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A Body Shape index (ABSi) 
achieves better mortality risk 
stratification than alternative 
indices of abdominal obesity: 
results from a large european 
cohort
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Abdominal and general adiposity are independently associated with mortality, but there is no 
consensus on how best to assess abdominal adiposity. We compared the ability of alternative waist 
indices to complement body mass index (BMI) when assessing all‑cause mortality. We used data 
from 352,985 participants in the European Prospective Investigation into Cancer and Nutrition (EPIC) 
and Cox proportional hazards models adjusted for other risk factors. During a mean follow‑up of 
16.1 years, 38,178 participants died. Combining in one model BMI and a strongly correlated waist 
index altered the association patterns with mortality, to a predominantly negative association for BMI 
and a stronger positive association for the waist index, while combining BMI with the uncorrelated 
A Body Shape Index (ABSI) preserved the association patterns. Sex‑specific cohort‑wide quartiles 
of waist indices correlated with BMI could not separate high‑risk from low‑risk individuals within 
underweight (BMI < 18.5 kg/m2) or obese (BMI ≥ 30 kg/m2) categories, while the highest quartile of 
ABSI separated 18–39% of the individuals within each BMI category, which had 22–55% higher risk 
of death. In conclusion, only a waist index independent of BMI by design, such as ABSI, complements 
BMI and enables efficient risk stratification, which could facilitate personalisation of screening, 
treatment and monitoring.
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Abbreviations
ABSI  A Body Shape Index
BMI  Body mass index
EPIC  European Prospective Investigation into Cancer and Nutrition
HC  Hip circumference
HI  Hip Index
HR  Hazard ratio
NHANES  National Health and Nutrition Examination Survey
WC  Waist circumference
WHO  World Health Organisation
WHR  Waist-to-hip ratio

Obesity contributes to premature  death1 but speci�c fat locations are di�erentially associated with the outcomes 
of obesity, with the metabolic complications of obesity associated positively with abdominal adiposity and nega-
tively with gluteofemoral  adiposity2. Correspondingly, individuals with normal-weight and abdominal obesity 
can show metabolic alterations and, hence, a higher risk of death, while obese individuals without abdominal 
adiposity can remain “metabolically healthy”3–6. �e European Prospective Investigation into Cancer and Nutri-
tion (EPIC) was the �rst large study to con�rm that both abdominal and general adiposity are independently 
associated with the risk of death and to recommend using a waist index in addition to  BMI7.

Nevertheless, while general obesity is widely evaluated with body mass index (BMI)8, according to the well-
known World Health Organisation (WHO)  categories9, there is no current consensus on how best to assess 
abdominal adiposity and various anthropometric indices incorporating waist circumference (WC) have been 
proposed in the  literature10–16. A major problem when assessing abdominal adiposity stems from the strong cor-
relation between BMI and  WC17. �is hinders risk strati�cation within underweight or obese (BMI ≥ 35 kg/m2) 
categories, when BMI is combined with WC or the waist-to-hip ratio (WHR)18, and precludes personalisation 
of screening and clinical  management19. To account for the correlation with BMI, separate cut-o�s for WC have 
been proposed for individual BMI  categories20 and genetic studies have used residuals of WC or WHR adjusted 
for  BMI21. A Body Shape Index (ABSI), however, was speci�cally designed as independent from  BMI22. ABSI is 
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based on the allometric  principle23, 24, previously used for the development of  BMI25 (see Supplementary Note 
online), and is positively associated with all-cause  mortality22, 26–33. In analogy to ABSI, an allometric Hip Index 
(HI) was developed as an independent of BMI alternative to hip circumference (HC), the traditional measure 
of gluteofemoral  adiposity34.

To provide clarity about the usefulness of various body shape indices when assessing the risk of death, we 
compared systematically combinations of traditional or non-traditional body shape indices with BMI, using 
data from the large EPIC cohort, which has accumulated seven years longer follow-up and double the number 
of deaths since the original  report7. Our aim was to determine the most appropriate body shape index, which 
can provide additional information to BMI and can enable risk strati�cation, i.e. separation into high-risk and 
low-risk subgroups, within each WHO category of BMI.

Methods
Study population. �e EPIC cohort and data accrual have previously been  described7, 35–37. Supplementary 
Fig. S1 online shows a �ow diagram of individuals included in the current study, with sequential exclusions 
related to data availability and quality.

Endpoint. �e outcome was death from all causes. Cause-speci�c analyses were beyond the scope of this 
study. Vital status and the date of death were ascertained via record linkage to cancer or death registries or by 
active follow-up, including enquiries to municipal registries, physicians, hospitals, or next of  kin7.

Anthropometric indices. Anthropometric measurements were obtained by trained personnel and were 
systematically adjusted for clothing, as previously  described7, 35. Individuals with self-reported values were 
excluded. In the main analyses, we used BMI (as an index of general adiposity); ABSI, WC and WHR (as indices 
of abdominal adiposity); HC and HI (as indices of gluteofemoral adiposity). We additionally examined for com-
parison alternative WC-based anthropometric indices. �e calculation of anthropometric indices is described 
below, with the relevant reference (ref) cited at the end of each formula:

ABSI (A Body Shape Index) = 1,000*WC*Wt –2/3*Ht5/6 ref22

AVI (Abdominal Volume Index) = (2*(WC*100)2 + 0.7*(WC*100 − HC*100)2)/1,000 ref11

BMI (Body Mass Index) = Wt/Ht2

BRI (Body Roundness Index) = 364.2–365.5*(1 − ((0.5*WC/π)2/(0.5*Ht)2))0.5  ref14

ConI (Conicity Index) = WC/(0.109*(Wt/Ht)0.5) ref15

eTBF (estimated Total Body Fat) = 100 * (–Z + A − B)/C, where A = (4.15*WC*39.3701), 
B = (0.082*Wt*2.20462), C = (Wt*2.20462), Z = 98.42 (men), Z = 76.76 (women) ref12

RFM (Relative Fat Mass) = 64 − (20*Ht/WC) + (12*S), where S = 0 (men), S = 1 (women) ref16

HI (Hip Index) = HC * Wt –0.482*Ht0.310 ref34

WHR (Waist-to-Hip Ratio) = WC/HC
WHtR (Waist-to-Height Ratio) = WC/Ht
WWI (Weight-adjusted Waist Index) = (WC*100)/(Wt0.5) ref13

WCadjBMI (WC adjusted for BMI) and WHRadjBMI (WHR adjusted for BMI) were derived as the residuals 
of sex-speci�c linear regression models WC (or WHR) ~ BMI + study centre.

