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Abstract

Context: There is no rapid and cost effective tool that can be implemented as a front-line screening tool for Alzheimer’s
disease (AD) at the population level.

Objective: To generate and cross-validate a blood-based screener for AD that yields acceptable accuracy across both serum
and plasma.

Design, Setting, Participants: Analysis of serum biomarker proteins were conducted on 197 Alzheimer’s disease (AD)
participants and 199 control participants from the Texas Alzheimer’s Research Consortium (TARC) with further analysis
conducted on plasma proteins from 112 AD and 52 control participants from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI). The full algorithm was derived from a biomarker risk score, clinical lab (glucose, triglycerides, total
cholesterol, homocysteine), and demographic (age, gender, education, APOE*E4 status) data.

Major Outcome Measures: Alzheimer’s disease.

Results: 11 proteins met our criteria and were utilized for the biomarker risk score. The random forest (RF) biomarker risk
score from the TARC serum samples (training set) yielded adequate accuracy in the ADNI plasma sample (training set)
(AUC = 0.70, sensitivity (SN) = 0.54 and specificity (SP) = 0.78), which was below that obtained from ADNI cerebral spinal fluid
(CSF) analyses (t-tau/Ab ratio AUC = 0.92). However, the full algorithm yielded excellent accuracy (AUC = 0.88, SN = 0.75, and
SP = 0.91). The likelihood ratio of having AD based on a positive test finding (LR+) = 7.03 (SE = 1.17; 95% CI = 4.49–14.47), the
likelihood ratio of not having AD based on the algorithm (LR2) = 3.55 (SE = 1.15; 2.22–5.71), and the odds ratio of AD were
calculated in the ADNI cohort (OR) = 28.70 (1.55; 95% CI = 11.86–69.47).

Conclusions: It is possible to create a blood-based screening algorithm that works across both serum and plasma that
provides a comparable screening accuracy to that obtained from CSF analyses.
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Introduction

Alzheimer’s disease (AD) is a devastating disease affecting millions

of people worldwide. While a Food and Drug Administration (FDA)

working group recently provided preliminary approval for a beta

amyloid (Ab) neuroimaging technique as a biological marker

(Amyvid�, Elli Lilly), no blood-based biomarker screening tool has

received approval to date. However, blood-based biomarkers present

significant advantages over neuroimaging modalities. For example,

blood-based screenings offer a cost effective method of screening

candidates for therapeutic trials [1], provide a rapid, cost-effective

means of screening for AD at the population level [2,3,4,5], and

provide an optimal starting point for a multi-stage assessment process

that can be followed-up by clinical modalities (i.e. medical exam,

neuropsychological testing, standard neuroimaging, clinical blood-

work), specialized neuroimaging (i.e. Ab imaging, fMRI, volumetric

MRI analyses), and/or CSF (i.e. t-tau, Ab1–42, and/or t-tau/Ab1–42

ratio score) analyses [4] for screen positive cases. The 2009 U.S.

Census estimates suggested that there were nearly 40 million

Americans age 65 and above with an additional 34 million reaching

65 within 10 years; there are many more world-wide. Given their

cost and limited availability, available imaging, clinical, and CSF

modalities are not reasonable first-line approaches for screening all

elders at risk of having AD or that have concerns about having the

disease. The purpose of this study was to generate and cross-validate

a blood-based screener for AD that can be incorporated into the

existing medical infrastructure with additional assessments (e.g.

clinical, imaging, CSF analysis) to confirm those who screen positive.

In the last several years, there have been significant advance-

ments in the search for blood-based biomarkers for Alzheimer’s

disease (AD). In 2007, Ray and colleagues [6] analyzed a panel of

plasma-based proteins among samples from 259 controls, AD and

mild cognitive impairment (MCI) cases and generated a biomarker

algorithm that accurately identified 89% of those with and without

the disease; however, this work has not been replicated [7]. Buerger

and colleagues [8] examined blood-based microcirculation markers

as possible diagnostic markers for AD (AD n = 94, controls n = 53).

