-human CD94 (clone DX22) BioLegend Cat# 99814 
anti-human CD150 (SLAM) (clone A12 (7D4)) BioLegend Cat# 99814 
anti-human Ig light chain κ (clone MHK-49) BioLegend Cat# 99814 
anti-mouse/human Mac-2 (Galectin-3) (clone 
M3/38) BioLegend Cat# 99814 
anti-human CD85j (ILT2) (clone GHI/75) BioLegend Cat# 99814 
anti-human CD23 (clone EBVCS-5) BioLegend Cat# 99814 
anti-human Ig light chain λ (clone MHL-38) BioLegend Cat# 99814 
anti-human HLA-A2 (clone BB7.2) BioLegend Cat# 99814 
anti-human GARP (LRRC32) (clone 7B11) BioLegend Cat# 99814 
anti-human CD328 (Siglec-7) (clone 6-434) BioLegend Cat# 99814 
anti-human TCR Vβ13.1 (clone H131) BioLegend Cat# 99814 
anti-human CD82 (clone ASL-24) BioLegend Cat# 99814 
anti-human CD101 (BB27) (clone BB27) BioLegend Cat# 99814 
anti-human CD360 (IL-21R) (clone 4B2.9) BioLegend Cat# 99814 
anti-human CD88 (C5aR) (clone S5/1) BioLegend Cat# 99814 
anti-human HLA-F (clone 3D11/HLA-F) BioLegend Cat# 99814 
anti-human NLRP2 (clone 8F10B51) BioLegend Cat# 99814 
anti-human Podocalyxin (clone mAb 84) BioLegend Cat# 99814 
anti-human CD224 (clone KF29) BioLegend Cat# 99814 
anti-c-Met (clone 12.1) BioLegend Cat# 99814 
anti-human CD258 (LIGHT) (clone T5-39) BioLegend Cat# 99814 
anti-human DR3 (TRAMP) (clone JD3) BioLegend Cat# 99814 
   
Biological Samples 
   
Chemicals, Peptides, and Recombinant Proteins 
Water, LiChrosolv grade  Merck  1-15333.2500  
Acetonitrile,  LiChrosolv grade  Merck  1.00030.2500  
Methanol,  LiChrosolv grade  Merck  1.06035.2500  
Formic Acid Optima LC-MS grade  Fisher Scientific  10596814  
1-Propanolol  Sigma-Aldrich  34871-1L  
Trifluoroacetic acid (TFA)  Sigma-Aldrich  74664-10ml  
Triethylammonium bicarbonate buffer (TEAB, 1M)  Sigma-Aldrich  T7408-100ml  
Ammonium formate  Sigma-Aldrich  70221-100g  
TPCK treated Trypsin (100µg)  Worthington LS003740  
C18 Evotips  Evosep One 

(Odense, Denmark)  
EV-2001  

96-well S-trap  Profiti (Huntington, 
NY, USA)  

C02-96wel  
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PQ500 reference peptide  Biognosys  K-3019  
SOLA HRP SPE 10mg/1ml  Fisher Scientific  11879163  

Benzonase Thermo Scientific 
Cat# 88700; RRID: 
N/A 

Maxpar® Cell Staining Buffer Fluidigm 
Cat# 201068; 
RRID: N/A 

Maxpar® Nuclear Antigen Staining Buffer Set Fluidigm 
 Cat# 201063; 
RRID: N/A 

eBioscience™ IC Fixation Buffer Thermo Scientific 
Cat# 00-8222-49; 
RRID: N/A 

Cell-ID Cisplatin Pt198 Fluidigm 
Cat# 201198; 
RRID: N/A 

Cell-ID Intercalator-Ir Fluidigm 
Cat# 201192B; 
RRID: N/A 

EQ Four Element Calibration Beads Fluidigm 
Cat# 201078; 
RRID: N/A 

Maxpar Cell Acquisition Solution (CAS) Fluidigm 
Cat# 201240; 
RRID; N/A 

Maxpar Water Fluidigm 
Cat# 201069; 
RRID: N/A 

Metal isotopes as chloride salts (In-115) 
Trace Sciences 
International Customized 

Protein Stabilizer PBS Candor Bioscience 
Cat# 131125, 
RRID: N/A 

Brilliant stain buffer  BD Bioscience 
Cat# 563794; 
RRID: N/A 

7-AAD dye BioLegend Cat# 420404 
FcX BioLegend Cat# 422301 
Diluted Nuclei Buffer 10x Genomics Cat# 2000153 
   
