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Abstract— TCP/IP has recently taken promising steps toward
being a viable communication architecture for networked
sensor nodes. Furthermore, the use of Bluetooth can enable a
wide range of new applications, and in this article, an overview
of the performance and characteristics of a networked sensor
node based on TCP/IP and Bluetooth is presented. The
number of Bluetooth-enabled consumer devices on the market
is increasing, which gives Bluetooth an advantage compared
to other radio technologies from an interoperability point
of view. However, this excellent ability to communicate in-
troduces disadvantages since neither TCP/IP nor Bluetooth
were designed with resource-constrained sensor nodes in mind.
We, however, argue that the constraints imposed by general
purpose protocols and technologies can be greatly reduced by
exploiting characteristics of the communication scheme inuse
and efficient and extensive use of available low-power modes.
Furthermore, we claim that a Bluetooth-enabled networked
sensor node can achieve an operating lifetime in the range of
years using a total volume of less than 10 cm3. The Mulle
Embedded Internet System (EIS), along with its advanced
power management architecture, is presented as a case-study
to support the claims.

Index Terms— Mulle, EIS, Bluetooth, TCP/IP, sensor networks,
PAN, power consumption, low-power design, motes.

I. I NTRODUCTION

The first Bluetooth [1] specification was developed in
1994 by Ericsson Mobile Platforms. It was initially designed
to be a cable replacement technology, capable of allow-
ing devices to communicate wirelessly without the need
for time-consuming configurations. The Bluetooth Special
Interest Group (SIG) [2], which was created in 1998,
allowed a large number of companies to work together
in order to make the Bluetooth specification an open and
widely spread standard. The first specification versions
(1.0 and 1.0b) had many problems with interoperability,
making it difficult to create connections between devices
from different manufacturers. Following versions (1.1 and
1.2) resolved many of these issues. Consumers now enjoy
the benefits of owning products, from a wide range of
different manufacturers, that can communicate with each
other. Mobile phones and laptops were the first product
types where Bluetooth became the de-facto standard for
low bandwidth wireless communication. Today, the current
specification has reached version 2.1 [3] with Enhanced
Data Rate (EDR). The maximum bandwidth is 2.1 MBit/s
and the price has dropped below $3 for a Bluetooth chip.

This has contributed to its popularity and Bluetooth can
now be found in a large number of consumer electronic
products. Recently, Bluetooth also adopted the Wibree [4]
specification from Nokia, enabling Bluetooth to be used as
a wireless media for sensors located in cheap accessories
for sports, entertainment, and health-care.

Shortly after Bluetooth started to increase in popularity as
a technology for cable replacement and began to provide a
base for wireless Personal Area Networks (PANs), interest
also emerged in the sensor networks research community
[5]. The frequency hopping approach makes Bluetooth
relatively immune to electromagnetic interference [6], and
the large number of Bluetooth-enabled consumer electronic
devices provides an infrastructure that can be utilized by
sensor nodes to achieve global Internet connectivity.

Bonnet et al. reported in 2003 [7] that Bluetooth has some
advantages, such as high throughput and resilience against
interference, but also a number of disadvantages:

• Device discovery is slow, meaning that it can take a
considerable amount of time and energy for devices to
discover each other.

• Keeping connections open is expensive, meaning that
Bluetooth has a higher power consumption while com-
municating than do other similar radio technologies.

• A layered stackprohibits fine-granularity time synchro-
nization and restricts cross-layer optimizations.

However, Negri et al. proposed in [8] that the use of
power-management policies can make Bluetooth suitable for
a wider range of sensor networking applications than what
could otherwise be achieved.

Networked sensor nodes, ormotes, based on Bluetooth
can be divided into two main categories: The first category
only uses the Bluetooth radio hardware to set up connec-
tions. Data communication is performed using proprietary
protocols directly on top of the radio layer. This approach
requires only a fraction of the Bluetooth specification to be
supported and gives increased capabilities to adjust parame-
ters for a specific application. The second category adheres
to the Bluetooth protocol stack specification, which requires
a much more advanced stack. However, this increase in
stack complexity and size allows nodes to communicate
with virtually any Bluetooth-enabled device, e.g. computers
and mobile phones. The use of TCP/IP can further increase
the communication possibilities by allowing a sensor node
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to transmit data directly to the Internet without the need of
customized gateways or middle-ware applications.

