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Abstract

Immunotherapy is rapidly becoming a standard of care for
many cancers. However, colorectal cancer had been generally
resistant to immunotherapy, despite features in common with
sensitive tumors. Observations of substantial clinical activity for
checkpoint blockade in colorectal cancers with defective mis-
match repair (microsatellite instability–high tumors) have reig-
nited interest in the search for immunotherapies that could be
extended to the largermicrosatellite stable (MSS) population. The
Cancer Research Institute and Fight Colorectal Cancer convened a
group of scientists, clinicians, advocates, and industry experts in
colorectal cancer and immunotherapy to compile ongoing
research efforts, identify gaps in translational and clinical
research, and provide a blueprint to advance immunotherapy.
We identified lack of a T-cell inflamed phenotype (due to inad-
equate T-cell infiltration, inadequate T-cell activation, or T-cell

suppression) as a broad potential explanation for failure of
checkpoint blockade in MSS. The specific cellular and molec-
ular underpinnings for these various mechanisms are unclear.
Whether biomarkers with prognostic value, such as the immu-
noscores and IFN signatures, would also predict benefit for
immunotherapies in MSS colon cancer is unknown, but if so,
these and other biomarkers for measuring the potential for an
immune response in patients with colorectal cancer will need to
be incorporated into clinical guidelines. We have proposed a
framework for research to identify immunologic factors
that may be modulated to improve immunotherapy for colo-
rectal cancer patients, with the goal that the biomarkers and
treatment strategies identified will become part of the routine
management of colorectal cancer. Cancer Immunol Res; 5(11); 942–9.
�2017 AACR.

Introduction
Colorectal cancer remains a substantial public health problem,

currently ranking as the third leading cause of cancer-related
deaths among men and women (1). Half of the patients with
colorectal cancer either have metastatic disease at presentation or
develop metastases subsequently. Although availability of che-
motherapies and biologics has increased median survival in
patients with metastatic disease, further treatment options are
still needed (1). The efficacy of immunotherapy in colorectal
cancer has been limited to the small percentage of patients with
microsatellite instability–high (MSI-H) tumors, which prompted
an approval of pembrolizumab (anti–PD-1) for MSI-H or mis-
match repair–deficient solid tumors. To focus on colorectal cancer
patients, the Cancer Research Institute and Fight Colorectal Can-
cer convened a broad group of scientists, clinicians, advocates,
and industry experts to develop a blueprint for research, guideline
development, and policy that would advance immunotherapy to
the routine treatment of colorectal cancer.

Numerous immunotherapeuticmodalities were tested in early-
phase studies. However, few objective responses are seen in
unselected colorectal cancer patients (2, 3). Observations that
mutational load correlates with immune response to checkpoint
blockade in many malignancies led to studies of checkpoint
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blockade in patients with advanced colorectal cancer (4). In a
phase II trial, administration of pembrolizumab resulted in a
clinical benefit rate [objective response (OR) and stable disease
(SD)] in 90% of MSI-H patients having OR or SD (by RECIST
criteria). Whereas progression-free survival (PFS) at 6months was
78% in the MSI-H group, the disease control rate (DCR) at 20
weeks was 11% in microsatellite stable (MSS) patients, and
expression of PD-L1 was not significantly associated with either
PFS or overall survival (OS). These data supported the approval
for pembrolizumab in all MSI-H cancers.

Earlier studies revealed no objective clinical responses with
nivolumab or anti–PD-L1 (BMS936559/MDX-1105) in unselect-
ed patients (5, 6). A study with nivolumab in MSI-H patients
showed an objective response rate (ORR) of 26%, with 30% of
subjects achieving SD (7), and nivolumab is now FDA approved
for MSI-H colorectal cancer. These data suggest that successful
immunologic targeting of MSS tumors may be achieved by
attempting to alter their tumor microenvironment (TME) to be
immune active (characterized byhighT-cell infiltration, enhanced
activation state, and an IFNg-dominated cytokine milieu).