HC—hip circumference (m); WC—waist circumference (m); Ht—height (m); Wt—weight (kg). ABSI was 
multiplied by 1,000 to derive numbers in the order of magnitude of WC, which would be more intuitive to use 
than the original values, which are < 0.1. �e formula for eTBF incorporates factors to convert the measurements 
into units matching the original formula: 39.3701 for a conversion from m to in and 2.20462 from kg to lbs.

Statistical analysis. We examined men and women separately. We summarised continuous variables 
with mean (standard deviation, SD) and categorical variables with percentages of individuals per category. We 
assessed associations between obesity indices with partial Pearson correlation coe�cients (r), adjusted for age 
at recruitment and study centre. We additionally examined the association of body shape indices with BMI in 
linear regression models adjusted for age at recruitment and study centre, using for each body shape index sex-
speci�c z-scores calculated as (index—mean)/SD. Using z-scores on an SD scale enabled comparisons between 
obesity indices measured with di�erent units. Using a 5 kg/m2 increment for BMI approximated the di�erence 
in BMI between neighbouring WHO categories of BMI, such that the Wald tests from these models evaluated a 
linear trend by BMI category.

We compared body shape indices in three steps, as described below:
First, we examined changes in the association patterns of individual obesity indices with mortality deter-

mined by combining body shape indices with BMI in the same model. In these analyses we used a more detailed 
categorisation of exposure variables, including sex-speci�c cohort-wide quintiles for waist and hip indices (see 
cut-o�s in Supplementary Table S1 online) and nine categories for BMI, with cut-o�s at 18.5, 21.0, 23.5, 25.0, 
26.5, 28.0, 30.0, 35.0 kg/m2 (23.5 to < 25 reference)7. We used delayed-entry Cox proportional hazards models, 
strati�ed by age (5-year intervals) and study centre, and obtained hazard ratio (HR) estimates with 95% con�-
dence intervals. �e underlying time scale was age. �e origin of time was at birth. Entry in the study was at the 
age of recruitment and exit was at the age of censoring or death. All models included adjustment for major risk 
factors for death and potential confounders: smoking status and intensity, attained education level (as the nearest 
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available proxy for socioeconomic status), alcohol consumption, physical activity and height. Covariates were 
categorised according to the original EPIC publication, with missing data similarly coded as a separate  category7.

Second, we calculated Kaplan–Meier estimates for 15-year probability of death for subgroups de�ned by BMI 
and a waist index, in order to compare the ability of alternative waist indices to achieve risk strati�cation within 
individual categories of BMI. In these analyses we used sex-speci�c cohort-wide quartiles for waist indices and 
�ve WHO categories for BMI: < 18.5 (underweight); 18.5 to < 25 (normal-weight: reference); 25 to < 30 (over-
weight); 30 to < 35 (obese grade I) and ≥ 35 kg/m2 (obese grade II and III)9.

�ird, we compared the ability of the best performing index of abdominal obesity (ABSI) and the traditional 
indices (WC and WHR) to separate subgroups with low-waist and high-waist within each WHO category of 
BMI, using published cut-o�s for WC and WHR. For WC, we used the WHO cut-o�s (102 cm for men; 88 cm 
for women)18 and the BMI-speci�c cut-o�s proposed by Ardern et al.20. �e latter were de�ned for normal-
weight, overweight, obese grade I, and obese grade II and III categories (90, 100, 110, and 125 cm for men; 80, 
90, 105, and 115 cm for women). We complemented the missing cut-o�s for the underweight category with 
10 cm lower values compared to the cut-o�s proposed for the normal-weight category (80 cm for men; 70 cm 
for women). For WHR, we used the WHO cut-o�s (0.90 for men, 0.85 for women)18. For ABSI we selected the 
75th sex-speci�c cohort-wide centile (83.3 for men; 76.2 for women). We calculated adjusted HRs using Cox 
proportional hazards models, as described for the �rst step above, with waist-by-BMI group as exposure vari-
able and low-waist-normal-weight as reference. We additionally calculated HRs for high-waist vs. low-waist 
within each BMI category (function glht, package multcomp)38. We used the likelihood ratio test to assess a 
potential waist-by-BMI interaction on a multiplicative scale (function lrtest, package lmtest)39, comparing the 
cross-classi�cation model (equivalent to a waist-by-BMI interaction model), with a model including the waist 
index and BMI as individual variables.

Finally, we examined heterogeneity in the association of ABSI and BMI with mortality according to categories 
of other risk factors. We created a combined cross-classi�cation variable using ABSI-by-BMI and three categories 
for each of the common risk factors for death and obesity: smoking status, physical activity, age at recruitment 
or attained education. We de�ned the survival models as for the cross-classi�cation with ABSI-by-BMI but 
omitted the examined risk factor from the adjustment or strati�cation. �e likelihood ratio test for statistical 
interaction compared the cross-classi�cation model with a model including ABSI-by-BMI categories and the 
risk factor as separate variables.

We used R version 3.4.3 for all statistical  analyses40.

Ethical approval and consent to participate. �is research was conducted according to the principles 
expressed in the Declaration of Helsinki. Approval for the EPIC study was obtained from the ethical review 
boards of the International Agency for Research on Cancer and from all participating EPIC centres. All EPIC 
participants provided written informed consent at recruitment for use of their blood samples and data in future 
research. �e EPIC Steering Committee approved this study in accordance with EPIC rules https ://epic.iarc.fr/
acces s/acces s_appl_asses sed.php.

Results
Characteristics of study participants. Cohort characteristics and waist indices are summarised by sex 
and BMI category in Table 1. �ere were 38,178 deaths among 352,985 participants (34.3% men), for a mean 
follow-up of 16.1 years (SD = 3.7). �e mean BMI at recruitment was 26.6 (SD = 3.6) kg/m2 for men and 25.5 
(4.6) kg/m2 for women. WHR was above the high-risk WHO cut-o�s in 76% of men and only 20% of women. 
WC was above the WHO cut-o�s in 23% of men and women. A�er accounting for age at recruitment, individu-
als who died during each year showed consistently higher BMI compared to those who survived by the end of 
the same year only a�er the �rst seven years (see Supplementary Table S3 online).

