A BLOW-UP CRITERION FOR A DEGENERATE PARABOLIC PROBLEM DUE TO A CONCENTRATED NONLINEAR SOURCE

By
C. Y. CHAN (Department of Mathematics, University of Louisiana at Lafayette, Lafayette, Louisiana 70504-1010)

R. BOONKLURB (Department of Mathematics, University of Louisiana at Lafayette, Lafayette, Louisiana 70504-1010)

Abstract. Let q, a, b, and T be real numbers with $q \geq 0, a>0,0<b<1$, and $T>0$. This article studies the following degenerate semilinear parabolic first initial-boundary value problem,

$$
\begin{gathered}
x^{q} u_{t}(x, t)-u_{x x}(x, t)=a \delta(x-b) f(u(x, t)) \text { for } 0<x<1,0<t \leq T, \\
u(x, 0)=\psi(x) \text { for } 0 \leq x \leq 1, u(0, t)=u(1, t)=0 \text { for } 0<t \leq T,
\end{gathered}
$$

where $\delta(x)$ is the Dirac delta function, and f and ψ are given functions. It is shown that for a sufficiently large, there exists a unique number $b^{*} \in(0,1 / 2)$ such that u never blows up for $b \in\left(0, b^{*}\right] \cup\left[1-b^{*}, 1\right)$, and u always blows up in a finite time for $b \in\left(b^{*}, 1-b^{*}\right)$. To illustrate our main results, two examples are given.

1. Introduction. Let q, a, b, and T be real numbers with $q \geq 0, a>0,0<b<1$, and $T>0, L u=x^{q} u_{t}-u_{x x}, D=(0,1), \bar{D}=[0,1]$, and $\Omega=D \times(0, T]$. We consider the following degenerate semilinear parabolic first initial-boundary value problem,

$$
\left.\begin{array}{c}
L u=a \delta(x-b) f(u(x, t)) \text { in } \Omega, \tag{1.1}\\
u(x, 0)=\psi(x) \text { on } \bar{D}, u(0, t)=u(1, t)=0 \text { for } 0<t \leq T,
\end{array}\right\}
$$

where $\delta(x)$ is the Dirac delta function, and f and ψ are given functions. This model is motivated by applications in which the ignition of a combustible medium is accomplished through the use of either a heated wire or a pair of small electrodes to supply a large amount of energy to a very confined area. When $q=1$, the model may also be used to describe the temperature u of the channel flow of a fluid with temperature-dependent

[^0]viscosity in the boundary layer (cf. Chan and Kong [2]) with a concentrated nonlinear source at b; here, x and t denote the coordinates perpendicular and parallel to the channel wall respectively. When $q=0$, it can be used to describe the temperature of a onedimensional strip of a finite width that contains a concentrated nonlinear source at b. The case when $q=0$ was studied by Olmstead and Roberts [4] by analyzing its corresponding nonlinear Volterra equation of the second kind at the site of the concentrated source. A problem due to a source with local and nonlocal features was also studied by Olmstead and Roberts [5] by analyzing a pair of coupled nonlinear Volterra equations with different kernels. We assume that $f(0) \geq 0, f(u)$ and its derivatives $f^{\prime}(u)$ and $f^{\prime \prime}(u)$ are positive for $u>0$, and $\psi(x)$ is nontrivial, nonnegative and continuous such that ψ attains its maximum at $b, \psi(0)=\psi(1)=0$, and
$$
\psi^{\prime \prime}+a \delta(x-b) f(\psi) \geq 0 \text { in } D
$$

Chan and Tian [3] proved that under certain conditions, the solution u of the problem (1.1) blows up in a finite time. For $q=0$, they and Olmstead and Roberts [4] showed that if the position b of the concentrated source is sufficiently close to $x=0$ or $x=1$, then u never blows up. The main purpose here is to find the exact position b^{*} for the problem (1.1) with $q \geq 0$ such that u never blows up for $b \in\left(0, b^{*}\right] \cup\left[1-b^{*}, 1\right)$, and u always blows up in a finite time for $b \in\left(b^{*}, 1-b^{*}\right)$. This also implies that u does not blow up in infinite time.
2. Critical position b^{*}. A proof similar to that used for Theorem 4 of Chan and Jiang [1] gives the following result.