These authors found that a ratio score of pro-atrial natriuretic

peptide (MR-proANP) to C-terminal endothelin-1 precursor

fragment (CT-proET-1)(MR-proANP/CT-proET-1 ratio) from

plasma yielded a sensitivity of 0.81 and specificity of 0.82 in

discriminating probable AD from healthy controls. More recently,

we created a biomarker risk score from serum proteins (AD n = 197,

controls n = 203) that yielded a 91% overall accuracy [2]. Our

approach took the algorithm a step further by combining both

demographic (i.e. age, gender, education, and APOE*E4 status) and

clinical lab values (i.e. cholesterol, triglycerides, high density

lipoproteins, low density lipoproteins, lipoprotein-associated phos-

pholipase, homocysteine, and C-peptide) into the algorithm, which

improved the overall accuracy to 95% [5]. Analyzing samples from

22 AD cases, 22 controls, and 12 non-AD disease comparison

subjects, Reddy and colleagues [9] took a novel approach by

examining serum IgG antibodies as potential biomarkers of AD

status obtaining impressive results (AUC = 0.99); however, the

sample size was very small (n = 15 AD cases in test set) limiting the

generalizability of the findings at this point. Together, these studies

suggest that a blood-based screening tool for AD is on the horizon.

Although this work is promising, there is little consistency as to

what biological fluid is used for biomarker assays (i.e. serum versus

plasma), which may explain many inconsistent findings found in

the literature. While some assays must be conducted in one

medium or another, there are numerous studies linking a variety of

blood-based markers to AD from both mediums. Mayeux and

colleagues [10] analyzed plasma amyloid b (Ab) peptides Ab1–40

and Ab1–42 on 530 participants and found that Ab1–42 (but not

Ab1–40) levels were higher among baseline AD cases as well as

those who developed AD over a three-year period as compared to

those who did not. Luis et al. [11] analyzed serum Ab1–40 and Ab1–

42 levels among a sample of 87 AD and MCI cases as well as

controls. In that study, serum Ab1–40 levels did not differ between

groups whereas serum Ab1–42 levels where highest among MCI

cases (versus AD cases and controls) and controls and AD levels

were intermediate between those of the MCI cases and controls.

The serum Ab1–42/1–40 ratio was also highest among the MCI

group. In a sample of 40 AD cases and controls, Laske et al. [12]

found that serum brain derived neurotrophic factor (BDNF) levels

varied according to AD severity, suggesting BDNF as a potential

biomarker for AD, though we failed to cross-validate these findings

in a sample of 198 AD cases and controls from the Texas

Alzheimer’s Research Consortium (TARC) cohort [13]. In a

follow-up study of 399 AD cases and controls, elevated serum BDNF

was found to be specifically related to poorer memory perfor-

mance among AD cases [14] whereas Komulainen and colleagues

[15] found that lower plasma BDNF levels were significantly related

to poorer scores on tests of language and memory among women

in a population based sample of aging men and women (n = 1389).

To date, we are aware of no prior work that has explicitly

sought to find blood-based biomarkers of AD across both serum

and plasma and with no previous attempts at identifying blood-

based screening tools utilizing markers across blood fractions.

Additionally, no previously created blood-based tools have been

cross-validated in independent cohorts. The current study was

designed to (1) identify blood-based proteins that were highly

correlated across both serum and plasma that also were

significantly related to AD status, and (2) generate a screening

algorithm for AD utilizing those markers from serum in the TARC

cohort and validate that algorithm in the Alzheimer’s Disease

Neuriomaging Initiative (ADNI) plasma-samples. We hypothe-

sized that, as with our prior work, we would be able to generate a

screening algorithm that accurately identified AD across cohorts.

Methods

Participants
Texas Alzheimer’s Research Consortium (TARC). Serum

protein data were analyzed from 396 participants (197 AD
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subjects, 199 controls) from the TARC longitudinal cohort. In

addition, plasma protein data were analyzed on a matched sample

of 40 AD cases from the TARC. Blood samples for comparison of

plasma and serum proteins were drawn concurrently from the

same individuals. The methodology of the TARC project has been

described in detail elsewhere [2,16]. Briefly, each participant

undergoes a standardized annual examination at the respective

sites, which includes a medical evaluation, neuropsychological

testing, interview, and blood draw for storage of samples in the

TARC biobank. Diagnosis of AD was based on NINCDS-

ADRDA criteria [17] utilizing consensus review. Institution

Review Board approval was obtained for this study with each

participant (or caregiver) providing written informed consent. The

Institution Review Board (IRB) at Texas Tech University Health

Sciences Center, Baylor College of Medicine, University of North

Texas Health Science Center, the University of Texas Southwest-

ern Medical Center, and the University of Texas Health Science

Center - San Antonio approved this research.