Waist indices formed groups according to the strength of their association with BMI. �ree 
groups of waist indices emerged according to the strength of their correlation with BMI: strongly correlated 
(WC-like, r ≈ 0.85), moderately correlated (WHR-like, r ≈ 0.45) and e�ectively uncorrelated with BMI (ABSI-
like, r ≈ 0) (Fig.  1). All waist indices moderately correlated with BMI included weight in their denominator, 
except the WHR, which used HC. HC, however, was strongly positively correlated with BMI (r ≈ 0.80) and 
appears to have acted as a partial adjustment of WC for BMI in the WHR. Waist indices strongly correlated with 
BMI showed a similar and considerably larger SD increment per 5 kg/m2 BMI ( ≈ 1.2 SD in men;  ≈ 0.9 SD in 
women) compared to ABSI ( ≈ 0.14 SD in men and women) (Table 1).

Combining BMI with correlated waist indices altered the association patterns with all‑cause 
mortality. BMI, examined individually, showed a symmetrical U-shaped association with mortality, which 
was not in�uenced by adding ABSI or hip indices (Fig. 2a–d). Adding WC, however, shi�ed the association to 
a predominantly negative, increasing HRs for low BMI and decreasing HRs for high BMI (Fig. 2a,c). Adding 
WHR had similar, but more modest in�uence. WC, examined individually, showed a J-shaped association with 
mortality. Adding BMI increased the HRs and resulted in a positive association for all quintiles, but further add-
ing HC had little in�uence (Fig. 2e,j). �e association of WHR with mortality was close to linear and adding BMI 
had lesser in�uence (Fig. 2f,k). ABSI was positively associated with all-cause mortality for all quintiles in men, 
but only for the high quintiles in women and was not in�uenced materially by adding BMI and HI (Fig. 2g,l). 
Alternative waist indices showed association patterns with all-cause mortality similar to WC, WHR or ABSI, 
according to the strength of their correlation with BMI (see Supplementary Fig. S2 online).

https://epic.iarc.fr/access/access_appl_assessed.php
https://epic.iarc.fr/access/access_appl_assessed.php
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Table 1.  Cohort characteristics and body shape indices by sex and BMI categories. ABSI—A Body Shape 
Index; AVI—Abdominal Volume Index; BMI—Body Mass Index; ConI—Conicity Index; eTBF—estimated 
Total Body Fat; HC—Hip Circumference; HI—Hip Index; RFM—Relative Fat Mass; SD—standard deviation; 
WC—Waist Circumference; WCadjBMI—WC adjusted for BMI; WHR—Waist-to-Hip Ratio; WHRadjBMI—
WHR adjusted for BMI; WHtR—Waist-to-Height Ratio; WWI—Weight-adjusted Waist Index; Cohort—
number of individuals (% percentage from the total); Deaths—number of deaths (% percentage from the total 
number of individuals per column); Total/BMI columns—continuous variables are summarised with mean 
(SD); SD per 5 kg/m2—mean body shape index increment on the SD scale (standard error), derived from 
linear models regressing the sex-speci�c z-scores of the corresponding body shape index on BMI (per 5 kg/m2 
increment), with adjustment for age at recruitment and study centre (all p values from the corresponding Wald 
tests were < 0.0001, except for WCadjBMI and WHRadjBMI); Covariates are summarised by sex and BMI 
category in Supplementary Table S2 online.

Men

Cohort Total BMI < 18.5 18.5 to < 25 25 to < 30 30 to < 35 BMI ≥ 35 SD per 5 kg/m2

Cohort 120,915 451 (0.4) 41,094 (34.0) 59,931 (49.6) 16,744 (13.8) 2,695 (2.2) –

Deaths 18,636 (15.4) 144 (31.9) 5,979 (14.5) 8,823 (14.7) 2,993 (17.9) 697 (25.9) –

Follow-up 15.6 (4.1) 14.4 (5.3) 15.8 (4.0) 15.7 (4.1) 15.3 (4.4) 14.5 (4.7) − 0.08 (0.004)

Age 52.8 (9.6) 50.8 (15.1) 51.4 (10.7) 53.4 (9.0) 53.8 (8.6) 53.8 (8.5) 0.14 (0.004)

BMI 26.6 (3.6) 17.6 (0.8) 23.0 (1.5) 27.2 (1.4) 31.8 (1.3) 37.6 (2.9) –

Waist indices

ABSI 80.6 (4.2) 82.5 (6.2) 80.1 (4.5) 80.7 (4.1) 81.4 (4.0) 81.7 (4.3) 0.14 (0.004)

AVI 18.2 (3.9) 11.2 (1.7) 14.9 (2.1) 18.6 (2.4) 23.1 (2.8) 29.1 (4.2) 1.18 (0.002)

BRI 4.3 (1.3) 2.0 (0.5) 3.2 (0.7) 4.4 (0.8) 6.0 (0.9) 7.9 (1.3) 1.19 (0.002)

ConI 1.28 (0.08) 1.22 (0.09) 1.24 (0.07) 1.28 (0.07) 1.33 (0.07) 1.37 (0.07) 0.64 (0.003)

eTBF 22.9 (6.3) 10.4 (7.5) 18.4 (5.6) 24.1 (4.9) 28.6 (4.5) 31.7 (4.5) 0.89 (0.003)

RFM 26.7 (4.3) 16.3 (3.6) 22.9 (3.2) 27.7 (2.5) 31.7 (2.0) 35.2 (2.0) 1.16 (0.002)

WC 94.7 (10.2) 74.1 (5.8) 86.0 (6.1) 96.2 (6.2) 107.2 (6.4) 120.2 (8.5) 1.18 (0.002)

WCadjBMI 0 (0.051) 0.01 (0.058) − 0.0015 (0.049) 0.0010 (0.050) 0.0013 (0.055) − 0.0074 (0.077) 0 (0.004)

WHR 0.94 (0.06) 0.84 (0.06) 0.90 (0.06) 0.95 (0.05) 0.99 (0.05) 1.02 (0.06) 0.78 (0.003)

WHRadjBMI 0 (0.051) − 0.003 (0.054) − 0.0036 (0.05) 0.0034 (0.051) 0.0009 (0.053) − 0.025 (0.066) 0 (0.004)