In this paper, we present arguments concerning power
consumption, accessibility, mobility and interoperability,
showing the advantages of using TCP/IP over Bluetooth as
a communication suite for networked sensors in Mobile Ad-
hoc Networks (MANETs). The Mulle, a Bluetooth-enabled
Embedded Internet System (EIS), [9] is used to demon-
strate the performance and feasibility of the combination of
Bluetooth and TCP/IP in sensor networking applications.
We chose a pragmatic research approach, where claims and
hypotheses are tested using real-world experiments.

The following Section presents Bluetooth in sensor net-
works and provides a brief overview of related work in
the research area of wireless sensor networks. Section III
provides a brief overview of issues concerning TCP/IP in
sensor networks, followed by Section IV, which gives an in-
depth discussion on the characteristics of Bluetooth-based
networked sensor nodes. A detailed description of the Mulle
embedded system, with its communication infrastructure
and low-power architecture, is presented in Sections V
and VI. Section VII presents experimental results from
real-world measurements and finally, Sections VIII and IX
outline future work and conclusions, respectively.

II. B LUETOOTH FORNETWORKED SENSORS

Sensor networks are emerging as a technology that can
address a large number of application scenarios where it is
crucial to perform measurements and take actions, such as
sending an alarm or updating a control loop. Sensor net-
works can be divided into two categories: broadcast-based
and connection-oriented. Traditionally, most sensor net-
works have been built using broadcast-enabled radios, but
Bluetooth, a connection-oriented link topology, is growing
in popularity as a design choice for smaller networks used
in the vicinity of human users, e.g. for home-automation
and health-care applications [10], [11].

Bluetooth is a radio technology which has been used in
a number of sensor nodes. As mentioned earlier, Bluetooth-
based sensor nodes can be roughly divided into two main
categories: A) The first category only uses Bluetooth (IEEE
802.15.1) as a radio link technology, without utilizing the
standardized higher layers of the Bluetooth protocol stack.
This approach keeps the communication code footprint
small, reduces software development complexity and al-
lows fine-tuning of the behavior of the radio to suite a
certain application. The drawback of utilizing proprietary
protocols is that only node-to-node and node-to-gateway
communication is possible. In this category, we find sensor
nodes such as the BTnode [12] from ETH Zurich [13] and
the iMote [14] from Intel [15]. To enable sensor networks
based on proprietary protocols to communicate with IP-
based networks, such as the Internet, a gateway is required
to convert the proprietary protocol used within the sensor
network to TCP/IP. The approach of using special gateways,
or in some cases middle-ware applications, is widely used.
The approach of not using Bluetooth Profiles and higher
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Figure 2. Broadcast multi-hop network (WSN)

protocol stack layers also enables formation of true multi-
hop networks, which are currently not supported by the
Bluetooth specification.

B) Nodes in the second category, such as the Mulle
node [9], conform to standardized protocols and Bluetooth
profiles. This gives improved interoperability, since sensor
nodes can communicate with Bluetooth-enabled consumer
devices, e.g. computers, PDAs and mobile phones directly.
However, the code footprint can increase substantially and
thus imposes higher memory and resource requirements.
This may prohibit the use of Bluetooth on low-end micro-
controllers. However, many modern Bluetooth modules with
built-in microcontrollers can provide a full Bluetooth stack.
This reduces the amount of additional code required, and
shortens software development time. Drawbacks with this
design approach are that low-level access to the protocol
stack layers can be limited. Less control over the commu-
nication system may result in higher power consumption
and also prohibits link-level time synchronization.

The Bluetooth specification for Scatternets, a form of
multi-hop network, is not fully developed to date, result-
ing in point-to-point network support only. This restricts
the usability when creating sensor networks built upon
standardized protocols, and proprietary solutions are often
used to address this issue. Bluetooth, as a connection-
oriented technology (Fig. 1), has some limitations in terms
of scalability [7], [16]. Furthermore, even Scatternet-based
networks can only support a relatively small number of
nodes compared to what other, more specialized tech-
nologies such as 433-915 MHz broadcast radios or IEEE
802.15.4 can manage. Such dense networks, which are often
referred to as Wireless Sensor Networks (WSNs) (Fig. 2),
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have distinct characteristics compared to sensor networks
based on Bluetooth. Research is performed on wireless
sensor networks by a number of institutions [17], [18] and
companies [19], [20].

