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Abstract. Let q, a, b, and T be real numbers with q ≥ 0, a > 0, 0 < b < 1, and T > 0.
This article studies the following degenerate semilinear parabolic first initial-boundary
value problem,

xqut(x, t) − uxx(x, t) = aδ(x − b)f (u(x, t)) for 0 < x < 1, 0 < t ≤ T,

u(x, 0) = ψ(x) for 0 ≤ x ≤ 1, u(0, t) = u(1, t) = 0 for 0 < t ≤ T,

where δ (x) is the Dirac delta function, and f and ψ are given functions. It is shown that
for a sufficiently large, there exists a unique number b∗ ∈ (0, 1/2) such that u never blows
up for b ∈ (0, b∗] ∪ [1 − b∗, 1), and u always blows up in a finite time for b ∈ (b∗, 1 − b∗).
To illustrate our main results, two examples are given.

1. Introduction. Let q, a, b, and T be real numbers with q ≥ 0, a > 0, 0 < b < 1,
and T > 0, Lu = xqut − uxx, D = (0, 1), D̄ = [0, 1], and Ω = D × (0, T ]. We consider
the following degenerate semilinear parabolic first initial-boundary value problem,

Lu = aδ(x − b)f (u(x, t)) in Ω,

u(x, 0) = ψ(x) on D̄, u(0, t) = u(1, t) = 0 for 0 < t ≤ T,

}
(1.1)

where δ(x) is the Dirac delta function, and f and ψ are given functions. This model is
motivated by applications in which the ignition of a combustible medium is accomplished
through the use of either a heated wire or a pair of small electrodes to supply a large
amount of energy to a very confined area. When q = 1, the model may also be used to
describe the temperature u of the channel flow of a fluid with temperature-dependent
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viscosity in the boundary layer (cf. Chan and Kong [2]) with a concentrated nonlinear
source at b; here, x and t denote the coordinates perpendicular and parallel to the channel
wall respectively. When q = 0, it can be used to describe the temperature of a one-
dimensional strip of a finite width that contains a concentrated nonlinear source at b. The
case when q = 0 was studied by Olmstead and Roberts [4] by analyzing its corresponding
nonlinear Volterra equation of the second kind at the site of the concentrated source. A
problem due to a source with local and nonlocal features was also studied by Olmstead
and Roberts [5] by analyzing a pair of coupled nonlinear Volterra equations with different
kernels. We assume that f (0) ≥ 0, f(u) and its derivatives f ′(u) and f ′′ (u) are positive
for u > 0, and ψ(x) is nontrivial, nonnegative and continuous such that ψ attains its
maximum at b, ψ (0) = ψ (1) = 0, and

ψ′′ + aδ(x − b)f (ψ) ≥ 0 in D.

Chan and Tian [3] proved that under certain conditions, the solution u of the problem
(1.1) blows up in a finite time. For q = 0, they and Olmstead and Roberts [4] showed
that if the position b of the concentrated source is sufficiently close to x = 0 or x = 1,
then u never blows up. The main purpose here is to find the exact position b∗ for the
problem (1.1) with q ≥ 0 such that u never blows up for b ∈ (0, b∗] ∪ [1 − b∗, 1), and u

always blows up in a finite time for b ∈ (b∗, 1 − b∗). This also implies that u does not
blow up in infinite time.

2. Critical position b∗. A proof similar to that used for Theorem 4 of Chan and
Jiang [1] gives the following result.

Theorem 2.1. If limt→∞ u(x, t) < ∞, then u(x, t) converges uniformly on D̄ from below
to a solution

U(x) = ag(x; b)f(U(b)) (2.1)

of the nonlinear two-point boundary value problem

−U ′′ = aδ(x − b)f(U(x)) in D, U(0) = U(1) = 0, (2.2)

where

g (x; ξ) =
{

ξ(1 − x) for 0 ≤ ξ ≤ x,

x(1 − ξ) for x < ξ ≤ 1,

is Green’s function corresponding to the problem (2.2).