Alzheimer’s Disease Neuroimaging Initiative (ADNI). Data used

in the preparation of this article were obtained from the ADNI

database (adni.loni.ucla.edu). The ADNI was launched in 2003 by

the National Institute on Aging (NIA), the National Institute of

Biomedical Imaging and Bioengineering (NIBIB), the Food and

Drug Administration (FDA), private pharmaceutical companies

and non-profit organizations, as a $60 million, 5-year public-

private partnership. The primary goal of ADNI has been to test

whether serial magnetic resonance imaging (MRI), positron

emission tomography (PET), other biological markers, and clinical

and neuropsychological assessment can be combined to measure

the progression of mild cognitive impairment (MCI) and early

Alzheimer’s disease (AD). The Principal Investigator of this

initiative is Michael W. Weiner, MD, VA Medical Center and

University of California – San Francisco. ADNI is the result of

efforts of many co-investigators from a broad range of academic

institutions and private corporations, and subjects have been

recruited from over 50 sites across the U.S. and Canada. For up-

to-date information, see www.adni-info.org. Data from 170

participants from ADNI (58 controls and 112 AD cases) for

whom plasma-based protein results were available were utilized in

this study.

Blood Assays. In TARC, non-fasting samples were collected

whereas ADNI utilized a fasting blood collection procedure.

Serum blood samples were collected in serum-separating tubes

during clinical evaluations, allowed to clot at room temperature

for 30 minutes, centrifuged, aliquoted, and stored in polypropyl-

ene tubes at 280uC. In both TARC and ADNI, plasma samples

were collected in lavender-top tubes and gently mixed 10–12

times. Next tubes were centrifuged at room temperature and

plasma extracted and frozen until assay. In both studies, serum

and plasma samples were sent to Rules Based Medicine (RBM,

www.rulesbasedmedicine.com, Austin, TX) for assay on the RBM

multiplexed immunoassay human Multi-Analyte Profile (human-

MAP). Individual proteins were quantified with immunoassays on

colored microspheres. Information regarding the least detectable

dose (LDD), inter-run coefficient of variation, dynamic range,

overall spiked standard recovery, and cross-reactivity with other

humanMAP analytes can be readily obtained from RBM. Clinical

lab data. Homocysteine, hemoglobin A1c, c-peptide, and

lipoprotein-associated phospholipase A2 (Lp-PLA2) was provided

by the Ballantyne laboratory at Baylor College of Medicine.

Sample collection and storage was as described above. Lipids were

measured using a AU400e automated chemistry analyzer

(Olympus America; Center Valley, PA), serum total homocysteine

(tHcy) by recombinant enzymatic cycling assay (Roche Hitachi

911), c-peptide by enzyme-linked immunosorbent assay (ELISA),

HbA1c measurement by turbidimetric inhibition immunoassay

(TINIA) for hemolyzed whole blood and Lp-PLA2 levels by

diaDexus PLACH test (diaDexus, Inc, San Francisco, CA). Clinical

lab data from ADNI was conducted using kits provided by

Covance. ADNI CSF Biomarkers. Our blood-based algorithm was

compared to the diagnostic accuracy of the total tau (t-tau) to beta

amyloid (Ab1–42) ratio (t-tau/Ab1–42) previously completed as part

of the ADNI protocol. The CSF methods for ADNI have been

described in detail elsewhere [18]. Lumbar punctures were

conducted with a median of one day after baseline clinical visit.

Once CSF was transferred into polypropylene tubes it was frozen

and shipped to the ADNI Biomarker Core laboratory at the

University of Pennsylvania Medical Center where biomarker

assays were conducted [18].