III. IP SENSORNETWORKS

IP as a communication base for sensor networks has had
an increase in popularity during the last years. It was long
believed that TCP/IP on resource constrained sensor nodes
was not feasible, but recent research and development [21]–
[23] have shown that TCP/IP can be utilized in a wireless
sensor network. IP-based sensor networks enable a new
range of applications where traditional proprietary networks
fail to meet the requirements. A detailed description of
issues concerning TCP/IP in sensor networks can be found
in [24]. Below are some advantages and disadvantages of
IP-based sensor networks:

A. Advantages

The Internet has, as of today, around 400 million hosts,
and the possibility to integrate sensors directly to it may
prove to be beneficial in a number of application areas.
Essentially, there are two different ways of achieving this:
the first approach is to have a dedicated gateway that con-
verts IP-traffic to the proprietary protocol used by the sensor
nodes. The other approach is based on IP-all-the-way, where
sensor nodes in the network perform all communication
using the TCP/IP protocol suite. This eliminates the need
for a gateway, but can increase requirements on the nodes
in terms of processing power and memory consumption.
In MANET applications, where no infrastructure exists,
sensor nodes must be able to communicate with the (mobile)
devices that wish to obtain sensor data, without using a
gateway.

Below are short descriptions of the most two important
benefits of using TCP/IP in a sensor network:

1) Interoperability: This is one of the key points of using
the IP protocol suite. The nodes can directly access the
Internet using commercially available gateways, e.g. mobile
phones, WiFi routers and computers. Mobile users can also
access sensor data using standard PDAs, laptops or smart
phones.

2) Mobility: Sensor nodes, using, for example, Blue-
tooth, can use mobile phones with GPRS/UMTS as access
points. Since mobile phones are commonly used, the nodes
can be deployed easily without the need to first build
an expensive communication infrastructure. Mobile phones
equipped with GPRS or UMTS currently provide better ra-
dio coverage, even in rural areas, than any other technology.
The combination of Internet access using GPRS roaming
allow sensor nodes to be deployed virtually anywhere,
while still allowing users all over the world to access
them directly, given that the appropriate mechanisms for
node localization are in place. Such mechanisms can, for
example, be static IP address assignment, static hostname
combined with dynamic DNS updates, or by using a proxy
with known URL to forward data from sensors to users.

B. Disadvantages

TCP/IP was designed to primarily be used by computers
and not small sensor and actuator nodes. Sensor nodes, with
very limited memory and processing resources, may not
always be capable of using memory consuming protocols
such as TCP. Below are the most significant drawbacks and
issues concerning TCP/IP in sensor networking applications.

• Code overhead:Implementations of TCP/IP have
shown that it is possible to use IP with only 6.3 kB of
added code space, and less than 1 kB of RAM on an 8-
bit microcontroller platform [25]. This may of course
be a substantial part of the total resources available
on the low-end microcontrollers often found on motes.
More complex software also increases the processing
load on the sensor node, thus increasing the power
consumption as well.

• Communication overhead:Communication overhead is
defined as the number of bytes (or percent) that the
communication system adds to the payload when trans-
mitting a packet. If a single byte is transmitted using
TCP, the actual packet size will be 41 bytes, consisting
of a 20 byte IP header [26] followed by a 20 byte
TCP header [27]. This will result in a packet where
less than 3 percent is useful data and the remaining
97% is overhead. One solution to this problem is data
aggregation, where as much sensor data as possible is
sent as a single packet, thus reducing the overhead.
However, the end-to-end delay will increase. Another
solution is to apply header compression techniques
[28]. TCP has also been shown to be ill-suited for
wireless networks [29], with bandwidth limitations,
energy consuming re-transmissions and high memory
requirements.

IV. B LUETOOTH-BASED SENSORNODES

This Section presents an overview of, and compari-
son between, several Bluetooth-based sensor nodes. Other
nodes, not included in the previous list, are the WISA [30]
platform from ABB, which uses a modified IEEE 802.15.1
transceiver optimized for industrial control applications, and
the Sanjay [31] mote. The WISA node is omitted due to the
fact that it does not conform to the Bluetooth specification.
Technical details on the Sanjay platform are, as of today,
not available. Another interesting technology for wireless
sensors is Wibree [4], which was recently adopted as a
part of the Bluetooth specification. Wibree may further
establish Bluetooth as a viable technology for wireless
sensor networking applications.

