
A Blueprint for a Manageable and Affordable Wireless Testbed:
Design, Pitfalls and Lessons Learned

Ioannis Broustis, Jakob Eriksson, Srikanth V. Krishnamurthy and Michalis Faloutsos
Department of Computer Science and Engineering, University of California, Riverside, CA 92521

{broustis, jeriksson, krish, michalis}@cs.ucr.edu

Abstract—In this paper1, we describe the deployment efforts
of our 802.11 indoor wireless testbed. We elucidate the challenges
that we faced and the design decisions that we had to make,
sometimes based on technical reasons, and other times due to
practicalities. These design challenges involve: (a) accessibility
to the software, in order to be able to modify and implement
various functionalities, (b) physical extendability, in order to
add hardware in the future and, (c) manageability, in order
to configure and update the software easily and quickly, for
all the nodes in the network. We justify the hardware and
software design choices that we make in order to facilitate these
requirements. For ease of maintenance and convenience, each
node is diskless, and we utilize power-over-ethernet through an
Ethernet connection with a central server. We ensure that the
software can be easily modified; this provides for easier module
implementation and parameter tuning. We explain the different
ways of node deployment, decisions that we make on power
settings and discuss how and why the receiver sensitivity affects
deployment decisions. Finally, we present our observations based
on a set of measurements to quantify the stability of the links
in our testbed.

I. INTRODUCTION

Our goal in this paper is to delineate the challenges that
we faced during the design and deployment of our indoor
wireless testbed. Although, given the numerous previous
wireless testbed efforts [1], [2], [3], [4], it may seem that
such a deployment process is well understood and is easy
to implement, in practice a plethora of issues arise. Thus, it
is important to identify the requirements from the network
and the constraints which typically dictate the deployment
strategy. We discuss the design decisions that we had to make
and some of the pitfalls that are to be avoided for successful
network deployment. We believe that our experiences can
serve as guidelines to upcoming deployment efforts on wire-
less networks.

Many wireless network testbeds have emerged in the last
few years. Our deployment effort differs from the prior efforts
primarily due to two design choices. First, in our network,
the nodes are diskless and load an operating system into
their memory directly from a central network server. Second,
we use Power over Ethernet (PoE) to empower the nodes.
These features were adopted as a result of our assessment
of the network requirements and the constraints that limited
us, in terms of the possible deployment strategies. We list
these below. We believe that, for any network deployment
effort, a pre-deployment assessment like this can greatly help
in making the right strategies.

1. Functional requirements: It is important to be able to
easily tune basic network parameters, such as the frequency,
the transmission power and the rate. One should also be
able to modify or implement various MAC and routing
functionalities.

1This work is supported in part by the NSF CAREER Grant No. 0237920
and the NSF NRT grant No. 0335302.

2. Hardware requirements: If a heterogeneity of hardware is
to be used, the different components need to be compatible
with each other. In addition, one should be able to easily
extend the network to include additional nodes and new
technological possibilities.
3. Software requirements: It is critical to ensure the ease of
performing software configurations and updates uniformly for
all nodes. In addition, it is preferable to use open-source
software that allows for network-customized modifications.
4. Efficiency and social implications: Deployment should be
as quick and reliable as possible. It should be non-intrusive
and should not interfere with day-to-day operations of other
co-located wireless networks.
5. Cost constraints: Given budgetary constraints, the cost
should be kept low but without compromising on the desired
capabilities.
6. Manageability: Network configurations should be per-
formed from a central location, remotely. One should be able
to automatically configure and distribute updates to all nodes
from this location, as well as gather logs from each node.

Our architectural design was primarily motivated by the
above factors. We describe various possibilities and discuss
why our choice of using diskless nodes that are powered
over the Ethernet was the appropriate choice. We also
describe some of the pitfalls that we ran into and this can
forewarn researchers looking to deploy such a network in
the future. Finally, we also discuss some of the interesting
network characteristics that we have observed via preliminary
measurements. We wish to point out here that we have a
website that provides more details on our wireless network
[5] and this can be a useful source of information during
new deployment efforts.

Architectural design choices: The key properties of our
network architecture are:
• Nodes are diskless. This makes them faster, less noisy and
less vulnerable to malfunction.
• A central server distributes the operating system to all
nodes, and gathers measurement logs. Hence, all nodes may
load the same version of the operating system and applica-
tions into their memory. This ensures consistency among the
nodes.
• PoE is used to empower all nodes. This allows us to power
off/on individual nodes, by remotely (de)activating the PoE
support.
• We avoid using a personal computer (PC) as a node; this
helps us reduce operation noise, conform to space constraints
and to avoid some interference effects, as we explain later.