Statistical Analyses. Analyses were performed using R (V 2.10)

statistical software [19]. Biomarker data were transformed using

Box-Cox [20] transformation so that the distribution of each

protein is approximately normal. Analyses took place in a series

of steps. Identification of proteins across serum and plasma.

Pearson correlations were conducted in the TARC sub-sample

across serum and plasma proteins to determine which markers

were comparable across mediums. Model-based clustering

algorithm [21] (Mclust package in R) was used to empirically

determine the optimal correlation cut-off that separated the

highly correlated versus weakly correlated proteins. The optimal

cut-score was 0.75, which identified 33 proteins with high

correlation ($0.75) between serum and plasma (see Figure 1). T-

test analyses comparing the abundance of proteins between AD

and controls identified 29 that were differentially expressed

between groups (p,0.05) in full the TARC cohort (training set).

Eleven proteins were significantly different between AD and

control participants and were found to be correlated $0.75

across serum and plasma. These 11 proteins are defined as

protein biomarkers in this study. Figure 2 reflects a graphic

representation of the methods. Development of Biomarker

Diagnostic Model. Next, we used the 11 protein biomarkers to

develop our prediction model using random forest (RF) method

[22,23], implemented using R package randomforest (V 4.5) [22].

The TARC cohort was designated as the training sample in

which the prediction model was derived. Validation of the

Prediction Model. The protein biomarker-based RF prediction

model derived from the TARC serum-based biomarker training

set (TARC) was applied to the ADNI plasma-based dataset (test

sample) to predict the risk score for each patient in the ADNI

cohort. Of note, no ADNI data were utilized in (1) identification

of serum-plasma comparable proteins or (2) development of the

RF prediction model. This was done to avoid the overfitting or

other possible confounds across medium and/or cohorts.

Diagnostic Accuracy. Diagnostic accuracy was evaluated by

examining the area under the receiver operating characteristic

(ROC) curves (AUC). Our approach to creating a blood-based

diagnostic algorithm for AD is to combine the predicted

biomarker risk score from the RF model with demographic and

clinical lab data via a multivariate logistic regression model.

Demographic data incorporated into the algorithm was age,

gender, level of education, and presence of APOE*E4 genotype

(homozygous or heterozygous) while clinical lab data included

glucose, triglycerides, total cholesterol, and homocysteine. These

variables were included as they were (1) available from both

cohorts and (2) have been linked to AD. Lastly, the likelihood

ratios of having AD based on a positive test finding (LR+), the

likelihood ratio of not having AD based on the algorithm (LR-)

and the odds ratio of AD were calculated in the ADNI cohort.

A Blood Screening Tool for AD
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Results

Demographic characteristics of the samples are provided in

Table 1. Eleven proteins met our criteria of (1) having a

correlation coefficient $0.75 between serum and plasma in the

same participant and (2) being associated with disease status

p,0.05. The 11 proteins were as follows: C-reactive protein,

adiponectin, pancreatic polypeptide, fatty acid binding protein,

interleukin 18, beta 2 microglobulin, tenascin C, T lymphocyte

secreted protein 1.309, factor VII, vascular cell adhesion molecule

1, and monocyte chemotactic protein 1. See Table 2 for

correlations among serum and plasma for these 11 proteins as

well as the mean differences between cases and control groups of

these biomarkers and clinical lab data across cohorts.

The optimal cut-score for the RF biomarker risk score from the

test sample (ADNI) was 0.51 which obtained AUC of 0.70 with a

sensitivity (SN) and specificity (SP) of 0.54 and 0.78, respectively.

For comparison purposes, the ADNI CSF t-tau/Ab1–42 ratio

yielded a superior diagnostic accuracy with an observed

AUC = 0.92, SN = 0.84, and SP = 1.00. However, as with our

prior approach, when the biomarker risk score was combined

with demographic and clinical lab data [2,5], the precision

improved substantially. Our combined algorithm yielded a much

better diagnostic accuracy with an observed AUC = 0.88,

SN = 0.75, and SP = 0.91. Of note, the diagnostic accuracy of

our serum-plasma based algorithm was comparable to that

obtained from ADNI CSF analyses. See Table 3 and Figure 3.