When ψ is sufficiently large and f is sufficiently nonlinear, it follows from Theorem
3.3 of Chan and Tian [3] that there is a position b to place the nonlinear concentrated
source such that (1.1) blows up in a finite time. To find a position b so that the solution
u exists for all t > 0, let us first consider the problem (1.1) with q = 0, namely,

µt − µxx = aδ(x − b)f (µ(x, t)) in Ω,

µ(x, 0) = ψ(x) on D̄, µ(0, t) = µ(1, t) = 0 for 0 < t ≤ T.

}
(2.3)
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From Theorem 3.2 of Chan and Tian [3], the blow-up set is the single point x = b. From
Chan and Tian [3],

µ(b, t) = a

∫ t

0

G(b, t; b, τ )f(µ(b, τ ))dτ +
∫

D

G(b, t, ξ, 0)ψ(ξ)dξ, (2.4)

where

G(x, t; ξ, τ) = 2
∞∑

n=1

(sin nπx)(sinnπξ)e−n2π2(t−τ) for t > τ.

From Olmstead and Roberts [4],∫ t

0

G(b, t; b, τ )dτ = b(1 − b) − 2
π2

∞∑
n=1

sin2 nπb

n2
e−n2π2t.

Since
∑∞

n=1(sin
2nπb)e−n2π2t/n2 and 2

∑∞
n=1(sin

2 nπb)e−n2π2t converge uniformly in (0, t),
we have

∂

∂t

(∫ t

0

G(b, t; b, τ )dτ

)
= 2

∞∑
n=1

(sin2 nπb)e−n2π2t > 0,

lim
t→∞

∫ t

0

G(b, t; b, τ )dτ = b(1 − b) − 2
π2

∞∑
n=1

sin2 nπb

n2
lim

t→∞
e−n2π2t = b(1 − b).

The solution v of the linear problem,

vt − vxx = 0 in Ω, v (x, 0) = ψ (x) on D̄, v(0, t) = v(1, t) = 0 for 0 < t ≤ T,

is given by

v (x, t) =
∫

D

G(x, t; ξ, 0)ψ(ξ)dξ. (2.5)

Since ψ attains its maximum at b, it follows from the weak maximum principle that v

attains its maximum, denoted by k0, at (b, 0). From Theorem 2.4 of Chan and Tian [3],
µ is a nondecreasing function of t. Hence, it follows from Theorem 2.6 of Chan and Tian
[3] that for 0 ≤ t ≤ θ, µ (x, t) attains its maximum at (b, θ). Thus given any number
M > k0, it follows from (2.4) and (2.5) that

µ(b, t) ≤ k0 + af (M)
∫ t

0

G(b, t; b, τ )dτ ≤ k0 + af (M) b(1 − b).

In order that k0 + af (M) b(1− b) ≤ M so that µ exists for all t > 0, we choose b in such
a way that

0 < b ≤ 1
2

[
1 −

√
1 − 4 (M − k0)

af(M)

]
or

1
2

[
1 +

√
1 − 4 (M − k0)

af(M)

]
≤ b < 1. (2.6)

Since µ is a nondecreasing function of t, we have for 0 ≤ x ≤ 1 and q > 0,

xqµt − µxx ≤ µt − µxx,

which implies that the solution of the problem (1.1) is a lower solution of the problem
(2.3). Thus under the above condition (2.6) on b, the solution of (1.1) also exists globally.

Let us consider a positive function S(b) satisfying

S(b) = ag(b; b)f(S(b)) = ab(1 − b)f(S(b)).
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Since f (s) and its derivative f ′ (s) are positive for s > 0, it follows that f(S(b)) and its
derivative f ′(S(b)) are positive. We would like to know for a sufficiently large, how S (b)
behaves as b varies.