Potential deployment pitfalls: During the course of deploy-
ment, we ran into numerous pitfalls. We deliberate on these
in the paper and we hope that this can provide guidelines on

what to avoid for future network deployers. We briefly list
the major ones here and discuss all of them in greater detail,
later in the paper.
• Choice of power: We observe that using the maximum
transmission power does not always give the best link level
throughput. This is true even when links work in isolation.
Some cards exhibit problems when they are operating at
their nominal maximum transmission power. We observed a
significant throughput increment, when we reduced the power
by two dBm below the maximum value.
• Node deployment: High node densities can impede network
operations to a great degree; the adverse effect is increased
interference between links. We find that when it comes to
deploying nodes in practice, one should take into account the
maximum transmission power and the receiver sensitivity.
• Hardware functionality verification: All the hardware
equipment should be verified extensively for its correct
functionality. If not, hours or even days of frustrating
debugging are likely to be expended.

Preliminary measurements and observations: We have
conducted a set of experiments to understand the behavior
of our network; we observe that:
• The choice of frequency channel can have a significant
effect on the link and network throughput. The main reason
is that different frequencies have different penetration prop-
erties.
• Obstacles and the type of the material that they are made
of, have a great effect on link throughput. In many cases
we observed that surfaces, such as glass and metal, create
unexpected network topologies.
The rest of the paper is organized as follows. In Section II we
describe in detail the hardware and software components of
our indoor testbed. We also deliberate on how the network is
constructed. We delineate the various possibilities that were
considered and explain the reasons behind our design choices.
En route, we also discuss the pitfalls that we ran into, how we
discovered them and how to avoid them. In Section III, we
present our preliminary measurement results. We conclude in
Section IV.

II. TESTBED CHARACTERISTICS

Our indoor testbed is comprised of 31 nodes, deployed in
the 3rd floor of Engineering Building Unit II at the University
of California, Riverside. The network is depicted in figure
1. In this section we describe the hardware and software
components of our indoor network testbed, and we justify
our decisions toward selecting the specific configuration.

A. Hardware components

Choosing the appropriate hardware for the network is
probably the most difficult decision, especially if the available
budget is not astronomic. A set of parameters have to be taken
into consideration, before making the final choices.
Remote access: Nodes must be fully accessible from a remote
location. This also includes being able to power on/off the
nodes from a central location. Furthermore, any software
changes and implementations must be updated and loaded
in the same manner at all nodes, almost simultaneously.
Financial cost: This mainly involves the hardware purchases,
i.e., the nodes, perhaps a server and a set of switches, and
cabling. The nodes must not be very expensive, so that the

replacement of a node in case of failure/theft, or the purchase
of some additional nodes is affordable at any time. One should
also account for some initial hardware purchases that will be
used for testing.

Silent and small-size nodes: For the case of indoor deploy-
ments, nodes are usually installed on bookshelves, desks, on
the floor or next to windows. Hence, nodes have to be silent
and with a decent look, so as not to disturb people either
aesthetically or acoustically.

Extendability: Since the networking technology advances
rapidly, one should provide for the evolution of the network.
Nodes should have the resources to support technologies. In
particular, each node should have available inputs to support
hardware (such as card slots, USB devices, extra antennas)
for future use.

Flexible wireless components: The wireless part of the
hardware (i.e., wireless card and antenna) should be fully
adaptable, to support software modifications. Parameter tun-
ing and implementations should be feasible tasks. Moreover,
nodes must be capable of covering a large region with full
transmission power. This will allow the researcher to create
both sparse and dense network topologies.

Taking all of the above factors into account, we decided that
the best solution is to use diskless nodes, with PoE (Power-
over-Ethernet) capability. PoE makes it easy to power on/off
the nodes remotely. This is possible if one has remote access
to the machine that provides power - in our case a network
switch. Accessing the PoE switch remotely makes is easy to
enable or disable the power supply on the switch’s Ethernet
ports. Consequently, this makes it possible to power-on/off a
node, by simply activating/deactivating the PoE support on
the corresponding switch port.

