
A Bluetooth Scatternet Formation Algorithm

Ching Law and Kai-Yeung Siu
Massachusetts Institute of Technology

Abstract— A Bluetooth ad hoc network can be formed
by interconnecting piconets into scatternets. The con-
straints and properties of Bluetooth scatternets present
special challenges in forming an ad hoc network efficiently.
In this paper, we present and analyse a new randomized
distributed algorithm for Bluetooth scatternet formation.

We prove that our algorithm achieves O(logn) time com-
plexity and O(n) message complexity. We show that, 1)
in the scatternet formed by our algorithm, any device is
a member of at most two piconets; and 2) the number of
piconets is close to be minimal.

I. Introduction

Bluetooth [1], [2], [3], [4] is an emerging low cost and
low power short-range radio technology. It has been pro-
jected that as many as 200 million Bluetooth devices will
be shipped in year 2001 [3]. Thus, Bluetooth is likely to
become another important platform for ad hoc network-
ing. Ad hoc networking over Bluetooth can lead to many
useful applications. For example, in a conference room, a
special announcement can be broadcast to the Bluetooth-
enabled mobile phones and hand-held computers through
an ad hoc network. Bluetooth ad hoc networks can also
be used for rapid deployment of EMID (electromagnetic
identification) readers [5].

The area of ad hoc networking has gathered much re-
search interests in the past years. Many studies have con-
centrated on the routing issues of ad hoc networks [6].
These studies usually assume that any two in-range nodes
can communicate with each other. Therefore, an ad hoc
network can be modeled as a graph such that the in-range
nodes are adjacent. For example, simulation-based studies
[7], [8] of ad hoc routing protocols have been conducted
with a link-layer model based on or similar to the IEEE
802.11b standard.

A Bluetooth ad hoc network, however, brings new
challenges. There are specific Bluetooth constraints not
present in other wireless networks. A Bluetooth network
is composed of piconets. Each piconet contains one master
and up to seven slaves. Piconets can be connected into a
scatternet by sharing slaves. As shown by Miklos et al.
[9] and Zurbes [10], the configuration of a scatternet has
great effects on the performance of the network. For in-
stance, when a scatternet contains more piconets, the rate
of packet collisions increases.

Before we can tap the enormous power of Bluetooth ad
hoc networking, we must first devise an efficient protocol
to form a scatternet from isolated Bluetooth devices.

In this paper, we study the problem of scatternet forma-
tion in the situation where the devices are in-range of one

This work is supported in part by the Auto-ID Center
<autoidcenter.org>.

another. We adopt a two-layered approach for our inves-
tigation of this problem. First, we investigate how these
devices can get organized into scatternets. We evaluate
the performance of a new scatternet formation protocol.
Second, as a subroutine of the protocol, we study how the
devices can discover each other efficiently.

In Section II, we discuss the relevant research on Blue-
tooth scatternets. In Section III, we introduce the problem
of scatternet formation. We present our algorithm in Sec-
tion IV and analyse it in Section V. Section VI concludes
with remarks on future work.

II. Related Work

Aggarwal et al. [11] introduce a scatternet formation al-
gorithm. Their algorithm first partitions the network into
independent piconets, and then elects a ‘super-master’
that knows about all the nodes. However, the resulting
network is not a scatternet, because the piconets are not
inter-connected. Thus, another phase of re-organization is
required.

Salonidis et al. [12] present a scatternet formation al-
gorithm – BTCP (Bluetooth Topology Construction Pro-
tocol). BTCP has two phases: first, a leader is elected
with a complete knowledge of all devices, and second, this
leader will tell other devices how a scatternet should be
formed. Our algorithm has only one phase: the scatter-
net is formed once a leader is elected. Since the topology
is determined by a single device, BTCP has more flexi-
bility in constructing the scatternet. A default scheme is
presented in [12] for up to 36 devices.

III. Preliminaries

In this section we introduce some terminologies and per-
formance measures for the scatternet formation problem.

Bluetooth devices share 79 channels of 1 Mhz band-
width within the 2.45 GHz band. Frequency hopping is
used to reduce interference and enhance security.

When two Bluetooth devices are connected, one of the
devices acts as a master and the other device acts as a
slave. Any Bluetooth device can perform the role of a
master and/or a slave.