Theorem 2.2. If a > 4 supS(b)∈(0,∞) (1/f ′(S(b))), then

S is a strictly increasing function of b for 0 < b <
1
2

(
1 −

√
1 − 4

af ′(S(b))

)
,

S is a strictly decreasing function of b for
1
2

(
1 +

√
1 − 4

af ′(S(b))

)
< b < 1.

Proof. A direct calculation gives

S′(b) =
a(1 − 2b)f(S(b))

1 − ab(1 − b)f ′(S(b))
.

For b∈
(
0,

(
1 −

√
1 − 4/ (af ′(S(b)))

)
/2

)
, it follows from a > 4 supS(b)∈(0,∞) (1/f ′(S(b)))

that b < 1/2, and hence 1 − 2b > 0. Also,

b <
1
2

(
1 −

√
1 − 4

af ′(S(b))

)

gives

b − 1
2

< −1
2

√
1 − 4

af ′(S(b))
< 0.

Hence, (
b − 1

2

)2

>
1
4
− 1

af ′(S(b))
,

which gives
1 − ab(1 − b)f ′(S(b)) > 0.

Thus, we have S′(b) > 0, and S (b) is a strictly increasing function of b.
For b ∈

((
1 +

√
1 − 4/ (af ′(S(b)))

)
/2, 1

)
, we have

1
2

<
1
2

+
1
2

√
1 − 4

af ′(S(b))
< b,

and hence,

1 − 2b < 0,

b − 1
2

>
1
2

√
1 − 4

af ′(S(b))
> 0.

An argument as before gives

1 − ab(1 − b)f ′(S(b)) > 0.

Thus, S′(b) < 0, and S (b) is a strictly decreasing function of b. �
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If a > 4 supU(b)∈(0,∞) (1/f ′(U(b))), then it follows from (2.1) and Theorem 2.2 that on
the interval (0, 1/2), the position b for global existence of u is closer to 0 than the position
b for the blow-up of u in a finite time. On the other hand, on the interval (1/2, 1), the
position b for u to exist globally is closer to 1 than the position b for u to blow up in a
finite time. Thus, there exists b∗ ∈ (0, 1/2) such that the steady state U(x) exists for
b ∈ (0, b∗) ∪ (1 − b∗, 1), and does not exist for b ∈ (b∗, 1 − b∗). Since u(x, t) ≤ U(x) =
limt→∞ u(x, t) in D × (0,∞) when U exists, we have for b ∈ (0, b∗) ∪ (1 − b∗, 1), u exists
for 0 ≤ t < ∞, and for b ∈ (b∗, 1 − b∗), u always blows up in a finite time.

To calculate b∗, let us consider the steady state U(x) of the problem (1.1). Since
u(x, t) attains its maximum at (b, t), it follows that U(x) attains its maximum at x = b.
Also, U(b) and f(U(b)) are positive. From (2.1),

U(b) = ag(b; b)f(U(b)) = ab(1 − b)f(U(b)).

Since af(U(b)) �= 0, we have

b2 − b +
U(b)

af(U(b))
= 0,

which gives

b =
1
2

(
1 ±

√
1 − 4U(b)

af(U(b))

)
.

Since b is real, we have

a > 4 sup
U(b)∈(0,∞)

U(b)
f(U(b))

.

For the case b =
(
1 −

√
1 − 4U(b)/ (af(U(b)))

)
/2, b∗ is the supremum of all b such that

U(x) exists. Thus,

b∗ =
1
2

(
1 −

√
1 − 4

a
sup

U(b)∈(0,∞)

U(b)
f(U(b))

)
. (2.7)

Let us consider the function g(s) = s/f(s). Then, g′(s) = 0 if and only if s =
f(s)/f ′(s). Since f is superlinear for u to blow up in a finite time (cf. Theorem 3.3
of Chan and Tian [3]), we have lims→∞ s/f(s) = 0. If we impose f(0) > 0, then
lims→0+ s/f(s) = 0. By Rolle’s Theorem, supU(b)∈(0,∞) (U(b)/f(U(b))) occurs when

f (U(b)) = U(b)f ′(U(b)), (2.8)

where 0 < U(b) < ∞. This implies that U(b) exists at b = b∗, and hence, u does not
blow up in infinite time.