WHtR 0.54 (0.06) 0.42 (0.03) 0.49 (0.04) 0.55 (0.04) 0.62 (0.04) 0.70 (0.05) 1.19 (0.002)

WWI 10.54 (0.69) 10.04 (0.78) 10.19 (0.63) 10.61 (0.61) 11.04 (0.61) 11.40 (0.65) 0.66 (0.003)

Hip indices

HC 100.9 (6.9) 88.0 (4.6) 95.7 (4.6) 101.6 (4.7) 108.4 (5.2) 117.8 (8.1) 1.06 (0.003)

HI 0.145 (0.006) 0.153 (0.008) 0.146 (0.006) 0.144 (0.005) 0.143 (0.006) 0.144 (0.008) − 0.26 (0.004)

Women

Cohort Total BMI < 18.5 18.5 to < 25 25 to < 30 30 to < 35 BMI ≥ 35 SD per 5 kg/m2

Cohort 232,070 3,967 (1.7) 119,270 (51.4) 73,515 (31.7) 26,181 (11.3) 9,137 (3.9) –

Deaths 19,542 (8.4) 396 (10.0) 8,530 (7.2) 6,733 (9.2) 2,720 (10.4) 1,163 (12.7) –

Follow-up 16.4 (3.5) 16.8 (3.6) 16.6 (3.3) 16.2 (3.5) 15.8 (3.8) 15.4 (4.0) − 0.11 (0.002)

Age 51.2 (10.5) 46.0 (12.9) 49.3 (10.8) 53.2 (9.6) 54.2 (9.2) 53.8 (9.1) 0.23 (0.002)

BMI 25.5 (4.6) 17.7 (0.7) 22.3 (1.6) 27.1 (1.4) 32.0 (1.4) 38.4 (3.4) –

Waist indices

ABSI 73.1 (5.2) 74.3 (5.0) 72.3 (4.9) 73.5 (5.4) 74.5 (5.6) 74.4 (5.8) 0.14 (0.002)

AVI 13.5 (3.8) 8.7 (1.1) 11.2 (1.8) 14.5 (2.3) 18.3 (2.8) 23.0 (4.1) 0.94 (0.001)

BRI 3.4 (1.5) 1.6 (0.4) 2.5 (0.7) 3.9 (0.9) 5.4 (1.2) 7.3 (1.6) 0.94 (0.001)

ConI 1.15 (0.09) 1.10 (0.07) 1.11 (0.08) 1.17 (0.09) 1.22 (0.09) 1.25 (0.10) 0.51 (0.002)

eTBF 28.2 (8.3) 19.2 (6.7) 24.4 (6.7) 31.1 (7.0) 35.6 (7.1) 37.7 (6.9) 0.63 (0.002)

RFM 34.9 (5.9) 25.0 (3.4) 31.1 (3.9) 37.5 (3.4) 42.2 (3.0) 46.0 (3.0) 0.92 (0.001)

WC 80.2 (11.4) 64.5 (4.4) 73.1 (6.2) 84.1 (7.0) 94.6 (7.7) 106.2 (9.8) 0.93 (0.001)

WCadjBMI 0 (0.057) 0.011 (0.045) − 0.0026 (0.049) 0.0029 (0.059) 0.0058 (0.068) − 0.011 (0.086) 0 (0.002)

WHR 0.79 (0.07) 0.74 (0.05) 0.77 (0.06) 0.81 (0.07) 0.84 (0.07) 0.86 (0.07) 0.50 (0.002)

WHRadjBMI 0 (0.06) 0.0061 (0.054) − 0.0034 (0.056) 0.0056 (0.063) 0.0064 (0.066) − 0.022 (0.07) 0 (0.002)

WHtR 0.50 (0.08) 0.39 (0.03) 0.45 (0.04) 0.52 (0.05) 0.60 (0.05) 0.67 (0.06) 0.94 (0.001)

WWI 9.85 (0.86) 9.37 (0.66) 9.51 (0.70) 10.06 (0.80) 10.54 (0.85) 10.87 (0.90) 0.54 (0.002)

Hip indices

HC 101.1 (9.3) 87.2 (4.4) 95.6 (5.2) 103.9 (5.3) 112.2 (5.8) 124.0 (8.8) 0.94 (0.001)

HI 0.156 (0.007) 0.158 (0.007) 0.156 (0.006) 0.155 (0.006) 0.156 (0.007) 0.159 (0.008) 0.05 (0.002)
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Hip indices were weakly negatively associated with all‑cause mortality. HC, examined individu-
ally, showed a U-shaped association with all-cause mortality, which was almost abolished by adding BMI, but a 
modest negative association appeared a�er further adding WC (Fig. 2h,m). �e association of HI with mortal-
ity was similar to HC, but much weaker, especially in women (Fig. 2i,n). We, therefore, examined further risk 
strati�cation only according to waist indices.

The ability of waist indices to separate high‑risk from low‑risk individuals within underweight and 
obese categories was dependent on their correlation with BMI. While the highest sex-speci�c cohort-
wide quartile of all waist indices could separate a high-risk subgroup within the overweight BMI category, including 
20% to 27% of men and 29% to 34% of women (see Fig. 3 for Kaplan–Meier estimates of 15-year probability of death 
within subgroups de�ned according to BMI and ABSI, WC, or WHR and Supplementary Fig. S3 online for alterna-
tive waist indices), most of the underweight and obese individuals belonged to the same quartile of WC-like indices 
strongly correlated with BMI. On the contrary, every BMI category included sizeable subgroups of all quartiles of 
ABSI-like indices uncorrelated with BMI. �e risk of death was consistently higher in the highest ABSI quartile com-
pared to the other three quartiles, justifying the use of the 75th centile as a cut-o� in subsequent analyses. WHR-like 
indices moderately correlated with BMI showed an intermediate pattern, with small sizes of the low-quartile sub-
groups among individuals in the obese categories. Although men with WHR in the highest quartile and BMI in the 
underweight or normal-weight category showed higher mortality compared to men in the overweight or obese BMI 
category, they represented only a very small proportion of men in the underweight or normal-weight BMI categories.