Theorem 2.1. If $\lim _{t \rightarrow \infty} u(x, t)<\infty$, then $u(x, t)$ converges uniformly on \bar{D} from below to a solution

$$
\begin{equation*}
U(x)=a g(x ; b) f(U(b)) \tag{2.1}
\end{equation*}
$$

of the nonlinear two-point boundary value problem

$$
\begin{equation*}
-U^{\prime \prime}=a \delta(x-b) f(U(x)) \text { in } D, U(0)=U(1)=0 \tag{2.2}
\end{equation*}
$$

where

$$
g(x ; \xi)=\left\{\begin{array}{l}
\xi(1-x) \text { for } 0 \leq \xi \leq x \\
x(1-\xi) \text { for } x<\xi \leq 1
\end{array}\right.
$$

is Green's function corresponding to the problem (2.2).
When ψ is sufficiently large and f is sufficiently nonlinear, it follows from Theorem 3.3 of Chan and Tian [3] that there is a position b to place the nonlinear concentrated source such that (1.1) blows up in a finite time. To find a position b so that the solution u exists for all $t>0$, let us first consider the problem (1.1) with $q=0$, namely,

$$
\left.\begin{array}{c}
\mu_{t}-\mu_{x x}=a \delta(x-b) f(\mu(x, t)) \text { in } \Omega \tag{2.3}\\
\mu(x, 0)=\psi(x) \text { on } \bar{D}, \mu(0, t)=\mu(1, t)=0 \text { for } 0<t \leq T .
\end{array}\right\}
$$

From Theorem 3.2 of Chan and Tian [3], the blow-up set is the single point $x=b$. From Chan and Tian [3],

$$
\begin{equation*}
\mu(b, t)=a \int_{0}^{t} G(b, t ; b, \tau) f(\mu(b, \tau)) d \tau+\int_{D} G(b, t, \xi, 0) \psi(\xi) d \xi \tag{2.4}
\end{equation*}
$$

where

$$
G(x, t ; \xi, \tau)=2 \sum_{n=1}^{\infty}(\sin n \pi x)(\sin n \pi \xi) e^{-n^{2} \pi^{2}(t-\tau)} \text { for } t>\tau
$$

From Olmstead and Roberts [4],

$$
\int_{0}^{t} G(b, t ; b, \tau) d \tau=b(1-b)-\frac{2}{\pi^{2}} \sum_{n=1}^{\infty} \frac{\sin ^{2} n \pi b}{n^{2}} e^{-n^{2} \pi^{2} t}
$$

Since $\sum_{n=1}^{\infty}\left(\sin ^{2} n \pi b\right) e^{-n^{2} \pi^{2} t} / n^{2}$ and $2 \sum_{n=1}^{\infty}\left(\sin ^{2} n \pi b\right) e^{-n^{2} \pi^{2} t}$ converge uniformly in $(0, t)$, we have

$$
\begin{gathered}
\frac{\partial}{\partial t}\left(\int_{0}^{t} G(b, t ; b, \tau) d \tau\right)=2 \sum_{n=1}^{\infty}\left(\sin ^{2} n \pi b\right) e^{-n^{2} \pi^{2} t}>0 \\
\lim _{t \rightarrow \infty} \int_{0}^{t} G(b, t ; b, \tau) d \tau=b(1-b)-\frac{2}{\pi^{2}} \sum_{n=1}^{\infty} \frac{\sin ^{2} n \pi b}{n^{2}} \lim _{t \rightarrow \infty} e^{-n^{2} \pi^{2} t}=b(1-b) .
\end{gathered}
$$

The solution v of the linear problem,

$$
v_{t}-v_{x x}=0 \text { in } \Omega, v(x, 0)=\psi(x) \text { on } \bar{D}, v(0, t)=v(1, t)=0 \text { for } 0<t \leq T
$$

is given by

$$
\begin{equation*}
v(x, t)=\int_{D} G(x, t ; \xi, 0) \psi(\xi) d \xi \tag{2.5}
\end{equation*}
$$

Since ψ attains its maximum at b, it follows from the weak maximum principle that v attains its maximum, denoted by k_{0}, at $(b, 0)$. From Theorem 2.4 of Chan and Tian [3], μ is a nondecreasing function of t. Hence, it follows from Theorem 2.6 of Chan and Tian [3] that for $0 \leq t \leq \theta, \mu(x, t)$ attains its maximum at (b, θ). Thus given any number $M>k_{0}$, it follows from (2.4) and (2.5) that

$$
\mu(b, t) \leq k_{0}+a f(M) \int_{0}^{t} G(b, t ; b, \tau) d \tau \leq k_{0}+a f(M) b(1-b)
$$