A Bluetooth device can discover other devices by the
inquiry process. If the inquiry process succeeds, the mas-
ter learns the address (which is unique for each Bluetooth
device) and the clock of the slave. Then the master and
the slave can be connected with the page process.

A piconet consists of 1 master and 1 to k slaves (k is 7
in Bluetooth 1.0b). All packets are exchanged between a
master and its slaves within a piconet. There is no direct
master-master or slave-slave communication. A device can
be a slave in several piconets but be a master in only one

0-7803-7206-9/01/$17.00 © 2001 IEEE

2864

piconet. The degree of a device is the number of piconets
to which the device belongs. A device is unshared if its
degree is 0 or 1. Otherwise, it is shared. A scatternet is a
set of piconets connected through shared devices.

The problem of scatternet formation: How do a collec-
tion of isolated devices form a scatternet? The devices are
isolated in the beginning, each device is not aware of the
other devices. Therefore, the scatternet formation proto-
col must be distributed. We assume that the devices are
in the communication range 1 of each other. This means
that, potentially, any pair of devices can be connected di-
rectly.

A scatternet formation protocol has two important per-
formance measures:
• time complexity — amount of time to form a scatter-
net. A scatternet must be formed as fast as possible to
minimize the delay experienced by the users.
• message complexity — number of messages sent between
the devices. This is important because Bluetooth devices
usually operate with limited power. By reducing the num-
ber of messages sent, power consumption is conserved.

In addition, it is also crucial to have scatternets of good
quality. It is not very useful to have scatternets that lead
to poor network performance. Thus, we should aim to
produce scatternet that facilitates inter-piconet commu-
nications. It is not easy to quantify the quality of a scat-
ternet, but we believe the following quality measures are
good indicators.
• number of piconets — a measurement of a scatternet’s
efficiency. Since all piconets share the same set of 79 chan-
nels, there will be more collisions when there are more pi-
conets. As shown in [10], the burst failure rate increases
with the number of piconets.
• maximum degree of the devices — the maximum num-
ber of piconets that any device belongs to. Since the
piconets communicate through shared slaves, if a slave
belongs to many piconets, then this slave could become
the bottleneck of inter-piconet communications. A shared
slave has to be time multiplexed between the piconets that
it belongs to. Therefore, a shared slave of high degree
could become overloaded.
• network diameter — maximum number of hops between
any pair of devices. This will provide us with an estima-
tion of the maximum routing delay of the scatternet.

A good balance among the quality measures is desirable.
Consider, for example, a star topology: a single “central”
slave is shared by all piconets. In such a scatternet of n
devices with every piconet containing k slaves, there are
d(n− 1)/ke piconets. Although the number of piconets is
minimized (see Remark 1), this scatternet probably would
not perform very well in practice because the shared slave
will be overwhelmed, unless the network is small.

Remark 1: Let k be the maximum number of slaves in
a piconet. A scatternet of n devices must contain at least
d(n− 1)/ke piconets.

Proof: Omitted for brevity.

110m to 100m in Bluetooth 1.0b

IV. Algorithm

In this section, we present our scatternet formation al-
gorithm. The development of this algorithm was inspired
by our research on resource discovery algorithms in gen-
eral networks [13].

Initially, we are given a set of isolated but in-range de-
vices. During the execution of the algorithm, the devices
are partitioned into components. A component is a set
of interconnected devices. A component can be a single
device, a piconet, or a scatternet. There is one leader in
each component. For a single-device component, the only
member is the leader. For a piconet, the master is the
leader. For a scatternet, one of the masters is the leader.
When a leader retires, it stops being a leader and will be
inactive for the rest of the algorithm (unless it becomes a
leader again). For any device v, let S(v) be the set of v’s
slaves. If v is not a master or has no slaves, then S(v) = ∅.
Let k ≥ 2 be the maximum number of slaves in a piconet.
Thus |S(V)| ≤ k for any v.

In Lemma 2, we will prove the following invariances for
the algorithm:
• Each leader either has no slave, or has at least one un-
shared slave in its piconet.
• Each leader has fewer than k slaves in its piconet, i.e.,
|S(u)| < k for any leader u.

All leaders execute procedure Main in the beginning of
each round. We assume a constant φ, such that procedure
Main and the procedures called by it can be completed in
φ seconds. A good choice of φ can be found by simulations
(see [14]) and by prototyping. We assume that all leaders
will call procedure Main at time t0 + iφ, for i = 0, 1, . . . ,
where t0 is the start time.