We performed a two-month extensive research for possible
hardware products that could serve as our network nodes.
After experimenting with various hardware possibilities, we
finally decided that the Soekris net4826 [6] box fulfills our
requirements the most. This compact board is based on a 266
MHz i586 processor. It has one 10/100 Mbit Ethernet port, 64
MB SDRAM main memory and uses a CompactFlash circuit
soldered onboard for program and data storage. It can be
expanded using up to two miniPCI boards. Also, with a small
effort, the board can support USB if needed in the future.

We matched the net4826 board with a flexible miniPCI
WiFi card. Since we seek to perform research on wireless
networking and communications, we want to be able to tune
most of the 802.11 MAC protocol parameters [7], as well
as implement additional functionalities. Moreover, we wish
to be able to work with different versions of 802.11, and
have a large coverage range with high transmission power.
We tested various wireless cards for several weeks, and we
finally decided on the EMP 8602-6G 802.11a/b/g miniPCI
cards. These cards embed the Atheros AR5006 chipset
[8], which is controlled by the MadWifi driver [9]. This
driver implements most of the 802.11 MAC functionality
[7]; hence, it is easy to modify the driver code in order to
change parameters, or implement new features. In addition,
being able to work with different 802.11 versions is helpful,
especially if other wireless networks co-exist in the same
region. In particular, we have deployed our indoor testbed
in our campus building, wherein part of the university’s
802.11g wireless network is also deployed. By switching
to 802.11a, our network is able to avoid interference

Fig. 1. Our indoor–testbed deployment. Nodes are represented by
dots along with their IDs.

from this co-located 802.11g network. Finally, after a
thorough search for external antennas, we decided to utilize
RD2458-5-RSMA 5-dBi gain Triband Rubber Duck antennas.

Why not use a PC as node: At this point, one may simply
ask: “Why not utilize a trivial desktop or laptop PC as a
node?” We admit that this was our first thought, and we
experimented with this option for quite some time. Due to the
increased cost, limited extendability and the theft probability
of a laptop, we focused on a desktop PC testing. However,
we soon concluded that a desktop PC is not a good choice,
for three main reasons.

• First, it is difficult to remotely power on/off the desktop PC.
Even if the motherboard and the operating system support
such a functionality, there will be a problem whenever the
operating system hangs. In such cases, one would have to
manually reboot the nodes-PCs; this becomes difficult and
time consuming, especially if nodes are deployed in rooms
where access is not always granted.

• Second, a cheap desktop PC usually occupies quite a lot of
space. Moreover, some PC boxes start making noise after a
short period of time.

• Third, for most desktop PCs it is not efficient to have more
than one wireless card plugged-in. More specifically, in most
motherboards the PCI slots are very closely placed to each
other. For PCI wireless cards that are connected to external
antennas, there is significant signal leakage at the antenna’s
mount point on the card [10]. In addition, if two wireless cards
are closely placed into two parallel card slots, and if both are
active at the same time, electromagnetic waves enter from
one card to the other. This largely degrades the performance
of each card, even if the two cards operate on two different
channels. To verify this, we installed two wireless PCMCIA
cards into a desktop PC, using PCI→PCMCIA converters. We
used two laptops as receivers. We also installed the same type
of cards into the laptops. We set the cards to various different
channels and used the ttcp networking tool to perform a set
of simple experiments. We first ran some tests with only one
card (installed in the PC) active at a time, and we measured
the achieved TCP throughput towards one of the laptops.
Furthermore, we ran tests with both cards (installed in the

Node

Server

PoE Switch

PoE

Power

Ethernet

Fig. 2. Connection between a node and a switch in our testbed.

PC) active at the same time. We observed that, even when
the two cards were set to 802.11a and 802.11g respectively,
the achieved throughputs were almost half of what each card
could achieve in isolation!

Thus, we decided that a dektop PC cannot serve as a node.
However, for very small-scale testbeds, deployed inside a
room wherein size and noise are not issues, this appears to
be a feasible solution. It appears to be restricting, however, if
one decides to use more than one WiFi card on the PC. The
Soekris box that we are using was designed with this aspect
in mind.