A. ETH Zurich BTnode

The BTnode [12], [32] is a prototyping platform for
ad-hoc networks. It was developed at ETH Zurich in a
joint cooperation by the Computer Engineering and Net-
works Laboratory (TIK) department and Research Group
for Distributed Systems. The BTnode, shown in Fig. 3, is
composed of an Atmel ATmega128 microcontroller and two
separate radios. The first radio is a low power Chipcon
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Figure 3. ETH Zurich BTnode

CC1000 [33] ISM-band broadcast radio, the same as on
Berkeley MICA2 [34] motes. This enables the BTnode to
form multi-hop networks. The second radio system is a
Zeevo ZV4002 [35] Bluetooth module. The BTnode has
been used in a number of projects and is also used by
universities for educational purposes. The BTnode software
architecture is based on either Nut/OS [36] or TinyOS
[37]. Wireless communication can be performed by the
two radios independently. The Chipcon radio operates in
the 433-915 MHz frequency range, and uses proprietary
protocols. The Zeevo Bluetooth radio can, on the other hand,
be operated using parts of the Bluetooth protocol stack.
The BTnode Bluetooth stack supports the HCI, L2CAP
and RFCOMM layers, enabling some interoperability with
other Bluetooth devices. However, no support exists for
the Bluetooth Service Discovery Protocol (SDP). This re-
quires users to manually configure all connections and
hence places the BTnode in between standards- based and
proprietary architectures. Researchers at ETH Zurich have
successfully created scatternets consisting of more than
70 BTnode rev3 devices, indicating that the scalability
issues with the Bluetooth technology can be circumvented.
However, the Bluetooth specification concerning scatternets
is still unfortunately vague. There are still issues that are
considered vendor-specific, which make is difficult to create
networks with heterogeneous nodes.

B. Intel Mote

Intel has developed the Intel mote [38], or iMote, together
with UCLA [39]. The iMote, shown in Fig. 4, is based
on the Xscale microcontroller and uses a Zeevo TC2001
Bluetooth module. The platform is stackable, enabling a
multitude of different sensors and power supplies to be
attached to it. The operating system is TinyOS. No stan-
dard Bluetooth profiles are supported; instead, customized
protocol layers written for TinyOS are used. These layers
provide support for topology establishment and formation
of both single and multi-hop networks. The use of TinyOS
simplifies code reuse from other (non Bluetooth) mote
platforms. More information about the iMote can be found
in [40].

C. LTU EISLAB Mulle

The Mulle, shown in Fig. 5, is a Bluetooth-enabled
sensor node [9]. It was originally developed at EISLAB,
Luleå University of Technology (LTU) [41] but is now a

Figure 4. Intel mote

Figure 5. LTU EISLAB Mulle

commercial product from EISTEC AB [42]. The Mulle is
based on a Renesas M16C/62 [43] microcontroller with 31
kB of RAM and 384 kB of flash memory, and its commu-
nication architecture (Fig. 6) supports the most commonly
used Bluetooth protocols, e.g. HCI, L2CAP, SDP, BNEP,
RFCOMM and PPP. This enables the Mulle to communicate
with a large variety of devices, ranging from mobile phones
and access points to computers and PDAs. The use of
TCP/IP further increases interoperability since the Mulle
can be connected to any IP-based network, such as the
Internet, and hence allow users anywhere in the world to
retrieve sensor data directly without the need of customized
gateways or middle-ware applications. The lwBT Bluetooth
stack [44] is developed in-house and is designed to have
a small code and RAM footprint. The supported Bluetooth
Profiles are: LAN Access Point (LAP), Dial-up Networking
(DUN), Personal Area Networking (PAN) with all three
roles: NAP, GN, PANU, and the Serial Port Profile (SPP).
This extensive support for different Bluetooth Profiles en-
ables a multitude of different network configurations to be
created.

IP-support is provided by the lwIP [45] lightweight IP
stack developed at SICS [46]. Support for the Multicast
DNS and Service Discovery (mDNS-SD) protocol [47]
provides automatic device and service discovery, and IP
address allocation is normally performed by DHCP. A more
detailed description can be found in [9], [48], and the Mulle
Service Discovery architecture is summarized in [49].