In order that $k_{0}+a f(M) b(1-b) \leq M$ so that μ exists for all $t>0$, we choose b in such a way that

$$
\begin{equation*}
0<b \leq \frac{1}{2}\left[1-\sqrt{1-\frac{4\left(M-k_{0}\right)}{a f(M)}}\right] \text { or } \frac{1}{2}\left[1+\sqrt{1-\frac{4\left(M-k_{0}\right)}{a f(M)}}\right] \leq b<1 \tag{2.6}
\end{equation*}
$$

Since μ is a nondecreasing function of t, we have for $0 \leq x \leq 1$ and $q>0$,

$$
x^{q} \mu_{t}-\mu_{x x} \leq \mu_{t}-\mu_{x x},
$$

which implies that the solution of the problem (1.1) is a lower solution of the problem (2.3). Thus under the above condition (2.6) on b, the solution of (1.1) also exists globally.

Let us consider a positive function $S(b)$ satisfying

$$
S(b)=a g(b ; b) f(S(b))=a b(1-b) f(S(b))
$$

Since $f(s)$ and its derivative $f^{\prime}(s)$ are positive for $s>0$, it follows that $f(S(b))$ and its derivative $f^{\prime}(S(b))$ are positive. We would like to know for a sufficiently large, how $S(b)$ behaves as b varies.

Theorem 2.2. If $a>4 \sup _{S(b) \in(0, \infty)}\left(1 / f^{\prime}(S(b))\right)$, then
S is a strictly increasing function of b for $0<b<\frac{1}{2}\left(1-\sqrt{1-\frac{4}{a f^{\prime}(S(b))}}\right)$,
S is a strictly decreasing function of b for $\frac{1}{2}\left(1+\sqrt{1-\frac{4}{a f^{\prime}(S(b))}}\right)<b<1$.
Proof. A direct calculation gives

$$
S^{\prime}(b)=\frac{a(1-2 b) f(S(b))}{1-a b(1-b) f^{\prime}(S(b))}
$$

For $b \in\left(0,\left(1-\sqrt{1-4 /\left(a f^{\prime}(S(b))\right)}\right) / 2\right)$, it follows from $a>4 \sup _{S(b) \in(0, \infty)}\left(1 / f^{\prime}(S(b))\right)$ that $b<1 / 2$, and hence $1-2 b>0$. Also,

$$
b<\frac{1}{2}\left(1-\sqrt{1-\frac{4}{a f^{\prime}(S(b))}}\right)
$$

gives

$$
b-\frac{1}{2}<-\frac{1}{2} \sqrt{1-\frac{4}{a f^{\prime}(S(b))}}<0
$$

Hence,

$$
\left(b-\frac{1}{2}\right)^{2}>\frac{1}{4}-\frac{1}{a f^{\prime}(S(b))}
$$

which gives

$$
1-a b(1-b) f^{\prime}(S(b))>0
$$

Thus, we have $S^{\prime}(b)>0$, and $S(b)$ is a strictly increasing function of b.
For $b \in\left(\left(1+\sqrt{1-4 /\left(a f^{\prime}(S(b))\right)}\right) / 2,1\right)$, we have

$$
\frac{1}{2}<\frac{1}{2}+\frac{1}{2} \sqrt{1-\frac{4}{a f^{\prime}(S(b))}}<b
$$

and hence,

$$
\begin{gathered}
1-2 b<0 \\
b-\frac{1}{2}>\frac{1}{2} \sqrt{1-\frac{4}{a f^{\prime}(S(b))}}>0
\end{gathered}
$$

An argument as before gives

$$
1-a b(1-b) f^{\prime}(S(b))>0
$$

Thus, $S^{\prime}(b)<0$, and $S(b)$ is a strictly decreasing function of b.