Advances in the taxonomy of colorectal cancer have expanded
our understanding of the pathways that are potential immuno-
therapeutic targets (8). Other immune active tumors include
those arising due to acquiredDNAhypermethylation that renders
the mismatch repair pathway ineffective. Like MSI-H tumors,
these are associated with T-cell infiltration resulting from gene
expression of class II antigenic proteins, T cell–promoting che-
mokines, and inhibitory checkpoint receptors, such as PD-1,
CTLA4, and LAG-3 (2, 9, 10). However, other colorectal cancers
lack these features due to the adversemesenchymal subtype that is
associated with stromal infiltration, TGFb production, and angio-
genesis. By identifying the positive and negative immunologic
factors within these subtypes and developing strategies to aug-
ment or inhibit them, routine immunemanagement of colorectal
cancer may become a reality.

Features Associated with Improved
Immune Responsiveness

Identifying immune-related prognostic and predictive features
is the subject of ongoing research. Techniques for categorizing
these features, including IHC staining and gene expression (2, 4–
6, 8–12), have been extensively studied, but functional studies on
tumors and infiltrating leukocytes are also of interest. In an initial
retrospective IHC analysis evaluating the prognostic relationship
between tumor-infiltrating lymphocytes and clinical outcomes in
early-stage disease, Galon and colleagues identified a correlation
between recurrence-free survival and the density of infiltrating
CD3þ CD8þ lymphocytes at the tumor margin and center. Infil-
tration by specific subsets of T cells had a better correlation with
clinical outcome than simply examining the density of lympho-
cytic infiltration around tumors (3, 12). This was confirmed in a
prospective validation study, called Immunoscore, of 2,667
patients through a quality-controlled worldwide consortium that
could be replicated across all involved sites (13). The score was
generated by evaluating the CD3þ andCD8þ density and location
in primary tumors, resulting in 4 scores for each patient. Themean
quintile score was used to assign the patient into low, interme-
diate, or high immunoscore groups, which corresponded to high-,
medium-, and low-risk related to clinical outcomes, respectively.
Immunoscores were prognostic for time to recurrence, disease-

free survival (DFS), and OS in patients with stage I–III colorectal
cancer. In patientswith stage II colorectal cancerwho also had low
immunoscores (high-risk), about 21% (375/1,808) had an esti-
mated 5-year relapse-free survival (RFS) of 76.8%, whereas 26%
of patients in the same demographic group with high immuno-
scores (low-risk) had a 5-year RFS of 91.2%. Immunoscores were
also a better prognostic for survival in newly diagnosed patients
with localized colorectal cancer (14) and were individually prog-
nostic of DFS in FOLFOX-treated patients (15). Approximately
20% of MSS patients with high immunoscores were found in a
small (unvalidated) cohort of patients (14). The frequencyofMSI-
H status varied across different disease stages (stage II, 9%; stage
III, 12%; and stage IV, 4%; ref. 16). Inmetastatic colorectal cancer,
the immune contexture is grossly similar in primary and meta-
static sites (17). These data support the future incorporation of
immunoscores into the prognostic scoring systems for colorectal
cancer.However, they also raise thequestion ofwhether immuno-
scores would be predictive of immunotherapy benefit in the
adjuvant setting (Fig. 1).

Although MSI status and immunoscores are key features for
separating patients into groups, other assaysmay also be valuable.
RNAexpressionprofiling elucidated aT cell–rich signature present
in bothMSI-H and someMSS colorectal cancer patientswhohada
better prognosis (18). High expression of lymphoid genes is
associated with poor prognosis. Further analysis showed that this
particular signature was associated with myeloid cells and fibro-
blasts with immunosuppressive mesenchymal markers (18)
as well as a high proportion of endothelial cells and cancer-
associated fibroblasts. Thismesenchymal signature was identified
as a marker of resistance in melanoma patients who did not
respond to anti–PD-1 (19).

A signature consisting of an angiogenic and wound healing–
related microenvironment has been documented (20–22).
Understanding the immune context and the TME will play a vital
role in designing strategies to improve immune function. The
mesenchymal phenotype plays a role in disease outcome and can
negatively impact immunotherapy treatment in a variety of can-
cers. Thus, further validation of this signature and its impact on
checkpoint blockade is necessary to further delineate its contri-
bution to disease progression and response to treatment. As the
immunotherapy landscape moves toward therapeutic combina-
tions, clinicians and scientists will need to understand the
mechanisms by which combination agents impact colorectal
cancer,whichwill require interrogationof biopsies before, during,
and after treatment.