Critical Commercial Assays 

Whole blood (human) processing kit Cytodelics 
C001-500; RRID: 
N/A 

Cell-ID 20-Plex Pd Barcoding Kit Fluidigm 
Cat# 201060; 
RRID: N/A 

EasySep™ HLA Chimerism Whole Blood CD66b 
Positive Selection Kit Easysep 

Cat# 17882; RRID:  
N/A 

Cell-ID 20-Plex Pd Barcoding Kit Fluidigm 
Cat# 201060; 
RRID: N/A 

Maxpar MCP9 Antibody Labeling Kit −110Cd Fluidigm 
Cat# 201110A; 
RRID: N/A 

Maxpar MCP9 Antibody Labeling Kit −111Cd Fluidigm 
Cat# 201111A; 
RRID: N/A 

Maxpar MCP9 Antibody Labeling Kit −112Cd Fluidigm 
Cat# 201112A; 
RRID: N/A 

Maxpar MCP9 Antibody Labeling Kit −113Cd Fluidigm 
Cat# 201113A; 
RRID: N/A 

Maxpar MCP9 Antibody Labeling Kit −114Cd Fluidigm 
Cat# 201114A; 
RRID: N/A 
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Maxpar X8 Multimetal Labeling Kit (40 rxn) Fluidigm 
Cat# 201300; 
RRID: N/A 

Zombie Violet™ Fixable Viability Kit BioLegend 
Cat# 423102; 
RRID: N/A 

NEBNext® Globin & rRNA Depletion Kit 
(Human/Mouse/Rat) 

New England 
Biolabs E7750X 

NEBNext® Ultra™ II Directional RNA Library Prep 
Kit for Illumina® 

New England 
Biolabs E7760L 

NEBNext Poly(A) mRNA Magnetic Isolation Module 
New England 
Biolabs E7490L 

MiSeq Reagent Nano Kit v2 (300-cycles): MS-103-
1001 

Illumina Cambridge 
Ltd MS-103-1001 

MiSeq Reagent Kit v3 (600-cycle): MS-102-3003 
Illumina Cambridge 
Ltd MS-102-3003 

NextSeq 500/550 High Output Kit v2.5 (150 Cycles) 
Illumina Cambridge 
Ltd 20024907 

NovaSeq 6000 S4 Reagent Kit (200 cycles): 
20027466 

Illumina Cambridge 
Ltd 20027466 

NovaSeq 6000 S2 Reagent Kit (200 cycles): 
20012861 

Illumina Cambridge 
Ltd 20012861 

NovaSeq 6000 SP Reagent Kit (200 cycles): 
20040326 

Illumina Cambridge 
Ltd 20040326 

NovaSeq 6000 SP Reagent Kit (300 cycles): 
20027465 

Illumina Cambridge 
Ltd 20027465 

NovaSeq XP 2-Lane Kit 
Illumina Cambridge 
Ltd 20021664 

NovaSeq Xp 4-Lane Kit: 20021665 
Illumina Cambridge 
Ltd 20021665 

Nextera® XT DNA Sample Preparation Kit (96 
Samples) Illumina UK Ltd FC-131-1096 
Single Index Kit T Set A, 96 rxns 10XGenomics 1000213 
Chromium™ Single Cell 5' Library Construction Kit, 
16 rxns 10XGenomics 1000020 

Chromium Next GEM Single Cell 5' Library and Gel 
Bead Kit v1.1, 16 rxns 10XGenomics 1000165 

Chromium Next GEM Chip G Single Cell Kit 10XGenomics 1000127 
Chromium™ Single Cell V(D)J Enrichment Kit, 
Human T Cell, 96 rxns 10XGenomics 1000005 

Chromium™ Single Cell V(D)J Enrichment Kit, 
Human B Cell, 96 rxns 10XGenomics 1000016 

Single Index Kit N Set A, 96 rxns 10XGenomics 1000212 
Chromium Single Cell 5' Feature Barcode Library 
Kit, 16 rxns 10XGenomics 1000080 

Chromium Next GEM Chip H Single Cell Kit 10XGenomics 1000162 
Chromium Next GEM Single Cell ATAC Library & 
Gel Bead Kit v1.1 10XGenomics 1000176 