D. Comparison of Bluetooth Sensor Nodes

This section contains a brief summary of the three Blue-
tooth sensor nodes mentioned previously. Each node has its
own approach of using the Bluetooth technology for sensor
networking purposes. The BTnode implements a dual radio
approach, where the Bluetooth radio is complemented with
a broadcast radio. Thus, it is capable of handling a wide
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TABLE I.
COMPARISON OF NODES

Mulle v2 BTnode iMote
MCU frequency 10.0 MHz 7.37 MHz 12 MHz

RAM 31 kB 256 kB 64 kB
size 23.2x23.3 mm 58.2x32.5 mm 30x30 mm

CPU sleep, BT off 0.009 mW 9.9 mW 9 mW
CPU on, BT off 25.1 mW 39.6 mW 27 mW

CPU on, BT listen 28.4 mW 92.4 mW 62.1 mW

range of applications. The iMote uses a custom layer on
top of Bluetooth radio links, which limits interoperability
with consumer devices but enables formation of multi-
hop networks. Finally, the Mulle uses only standardized
protocols and Bluetooth Profiles, which prevents its use
as a true WSN node, but enables communication with
standard consumer devices. This makes the Mulle suitable
for MANET sensor networking applications. See Table I for
a brief overview on some interesting characteristics of each
node. Mulle characteristics are taken from [50], while data
for the BTnode and the iMote are taken from the Sensor
Network Museum [51].

V. M ULLE COMMUNICATION INFRASTRUCTURE

The Mulle communication architecture is based on a
combination of Bluetooth and TCP/IP. A Mulle can commu-
nicate with: Bluetooth access points, mobile phones, PDAs
and computers. An example of a typical Mulle network is
shown in Fig. 8. Any Mulle that discovers a mobile phone
will use the DUN profile to gain Internet access. When
an Internet connection is established, the Mulle initiatesits
own PAN-NAP service, thereby enabling other Mulles and
users to connect to it. In the figure, we see how one Mulle
provides Internet access for Users #1 and #2 as well as
for other Mulles. Experiments performed at EISLAB show
that a Mulle PAN network can consist of at least 15 devices,
and work is in progress to create Mulle networks with more
than two times as many nodes. The Park mode is utilized
for creating Piconets consisting of more than seven slaves,
as well as for reducing the power consumption. When a
Bluetooth slave enters Park mode, it releases its Piconet
active member (AM) address. The seven AM addresses that
are available can be shared by a large number of nodes
in a time-division multiplexed fashion. Once a Mulle has
established a network connection, it uses the Multicast DNS
with Service Discovery (mDNS-SD) [47] service discovery
protocol, to locate available services in its vicinity. In most

Figure 7. Ostmark Link Protocol

usage scenarios, the Mulle will scan the network for NTP
servers and Mulle database servers. NTP is used by the
Mulle to (re-)synchronize its Real-time Clock. When a
Mulle discovers a database server, it will attempt to establish
a TCP connection to it. Sensor data is then transmitted
from the Mulle to the server where it is stored. Users can
also log in to the server and view sensor data in real-
time. The following protocols are supported by the Mulle
communication architecture: IP, TCP, UDP, ICMP, DHCP,
DNS, mDNS-SD, NAT-PMP, IGMP, NTP and HTTP. The
Mulle also supports dynamic DNS updates, which together
with the NAT Port Mapping Protocol (NAT-PMP), enables it
to advertise available services globally on the Internet even
when operating behind a firewall.

The Mulle uses the Ostmark Link Protocol (OLP) when
transmitting sensor data over TCP. OLP (Fig. 7) is a
simple protocol developed at EISLAB and consists of a
5 byte header with an optional payload. Thetype field,
bits 0 to 7, indicates the type of packet, e.g. LOGIN or
SENSORDATA. Bits 8 to 23 forms thelengthfield in little
endian, which tells the number of bytes of payload that are
appended to the 5 byte header. Bits 24 to 31 and 32 to 39
are reserved for future use and could be used for encryption
purposes. This simple packet format is used for all Mulle
sensor communication, i.e. Mulle-to-Mulle and Mulle-to-
user.