Framework for Assessment
The goal of the framework proposed here is to enhance per-

sonalized immunotherapy, which requires an improved under-
standing of the transcriptional and immune status of each
patient's cancer. We propose an algorithm to assess the immu-
noreactivity of a patient's tumor for the development of an
immunologically guided treatment plan, including standard of
care (SOC) treatments and clinical trials. Patients with germline
MSI-H tumors should undergo genetic counseling for themselves
and family members and should be offered genetic testing for
Lynch syndrome, if interested. All early-stage patients should
undergo SOC tumor assessment staging, have MSI status docu-
mented, and, if available, use their immunoscore to determine
immunoreactivity (Fig. 1). SOC is offered to patients with stage I/II
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cancers, whereas FOLFOX chemotherapy is for stage III disease
for those who are immune inactive. Future trials should evaluate
simultaneous or sequential interventions to activate the immune
response in the presence or absence of checkpoint blockade with
and without TME-targeting agents. If the patient's tumor is
immune active, they are candidates for standard therapy. In the
metastatic setting, all patients' tumors should be assessed for MSI
status (the first determinant of the type of standard or clinical trial
intervention) in addition to standard genomic profiling (Fig. 2;
ref. 23). If the patient is MSI-H and has progressed while on
fluoropyrimidine, oxaliplatin, and/or irinotecan, they will likely
receive a PD-1 inhibitor. If no response is seen, immunopheno-
typing should be performed. Patients with high lymphocytic
infiltration may be candidates for trials combining PD-1/PD-L1
inhibitionwith agents specifically targetingpotentialmechanisms
of resistance or immunosuppression (Table 1). For patients with

low lymphocytic infiltration, intervention strategies to improve
lymphocyte infiltration are needed (Supplementary Table S1).
However, many of these recommendations will require guide-
line development, validation, improved or enhanced clinical
trial recruitment, and discussions surrounding reimbursement,
which are implemented at different times during a study
(Supplementary Table S2). Clinical tests, outcomes, and inter-
vention strategies are outlined for early-stage colorectal cancer
and metastatic disease (Figs. 1 and 2). In both clinical situa-
tions, guidelines should be developed and reimbursement
strategies identified early on during the initial clinical testing
phases, whereas the focus should be on patient recruitment and
acquisition of research funding for clinical and mechanistic
studies in later interventional stages. Data and methodology
need validation throughout the clinical testing, outcome, and
interventional stages.

Standard tumor
assessment (TNM)
Standard clinical
risk assessment
(e.g., LVI, PNI,

perforation, T4)

High immune activation
(e.g., high Immunoscore

MSI-H
PD-L1+)

Simultaneous or
sequential

interventional trial
to activate immune

response ±
checkpoint blockade

Interventional trial
with checkpoint

blockade

Low immune activation
(e.g., low Immunoscore

MSS
PD-L1–)

Immunophenotyping
(assessment of

immune activation
state; e.g.,

Immunoscore, MSI)

Intervention strategy

Test outcome

Clinical
test

Standard clinical practice

Immune activeNonimmune active
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Figure 1.

Proposed immunologic evaluation of
patients with early-stage colorectal
cancer. Standard tumor assessment
and clinical assessment will lead to
treatment via standard clinical
practice for early-stage colorectal
cancer patients. This could be
supplemented by immunophenotyping
consisting of immunoscore, immune-
activation state, and MSI status.
Patients with a low-density infiltration
of CD3þ and CD8þ cells would be
considered for simultaneous or
sequential interventional trials to
activate the immune response with
and without checkpoint blockade in
the presence or absence of agents
targeting resistance mechanisms.
Patients with high-density CD3þ and
CD8þ cells with other high-risk clinical
features could consider an
interventional trial with standard
therapy followed by or concurrent
with checkpoint blockade.
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Discussion
Existing SOC therapies have immunologic manifestations and

could be synergistic with immunotherapy. Radiotherapy, com-
monly used for neoadjuvant treatment of rectal cancer and locally
advanced colorectal cancers, has broad effects on the immune
system through the induction of immunogenic cell death
(ICD), maturation of dendritic cells (DCs), and improved
cross-presentation (24, 25). The abscopal effect (when local
radiotherapy is associated with regression of metastatic cancer at
a distant site) has been seen in the setting of checkpoint blockade
(26, 27). The rationale for combining radiotherapy with immu-