Individuals with high‑ABSI consistently showed approximately 30% higher risk of death com‑
pared to individuals with low‑ABSI within each BMI category. �e lowest risk of death was in the 
normal-weight and the overweight subgroups with low-waist when using ABSI, WC with BMI-speci�c cut-o�s, or 
the WHR (women) to create high-risk and low-risk subgroups, but was in the overweight subgroup with low-waist 
when using WC with WHO cut-o�s or WHR (men) (Table 2). �e highest risk of death was in the underweight and 
obese grade II and III subgroups with high-waist for the three waist indices (ABSI, WC and WHR). �e high-WHR 
and high-WC subgroups were very small (for low BMI) or large (for high BMI), when using WHO cut-o�s. On the 
contrary, the high-ABSI subgroup included 18% to 39% of the individuals within every BMI category and consist-
ently showed 22% to 55% higher risk of death compared to the corresponding low-ABSI subgroup. Although using 
BMI-speci�c cut-o�s for WC similarly permitted the separation of a sizeable high-risk subgroup within each BMI 
category, the strong association between WC and BMI was retained. �e di�erence in BMI between high-WC and 

Figure 1.  Heatmap of the correlation between anthropometric indices. Age—age at recruitment; AVI—
Abdominal Volume Index; ABSI—A Body Shape Index; BMI—Body Mass Index (marked with *** for 
visibility); BRI—Body Roundness Index; ConI—Conicity Index; eTBF—estimated Total Body Fat; HC—Hip 
Circumference; HI—Hip Index; RFM—Relative Fat Mass; WC—Waist Circumference; WCadjBMI—WC 
adjusted for BMI; WHR—Waist-to-Hip Ratio; WHRadjBMI—WHR adjusted for BMI; WHtR—Waist-to-Height 
Ratio; WWI—Weight-adjusted Waist Index; Cells—partial Pearson correlation coe�cients (adjustment for age 
at recruitment and study centre, except for age at recruitment, which was adjusted only for study centre); Men—
bottom-le� half; Women—top-right half; *—WC, WHR and ABSI were used as representatives of the strongly, 
moderately correlated and uncorrelated groups of waist indices in the main analyses (the correlation groups are 
separated with black lines and indices within them are shown in alphabetical order).
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low-WC subgroups, de�ned using BMI-speci�c cut-o�s for WC, was more than 1 kg/m2 within the normal-weight, 
overweight, or obese grade I categories, and more that 3 kg/m2 within the obese grade II and III category.

Other risk factors had little influence on the separation of a higher‑risk subgroup according to 
high‑ABSI. �e risk of death was lowest in the low-ABSI subgroups of normal-weight or overweight indi-
viduals for all risk-factor categories by smoking status, physical activity, age at recruitment or attained education 
(Fig.  4). �e high-ABSI subgroup showed approximately 30% higher risk than the corresponding low-ABSI 
subgroup for BMI 18.5 to 35 kg/m2 in most risk-factor categories. �ere was evidence for e�ect modi�cation by 
smoking status, with slightly larger HRs for high-ABSI vs low-ABSI in women current smokers and lower HRs 
in men never smokers, and by age at recruitment in men, with lower HRs in men aged 65 years or over (see Sup-
plementary Table S4 online).

Figure 2.  Hazard ratios for the association of obesity indices with all-cause mortality. ABSI—A Body Shape 
Index; BMI—Body Mass Index; HC—Hip Circumference; HI—Hip Index; WC—Waist Circumference; WHR—
Waist-to-Hip Ratio; a–d—Hazard ratios (points) with 95% con�dence intervals (segments) for the association 
of BMI (reference category 23.5 to < 25 kg/m2) with all-cause mortality before and a�er the addition of waist 
(a,c) and hip indices (b,d) in a delayed-entry Cox proportional hazards model, strati�ed for age group and 
study centre and adjusted for smoking status and intensity, attained education level, alcohol intake, physical 
activity and height (for categorisation of covariates see Supplementary Table S2 online); e–n—Hazard ratios for 
the association of waist indices (e–g,j–l) or hip indices (h,i,m,n) with all-cause mortality before (white points) 
and a�er the addition of BMI (grey points) and a further body-shape index (black points), as indicated in the 
legends; Q1–5—sex-speci�c quintile categories (Q1 reference, see cut-o�s in Supplementary Table S1 online); 
Supplementary Fig. S2 online shows plots for the alternative waist indices.
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Figure 3.  Kaplan–Meier estimates of 15-year probability of death for categories by BMI and waist index. 
ABSI—A Body Shape Index; BMI—Body Mass Index; WC—Waist Circumference; WHR—Waist-to-Hip Ratio; 
Waist indices were categorised as sex-speci�c cohort-wide quartiles (see cut-o�s in Supplementary Table S1 
online); Bars—the width for waist indices represents the proportion of the individuals in the corresponding 
waist quartile from the total number of individuals in the corresponding BMI category, colour-coded from 
white for the lowest to dark for the highest quartile; No waist—probability estimates for the total BMI category, 
without further strati�cation according to any waist index; d—number of deaths from all causes recorded during 
the �rst 15 years of follow-up per BMI category; n—number of individuals per BMI category; Supplementary 
Fig. S3 online shows plots for the alternative waist indices.
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Men

BMI Low-ABSIa < 83.3 High-ABSIa ≥ 83.3 % High-ABSI High/Low-ABSI p value BMIHigh–Low

 < 18.5 1.64 (1.30–2.06) 2.54 (1.99–3.24) 38.6 1.55 (1.12–2.16) 0.009 − 0.20 (0.09)

18.5 to < 25 Reference 1.31 (1.24–1.38) 22.4 1.31 (1.24–1.38)  < 0.0001 − 0.20 (0.02)

25 to < 30 0.98 (0.94–1.02) 1.28 (1.22–1.34) 25.1 1.31 (1.25–1.37)  < 0.0001 0.02 (0.01)

30 to < 35 1.23 (1.16–1.30) 1.59 (1.49–1.70) 30.2 1.29 (1.20–1.39)  < 0.0001 0.07 (0.02)

 ≥ 35 1.91 (1.72–2.13) 2.46 (2.19–2.76) 35.3 1.29 (1.11–1.49) 0.001 0.10 (0.12)

p interaction 0.884

BMI Low-WHRb < 0.90 High-WHRb ≥ 0.90 % High-WHR High/Low-WHR p value BMIHigh–Low

 < 18.5 1.74 (1.44–2.10) 3.47 (2.38–5.05) 13.3 1.99 (1.32–3.02) 0.001 0.14 (0.11)