Moreover, in order to be able to manage nodes from a
central location, we use a desktop PC (Pentium IV at 1.8
GHz) as a server. Each node is connected to the server
through its Ethernet interface. A set of D-Link-DES-1526 PoE
switches connect the nodes with the server and also provide
power to the nodes2. Through the server we have total control
of both the individual nodes and the network as a whole. The
server can connect to each node, via the switches, through a
secure shell (ssh) and configure the node as preferred. Note
here that, since the net4826 does not support the same IEEE
802.3af PoE standard as our PoE switches, we use a D-
Link-P50 PoE→12V adapter for each node (figure 2). This
adapter isolates the power provided by the PoE switch and
forwards it to an output towards the net4826. It also forwards
the network data from/to the Ethernet interface of net4826.
Finally, before deployment one should make sure that there
is a network connection between the switches. We placed
our switches in rooms (network closets), which housed the
building’s switches. These closets are interconnected with
optical fibers only, and not with regular network cabling (i.e.,
cat5). Hence, we had to find a way to provide connectivity
among the switches. For this, we used a CVT-100BTFC
10/100 Base-TX to 100 Base-FX Media Converter for each
switch. The network connection is pictorially represented in
figure 3.

B. Software configuration

Software installations and configurations are also a
very important and time-consuming part of the testbed
development. The healthy operation of the network testbed
depends on the integrity of both the operating system and
the applications that the nodes are running. Hence, mature
software design decisions have to be made; these decisions
should take into account the following aspects:

2Note that in order to provide power to the nodes, we only have to connect
them to the PoE switches.

Ethernet connectivity

Wireless connectivity

Server

Node

Switch

Optical connectivity

CVT-100BTFC

Fig. 3. Network inter-connectivity with our testbed: a pictorial
representation. The switches are connected through optical fiber. For
simplicity we do not show the D-Link-P50 adapters; this detail is
depicted in figure 2.

Lightweight: The nodes are not very powerful in terms
of CPU and memory; due to budgetary constraints, heavy
duty machines were not purchased. As a consequence, the
operating system should not occupy all the available system
resources. On the other hand, a large variety of free useful
software tools should be supported.
Easy configuration: We want to have the ability of modifying
many aspects of the software, both in terms of implementation
and parameter tuning. Thus, the software should allow for
such modifications.
Security: The system should be as secure as possible. Even
though this is not a primary issue with our testbed (since it
lies under the umbrella of our department’s firewall) it should
be a concern in general.
Uniformity: All nodes should run the exact same version of
the operating system, drivers and applications. Moreover, fre-
quent updates and software modifications should be mapped
to all nodes.

1) The operating system: We address the above factors
in a combined solution. We decide that nodes should run
a Linux distribution, which is well-documented and widely
accepted. In this way, most configuration issues can be easily
resolved, mostly through a quick Internet search. Since nodes
must run the exact same Linux configuration, the easiest way
is to have them load the same Linux kernel, at every boot.
This provides us with a set of advantages. First, we may
perform any software updates or configurations centrally, i.e.,
at the server side. Whenever a node boots the Linux image,
it will also load our latest modifications. Thus, every time a
researcher implements a scheme, this will be stored in the
server and loaded by all nodes at boot. Second, since the
Linux distribution is located at the server, all nodes load a
copy of a Linux image at network boot. Third, each node
needs to load the Linux kernel, as well as a small set of
modules in its main memory. In other words, the number of
files that each node loads at start-up is relatively small, and
occupies only a small portion of the node’s main memory.
Fourth, we are able to load different wireless driver versions
to some nodes. As an example, if we wish to create a WLAN
topology, we may centrally decide which nodes will be the
access points, so that we have these nodes boot the AP driver,
and the rest of the nodes boot the client driver. Last (but not
the least), each node is able to load all the required files into

its main memory; hence, nodes need not be equipped with
hard disks. For this, we have modified the Debian v3.1 Linux
distribution with kernel version 2.6.16.19, to fit the needs of
our testbed. Nodes load the Linux kernel over NFS (Network
File System) , which securely allows machines to mount a
disk partition on a remote machine, as if it were on a local
hard drive.

Having diskless nodes provides a twofold advantage: (a)
The cost per node becomes much lower. (b) The hard disk
is probably the most vulnerable hardware component, since
it is comprised of mechanical parts. Simply put, having a
diskless system, without any mechanical parts, implies lower
risk of node damage in the long run. Hence in our testbed, the
diskless nodes retrieve their Linux kernels and mount their
root directories directly from the central server. They can
also write into the server’s disk, through NFS. This means
that a researcher can maintain his/her own, independent
experimental setup, including the kernel and every component
of the distribution. We use a separate desktop PC to compile
the kernel, modules, applications and drivers that will be used
on the testbed. This desktop PC runs a Linux distribution that
is configured in the same way as the one loaded by the nodes.