notherapy is to induce an in situ vaccine effect, leading to antigenic
spread, uptake of antigens, maturation of DCs, and activation of
T cells (28). Like radiation, chemotherapy causes direct cell killing
and induction of ICD (29). However, different types of chemo-
therapy exert different immunologic effects and should be further
studied (30). Several hundred studies have investigated radiation
or chemotherapy in colorectal cancer, and of these, a dozen have
explored the effects of combining them with immunotherapy.
Many research questions remain, including analyzing T-cell anti-
gen recognition and phenotype. These questions may be
answered by performing deep immune phenotyping as well as
understanding whether ICD has occurred.

PD-(L)1 inhibitor Nonresponders
Immunopheontyping
(e.g., Immunoscore)

and/or
+PD-L1 staining

High lymphocytic
infiltration

Low
lymphocytic
infiltration

Identify mechanism
of resistance /

immunosuppression
for intervention

Responders

Length of therapy? Resistance after
response

Identify strategies to
increase lymphocyte

infiltration

Non-MSI-high (MSS)MSI-high

MSI testing

Decision on clinical trial

Incoming patient
(metastatic

disease)

Intervention strategy

Test outcome

Clinical
test
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Figure 2.

Research algorithm for immunologic
evaluation of patients with
metastatic colorectal cancer,
describing an incoming patient with
metastatic disease who would
undergo MSI testing as a basis of
whether or not to enter a clinical
trial. MSI-high patients would
receive a PD-1/PD-L1 inhibitor.
Those patients that do not respond
or become resistant after an initial
response could lead to identification
of mechanism(s) of resistance and
immunosuppression in the TME,
resulting in the use of therapeutic
intervention(s) listed in Table 1. All
non-MSI high (MSS) patients would
undergo immunophenotyping, and
depending on whether they have
high or low lymphocytic infiltration,
would enter an interventional trial,
based on their immune status to
answer research questions
(Supplementary Table S1).
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The TME consists of tumor stromal cells, myeloid-derived
suppressor cells (MDSC), angiogenic factors, immunosuppressive
cytokines, chemokines, andmetabolic factors. These immunosup-
pressive cells directly suppress T-cell function and promote metas-
tasis. Selective depletion ofMDSCswith anti-CSF1Rwas shown to
result in delayed tumor growth in mouse models of colorectal
adenocarcinoma, increased intratumoral cytotoxic CD8þ T cells,
and decreased regulatory T cells (Treg; ref. 31). Others demon-
strated the combined efficacy of anti-CSF1R and either anti–PD-1
or anti-CTLA4 (32, 33). These data provide rationale for clinical
trials combining this agent and checkpoint blockade.

VEGF is a key mediator in angiogenesis, and overexpression has
been associatedwith poorOS. Bevacizumab, which targets VEGF, is
often added to first-line chemotherapy, and combination with
immunotherapy is being tested clinically (34). Because VEGF inhi-
bits DC maturation, anti-VEGF strategies may also enhance the
induction and potency of immune responses. Data indicate that
MSI-H tumors are responsive tobevacizumab-containing regimens,
and early data show a DCR of 90% inMSI-H patients who received
bevacizumab with atezolizumab (anti–PD-L1; ref. 35). Indolea-

mine 2,3-dioxygenase (IDO) is an enzyme that degrades the essen-
tial amino acid L-tryptophan and induces T-cell suppression (36).
IDOcontributes todisease progression and reducesOS in colorectal
cancer patients (36, 37), and studies with an IDO inhibitor com-
bined with anti–PD-1 are being pursued in colorectal cancer.

Adenosine is an ubiquitously expressed nucleoside released
from metabolically active cells and has known immunosuppres-
sive roles (38). The A2A adenosine receptor (A2AR) is highly
expressed in the majority of immune cells. Stimulation leads to
inhibition of T-cell and NKT cell proliferation, cytokine produc-
tion, and proliferation of Tregs and MDSCs (39–41). Adenosine
inhibitors are being tested in the clinic in combination with
checkpoint inhibitors in colorectal cancer. CD73, an enzyme that
performs the phosphohydrolysis of extracellular ATP into aden-
osine, can also be targeted. CD73-deficient mice are resistant to
MC38-OVA colorectal cancer tumors, and anti-CD73 had activity
as a monotherapy and was highly synergistic when given with
checkpoint inhibitors (5, 42, 43). Many correlative questions
need to be answered to understand whether these combination
treatments may benefit patients.