TotalSeqTM-C Custom Human panel - All Ab's 
(pouch) BioLegend 99814 

KAPA dual Indexed Adapter Kit Roche KK8722 
KAPA Hyper Prep Kit Roche KK8504 
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Human Magnetic Luminex Assay kit Biotechne LXSAHM-04 
Human Magnetic Luminex Assay kit Biotechne LXSAHM-23 
Human Magnetic Luminex Assay kit Biotechne LXSAHM-24 
   
Deposited Data 
Raw and processed data all modalities This paper In process. For 

deposition at EGA; 
proteomics (mass 
spectrometry) also 
at PRIDE Archive 
PXD023175  

   
Experimental Models: Cell Lines 
   
Oligonucleotides 
Primers for repertoire analysis, see Table S4 This paper N/A 
   
Recombinant DNA 
   
Software and Algorithms 
ALDEx2 (Fernandes et al., 

2013) 
v1.18.0 

ArchR (Granja et al., 2021) v0.9.3 
https://www.archrp
roject.com/ 

AUCell (Aibar et al., 2017) v1.12.0 
BBKNN (Polanski et al., 

2020) 
https://github.com/
Teichlab/bbknn 

BLAST  (Altschul et al., 1990) https://blast.ncbi.nl
m.nih.gov/Blast.cgi 

CATALYST (Nowicka et al., 
2017) 

v1.10.3 

CD-HIT  https://github.com/t
homasp85/FindMy
Friends 

Cell Ranger 10x genomics v3.1.0 
Cell Ranger ATAC 10x genomics https://support.10x

genomics.com/sin
gle-cell-
atac/software/over
view/welcome 

Cellranger VDJ 10x genomics v3.1.0 
Clinical Knowledge Graph (Santos et al., 2020) https://doi.org/10.1

101/2020.05.09.08
4897 

corrplot Wei and Simko 2017 v0.84 
https://github.com/t
aiyun/corrplot 
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CoV-AbDab (Raybould et al., 
2020) 

http://opig.stats.ox.
ac.uk/webapps/cov
abdab/ 

CyTOF Software  v7.0 
https://www.fluidig
m.com/software 

CytoNorm (Van Gassen et al., 
2020) 

v0.0.5 

Cytoscape (Shannon et al., 
2003) 

v3.8.0 

Cytosplore (van Unen et al., 
2017) 

www.cytosplore.or
g 

demuxlet  (Kang et al., 2018) v2 
https://github.com/
statgen/demuxlet 

diffcyt (Weber et al., 2019) v1.8.8 
edgeR (Robinson et al., 

2010) 
v3.28.1 
https://bioconducto
r.org/packages/rel
ease/bioc/html/edg
eR.html 

EmptyDroplets (Lun et al., 2019) v1.8.0 
Entropy (Hausser, 2009) http://www.strimme

rlab.org/software/e
ntropy/ 

eXploring Genomic Relations (XGR) (Fang et al., 2016b) http://galahad.well.
ox.ac.uk/XGR 

Fastcluster (Mulner, 2013) v1.1.25 
FastQC (Andrews, 2010) v0.11.9 

https://github.com/
s-andrews/FastQC 

featureCounts (Liao et al., 2014) v1.6.4 
fgsea (Korotkevich et al., 

2021) 
https://bioconducto
r.org/packages/rel
ease/bioc/html/fgs
ea.html 

FlowJo BD Biosciences v10.6 
https://www.flowjo.
com 

Fragpipe (Yu et al., 2021) v13.0 
GATK variant calling (Van der Auwera and 

O’Connor, 2020) 
v4.1.7.0 

ggraph Pedersen v2.05 
https://github.com/t
homasp85/ggraph 

gsfisher (Croft et al., 2019) https://github.com/
sansomlab/gsfishe
r 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 11, 2021. ; https://doi.org/10.1101/2021.05.11.21256877doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.11.21256877
http://creativecommons.org/licenses/by/4.0/


Page 14 of 16 

Harmony (Korsunsky et al., 
2019) 

https://github.com/i
mmunogenomics/h
armony 

HTSlib v1.10.2 Samtools http://www.htslib.or
g/ 

imagesc MATLAB https://uk.mathwor
ks.com/help/matla
b/ref/imagesc.html 

IMGT database  (Lefranc, 2011) http://www.imgt.or
g/ 

IMGT V-QUEST (Giudicelli et al., 
2004) 

http://www.imgt.or
g/IMGTindex/V-
QUEST.php 

InstantClue (Nolte et al., 2018) v0.5.3 
http://www.instantc
lue.uni-koeln.de/ 

IonQuant (Yu et al., 2020) https://ionquant.ne
svilab.org/ 

KeplerMapper (van Veen et al., 
2019) 

https://reposhub.co
m/python/data-
validation/scikit-
tda-kepler-
mapper.html 

Limma (Ritchie et al., 2015) https://bioconducto
r.org/packages/rel
ease/bioc/html/lim
ma.html 