The testbed server runs a separate Debian v3.1 Linux
distribution (even though any unix distribution can be used
for the server). The server needs to run the NFS [11],
BOOTP [12] and TFTP daemons. Our server assigns an IP
address from a pool of addresses to each identified node-
client. Each node obtains an IP address prior to loading its
Linux distribution. For security reasons, the wired Ethernet
segment of our testbed is separated from the regular building
network. All the Ethernet interfaces on our wired testbed
network have IP addresses in the private 10/24 range, i.e.,
10.0.0.*. The server’s IP address is 10.0.0.13, while the IP
addresses 10.0.0.2 – 10.0.0.10 are reserved for potential future
servers. Furthermore, the IP addresses 10.0.0.11 – 10.0.0.41
are currently assigned to nodes. Finally, we are using two
PoE switches, with IP addresses 10.0.0.253 and 10.0.0.254.
For convenience, we have also assigned IDs to nodes, which
map to the last 8 bits of their IP addresses. For example, the
IP address 10.0.0.31 is assigned to the Ethernet interface of
node 31. These IP addresses are static, i.e., the assignment
is fixed. In addition to the Ethernet address assignment, we
have also assigned IP addresses to the wireless interfaces of
the nodes. Addresses for these intrefaces are assigned in the
private 192.168.1.* subnet, using the same last 8 bits as in the
wired address. Hence, the IP address 192.168.1.31 is assigned
to the wireless interface of node 31.

C. Network deployment

In an indoor setting, obstacles such as walls, furniture,
doors and people affect the signal strength to a large ex-
tent. In addition, the environment is highly variable: people
move often, doors open and close, metallic window shades
absorb/reflect the signal, and nearby devices (microwaves,
portable telephones etc.) interfere randomly.

All the above factors need to be taken into consideration,
every time a new node is initiated into the testbed. The level
of environmental variability determines the network connec-

3Note that the server is equipped with two Ethernet interfaces; one for
the testbed (with IP address 10.0.0.1) and one for connectivity to the outer
world.

tivity, and the created topology. There are three strategies that
could be applied during deployment.

First, one could place nodes randomly, regardless of the
environmental variability. Given that there exists an available
Ethernet port at the selected location4, one must further only
rely on the maximum transmission power required to connect
to other nodes. This approach however is quite risky. Even
if the WiFi card is very powerful, we may not always want
nodes to transmit with very high power (to be discussed). As
a result, with lower power, a randomly placed node may lose
connectivity from the rest of the network.

Second, one could take into account the variability and
the obstacles around the potential location. For example,
one may avoid placing a node near a door that people
open and close frequently. In addition, microwave ovens and
portable phones (2.4 GHz band) may also cause significant
interference to nearby testbed receivers. Even though the
environmental variability is unpredictable to a large extent,
with this approach one should try to reduce its effects as
much as possible, by placing nodes away from such devices.

Finally, one could actually take advantage of the envi-
ronment, whenever this is possible. For example, one may
deliberately place a node behind an obstacle, in order to create
a desired topology.

With all of the above possibilities, one should consider
the maximum transmission power that can be supported
by the wireless cards. The best strategy for deployment
from the above is the one that can provide both dense and
sparse topologies, whenever this is desired. Depending on the
available budget and building resources, one may place a very
large number of nodes, close to each other. This can probably
guarantee good connectivity, and it is a safe approach, since
not all nodes are required to be powered-on at the same
time. Hence, a different set of active nodes creates a different
topology each time. If however, the deployment of many
nodes is not feasible, a careful placement of nodes is required,
and this task is not trivial at all. During the deployment of our
testbed, we came across situations where the connectivity was
not a given, even though we expected that it would be. As an
example, we experienced cases, in which the distance between
two nodes was 5-10m, and two glass windows only existed in
between; however the link between the nodes was either too
poor, or non-existent (e.g. links 11→18 and 39→35 in figure
1). In other cases, a distance of 20-30m with walls, desks
and people in between could not affect the good connectivity
between nodes (e.g. link 20→16). In addition, multiple simple
tests were performed to observe the connectivity at different
network instances. We describe some of them in the next
sub-section.