If $a>4 \sup _{U(b) \in(0, \infty)}\left(1 / f^{\prime}(U(b))\right)$, then it follows from (2.1) and Theorem 2.2 that on the interval $(0,1 / 2)$, the position b for global existence of u is closer to 0 than the position b for the blow-up of u in a finite time. On the other hand, on the interval $(1 / 2,1)$, the position b for u to exist globally is closer to 1 than the position b for u to blow up in a finite time. Thus, there exists $b^{*} \in(0,1 / 2)$ such that the steady state $U(x)$ exists for $b \in\left(0, b^{*}\right) \cup\left(1-b^{*}, 1\right)$, and does not exist for $b \in\left(b^{*}, 1-b^{*}\right)$. Since $u(x, t) \leq U(x)=$ $\lim _{t \rightarrow \infty} u(x, t)$ in $D \times(0, \infty)$ when U exists, we have for $b \in\left(0, b^{*}\right) \cup\left(1-b^{*}, 1\right), u$ exists for $0 \leq t<\infty$, and for $b \in\left(b^{*}, 1-b^{*}\right), u$ always blows up in a finite time.

To calculate b^{*}, let us consider the steady state $U(x)$ of the problem (1.1). Since $u(x, t)$ attains its maximum at (b, t), it follows that $U(x)$ attains its maximum at $x=b$. Also, $U(b)$ and $f(U(b))$ are positive. From (2.1),

$$
U(b)=a g(b ; b) f(U(b))=a b(1-b) f(U(b)) .
$$

Since $a f(U(b)) \neq 0$, we have

$$
b^{2}-b+\frac{U(b)}{a f(U(b))}=0
$$

which gives

$$
b=\frac{1}{2}\left(1 \pm \sqrt{1-\frac{4 U(b)}{a f(U(b))}}\right) .
$$

Since b is real, we have

$$
a>4 \sup _{U(b) \in(0, \infty)} \frac{U(b)}{f(U(b))} .
$$

For the case $b=(1-\sqrt{1-4 U(b) /(a f(U(b)))}) / 2, b^{*}$ is the supremum of all b such that $U(x)$ exists. Thus,

$$
\begin{equation*}
b^{*}=\frac{1}{2}\left(1-\sqrt{1-\frac{4}{a} \sup _{U(b) \in(0, \infty)} \frac{U(b)}{f(U(b))}}\right) . \tag{2.7}
\end{equation*}
$$

Let us consider the function $g(s)=s / f(s)$. Then, $g^{\prime}(s)=0$ if and only if $s=$ $f(s) / f^{\prime}(s)$. Since f is superlinear for u to blow up in a finite time (cf. Theorem 3.3 of Chan and Tian [3]), we have $\lim _{s \rightarrow \infty} s / f(s)=0$. If we impose $f(0)>0$, then $\lim _{s \rightarrow 0^{+}} s / f(s)=0$. By Rolle's Theorem, $\sup _{U(b) \in(0, \infty)}(U(b) / f(U(b)))$ occurs when

$$
\begin{equation*}
f(U(b))=U(b) f^{\prime}(U(b)), \tag{2.8}
\end{equation*}
$$

where $0<U(b)<\infty$. This implies that $U(b)$ exists at $b=b^{*}$, and hence, u does not blow up in infinite time.

In the case $b=(1+\sqrt{1-4 U(b) /(a f(U(b)))}) / 2,1-b^{*}$ is the infimum of all b for which $U(x)$ exists. Thus,

$$
1-b^{*}=\frac{1}{2}\left(1+\sqrt{1+\frac{4}{a} \inf _{U(b) \in(0, \infty)} \frac{-U(b)}{f(U(b))}}\right)
$$

An argument as above gives the conclusion that if $f(0)>0$, then $\inf _{U(b) \in(0, \infty)}(-U(b) / f(U(b)))$ occurs when (2.8) holds with $0<U(b)<\infty$. Again, this implies that $U(b)$ exists at $b=1-b^{*}$, and hence, u does not blow up in infinite time.

We note that if (2.8) holds, then $U(b)$ can be determined. The above discussion gives the following result.
Theorem 2.3. If $a>4 \max \left\{\sup _{U(b) \in(0, \infty)}\left(1 / f^{\prime}(U(b))\right), \sup _{U(b) \in(0, \infty)}(U(b) / f(U(b)))\right\}$, then there exists b^{*} given by (2.7) such that for $b \in\left(0, b^{*}\right) \cup\left(1-b^{*}, 1\right), u$ exists for $0 \leq t<\infty$, and for $b \in\left(b^{*}, 1-b^{*}\right), u$ always blows up in a finite time. If in addition, $f(0)>0$, then $\sup _{U(b) \in(0, \infty)}(U(b) / f(U(b)))$ occurs when (2.8) holds with $U(b) \in(0, \infty)$, and u does not blow up in infinite time.
3. Examples. For illustration, we give below two examples on calculating b^{*} for some given functions f.