In the beginning, all devices are leaders. In procedure
Main, a leader calls Seek with probability p, 1/3 < p <
2/3. Otherwise, the leader calls Scan or asks an unshared
slave to call Scan. During each round, only one device in
each component will call Seek or Scan.

Main(leader u)
1 x← a random number in [0, 1)
2 if x < p (1/3 < p < 2/3)
3 then Seek(u)
4 else if S(u) = ∅
5 then Scan(u)
6 else v ← an unshared slave of u
7 Scan(v)

When a leader executes Seek, it tries to acquire a new
slave (which is running Scan). However, the leader may
not always succeed, because, in any given round, the num-
ber of devices running Scan can be fewer than the number
of devices running Seek. Therefore, if a leader is not able
to contact a slave after certain time, it should give up
and run Main again in the next round. Similarly, Scan

might also fail in any given round. Essentially, during each
round, a matching is found between the Seek devices and
Scan devices. The number of connections made (size of
the matching) is the smaller of the number of Seek devices
and the number of Scan devices.

2865

Seek(u)
1 u performs INQUIRY
2 if a slave v is found
3 then u connects to slave v by PAGE
4 // S(u)← S(u) ∪ {v}
5 Connected(u, v)

Scan(v)
1 v performs INQUIRY SCAN
2 if v is contacted by a master u
3 then v waits for u in PAGE SCAN

We note that Seek and Scan devices will go into PAGE

and PAGE SCAN modes respectively after all inquiries are
completed. The amount of time required is investigated in
[14]. In general, we make sure that each master is matched
to only one slave, and vice versa. The details of this low-
level protocol are discussed in [14]. When a leader u run-
ning Seek connects to a slave v running Scan, procedure
Connected(u, v) is called. If v’s other master is w, the
piconets of u and w will try to merge if possible. Essen-
tially, if the piconets of u and w can be fit into a single
piconet (with at most k−1 slaves), then w and the devices
in S(w) become slaves of u. This is performed by the pro-
cedure Merge. Otherwise, some slaves are moved from
S(u) to S(w) by the procedure Migrate. There are other
special cases. See Figures 1, 2, and 3 for illustrations of
some cases in procedure Connected.

Connected(leader u,slave v)
1 if v is a leader
2 then // v was an isolated leader
3 if |S(u)| < k
4 then v retires
5 else u retires
6 y ← an unshared slave of u
7 Move({y} , u, v)
8 else w ← the other master of v
9 w retires

10 switch
11 case |S(u) ∪ S(w)|+ 1 < k :
12 Merge(u, v, w); return
13 case |S(u)| = 1 :
14 Move({u} ,nil, w)
15 v disconnects from w ; return
16 case |S(u) ∪ S(w)|+ 1 = k :
17 u retires
18 y ← an unshared slave of u
19 Merge(u, v, w)
20 Move({y} , u, v)
21 v becomes a leader ; return
22 case default :
23 Migrate(u, v, w); return

Communications between u and w in Connected,

Merge, Migrate, and Move are via their common slave
v.

Procedure Merge(u, v, w) makes w and all its slaves
become u’s slaves.

Merge(master u,slave v,master w)
1 v disconnects from w
2 Move(S(w) \ v, w, u)
3 Move({w} ,nil, u)

w

v

u

MOVE({u},NIL,w)

master
master

w

v

u
retired

leader

Fig. 1. Lines 13-15 (|S(u)| = 1) in procedure Connected for k = 7.

w

v

u

MERGE(u,v,w); MOVE({y},u,v)

w

y

v

u
retired

master
master

leader

y

Fig. 2. Lines 16-21 (|S(u) ∪ S(w)|+1 = k) in procedure Connected

for k = 7.

w

v

z1

u

MIGRATE(u,v,w)

master
master

y

z2

w

v

z1

u retired
leader

y

z2

Fig. 3. Lines 22-23 (default) in procedure Connected for k = 7.

2866

Procedure Migrate(u, v, w) moves slaves from S(u) to
S(w) until S(w) is full or when only two slaves are left in
S(u).