D. Some pitfalls and mistakes to avoid

So far we have described the hardware and software com-
ponents, as well as the deployment efforts with our testbed.
We have also commented on some design and development
problems that we have faced. Here we deliberate on the
difficulties one may expect and the mistakes to avoid, during
the design and set-up of a wireless testbed, based on our
experiences.

4Remember that an available Ethernet port is required to connect the node
with the PoE switch.

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07

 0 2 4 6 8 10 12 14 16 18

T
h
ro

u
g
h
p
u
t
(b

p
s
)

Power (dBm)

Node 11
Node 12
Node 15
Node 16
Node 19

Fig. 4. Achieved throughputs on the links between node 20 and its
neighbors. We observe that the maximum transmission power (18
dBm for this channel (56)) affects the reliability of the results.

a) Hardware: The correct functionality of the hardware
should be verified early. After assembly, each node must
be tested thoroughly before deployment. This will make
debugging much quicker when a problem appears (e.g. when
a set of nodes suddenly loses wireless connectivity from the
rest of the network).

Furthermore, the capabilities of the wireless hardware, in
terms of transmission power, must also be verified. Some
wireless cards cannot transmit with the same maximum power
on all of the frequency bands. For example we observed that
when set to channel 56 (5.28 GHz), the maximum transmis-
sion power of our WiFi card can be up to 18 dBm. However,
if we set the card to channel 11 (2.412 GHz), the maximum
supported power can be 19 dBm. More significantly, we
observed the following two phenomena, with regards to power
settings:
1) When two nodes are placed very close to each other (i.e.,
less than 8 meters apart) without obstacles in between, then
they should not communicate with high power. We placed
two nodes 3m apart, selected channel 56, set the transmission
power to 15 dBm, and ran a set of high-volume TCP traffic
experiments from one node to the other. We observed that
the achieved throughput was extremely low. By setting the
transmission power to 1 dBm, we further observed that the
link throughput reached its maximum possible value. We
experimented with different cards and different frequencies;
we observed the same phenomenon. We believe that this is
happening because the receiver is saturated, i.e., the signal is
too strong for the A/D converter, and the gain control circuitry
cannot compensate this effect.
2) For some wireless cards, it is better not to use a trans-
mission power close to the maximum value due to potential
manufacturing defects. We observed this, while running a set
of fully-saturated UDP experiments between a large number
of links. As an example, we conducted a large number of
experiments on the links of node 20, on channel 56, with
different transmission powers. Only one link was active at
a time, i.e., links worked in isolation. We observed that,
even though the maximum achievable power is 18 dBm,
reliable results can be produced with powers of up to 16
dBm. This is depicted in figure 4. This figure presents the
achieved throughput for each link from node 20 to each of
its neighbors. For powers larger than 16 dBm we observe
that the results are not reliable, for all of the links under
investigation. Hence, the transmission power of the wireless
card, at values very close to the maximum, should be tested
before being used.

b) Density of deployment: The strength of the trans-
mitted signal by a node and the reception quality should
not be the only concerns. Increasing the network density
in order to have a good connectivity is a pitfall: the signal
strength received by a neighbor will be higher, however the
interference and contention in the network will also increase.
If the receiver sensitivity (carrier sensing threshold) can be
tuned, however, then the level of interference and contention
will change accordingly. Note, however, that many WiFi cards
do not allow the tuning of the receiver sensitivity.

Moreover, as one may expect, the network connectivity
is different, for different modes of operation (i.e., 802.11b
or 802.11a). Even if we keep the transmission power fixed,
the modulation technique used with 802.11a (Orthogonal
Frequency Division Multiplexing - OFDM [13]) is different
from that with 802.11b (Complementary Code Keying - CCK
[7]); this may affect the maximum distance that the signal can
travel. Due to the higher carrier frequency of the 802.11a the
signal cannot penetrate as far as with 802.11b [14], since it is
more heavily absorbed by obstacles. Indeed, we observed that
the connectivity problems mentioned above, for links 11→18
and 39→35, do not exist for the 802.11b mode of operation.
In addition, however, we observed that the node degree is
now much larger, even more than double in some cases.
As a result, one should have a knowledge of the achievable
connectivities on the different channels. Finally, note that the
materials that make up the obstacles play a significant role
in dictating the achieved topology. For example, it is more
difficult for the signal to penetrate a brick or metallic wall,
than a wooden one. Perhaps the best deployment strategy
is the most costly one: deploy a large number of nodes to
guarantee connectivity, and use different subsets of nodes to
achieve different network connectivities, with different levels
of interference.