Example 3.1. Let $f(u)=(1+u)^{p}$, where p is a real number greater than 1 . Since $f(0)>0$, it follows from (2.8) that $U(b)=(1+U(b)) / p$, which gives

$$
U(b)=\frac{1}{p-1}
$$

From Theorem 2.3, if $a>4(p-1)^{p-1} / p^{p}$, then

$$
b^{*}=\frac{1}{2}\left[1-\sqrt{1-\frac{4(p-1)^{p-1}}{a p^{p}}}\right] .
$$

Thus for $b \in\left(0, b^{*}\right] \cup\left[1-b^{*}, 1\right), u$ exists for $0 \leq t<\infty$, and for $b \in\left(b^{*}, 1-b^{*}\right), u$ always blows up in a finite time.

Example 3.2. Let $f(u)=k e^{u}$, where k is a positive number. Since $f(0)>0$, it follows from (2.8) that $U(b)=1$. From Theorem 2.3, if $a>4 /(k e)$, then

$$
b^{*}=\frac{1}{2}\left(1-\sqrt{1-\frac{4}{a k e}}\right) .
$$

Thus for $b \in\left(0, b^{*}\right] \cup\left[1-b^{*}, 1\right), u$ exists for $0 \leq t<\infty$, and for $b \in\left(b^{*}, 1-b^{*}\right), u$ always blows up in a finite time.

A phenomenon related to blow-up is quenching. Chan and Jiang [1] studied the quenching phenomenon for the following semilinear problem with a concentrated nonlinear source at b,

$$
\begin{gathered}
L w=a \delta(x-b) f(w(x, t)) \text { in } \Omega \\
w(x, 0)=0 \text { on } \bar{D}, w(0, t)=w(1, t)=0 \text { for } 0<t \leq T
\end{gathered}
$$

where $\lim _{w \rightarrow c^{-}} f(w)=\infty$ for some positive constant c, and $f(w)$ and $f^{\prime}(w)$ are positive for $0 \leq w<c$. They showed that there exists a critical length a^{*} such that for $a \leq a^{*}$, w exists for $0 \leq t<\infty$, and for $a>a^{*}, \max \{w(x, t): 0 \leq x \leq 1\}$ reaches c^{-}, namely quenching occurs, in a finite time. Thus, existence of a critical domain of length a^{*} in quenching is equivalent to existence of b^{*} in blow-up in the sense that for $b \in$ $\left(0, b^{*}\right] \cup\left[1-b^{*}, 1\right)$, the solution exists for $0 \leq t<\infty$, and for $b \in\left(b^{*}, 1-b^{*}\right)$, the solution always blows up in a finite time.

References

[1] C. Y. Chan and X. O. Jiang, Quenching for a degenerate parabolic problem due to a concentrated nonlinear source, Quart. Appl. Math. 62 (2004), 553-568. MR2086046 (2005e:35139)
[2] C. Y. Chan and P. C. Kong, Channel flow of a viscous fluid in the boundary layer, Quart. Appl. Math. 55 (1997), 51-56. MR1433751 (98c:35135)
[3] C. Y. Chan and H. Y. Tian, Single-point blow-up for a degenerate parabolic problem due to a concentrated nonlinear source, Quart. Appl. Math. 61 (2003), 363-385. MR1976376 (2004c:35173)
[4] W. E. Olmstead and C. A. Roberts, Explosion in a diffusive strip due to a concentrated nonlinear source, Methods Appl. Anal. 1 (1994), 435-445. MR1317023 (95k:35117)
[5] W. E. Olmstead and C. A. Roberts, Explosion in a diffusive strip due to a source with local and nonlocal features, Methods Appl. Anal. 3 (1996), 345-357. MR1421475 (97f:35110)

[^0]: Received April 26, 2007.
 2000 Mathematics Subject Classification. Primary 35K60, 35K65, 35K57.
 Key words and phrases. Degenerate semilinear parabolic first initial-boundary value problem, concentrated nonlinear source, critical position, global existence, blow-up.
 E-mail address: chan@louisiana.edu
 E-mail address: rxb1828@louisiana.edu