Migrate(master u,slave v,master w)
1 i← min

(
k − |S(w)| , |S(u)| − 2

)
2 // i is the number of slaves to migrate
3 if i > 0
4 then y ← an unshared slave of u
5 Z ← { i slaves in S(u) \ {y, v} }
6 Move(Z, u,w)

Procedure Move is a subroutine called by Connected,
Merge, and Migrate. All devices in set Z disconnect
from u and become slaves of w.

Move(set Z,master u,master w)
1 devices in Z disconnect from u
2 devices in Z wait for w in PAGE SCAN
3 w connects to devices in Z by PAGE

Lemma 2: During the execution of the algorithm, the
following invariances hold:
• Each leader has either no slave, or has at least one un-
shared slave.
• Each leader has fewer than k slaves.

Proof: We will prove the invariances by induction.
In the beginning, all devices are leaders without slaves.

So our invariances are satisfied.
Assuming a state satisfying the claim, we only have to

make sure that Connected and its calls to Merge, Mi-

grate and Move preserve the invariances, because no
piconet is formed or modified in Main, Seek, Scan.

Consider the procedure Connected. Let S ′(u) and
S ′(w) be the slaves of u and w after Connected(u, v) is
returned.

First, we consider the case v is a leader (lines 1-7). If
v is a leader, it means that v does not have any slave.
If |S(u)| < k (lines 3-4), v would become an unshared
slave of u. If u has exactly k slaves (lines 5-7), then one
unshared slave y is moved from S(u) to S(v). Thus, S ′(v)
contains an unshared slave. In this case, u is retired so
that it does not need an unshared slave.

Second, we consider the case that v is a slave of a leader
w. Master w will no longer be a leader, so it does not have
to satisfy the invariances. There are four cases:
(|S(u) ∪ S(w)|+ 1 < k): All devices in S(w) become
slaves of u. Device v was an unshared slave in S(w). Af-
ter the merge, u is the only master of v, so v becomes
an unshared slave of u. Also, we note that |S ′(u)| =
|S(u) ∪ S(w)|+ 1 is smaller than k by assumption.
(|S(u)| = 1): Leader u will have v as its only slave. v is
unshared because it was w’s unshared slave.
(|S(u) ∪ S(w)|+ 1 = k): In this case, u retires so it does
not need to satisfy the invariances. When v becomes a
leader, it has an unshared slave y, obtained from u. More-
over, since v was a slave itself, so y is v’s only slave.
default: Slaves in S(u) are migrated to S ′(w) until |S ′(w)|
is k, or when S ′(u) has only two slaves left (one of them
is v). We note that Migrate will always reserve an un-
shared slave y for S ′(u). By assumption, w had at most

k − 1 slaves before Connected is called. Therefore, we
can still always at least move one slave from S(u) to S ′(w).
Therefore, |S ′(u)| is at most k − 1, because at least one
slave is removed after u has obtained slave v.

The last leader will keep calling Main even after the
scatternet is formed. It is because the leader cannot be
certain that all devices are already connected unless it
knows the total number of devices. In practice, we can
let the leader stop after it has failed to find any device for
certain number of rounds. In particular, the probability
that n leaders fail to make any connections for l rounds is
(pn + (1− p)n)l, which is less than (5/9)l for n ≥ 2 and
1/3 < p < 2/3.

V. Analysis

A. Scatternet Properties

We show that the scatternet formed possesses two use-
ful properties: small degrees for shared devices and small
number of piconets. In [14], our simulations show that the
diameter of the scatternet formed is O(log n) on average.

Lemma 3: At most one piconet in the scatternet formed
by the algorithm contains fewer than k − 1 slaves.

Proof: When a scatternet is formed, there is only
one component. Thus there is only one leader left because
each component has exactly one leader. Therefore, except
for one piconet, the masters of the other piconets are not
leaders. Thus we only need to show that when a leader is
retired and if it is a master, it has at least k − 1 slaves.