VI. M ULLE LOW-POWER ARCHITECTURE

The Mulle software is based on a few major components:
Bluetooth- and IP-stacks, a Hardware Abstraction Layer
(HAL) which encapsulates low-level hardware behavior,
an optional Real-time Operating System (RTOS), RTXC
[52], and the sensor system. To resolve the issue of having
multiple software components trying to utilize different
low-power modes simultaneously, a new type of power
management was developed for the Mulle: the energy-
aware Task Manager [53]. The Task Manager, as shown
in Fig. 9, coordinates all subsystems in order to efficiently
conserve energy resources, both fixed and renewable. Solar
cell support is successfully implemented and tested in real-
world trials. The Task Manager consists of an API in the C
programming language, which is to be used by all energy-
aware software components and a context- and energy-
aware scheduler. The scheduler uses a set of rules, which
consists of alarm levels and various operations’ energy
consumption, an activation schedule, and status information
from the main components to dynamically change the MCU
clock frequency, and the usage ofstopmode(). This mode
stops all MCU clocks and enables the Mulle to reduce
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Figure 8. Mulle communication infrastructure

its power consumption by three orders of magnitude. The
activation schedule controls the duty-cycle based operation
of the Bluetooth subsystem. In other words, it controls how
often the Bluetooth module is powered on and the sampling
interval for the sensor system.

To address the issues mentioned in Section II, the Mulle
uses a combination of different techniques:

• Device discovery: Bluetooth specifications 1.2 and
newer introduced two faster and more efficient device
discovery mechanisms:enhanced inquiryand inter-
laced inquiry scan. These two new features reduce
the maximum inquiry time from 10 to 5 seconds and
can perform connection establishment in half the time
compared to Bluetooth 1.1 and older. The Mulle is
therefore equipped with a Bluetooth 2.0 compatible
module from Mitsumi. The Mulle also caches Blue-
tooth addresses from devices, e.g. access points, in
its vicinity and thus enabling the number of required
inquiry scans to be minimized.

• Keeping connections: The Mulle makes aggressive use
of sniff and park low-power modes when connected.
It can also operate the Bluetooth module with the
MCU in sleep mode by using the BCSP protocol
[54]. The largest reduction of energy consumption can
be achieved by powering down the Bluetooth system
when it is not used, i.e. duty-cycling.

• Layered stack: The use of BCSP allows the host to
interface different layers directly, which in turn sim-
plifies low-power management. BCSP also enables the
MCU to enter sleep mode while the Bluetooth module
is connected. This is possible because the packets that
are sent over the UART may be lost, due to the time

 Task manager

RTC

Activation schedule

Control applicaton

Bluetooth

PSU *

*source selector,

 battery monitor,

   boost converter, ...

Sensor(s)

Figure 9. Mulle low-power architecture

it takes for the MCU to wake up. They are then re-
transmitted. The Bluetooth module is also programmed
to generate an interrupt which will wake the MCU up
from sleep whenever data is received over the radio
link.

The Mulle communication low-power architecture uses
three different levels of synchronization granularity in or-
der to minimize delay while still allowing energy-efficient
operation. The three levels of granularity arefine, medium
andcourse. Their respective power consumption and com-
munication delay can be seen in Table II.

• Fine: Bluetooth supports bandwidths up to 3 MBit/s,
but the maximum bandwidth a Mulle can deliver is
57.6 Kbit/s due to baud rate limitations in the UART
that connects the Bluetooth module and the microcon-
troller. This allows the Mulle to use theSniff mode
to reduce the Bluetooth bandwidth and thus conserve
energy efficiently.

• Medium: When only sporadic transmissions are re-
quired, but the Mulle still needs to be connected, it
uses thePark state. This mode enables a Piconet to
have more than 7 clients and can reduce the power
consumption drastically.

• Course:When the Mulle is not required to maintain a
connection, it can disconnect and turn off the power
to the Bluetooth module, thus reducing the power
consumption by three orders of magnitude.

To support a large variety of applications and different
low-power requirements, the Mulle has three different op-
erational modes. Each mode models a certain application
class. Classes are separated by a) how the Mulle should
sample its sensors and b) the requirements on the commu-
nication system. Where WSN nodes typically are optimized
for node-to-node and node-to-gateway communication, the
Mulle is designed to be used by human users. This fact
reflects how the Mulle normally operates [48], with a user-
oriented approach.

As shown in Fig. 10, the Task Manager API consists
of four functions. Thepwrmgr inform() function is called
whenever a subsystem changes state, e.g. when the Blue-
tooth system goes from Idle to Listen state. The Bluetooth
subsystem then calls thepwrmgr inform() function in order
to tell the power manager that a change of state just oc-
curred. Thepwrmgr action() function is called by the HAL
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err_t pwrmgr_inform(uint8 *event);
err_t pwrmgr_action(uint8 clk);

err_t pwrmgr_setMCUspeed(uint8 clk_div);
uint8 pwrmgr_getMCUspeed(void);

Figure 10. Task Manager API

system, and triggers the Task Manager to see if the system
can enter any low-power mode. This design approach keeps
each subsystem unaware of what state other systems are
in, while still being able to efficiently activate available
system power-save modes. Thepwrmgr setMCUspeed()and
pwrmgr getMCUspeed()functions are used to indicate the
minimum clock frequency a subsystem needs and read the
current MCU clock frequency. Below are short descriptions
of all available operating modes:

• Passive modeWhen a Mulle is in Passive mode, it has
its Bluetooth transceiver on in listening mode. Unused
components are powered down in order to conserve
energy and the MCU is typically instop mode, while
the Bluetooth module is in listening mode.