In the case b =
(
1 +

√
1 − 4U(b)/ (af(U(b)))

)
/2, 1 − b∗ is the infimum of all b for

which U(x) exists. Thus,

1 − b∗ =
1
2

(
1 +

√
1 +

4
a

inf
U(b)∈(0,∞)

−U(b)
f(U(b))

)
.

An argument as above gives the conclusion that if f(0) > 0, then
infU(b)∈(0,∞) (−U(b)/f(U(b))) occurs when (2.8) holds with 0 < U(b) < ∞. Again,
this implies that U(b) exists at b = 1−b∗, and hence, u does not blow up in infinite time.
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We note that if (2.8) holds, then U(b) can be determined. The above discussion gives
the following result.

Theorem 2.3. If a > 4 max
{
supU(b)∈(0,∞) (1/f ′(U (b))) , supU(b)∈(0,∞) (U(b)/f(U(b)))

}
,

then there exists b∗ given by (2.7) such that for b ∈ (0, b∗) ∪ (1 − b∗, 1), u exists for
0 ≤ t < ∞, and for b ∈ (b∗, 1 − b∗), u always blows up in a finite time. If in addition,
f (0) > 0, then supU(b)∈(0,∞)(U(b)/f(U(b))) occurs when (2.8) holds with U (b) ∈ (0,∞),
and u does not blow up in infinite time.

3. Examples. For illustration, we give below two examples on calculating b∗ for some
given functions f.

Example 3.1. Let f(u) = (1 + u)p, where p is a real number greater than 1. Since
f (0) > 0, it follows from (2.8) that U(b) = (1 + U(b)) /p, which gives

U(b) =
1

p − 1
.

From Theorem 2.3, if a > 4(p − 1)p−1/pp, then

b∗ =
1
2

[
1 −

√
1 − 4(p − 1)p−1

app

]
.

Thus for b ∈ (0, b∗]∪ [1 − b∗, 1), u exists for 0 ≤ t < ∞, and for b ∈ (b∗, 1− b∗), u always
blows up in a finite time.

Example 3.2. Let f(u) = keu, where k is a positive number. Since f (0) > 0, it
follows from (2.8) that U(b) = 1. From Theorem 2.3, if a > 4/ (ke), then

b∗ =
1
2

(
1 −

√
1 − 4

ake

)
.

Thus for b ∈ (0, b∗]∪ [1 − b∗, 1), u exists for 0 ≤ t < ∞, and for b ∈ (b∗, 1− b∗), u always
blows up in a finite time.

A phenomenon related to blow-up is quenching. Chan and Jiang [1] studied the
quenching phenomenon for the following semilinear problem with a concentrated nonlin-
ear source at b,

Lw = aδ(x − b)f (w(x, t)) in Ω,

w(x, 0) = 0 on D̄, w(0, t) = w(1, t) = 0 for 0 < t ≤ T,

where limw→c− f(w) = ∞ for some positive constant c, and f(w) and f ′(w) are positive
for 0 ≤ w < c. They showed that there exists a critical length a∗ such that for a ≤ a∗,
w exists for 0 ≤ t < ∞, and for a > a∗, max{w(x, t) : 0 ≤ x ≤ 1} reaches c−,
namely quenching occurs, in a finite time. Thus, existence of a critical domain of length
a∗ in quenching is equivalent to existence of b∗ in blow-up in the sense that for b ∈
(0, b∗]∪ [1 − b∗, 1), the solution exists for 0 ≤ t < ∞, and for b ∈ (b∗, 1− b∗), the solution
always blows up in a finite time.
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