18.5 to < 25 Reference 1.14 (1.08–1.20) 52.6 1.14 (1.08–1.20)  < 0.0001 0.78 (0.01)

25 to < 30 0.90 (0.83–0.98) 1.08 (1.03–1.13) 85.4 1.20 (1.11–1.29)  < 0.0001 0.72 (0.02)

30 to < 35 1.34 (1.04–1.73) 1.33 (1.26–1.41) 97.0 1.00 (0.77–1.28) 0.978 0.36 (0.06)

 ≥ 35 2.44 (1.26–4.71) 2.09 (1.91–2.28) 98.7 0.86 (0.44–1.66) 0.645 − 1.61 (0.48)

p interaction 0.055

BMI Low-WCb < 102 cm High-WCb ≥ 102 cm % High-WC High/Low-WC p value BMIHigh–Low

 < 18.5 1.79 (1.51–2.11) – 0 – –  –

18.5 to < 25 Reference 1.40 (1.08–1.81) 0.5 1.40 (1.08–1.81) 0.012 1.06 (0.10)

25 to < 30 0.91 (0.88–0.95) 1.20 (1.14–1.26) 18.8 1.31 (1.25–1.38)  < 0.0001 1.46 (0.01)

30 to < 35 0.97 (0.87–1.09) 1.28 (1.22–1.34) 81.8 1.31 (1.17–1.47)  < 0.0001 0.99 (0.03)

 ≥ 35 – 1.95 (1.80–2.12) 98.8 – –  –

p interaction –

BMI Low-WCc < cut-o� High-WCc ≥ cut-o� % High-WC High/Low-WC p value BMIHigh–Low

 < 18.5 1.75 (1.46–2.11) 2.44 (1.63–3.66) 13.7 1.39 (0.89–2.17) 0.144 0.29 (0.11)

18.5 to < 25 Reference 1.10 (1.04–1.16) 27.8 1.10 (1.04–1.16) 0.0007 1.19 (0.02)

25 to < 30 0.92 (0.89–0.96) 1.18 (1.13–1.24) 28.5 1.28 (1.22–1.34)  < 0.0001 1.42 (0.01)

30 to < 35 1.12 (1.05–1.19) 1.52 (1.43–1.62) 33.8 1.36 (1.27–1.46)  < 0.0001 1.24 (0.02)

 ≥ 35 1.68 (1.52–1.86) 2.82 (2.49–3.20) 27.0 1.68 (1.44–1.96)  < 0.0001 3.36 (0.11)

p interaction  < 0.0001

Women

BMI Low-ABSIa < 76.2 High-ABSIa ≥ 76.2 % High-ABSI High/Low-ABSI p value BMIHigh–Low

 < 18.5 1.41 (1.23–1.62) 1.87 (1.61–2.17) 28.7 1.33 (1.09–1.62) 0.005 − 0.32 (0.03)

18.5 to < 25 Reference 1.30 (1.24–1.36) 18.4 1.30 (1.24–1.36)  < 0.0001 − 0.04 (0.01)

25 to < 30 1.00 (0.96–1.05) 1.32 (1.25–1.38) 28.5 1.31 (1.25–1.38)  < 0.0001 0.13 (0.01)

30 to < 35 1.11 (1.05–1.18) 1.54 (1.44–1.64) 37.6 1.38 (1.28–1.49)  < 0.0001 0.06 (0.02)

 ≥ 35 1.63 (1.50–1.78) 1.99 (1.81–2.17) 38.1 1.22 (1.08–1.37) 0.0009 − 0.42 (0.08)

p interaction 0.473

BMI Low-WHRb < 0.85 High-WHRb ≥ 0.85 % High-WHR High/Low-WHR p value BMIHigh–Low

 < 18.5 1.53 (1.38–1.70) 1.52 (1.01–2.31) 2.7 0.99 (0.65–1.52) 0.973 − 0.03 (0.07)

18.5 to < 25 Reference 1.33 (1.25–1.41) 7.7 1.33 (1.25–1.41)  < 0.0001 0.65 (0.02)

25 to < 30 0.99 (0.96–1.03) 1.22 (1.16–1.28) 26.9 1.23 (1.17–1.29)  < 0.0001 0.46 (0.01)

30 to < 35 1.08 (1.01–1.15) 1.38 (1.30–1.46) 48.3 1.28 (1.19–1.38)  < 0.0001 0.23 (0.02)

 ≥ 35 1.59 (1.44–1.76) 1.78 (1.65–1.93) 56.8 1.12 (0.99–1.26) 0.067 0.15 (0.07)

p interaction 0.053

BMI Low-WCb < 88 cm High-WCb ≥ 88 cm % High-WC High/Low-WC p value BMIHigh–Low

 < 18.5 1.48 (1.34–1.64) – 0.2 – –  –

18.5 to < 25 Reference 1.33 (1.18–1.50) 1.8 1.33 (1.18–1.50)  < 0.0001 1.13 (0.03)

25 to < 30 0.95 (0.92–0.99) 1.19 (1.14–1.25) 28.9 1.25 (1.19–1.32)  < 0.0001 1.19 (0.01)

30 to < 35 0.98 (0.88–1.09) 1.23 (1.17–1.29) 83.2 1.25 (1.12–1.41) 0.0001 0.89 (0.02)

 ≥ 35 1.35 (0.90–2.04) 1.66 (1.55–1.77) 97.2 1.22 (0.81–1.85) 0.338 1.14 (0.22)

p interaction –

BMI Low-WCc < cut-o� High-WCc ≥ cut-o� % High-WC High/Low-WC p value BMIHigh–Low

 < 18.5 1.47 (1.31–1.64) 1.82 (1.46–2.28) 9.6 1.24 (0.97–1.60) 0.086 0.16 (0.04)

18.5 to < 25 Reference 1.16 (1.10–1.22) 14.2 1.16 (1.10–1.22)  < 0.0001 1.41 (0.01)

25 to < 30 1.00 (0.96–1.03) 1.24 (1.18–1.31) 20.4 1.25 (1.18–1.32)  < 0.0001 1.23 (0.01)

30 to < 35 1.18 (1.12–1.24) 1.54 (1.39–1.71) 9.3 1.31 (1.17–1.46)  < 0.0001 1.12 (0.03)