• Active modeIn this mode, the Mulle initiates outgoing
connections. Once a connection is established, the
Mulle starts to stream sensor data to a user or database
server. The power consumption usually depends on the
specific type of sensor(s) attached to the Mulle.

• Time-synchronous modeThis mode, which combines
the two previous modes using an activation schedule,
is a form of distributed duty-cycling and allows the
Mulle to conserve a considerate amount of energy. The
activation schedule can be modified dynamically, and
allows users to make trade-offs between system life-
time and end-to-end delay. The Mulle spends most of
its time, typically 95-99 %, in sleep mode where it
consumes less than 10µW. Periodically it wakes up to
either: listen for incoming connections or establish its
own outgoing connections.

The decision of which of these modes to use is highly
application specific and must always be decided at compile
time.

VII. E XPERIMENTAL RESULTS

In order to evaluate the performance of the proposed
low-power techniques, a series of real-world tests were per-
formed. These tests were constructed in a way that reflects
how a sensor node behaves during normal operation, i.e.
periodically waking up from sleep mode in order to sample
its sensor or to transmit sensor data. Table II provides a
short summary of a Mulle’s power consumption and system
delay in various modes. High-efficiency voltage regulators
provide the system with 3.3 V. In all measurements, a Real-
time Clock was used to wake the MCU every 1000 ms in
order to measure the system current consumption using a
Dallas DS2782 high-precision battery monitor chip, which
measures the voltage drop over a small (0.020 Ohm) series
resistor with a sampling frequency of 18 kHz. In order to

TABLE II.
MULLE V 2 POWER CONSUMPTION

Mode Delay Power
All systems sleep - 0.0089 mW

MCU 10.0 MHz, BT off - 25.1 mW
MCU 5.0 MHz, BT off - 16.8 mW
MCU 2.5 MHz, BT off - 10.1 mW
MCU 1.25 MHz, BT off - 7.3 mW
MCU sleep, BT listen 2-12 s. 3.3 mW
MCU sleep, BT active - 132.9 mW

MCU sleep, BT sniff (210 slots) 131 ms. 27.8 mW
MCU sleep, BT sniff (2010 slots) 1256 ms. 9.1 mW
MCU sleep, BT parked (18 slots) 13 ms. 24.9 mW
MCU sleep, BT parked (200 slots) 130 ms. 8.8 mW
MCU sleep, BT parked (4094 slots) 2560 ms. 6.0 mW
MCU sleep, BT parked (8094 slots) 5000 ms. 6.0 mW
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Figure 11. Extrapolated system lifetime vs. MCU frequency

get a good reading of the average current for each mode, the
system was measured over a time period of approximately
20-30 minutes. The current measurement resolution was
chosen to be 80µA. One drawback to this solution is
that the energy-consumption caused by the measurement
is included in the total result. The communication delay is
calculated from the number of time slots that are in between
two consecutive timeslots in which the Bluetooth module
has its radio active.

Fig. 11 shows the extrapolated node lifetime versus MCU
clock frequency during active periods. A duty cycle of
1% for the MCU was chosen. We see here that by using
a standard Saft LS14500 2250 mAh Lithium battery, the
Mulle can utilize the MCU for 600 ms per minute and
live 10.4 years when running at 1.25 MHz and 3.3 years
when running at full speed. Note that these values exclude
the power consumption for attached sensors, since some
sensors, e.g. GPS-receivers, can consume more power than
the sensor node itself. Internal leakage and aging of the
battery cells are omitted from the calculations. Thus, the
extrapolation is only indicative to actual lifetime of the
system.