The likelihood ratio positive (LR+) was 7.03 (SE = 1.17; 95%

CI = 4.49–14.47), the likelihood ratio negative (LR2) was 3.55

(SE = 1.15; 2.22–5.71), and the odds ratio (OR) was 28.70 (1.55;

95% CI = 11.86–69.47). The misclassification rate was 14% (95%

CI = 9–21%). If we set SN at 0.80 for our full algorithm, the

resulting SP was 0.81, which also meets the criteria for the

Consensus Report of the Working Group on Molecular and

Biochemical Markers of AD [24].

Discussion

In the current study we demonstrate that (1) there are proteins

that are highly correlated in plasma and serum and are associated

with AD status across blood fractions, (2) these findings are

replicable across independent cohorts, and (3) using these proteins,

we generated a prediction model in the TARC cohort that, when

combined with demographic and clinical lab data, yielded

clinically significant classification accuracy in the ADNI cohort.

To date, this is the first blood-based screener for AD developed

that has been cross-validated in an independent large-scale cohort

that also works across blood fractions. This work not only further

supports the notion that an accurate blood-based screening tool for

AD can be generated, but also that such an algorithm can be

applied across serum and plasma mediums. Our 11-protein serum-

plasma risk score alone yielded an AUC of 0.70 accuracy that was

Figure 1. The density plot the Pearson’s correlation coefficients between serum and plasma in TARC cohort. We used Mclust (model-
based clustering algorithm [21]) package in R to fit the data and discovered two clusters in the correlation coefficients: one (red) corresponding to
low correlation and the other (blue) corresponding to high correlation. The threshold value that separated these two clusters most effectively is 0.75.
The black line is the density plot of all biomarkers. The dots represent the correlation coefficients of the biomarkers and the color indicates the cluster
membership.
doi:10.1371/journal.pone.0028092.g001
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enhanced by the addition of demographic (i.e. age, gender,

education, APOE*E4 status) and clinical lab (i.e. glucose,

triglycerides, total cholesterol, and homocysteine) data. In

Table 3, the addition of clinical lab data did not improve the

overall accuracy of the algorithm beyond demographic informa-

tion, which is largely driven by the APOE*E4 rates in the ADNI

cohort. However, in our prior work [5], the use of clinical lab data

improved overall accuracy and will likely contribute to the

robustness of our approach as it is applied to other cohorts. It is

certainly possible that inclusion of additional markers, not

available in the current analyses, would increase the accuracy of

that risk score, which is an additional advantage of our approach

as it can be expanded or reduced as necessary to support the

accuracy and cost-effectiveness of the algorithm. A single

biomarker algorithm that works across both serum and plasma

will offer laboratories options that may be preferable for a variety

of reasons.

There are several implications for the current findings. There

are a number of previously conducted research projects with

stored blood biospecimens; however, there is little consistency

between what medium was stored. The current findings open up

the possibility of utilizing samples from such studies to further

validate and refine our algorithm. Additionally, it is likely that the

components of diagnostic algorithms will be different from the

components of algorithms for progression and different from those

predicting long-term risk. Our findings offer a novel approach to

each of these questions as well. These findings also support the

need for standard protocols to be generated for blood-based AD

biomarker research as is currently underway for the CSF markers.

These results also support the robustness of our methodological

approach. In our initial serum-based algorithm, the biomarker risk

score alone yielded an AUC of 0.91 whereas the serum-plasma

algorithm in the current study yielded an AUC of 0.70. While

impressive, this overall accuracy is not clinically adequate.

Figure 2. Outline of methods.
doi:10.1371/journal.pone.0028092.g002

Table 1. Demographic characteristics of the cohorts.