 ≥ 35 1.55 (1.44–1.67) 2.25 (2.00–2.53) 17.9 1.45 (1.27–1.65)  < 0.0001 4.08 (0.08)

p interaction 0.018
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Discussion
Absence of adjustment for weight in the calculation of a waist index determined a strong correlation with BMI. 
Combining BMI with a strongly correlated waist index altered considerably the association patterns with mortal-
ity, reversing to a predominantly negative the association with BMI and exaggerating the positive association with 
the waist index. Combining BMI with a moderately correlated waist index resulted in similar, but more moder-
ate changes. �e association patterns were preserved only when combining BMI with waist indices designed to 
be independent from BMI, such as ABSI. �e low-WC and low-WHR subgroups de�ned using WHO cut-o�s 
included only a limited number of individuals within the obese BMI categories. �e high-WC subgroups de�ned 
using BMI-speci�c cut-o�s included individuals with considerably higher BMI compared to the corresponding 
low-WC subgroups, especially within the obese BMI categories, and thus re�ected general rather than speci�cally 
abdominal obesity. On the contrary, the high-ABSI subgroups had a sensible size and showed higher risk and 
no major di�erences in BMI compared to the corresponding low-ABSI subgroups within every BMI category. 
ABSI and BMI complemented each other, as neither of them could provide individually the risk strati�cation 
achieved by their combination. Hip indices were weakly negatively associated with mortality only in combina-
tion with BMI and a waist index, in agreement with previous  reports41, but their practical application for risk 
strati�cation appeared limited.

Several studies have described, in agreement with our �ndings, a J-shaped association of WC with mortal-
ity when used in  isolation7, 13, 17, 28, 42 and a meta-analysis of 18 prospective studies has reported changes in the 
association patterns of both WC and BMI when  combined17. Although this meta-analysis had recommended 
using a waist index in addition to BMI in clinical  practice17, thus corroborating the conclusions of the earlier 
EPIC study examining the association of general and abdominal obesity with  mortality7, subsequent studies have 
continued to examine waist indices as alternatives rather than as additions to  BMI10, 28, 30. �e large number of 
alternative waist indices proposed in the  literature10–16, 21 creates a further confusion and hinders standardisa-
tion of the assessment of abdominal adiposity. Our study is, therefore, particularly important because we have 
demonstrated that combining BMI with any waist index correlated with it will alter the association patterns with 
mortality and will bias risk estimates to an extent proportional to the strength of the correlation with BMI. �e 
fact that waist indices similarly correlated with BMI showed similar association patterns with all-cause mortal-
ity, irrespective of the large di�erences in their calculation, indicates that this conclusion could be extended 
further to newly developed waist indices and to other outcomes associated with both abdominal and general 
obesity. �is statistical artefact would also explain the misleading conclusion of risk-prediction models combin-
ing BMI and WHR, that individuals with high-waist but normal-weight have higher risk of death than obese 
 individuals43. Furthermore, although imaging measures of body fat compartments would undoubtedly provide a 
superior method of assessment of body composition, an association with body size would similarly a�ect them. 
Larger individuals would naturally have larger body compartments, so a direct comparison of untransformed 
and unadjusted imaging measures would likely encounter a similar problem as the direct comparison of waist 
circumference measurements.

�e strong correlation between WC and BMI is particularly problematic because they both re�ect in di�er-
ent ways the same entities: abdominal and peripheral adiposity. �ey are, therefore, physically related and not 
simply statistically correlated due to shortcomings of study design, which could be accounted for in a statistical 
model. �is severely limits the variability in the extreme categories, giving them a disproportionately large lever-
age, which biases mortality risk estimates. Given the strong correlation between WC and BMI, individuals with 
discordant WC and BMI would be exceptions and they may have features unrelated to obesity, e.g. a high BMI 
with small WC could be determined by larger lean mass, rather than by fat accumulation. To avoid statistical 
artefacts driven by the extreme ends of the distributions, a waist index should be operationalised as independent 
of BMI by design, prior to combining them in a statistical model or using them for cross-classi�cation. Waist 

Table 2.  Hazard ratios for all-cause mortality for subgroups de�ned according to BMI and waist indices. 
ABSI—A Body Shape Index; BMI—Body Mass Index; WC—Waist Circumference; WHR—Waist-to-Hip 
Ratio. a Cut-o�s de�ned as the 75th sex-speci�c cohort-wide centile, separating the highest quartile. b Cut-
o�s recommended by the World Health  Organisation18. c BMI-speci�c cut-o�s: 80, 90, 100, 110 and 125 cm 
(men); 70, 80, 90, 105 and 115 cm (women) for the corresponding BMI  category20; Hazard ratios (HR) 
(95% con�dence interval)—derived from delayed-entry Cox proportional hazards models (strati�ed by 
age at recruitment and study centre), including a categorical waist-by-BMI cross-classi�cation variable and 
adjustment variables for smoking status and intensity, alcohol intake, attained education level, physical activity 
and height (for the categorisation of covariates see Supplementary Table S2 online); % high—percentage of 
individuals from the corresponding BMI category classi�ed as high-waist; High/Low—HRs for high-waist vs 
low-waist within each BMI category; p value –Wald test for the comparison high-waist vs low-waist within 
each BMI category;  pinteraction—p value for statistical interaction on a multiplicative scale, derived from a 
likelihood ratio test comparing a model including the cross-classi�cation waist-by-BMI variable with a model 
including separate variables for BMI (�ve categories) and a waist index (two categories);  BMIHigh–Low—mean 
BMI di�erence (standard error) between high-waist and low-waist subgroups, derived from a linear model 
regressing BMI (continuous scale) on a binary variable for high-waist, with adjustment for age at recruitment 
and study centre; Subgroups with fewer than 3 deaths (marked with “–”) were excluded from the models and, 
consequently, no tests for interaction were performed for WC.
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Figure 4.  Cross-classi�cation by BMI, ABSI and either smoking status, physical activity, age or attained education. 
Hazard ratios (points) with 95% con�dence intervals (segments)—derived from delayed-entry Cox proportional 
hazards models, including a cross-classi�cation variable for ABSI-by-BMI-by-factor category (with the “factor” 
being either smoking status, physical activity, age at recruitment or attained education) and adjustment for 
smoking status and intensity (omitted for “factor” smoking status), alcohol intake, attained education level 
(omitted for “factor” attained education), physical activity (omitted for “factor” physical activity) and height and 
strati�ed for age at recruitment (omitted for “factor” age) and study centre (for the categorisation of covariates 
see Supplementary Table S2 online); white points—low-ABSI subgroup: A Body Shape Index (ABSI) < 83.3 
for men and < 76.2 for women; dark points—high-ABSI subgroup: ABSI ≥ 83.3 for men and ≥ 76.2 for women; 
BMI category—body mass index (BMI) category according to the World Health Organisation classi�cation: 25 
(18.5 to < 25 kg/m2), 30 (25 to < 30 kg/m2), 35 (30 to < 35 kg/m2);  pinteract—p value for statistical interaction on a 
multiplicative scale, derived from a likelihood ratio test comparing a model including the cross-classi�cation ABSI-
by-BMI-by-factor variable with a model including separate variables for ABSI-by-BMI (ten categories) and factor 
(three categories); p values—derived from comparisons of high-ABSI with low-ABSI subgroups within each BMI 
category: ***p < 0.0001, **p < 0.001, *p < 0.01, + (“plus”) p < 0.05, ~ (“tilda”) p < 0.1,—(“minus”) p ≥ 0.1; hazard ratios 
(95% con�dence intervals) for the latter comparisons are shown in Supplementary Table S4 online.
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indices independent of BMI by design would naturally re�ect the additional e�ect of obesity arising from altered 
body shape, which is not captured by BMI.