There are only four places in Connected that a leader
is retired.
line 4: v becomes a slave.
line 5: The test |S(u)| < k is false. Thus u had at least k
slaves before line 7: Move({y} , u, v), which reduces the
number of u’s slaves by 1. Thus u would have k−1 slaves.
line 9: We must show that for all the four cases in lines
11-23, w will have at least k− 1 slaves when Connected

returns.
In the first and the third cases, w loses all its slaves in the
procedure Merge and becomes a slave.
In the second case (lines 13-15), we have |S(u)| = 1 but
|S(u) ∪ S(w)| + 1 ≥ k because the condition of the first
case is not satisfied. u and w have one shared slave v.
This implies that |S(u)| + |S(w)| − 1 + 1 ≥ k, and thus
S(w) ≥ k− 1 before Move is called. Master w loses slave
v, but gains a new slave u, so w still has at least k − 1
when procedure Connected returns.
In the last case (lines 22-23), we have |S(u) ∪ S(w)|+ 1 ≥
k + 1, and Migrate will move all devices in the piconet
of u to w until w has k slaves or u has only 2 slaves left.
In the latter case, only one slave in S(u) ∪ S(w) will not
become a slave of w. Thus w would have at least k − 1
slaves after the Migrate operation.
line 17: All slaves of w and w itself become slaves of u
in line 19. We note that u and w had k − 1 slaves in
total (line 16), thus u should have k slaves after Merge

(line 19). Move (line 20) would remove one slave from
u. Therefore, u still has k − 1 slaves when Connected

returns.

2867

Lemma 4: The algorithm forms a scatternet with m−1
devices of degree 2 and n − m + 1 devices of degree 1,
where n is the number of devices and m is the number of
piconets.

Proof: Omitted for brevity.
Theorem 5: The scatternet formed by the algorithm

contains at most b(n− 2)/(k − 1)c+ 1 piconets.
Proof: Consider a scatternet produced by the al-

gorithm. Let n be the number of devices and m be the
number of piconets. By Lemma 3, at most one piconet
has size less than k. (A piconet has size less than k if
and only if it has fewer than k− 1 nodes.) The remaining
piconet has size at least 2. By Lemma 4, m − 1 devices
have degree 2 and the rest of the devices have degree 1.
Therefore, we can conclude that the scatternet contains
at least k(m− 1) + 2− (m− 1) = (k − 1)(m− 1) + 2 de-
vices. Thus, n ≥ (k−1)(m−1)+2. Since m is an integer,
m ≤ b(n− 2)/(k − 1)c+ 1.
Comparing Theorem 5’s upper bound b(n− 2)/(k − 1)c+
1 with Remark 1’s lower bound d(n− 1)/ke, we note that
our bound is very close to be optimal. For example, when
n = 100 and k = 7, our algorithm forms a scatternet
containing at most 17 piconets, comparing with the lower
bound of 15 piconets.

B. Asymptotic Complexities

We first derive the algorithm’s time complexity and then
its message complexity.

Lemma 6: During a round with at least 2 leaders, the
number of leaders is reduced by a constant fraction with
a constant probability.

Proof: Let m ≥ 2 be the number of leaders. Let p be
the probability that a leader chooses to run Seek in any
round. The algorithm specifies that 1/3 < p < 2/3. We
will assume p ≤ 1/2, because if p > 1/2, we can switch the
roles of Seek and Scan and the proof follows similarly.

During each round, we have a matching between the
Seek devices and the Scan devices. Let random variable
X be the number of Seek devices in a given round. Since
X is distributed binomially with parameter p, we have
E [X] = pm and Var [X] = mp(1− p).

Let α be a real number between 0 and 1. If (1−α)pm ≤
X ≤ (1 + α)pm, then at least (1 − α)pm connections are
made between the Seek devices and Scan devices be-
cause: 1) there are at least (1− α)pm Seek devices; and
2) there are at least

m− (1 + α)pm = (1− p− αp)m ≥ (1− α)pm

Scan devices since (1− p) ≥ p if p ≤ 1/2.
Thus, the probability of having at least (1−α)pm con-

nections (matches between Seek devices and Scan de-
vices) is

Pr {at least (1− α)pm connections}
= Pr {(1− α)pm ≤ X ≤ (1 + α)pm}
= Pr {|X − pm| ≤ αpm}
= 1− Pr {|X − pm| > αpm} .

The Chebyshev’s inequality states that

Pr {|X − E [X]| > t} < t−2Var [X] .

By setting t = αpm, E [X] = pm, and Var [X] = mp(1−p),
we have

Pr {|X − pm| > αpm} < mp(1− p)
(αpm)2

=
1− p
mα2p

.