TARC – serum
sample

TARC –
plasma
sample ADNI

AD (N = 197)
Control
(N = 198) p-value AD (n = 40) AD (n = 112) Control (n = 58) p-value

Gender (male) 34.5% 31.3% 0.52 40% 42% 48% 0.52

Age (years, mean/sd) 77.4(8.3) 70.4(8.9) ,0.001 75.7(1.6) 75.2(8.1) 75.5(5.8) 0.63

Education (years, mean/sd) 14.0(3.5) 15.5(2.7) ,0.001 14.5(0.6) 15.1(3.2) 15.6(2.7) 0.38

APOE*E4 positive 59.3% 26.5% ,0.001 50% 68% 9% ,0.001

Note: TARC = Texas Alzheimer’s Research Consortium; ADNI = Alzheimer’s Disease Neuroimaging Initiative. Fisher exact test was used for categorical outcomes (Gender,
APOE*E4 positive) and Wilcoxon test was used for continuous outcomes (Age, Education).
doi:10.1371/journal.pone.0028092.t001
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However, as with our prior approach, the combination of clinical

lab data and demographic variables into the algorithm increased

the precision substantially (AUC = 0.88). In our prior work, the

training and test sample were both based on serum assays and

were from the larger TARC cohort; however, the derivation of the

algorithm in the TARC cohort and validation in the ADNI cohort

supports the robustness of this method. As we have previously

argued, using only age, gender, education and APOE*E4 status,

one can accurately classify a large number of AD cases when

compared to controls. Therefore, consideration of such factors

should be considered when examining biomarkers of AD status.

We are not the first to demonstrate that inclusion of these factors

into an algorithm can improve overall accuracy as others have

suggested that a multi-marker approach is superior to single-

marker approaches [25,26]. As an example, Vemuri and

colleagues found that including demographic factors with

structural MRI added to the overall accuracy of disease-prediction

models even when cases and controls were matched by these

variables [27]. This is important given that the TARC cohort did

not match cases and controls whereas ADNI samples were

matched. The robustness of our methodology may also provide an

explanation for the lack of cross-validation of prior work [6,7].

The utility of our algorithm for separating MCI cases from normal

controls (and/or AD) remains unknown at present.

The current markers overlap with our prior serum-only based

algorithm [2,5] though they do not overlap with those found by

Ray and colleagues [6], which may be due to the significant

differences in assay platforms utilized. However, there is an

existing literature directly or indirectly linking each of the 11

proteins identified in this study to AD. As with our prior work,

many of the markers in the algorithm are inflammatory in nature,

which we propose as evidence of an inflammatory endophenotype

of AD [2,28]. We, and others, have documented a link between

CRP and AD [28]. Based on the available data, we proposed that

the link between CRP and the risk of AD changes over the life

course with midlife elevations in CRP increasing risk for AD, but

that this risk declines as one ages with decreased CRP related to

AD status though elevations in CRP are still related to increased

disease severity among cases [28]. Adiponectin, an adipocytokine,

is related to obesity, insulin resistance, metabolic syndrome, type 2

diabetes, and cardiovascular disease [29] and was recently found

to be elevated in plasma among MCI and AD cases [30].

Table 2. Biomarkers and Clinical Labs Across Cohorts.

Marker
Pearson correlation for
serum vs. plasma (TARC cohort) Mean difference in TARCC Mean difference in ADNI

C Reactive Protein 0.97 23.35 22.07

Adiponectin 0.95 1.88 1.79

Pancreatic polypeptide 0.89 4.29 2.78

Fatty Acid Binding Protein 0.88 1.72 20.79

IL 18 0.86 21.87 0.51

Beta 2 Microglobulin 0.85 3.14 2.09

Tenascin C 0.85 4.56 2.93

I.309 0.8 1.12 21.68

Factor VII 0.8 22.78 21.26

VCAM 1 0.78 3.00 2.82

MCP 1 0.75 22.74 20.30

Total Cholesterol – 0.13 0.78

Triglycerides – 20.63 1.59

Homocysteine – 3.99 1.06

Note: Mean difference reflects the mean difference between cases and controls divided by the its standard deviation.
doi:10.1371/journal.pone.0028092.t002

Table 3. Diagnostic accuracy of the serum-plasma algorithm.