Table 1. Strategies to turn colorectal cancer tumors into immunoreactive MSS tumors

Cell type/pathway
Laboratory
test

Association
with
prognosis

Goal level
of
expression

Interventions to turn CRC
tumors into immunoreactive
MSS

Currently in clinic?
Intervention Monotherapy Combination

Goal molecular pattern:
IFN signature (CXCL9,
CXCL10, CXCL16, IL15)

RNA-seq Good (3, 11, 13) " IFN-inducing agents (OV, TLRs,
STING, epigenetic modifiers)

OV Yes Yes
TLRs Yes NA
STING NA NA
Epigenetic Yes Yes

Mesenchymal (VEGF, TGFB,
galectin, COX-1)

RNA-seq Poor (3, 13) # # Angiogenesis (VEGF blocking) VEGF Yes Yes
# Immunosuppression (TGFb
inhibitor)

TGF Yes Yes

# Immunosuppression (Galectin
inhibitor)

Galectin NA NA

# Immunosuppression (Cox
inhibitor)

COX Yes Yes

# Immunosuppression
(epigenetic)

Epigenetic Yes Yes

MHC class-l molecules (MHC-I)
and tumor antigen
expression

RNA-seq Good (3, 11, 13) "" IFN-inducing agents (OV, STING,
TLRs, epigenetic modifiers), "
ags (radiation, chemo, vaccine,
neoags), MEK inhibitors

XRT Yes Yes
Chemo Yes Yes
Neoantigens Yes NA
Vaccines Yes Yes

CXCL12 (SDF-1)/CXCR4
interaction

RNA-seq Poor (3, 13) # Antagonists of CXCR4 or
antibodies against CXCR4

CXCR4 Yes NA

Monocytic signature (CCL2,
CCL23, CSF1R)

RNA-seq Poor (3, 13) # #Monocytic cells (CSF1R-blocking,
epigenetic modifiers)

CSF1R Yes Yes
Epigenetic Yes Yes
LAG3 Yes Yes
TIM3 Yes Yes
CEACAM Yes Yes

Checkpoint molecules IHC Poor # (9) # Negative regulation (other
checkpoint inhibitors)

KIR Yes Yes

Targets of interventions: Cell
Treg IHC Controversial

(3)
# or " Anti-CCR4 mAb, chemotherapy,

CD25-directed immunotoxin
CCR4 Yes Yes

Tumor-associated
macrophages (M2; and
MDSCs)

IHC Poor (3, 13) # # Monocytic cells (CSF1R blocking,
epigenetic modifiers)

CSF1R Yes Yes
Epigenetic Yes Yes

Endothelial cells IHC Poor (3, 13) # # Endothelial cells (hyaluronidase) Hyaluronidase NA NA
Anti-VEGF-Ab NA

NOTE: Comparison of immunoreactive MSS with the mesenchymal transcriptional signature, its association with prognosis, treatment modalities to modulate the
signature to the preferred immunoreactive state, and list of monotherapy and combination regimens that are currently in the clinic for colorectal cancer.
Abbreviations: CAF, cancer-associated fibroblasts; CRC, colorectal cancer; XRT ¼ radiation.
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The EGFR–RAS–RAF–MEK–ERK1/2 pathway is a critical target
for panitumumab, cetuximab, as well as MEK inhibitors. MEK
inhibitors can enhance T-cell function and improve checkpoint
blockade as demonstrated in murine melanoma models (44).
Clinical studies are investigating combinations between these
inhibitors as well as with other modalities (45, 46). Data from
a trial using atezolizumab in combinationwith theMEK inhibitor
cobimetinib show the combination was well tolerated, and
patients had an ORR of 17% (4 PR and 5 SD; ref. 47). This led
to a randomized phase III trial comparing the combination with
SOC in patients with third-line metastatic colorectal cancer. The
combination of selumetinib with anti–PD-L1 in advanced solid
tumors is being explored. Analysis of T-cell infiltration and
changes in tumor HLA and antigen expression will be key to
understanding themechanisms of synergy forMEK inhibitors and
checkpoint blockade.