Since m ≥ 2 and p > 1/3, we have (1− p)/pm < 1. Thus
we can pick α so that α2 > (1−p)/2p ≥ (1−p)/mp. Then
c = (1−p)/(2α2p) is a constant smaller than 1. Therefore,

Pr {at least (1− α)pm connections} > 1− c.
Each connection reduces the number of leaders by 1.
Therefore, with probability at least 1 − c, the number of
leaders is reduced by a fraction (1− α)p.

Theorem 7: The algorithm forms a scatternet in
O(log n) rounds with probability at least 1− 1/nΘ(1),

Proof: Omitted for brevity.
Theorem 8: The message complexity of the algorithm

is O(kn).
Proof: We first consider the message complex-

ity of each invocation of the procedures. We note that
each of the procedures Main, Scan, Seek, Connected,

Merge, Migrate sends O(1) messages. Procedure
Move moves at most k devices. Thus it sends O(k) mes-
sages.

To analyze the message complexity of Main, Seek, and
Scan, it is sufficient to find the expected number of times
that Main is called, because each call to Main leads to a
call to Seek or a call to Scan.

First, we argue that we can assume that when a leader
w chooses Scan so that if it or its slave is contacted by
another leader u, then w will retire. This is true except
that if u has k slaves, then u will retire instead. See lines
5-7 in procedure Connected. However, for simplicity of
the analysis, we can assume that w retires instead of u.
In other words, we can assume that w and u swap their
identities whenever we are in this case. This will not affect
our result because we only care about the total number
of messages sent by these leaders. The high-level algo-
rithm does not rely on an identifier of the device. (Device
address is used by low-level Bluetooth INQUIRY and PAGE.
But we note that these processes are independent between
rounds in the algorithm.)

During any round, each leader chooses Scan with prob-
ability 1 − p. Assume that a leader w has chosen Scan.
Leader w or w’s unshared slave will definitely be contacted
by another leader if the total number of Scan devices is
not more than the number of Seek devices.

Let Xi be the random variable of the number of Scan

devices over i components. Thus, E [Xi] = (1 − p)i. Let
m ≥ 2 be the number of components.

We now assume that p ≥ 1/2 because if otherwise, we
can switch the roles of Scan and Seek. Assume w has
chosen Scan.

Pr {w or w’s slave is contacted by a leader}
= Pr {Xm−1 ≤ m/2− 1} .

2868

By Markov inequality, we have

Pr {Xm−1 > m/2− 1} = Pr {Xm−1 ≥ m/2− 1/2}
≤ E [Xm−1] /(m/2− 1/2)
= 2(1− p).

Thus,

Pr {Xm−1 ≤ m/2− 1} ≥ 1− 2(1− p) = 2p− 1.

Thus, each leader retires with probability at least (1 −
p)(2p− 1), which is positive except when p = 1/2.

We now consider the case where p = 1/2. In the proof
of Lemma 6, we have

Pr {at least (1− α)pm connections} > 1−(1−p)/(α2pm).

Let p = 1/2, α = 1/2, and m ≥ 5, then

Pr {at least m/4 connections} > 1/5.

Therefore, with probability at least 1/5, at least m/4 con-
nections are made. And when that happens, each device
has a probability of at least 1/4 to be the slave of the
a connection being made. This proves our argument for
m ≥ 5. The cases where m = 2, 3, 4 can be easily verified.

Therefore, any leader w has a constant probability of
retiring during each round. This means that each leader
is active for O(1) rounds. Thus Main is called O(n) times
in total, and the overall message complexity for procedures
Main, Seek, Scan is O(n).

Procedure Connected is called exactly n − 1 times,
thus the message complexity of Connected is O(n).
Each call to Connected could result in at most 1 call
to Merge, at most 1 call to Migrate, and at most 3
calls to Move. Thus the overall message complexity of
Merge and Migrate is O(n), and the overall message
complexity of Move is O(kn).

Corollary 9: If k is a constant, then the message com-
plexity of the algorithm is O(n).
We note that O(n) is the optimal asymptotic message
complexity because each device needs to send at least one
message to form a scatternet.

VI. Concluding Remarks

In this paper, we introduced a Bluetooth scatternet for-
mation algorithm with O(log n) time complexity and O(n)
message complexity.

We have shown that the algorithm produces scatternet
with some desirable properties: small number of piconets
for minimizing inter-piconet interference, and low device
degrees for avoiding network bottlenecks. Simulation re-
sults of our algorithm are presented in [15], [14].