All measurements with the Bluetooth module in con-
nected state, using Sniff or Park low-power modes, were
performed with full TCP/IP communication. DHCP was
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Figure 12. Extrapolated system lifetime vs. transmission interval
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Figure 13. Transmission current consumption for un-optimized system

used for automatic IP address allocation and NTP for
programming the on-board RTC with the correct date and
time. Dynamic DNS updates were performed against a DNS
server on the Internet, and the use of the mDNS-SD and
NAT-PMP protocol enabled users to navigate to the Mulle
using a standard web browser.

Fig. 12 shows extrapolated lifetimes for a Mulle using
the Bluetooth module at different transmission intervals in
order to send data. The cost of initiating a connection is
measured to be 259 mWs, and then an extra 2.2 mWs
for each additional 128 bytes of payload. The payload
accumulates with 2 bytes/second and is the reason that
the lifetime does not scale linearly with the transmission
interval but instead is bounded by the amount of sensor
data that need to be transmitted. Fig. 12 also shows that data
aggregation extends the lifetime by reducing overhead since
connection establishment dominates the power consumption
for the lower intervals. A higher interval leads to higher
efficiency even though the end-to-end delay increases.
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Figure 14. Transmission current consumption for optimizedsystem

The power consumption of a Mulle node performing a
data transmission without any low-power techniques applied
is shown in Fig. 13. The total energy consumption is
measured to be 1920 mWs. The figure shows a boot of the
Bluetooth module followed by an Inquiry scan. After the
scan is successful, the Mulle performs an L2CAP connec-
tion, BNEP connection and a DHCP discover. When an IP
address is allocated by DHCP, the NTP protocol is used to
obtain the correct date and time. Finally, a TCP connection
is performed against a Mulle database server. A Mulle
performing the same TCP communication, but without an
Inquiry scan or DHCP discover is shown in Fig. 14. By
caching addresses to use, the connection setup time can
be minimized. Sniff mode and Dynamic Frequency Scaling
(DFS) are also used in order to reduce the power dissipation.
The second connection only consumes 246 mWs, compared
to the first which consumes 1920 mWs. The total energy
consumption is reduced by over 87%. Measurements for
Figures 13 and 14 were performed using a high-performance
Tektronix TDS 7254 digital oscilloscope with a sample rate
at 25 kHz using a 10-bit resolution. A small resistor of
5.00 ohms was connected in series with the Mulle, and
the oscilloscope was measuring the voltage drop over the
resistor. The current measurement resolution was set to 40
µA. A Keithley 6487 Picoammeter high-precision current
measurement instrument was used to measure the static
system current consumption in sleep mode. All data analysis
were performed using MATLAB.

In 2003, Leopold et al. reported that the power consump-
tion was 89 mW for a BTnode with the Bluetooth module in
pagable and inquirable mode, and approximately 136 mW
to maintain a connection [16]. This high power consumption
was one of the reasons behind the conclusion that Bluetooth
is ill-suited for sensor networking applications. However, a
Mulle can perform the same operations today consuming
only 3.4 mW and 7 mW, respectively. The next generation
of the Mulle platform is designed with a projected power
consumption of less than 0.5 mW when using Sniff mode
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in a connected state.

VIII. F UTURE WORK

Even though Bluetooth-based networked sensor nodes
can have the power consumption greatly reduced, there
are still issues when it comes to scalability. Experiments
performed have shown that it is feasible to create networks
consisting of up to 15 nodes. However, many applications
require more nodes than this and further research will be
targeted to address this issue. Other limitations are long
connection setup times, which restrict Bluetooth to be used
in scenarios where nodes are traveling at high speeds, and
the relatively high energy cost and long time delay of
establishing a connection.

We also believe that, by extending the Bluetooth spec-
ification with support for broadcast channels, the issues
of scalability, long connection setup times, and power
consumption can be addressed much more efficiently.

IX. CONCLUSIONS

We conclude that Bluetooth, as a technology for ad-hoc
networked sensor nodes, has made tremendous progress in
terms of power consumption. Still, there are limitations on
how large a Bluetooth network can be, but for moderate
network sizes, we claim that Bluetooth is a feasible alter-
native for Personal Area (Sensor) Networks. In this article,
we have demonstrated that the relatively high power con-
sumption of Bluetooth-based sensor nodes, communicating
using the TCP/IP protocol suite, can be reduced by orders
of magnitude while still enabling interoperability with ex-
isting infrastructure. We claim that a system lifetime in the
range of months to years is made feasible by exploiting
characteristics of the communication scheme and efficient
and extensive use of available low-power modes, requiring
a total volume of less than 10 cm3.
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