ABSI stands out among the alternative approaches to designing a waist index independent from BMI, because 
it is based on the allometric principle, which was used to derive  BMI22, 25. Although the residuals of WC or WHR 
adjusted for BMI are also independent of BMI by design, they have negative values, unconventional for clinical 
indices. Further, a population-based dataset would be required to determine the regression coe�cients for their 
calculation, while ABSI can be calculated using the published formula for any isolated  individual22, i.e. a clinician 
could calculate ABSI for any patient without the need this patient to be part of a dataset. Furthermore, we have 
shown that de�ning multiple BMI-speci�c cut-o�s for WC, as previously  proposed20, would not be a reliable 
alternative, as this does not account completely for the strong correlation between WC and BMI, especially in 
the high BMI categories.

Regarding generalisability, we have demonstrated that ABSI, originally de�ned in the National Health and 
Nutrition Examination Survey (NHANES) 1999–200422, was uncorrelated with BMI in the EPIC cohort, likely 
because of similar weight and height distributions. EPIC women also had comparable adjusted HRs to post-
menopausal women from the Women’s Health Initiative cohort: HR = 1.37 (1.28 to 1.47) for the ��h vs. the �rst 
 quintile33. Some di�erences by ethnicity and sex, however, may exist. ABSI was associated positively with mortal-
ity in the Korean National Health Insurance  Cohort13 and in white and black, but not in Mexican participants in 
 NHANES22 or in Japanese  women31. ABSI has also been criticised for a narrow distribution around the mean, 
potentially complicating cut-o�  selections30, but we have demonstrated excellent ABSI-based risk strati�cation 
in all BMI categories. Another European study has reported optimal ABSI thresholds at 80.7 for men (near the 
median for EPIC men) and 76.5 for women (near the 75th centile for EPIC women)28. Further, a threshold of 
83.0 (near the 75th centile for EPIC men) discriminated best sarcopenic obesity among obese individuals with 
type 2  diabetes44.

Enhancing the BMI-based risk strati�cation with ABSI is potentially useful, as it would outline higher-risk 
subgroups for closer follow-up and monitoring for metabolic complications. Some combined applications of 
ABSI with BMI in clinical settings have already been  described45–47. Although Krakauer & Krakauer have argued 
that joining ABSI, HI, BMI and height in a combined Anthropometric Risk Indicator (ARI) achieves better risk 
prediction compared to the individual  components47, combining ABSI and BMI in a single index would prevent 
evaluating individually the risks arising from general and abdominal adiposity. �e fact that metabolic health 
can be preserved in obese individuals lacking abdominal  adiposity48, 49 clearly indicates that the aetiology of 
obesity extends beyond a perturbed balance of energy intake and expenditure. Studies in animals and humans 
suggest that alterations in the regulation of the hypothalamic–pituitary–adrenal axis, the peripheral cortisol 
metabolism and the response to stress are among the outstanding candidates for a mechanistic explanation of 
the involvement of abdominal adiposity in morbidity and  mortality50–52. Grading separately the risks arising 
from general and abdominal adiposity would encourage further research into di�erentiating their causes and 
into the development of personalised management strategies targeting speci�cally abdominal adiposity and not 
only weight reduction, which would not necessarily improve fat distribution.

Our study has several strength, but also some limitations. We examined a comprehensive list of traditional 
and non-traditional waist indices in a large prospective cohort, with a long follow-up and a considerable number 
of deaths, which are major strengths of our study. Anthropometric measures were obtained by trained personnel 
and were systematically adjusted for clothing, thus avoiding inaccuracies in self-reported  values35. Our study, 
however, was limited by the lack of data obtained with imaging techniques, which are considered a gold standard 
for the assessment of body fat compartments and visceral fat. �is precluded evaluation of associations between 
obesity indices and measures of body composition and fat distribution. Further, there were no laboratory meas-
ures of metabolic health or individuals with morbid obesity (BMI > 45 kg/m2). �ere was also no information on 
sarcopenia or muscle strength to be able to evaluate their potential association with hip indices.

In conclusion, the complex nature of obesity warrants combining indices of general and abdominal adipos-
ity. A waist index should be used to complement and not to replace BMI, as neither of them in isolation re�ects 
adequately the e�ects of both, body size and body shape. Waist indices unadjusted for weight or BMI by design 
are correlated strongly with BMI. Combining BMI with a correlated waist index leads to biased and potentially 
misleading risk estimates and ine�cient risk strati�cation. To avoid statistical artefacts, a waist index should be 
operationalised as independent of BMI prior to combining both in a statistical model or using them jointly for 
cross-classi�cation. ABSI, which is independent of BMI by design, complements best BMI and achieves e�cient 
risk strati�cation in the underweight and obese, as well as in the normal weight and overweight BMI categories.

Data availability
For information on how to submit an application for gaining access to EPIC data and/or biospecimens, please 
follow the instructions at https ://epic.iarc.fr/acces s/index .php.
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