Epigenetic agents have been used as therapies for cancer. The
investigation of epigenetic drugs on the interaction of the immune
system and tumors revealedmultiple points of potential action (5,
48–51). In the CT26 colorectal cancer model, treatment with anti-
CTLA4 and anti–PD-1 had low activity against large tumors, but
adding the epigenetic-modulating drugs 5-azacytidine (a DNA
methyltransferase inhibitor) and entinostat (a class I HDAC inhib-
itor) eradicated large tumors in most mice and improved survival
(49). The combination of epigeneticmodifiers and anti–PD-1/PD-
L1 is being tested in multiple clinical trials for colorectal cancer.

Successes in the clinic with anti-CTLA4 and anti–PD-1 in
melanoma have led to examining this combination in colorectal
cancer (52). Preliminary data of nivolumab and ipilimumab in
MSI and MSS colorectal cancer showed OR of 33% and 5%,
respectively (7). Other checkpoint inhibitors as well as immune
agonists should be studied further. In all cases, infiltrates need to
be quantified and immune phenotyped to determine whether
long-lasting T-cell memory is formed.

Stimulating the innate immune system can occur by acti-
vating pathogen-associated molecular patterns via Toll-like
receptors (TLR) or through cyclic dinucleotides. This induces
DC and proinflammatory macrophage activation, secretion
of type I IFNs, and subsequent antigen presentation (53).
Many innate immune agonists are being used in conjunction
with therapeutic vaccines, and several trials for colorectal
cancer combining TLR agonists with checkpoint blockade are
underway.

Replication-competent oncolytic viruses (OV) selectively
infect cancer cells, causing tumor cell lysis and activation of
the innate immune system. OVs can be genetically modified to
include immunomodulatory transgenes to enhance the
immune system (54). Several OVs are being investigated in
colorectal cancer as single agents and in combination with
checkpoint inhibitors. Like innate agonists, OVs aim to aug-
ment IFN signaling and promote T-cell recruitment to tumors,
making examination of infiltrates key to determining the effects
of these agents.

Vaccines are effective public health interventions for infec-
tious disease prevention. However, despite numerous studies,
the efficacy of cancer vaccines remains inconclusive (55). Stud-
ies investigating neoantigens has prompted renewed excite-
ment in the vaccine field (56). Data in a small clinical trial
demonstrated enhancement of T-cell responses when utilizing
neoepitopes in a DC vaccine in melanoma patients (57).
Numerous studies are examining the effects of therapeutic

vaccination in colorectal cancer. Determining whether specific
T-cell responses are engendered against the target antigen,
causing increased infiltration into the tumor, and evaluation
of the ongoing activation status of the infiltrating T cells are
needed. With the addition of checkpoint inhibition and other
TME modulators, therapeutic vaccines may have a renewed role
in immunotherapy.

The intestinal microbiota form a symbiotic relationship with
the host and have broad functions in immunity, inflammation,
and disease (58). Numerous reports suggest that certain
bacterial species have been disproportionally associated with
colorectal cancer tumors and may contribute to disease path-
ogenesis (5, 59–64). The microbiome plays a role in immu-
notherapy treatment outcomes in mouse models and humans
(5, 65–67). In melanoma patients treated with ipilimumab, the
presence of the Bacteroidetes phylum in feces correlated with
resistance to the development of checkpoint blockade–induced
colitis (68). These results suggest that the microbiome could be
used as a predictive biomarker during immunotherapy treat-
ment and that, at least in mice, transfer of specific species could
potentiate antitumor effects. Future clinical application will
require fecal collection for microbiome analyses to assess
whether microbiota dysbiosis occurs at different stages of
disease and with different treatment regimens. This will
improve our understanding of whether the microbiome is
prognostic and/or predictive of treatment effects.

In summary, data show the promise of immunotherapy for
colorectal cancer, in at least a subset of patients. Further studies
that analyze the immune contexture and genomic profiles of these
patients will aid in our understanding of why some colorectal
cancer patients respond to immunotherapy while others do not.
The goal of convening experts in colorectal cancer and immuno-
therapy was to fill the gaps in our understanding of this difficult-
to-treat patient population and provide a platform for collabo-
rative research to move immunotherapy into the SOC for colo-
rectal cancer patients.
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