MATLAB  https://uk.mathwor
ks.com/help/matla
b/ 

Matplotlib (Hunter, 2007) https://matplotlib.or
g/ 

MSFragger (Kong et al., 2017) v3.0 
MSigDB (Subramanian et al., 

2005) 
https://www.gsea-
msigdb.org/gsea/m
sigdb/index.jsp 

Pandas  v1.2.4 
https://pandas.pyd
ata.org/ 

Pegasus (Li et al., 2020) https://pegasus.rea
dthedocs.io/en/sta
ble/index.html 

PeptideProphet (Keller et al., 2002) Embedded in 
Fragpipe 

Perseus 1.6.14.0 (Tyanova and Cox, 
2018) 

https://maxquant.n
et/perseus/ 

Philosopher (da Veiga Leprevost 
et al., 2020) 

v3.2.9 
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Picard http://broadinstitute.
github.io/picard/ 

v2.23 
https://github.com/
broadinstitute/picar
d 

prcomp  v3.6.2 
https://www.rdocu
mentation.org/pack
ages/stats/version
s/3.6.2/topics/prco
mp 

Priority Index (Pi) (Fang et al., 2016a) http://galahad.well.
ox.ac.uk/Pi 

ProteinProphet (Nesvizhskii et al., 
2003) 

Embedded in 
Fragpipe 

Python  v3.8.2 
https://www.python
.org/ 

QTLtools (Delaneau et al., 
2017) 

https://qtltools.gith
ub.io/qtltools/ 

QUASR (Watson et al., 2013) http://sourceforge.
net/projects/quasr/ 

R Studio and R environment The R project for 
Statistical 
Computing 

https://rstudio.com/ 
and https://cran.r-
project.org/ 

RNASeQC (DeLuca et al., 2012) v2.3.5 
https://github.com/
getzlab/rnaseqc 

Scanorama (Hie et al., 2019) https://github.com/
brianhie/scanoram
a 

Scanpy (Wolf et al., 2018) https://github.com/t
heislab/scanpy 

Scater (McCarthy et al., 
2017) 

v3.12 
http://bioconductor.
org/packages/relea
se/bioc/html/scater
.html 

Scikit-learn (Pedregosa et al., 
2011) 

https://github.com/
scikit-learn/scikit-
learn 

Scipy (Virtanen et al., 
2020) 

https://www.scipy.
org/ 

ScVelo (Bergen et al., 2020) v0.1.24 
https://github.com/t
heislab/scvelo 

Sparse Decomposition of Arrays (Hore et al., 2016) https://jmarchini.or
g/sda/ 

Seaborn Waskom v0.11.1 
https://seaborn.pyd
ata.org/ 
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Seurat (Stuart et al., 2019) v3.9.9.9010 
SIMON (Tomic et al., 2019) https://genular.org/ 
singleR (Aran et al., 2019) https://github.com/

dviraran/SingleR 
STAR (Dobin et al., 2013) v2.7.3 
stringdist (van der Loo, 2014) https://github.com/

markvanderloo/stri
ngdist 

Survival (Therneau and 
Grambsch, 2000) 

v3.2-11 

Survminer Kassambara v0.4.8 
sva R (Johnson et al., 

2007; Leek et al., 
2012) 

v3.36.0 

Swissprot human Proteome database + SARSCov2  https://www.uniprot
.org/ retrieved 
17/07/2020 

TrimGalore Krueger v0.6.2 
https://github.com/
FelixKrueger/Trim
Galore 

ttest2 MATLAB http://uk.mathwork
s.com/help/stats/tt
est2.heml 

UMAP McInnes, Healy, 
Melville 

arXiv:1802.03426v
2 

Velocyto (La Manno et al., 
2018) 

http://velocyto.org/ 

Vireo (Huang et al., 2019) v0.4.0 
https://huangyh09.
github.io/vireo-
manual/about.html 

WGCNA (Langfelder and 
Horvath, 2008) 

https://horvath.gen
etics.ucla.edu/html
/CoexpressionNet
work/Rpackages/
WGCNA/ 

xCell (Aran et al., 2017) https://github.com/
dviraran/xCell 

   
Other 
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