III. EXPERIMENTAL EVALUATION

In this section, we present experimental results on the
stability of our network testbed. For these experiments we
have set the wireless interfaces of the nodes to the 802.11a
mode of operation, in order to avoid interference from the
only co-located 802.11g campus network. For this set of
experiments we use channel 56. We do not use the maximum
power provided by the WiFi cards, for the reasons that were
discussed in the previous section. Furthermore, for these
experiments we use identical power settings on both the
transmitter and the receiver node of a link. In order to get
reliable results, we run a large number of tests between
different links, during different periods of the day, as well
as on different days. We use 30 seconds of fully-saturated
1500-byte/packet UDP traffic.

We experimented with various transmission power levels;
here we present results with the power set to 16 dBm. As one
may observe in figure 5, link throughputs remain relatively
stable over time. This is especially the case for high quality
links, such as the link 28→29. On the other hand, poor links
present a slightly higher variability. This is an effect of the
variable environment of deployment, as was explained in the
previous section. As an example, the link 13→18 has a poor
quality; this is why we observe such a low throughput, i.e.,
at least 5 times lower than for the other links. For certain
time periods we observe a throughput spike (for 13→18),
such as at times 50 min, 120 min and 470 min of operation.

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07

 0 50 100 150 200 250 300 350 400 450 500

T
h

ro
u

g
h

p
u

t
(b

p
s
)

Time (minutes)

Link 13-18
Link 14-22
Link 15-12
Link 20-16
Link 28-29
Link 31-11

Fig. 5. The link throughput values remain almost the same over time.
For relatively poor links we observe an expected, small variability
in throughput.

At these instances, the throughput grows even as much as 5
times that of the nominal values. Even though the efficiency
of poor links is largely affected by noise, the variability of
the environment plays a very important role as well. For high
quality links however, we observe that the throughput does
not vary significantly.

IV. CONCLUSIONS

We described our experiences on the design, set-up and
deployment of a wireless network. We deliberated on the
hardware components, the software configuration and some
basic deployment strategies. We also discussed the difficulties
and pitfalls that one may face, when building a similar indoor
testbed.

A network testbed, when designed and administered prop-
erly, can provide new insights on any kind of networking and
communications research. Many basic assumptions made for
analytical and/or simulation studies are likely to be invalid
in a real network deployment. However, in order to serve its
purpose, the testbed must first be examined for its correct
functionality. The hardware components must be thoroughly
tested and the software must be properly configured. In
addition, nodes need to be deployed taking into account the
environmental variability, the maximum transmission power
supported, as well as the created network topology and
connectivity for different power levels.

REFERENCES

[1] J. Bicket, D. Aguayo, S. Biswas, and R. Morris. Architecture and
evaluation of an unplanned 802.11b mesh network. In MOBICOM,
2005.

[2] S. Sanghani, T. Brown, S. Bhandare, and S. Doshix. Ewant: The
emulated wireless ad hoc network testbed. In IEEE WCNC, 2003.

[3] N. Vaidya, J. Bernhard, V.V. Veeravalli, P.R. Kumar, and R.K. Iyer.
Illinois wireless wind tunnel: a testbed for experimental evaluation of
wireless networks. In ACM SIGCOMM workshop on Experimental
approaches to wireless network design and analysis, 2005.

[4] E. Nordstrom, P. Gunningberg, and H. Lundgren. A testbed and
methodology for experimental evaluation of wireless mobile ad hoc
networks. In TRIDENTCOM, 2005.

[5] UCR Wireless Networking Research Testbed.
http://networks.cs.ucr.edu/testbed.

[6] Soekris/net4826. http://www.soekris.com/net4826.htm.
[7] ANSI/IEEE802.11-Standard. 1999 edition.
[8] Atheros/AR5006chipset.

http://www.atheros.com/pt/ar5006bulletins.htm.
[9] MadWifi-Driver. http://madwifi.org.

[10] J. Kaba and D. Raichle. Testbed on a desktop: Strategies and techniques
to support multi-hop manet routing protocol development. In ACM
Mobile ad hoc networking and computing, 2001.

[11] RFC 3010. NFS version 4 Protocol.
[12] RFC 951. The Bootstrap Protocol.
[13] ANSI/IEEE802.11a-Standard. 1999 edition.
[14] http://en.wikipedia.org/wiki/IEEE 802.11 text.