Our protocol can be easily extended to work with dy-
namic environments (with devices joining and leaving the
scatternet) and to support fault tolerance. Our current
protocol already handles the events of devices joining. The
new devices can simply start as leaders and will discover
or be discovered by other devices. Additional work is re-
quired to deal with the case of devices leaving or failing.
We can give an outline of a possible solution:

• If a master fails (or leaves the network), then a new
master can be elected from the slaves. If the failed master
was shared, then the new master should become a leader
and merge with the rest of the scatternet by the protocol.
• If a shared slave fails, its master should become a leader
again and then it will be connected to the rest of the scat-
ternet by the protocol.
• Nothing needs to be done when an unshared slave fails,
unless it is the only unshared slave of an active leader.
• In general, if we end up with a leader u with no unshared
slave, then this leader has to disconnect from its shared
slaves. Other masters connected to this leader u through
the shared slaves should now become leaders again. This
will allow the protocol to proceed as usual. Fortunately,
this expensive reorganization should be a rare event.

References

[1] “The Bluetooth Special Interest Group,” http://www.
bluetooth.com.

[2] Jaap Haartsen, “Bluetooth - the universal radio interface for
ad hoc, wireless connectivity,” Ericsson Review, , no. 3, pp.
110–117, 1998.

[3] Jennifer Bray and Charles F. Sturman, Bluetooth: Connect
Without Cables, Prentice Hall, 2001.

[4] Brent A. Miller and Chatschik Bisdikian, Bluetooth Revealed:
The Insider’s Guide to an Open Specification for Global Wire-
less Communications, Prentice Hall, 2000.

[5] “Auto-ID Center,” http://autoidcenter.org/.
[6] Charles E. Perkins, Ad Hoc Networking, Addison-Wesley, 2001.
[7] Josh Broch, David A. Maltz, David B. Johnson, Yih-Chun Hu,

and Jorjeta Jetcheva, “A performance comparison of multi-hop
wireless ad hoc network routing protocols,” Mobile Computing
and Networking, pp. 85–97, 1998.

[8] Samir R. Das, Robert Casta neda, and Jiangtao Yan,
“Simulation-based performance evaluation of routing protocols
for mobile ad hoc networks,” Mobile Networks and Applica-
tions, vol. 5, pp. 179–189, 2000.

[9] Gy. Miklos, A. Racz, Z. Turanyi, A. Valko, and P. Johansson,
“Performance aspects of Bluetooth scatternet formation,” in
Proceedings of The First Annual Workshop on Mobile Ad Hoc
Networking and Computing, 2000.

[10] Stefan Zurbes, “Considerations on link and system throughput
of Bluetooth networks,” in Proceedings of the 11th IEEE In-
ternational Symposium on Personal, Indoor and Mobile Radio
Communications, 2000, vol. 2, pp. 1315–1319.

[11] Alok Aggarwal, Manika Kapoor, Lakshmi Ramachandran, and
Abhinanda Sarkar, “Clustering algorithms for wireless ad hoc
networks,” in Proceedings of the 4th International Workshop
on Discrete Algorithms and Methods for Mobile Computing and
Communications, Boston, MA, Aug. 2000, pp. 54–63.

[12] Theodoros Salonidis, Pravin Bhagwat, Leandros Tassiulas, and
Richard LaMaire, “Distributed topology construction of Blue-
tooth personal area networks,” in Proceedings of the Twentieth
Annual Joint Conference of the IEEE Computer and Commu-
nications Societies, 2001.

[13] Ching Law and Kai-Yeung Siu, “An O(log n) randomized
resource discovery algorithm,” in Brief Announcements of
the 14th International Symposium on Distributed Computing,
Technical Report, Technical University of Madrid, Oct. 2000,
pp. 5–8.

[14] Ching Law, Amar K. Mehta, and Kai-Yeung Siu, “Performance
of a new Bluetooth scatternet formation protocol,” in Proceed-
ings of the ACM Symposium on Mobile Ad Hoc Networking
and Computing 2001, Long Beach, California, USA, Oct. 2001.

[15] Amar K. Mehta, “Ad-hoc network formation using Bluetooth
scatternets,” M.S. thesis, Massachusetts Institute of Technol-
ogy, June 2001.

2869