AUC (95% CI) SN (95% CI) SP (95% CI)

biomarker + clinical + demographic 0.88 (0.83–0.93) 0.75 (0.67–0.83) 0.91 (0.80–0.96)

biomarker + demographic 0.88 (0.83–0.93) 0.79 (0.71–0.86) 0.87 (0.75–0.93)

Biomarker + clinical 0.71 (0.63–0.79) 0.73 (0.64–0.81) 0.60 (0.47–0.72)

biomarker risk score alone 0.70 (0.62–0.78) 0.54 (0.45–0.63) 0.78 (0.65–0.87)

clinical variables alone 0.59 (0.50–0.68) 0.53 (0.43–0.62) 0.72 (0.58–0.82)

demographic variables alone 0.81 (0.75–0.88) 0.70 (0.61–0.78) 0.92 (0.82–0.97)

CSF tau/abeta ratio 0.92 (0.87–0.96) 0.84 (0.76–0.90) 1.00 (0.93–1.00)

Note: AUC = area under the receiver operating characteristic curve; SN = sensitivity; SP = specificity; CI = confidence interval; demographic = age, gender, education,
APOE*E4 status (presence/absence); clinical = glucose, triglycerides, total cholesterol, homocysteine.
doi:10.1371/journal.pone.0028092.t003
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Therefore, adiponectin levels may be related to the documented

links between changes in body composition (e.g. weight loss) seen

in prodromal and early stage AD. Pancreatic polypeptide is also

linked with diabetes and obesity [31,32] and may provide a clue

into the biological link between these conditions and AD. Fatty

acid binding proteins, cytosolic proteins found in all cells utilizing

fatty acids, are rapidly released into circulation following cell

damage [33]. Serum levels fatty acid binding proteins have been

shown to be elevated among AD and other dementia cases as

compared to normal controls [33,34]. A recent meta-analysis

showed a significant up-regulation in blood concentrations of IL-

18 (as well as IL-6, TNFa, IL1, transforming growth factor, IL-12)

among AD cases [35]. b2 microglobulin is an amyloid protein [36]

that has been found to be elevated in the CSF of AD cases [37,38].

Tenascin-C, an extracellular matrix glycoprotein, is involved in a

number of biological processes that have been linked to AD

including inflammation and angiogenesis [39], which may provide

a biological mechanism linking AD to a broad spectrum of

cardiovascular diseases and risk factors. The human cytokine I-

309, a small glycoprotein, was recently found to be elevated in a

proteomic study of CSF among AD cases and was also related to

scores on a test of global cognitive functioning (i.e. Mini Mental

State Examination [MMSE]) [40]. Factor VII is a protein in the

coagulation cascade that is required for thrombin generation,

which has also been linked to AD [41]. VCAM-1 is a member of

the immunoglobulin superfamily that has been found elevated in

plasma of AD cases [42]. It has been proposed that MCP-1 plays a

dominant role in the chronic inflammation seen in AD [43] and

has been found to be elevated in serum of patients diagnosed with

MCI and mild AD [44].

Given the sheer volume of elders worldwide who are at risk

for AD, there is an urgent need for a multi-stage approach to

screening and diagnosis. There are insufficient numbers of

dementia experts to meet the needs of all individuals at risk for

the disease and prior work has demonstrated that non-experts

are not completely accurate in diagnosing the disease [45],

particularly in the earlier stages [46]. Our blood-based screener

fits into the existing medical infrastructure where screen

positives can be referred for confirmatory diagnosis using

clinical, imaging, and/or CSF analysis. As with any screening

measure, one must consider acceptable levels of false positive

and false negative rates of the instrument as well as overall

disease base rates of the setting when deciding on appropriate

cut-scores on any instrument [47]. Therefore it is important that

additional work be conducted to determine how this algorithm

(and other previously published biomarkers) performs in

community-based settings (e.g. primary care offices) as both

the TARC and ADNI are clinic-based cohort studies. While

sensitivity and specificity are not base rate dependent, accuracy

of diagnosis (prediction of disease status present/absent) is a

function of base rates of the disease within a given population

therefore, overall accuracy of AD presence (i.e. true positives)

will increase with advancing age while accuracy of AD absence

(i.e. true negatives) will be higher with younger ages. As with

age, APOE*E4 genotype, gender, and/or years of education are

also important considerations, which is why these variables are

included in the algorithm itself.

The independent cohorts strongly support the validity of the

findings. These observations also justify further analysis examining

a broader range of markers across serum and plasma to determine

if the biomarker risk score can be further refined. Our results also

suggest that further work in the field should specifically examine

the performance of blood-based protein panels across serum and

plasma.
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