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A bone remodelling model based on

generalised thermodynamic potentials

and optimisation applied to a trabecula
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Abstract.

BACKGROUND: Bone diseases caused by an imbalance of bone turnover represent a major public health concern worldwide.

Studies involving bone remodelling mechanisms can assist in the treatment of osteoporosis, osteopenia and in cases of fractures.

In recent decades several authors have developed bone remodelling models.

AIM: The aim of this study is to propose a model based on the thermodynamic framework to describe the process of bone

remodelling. A secondary aim is to model a trabecula subjected to cyclic loading and calibrate the model with experimental

data.

METHODS: Thermodynamic potentials are used to generate the functions of state based on internal scalar variables. The

evolution of the variables in time is determined by dissipation potentials, which are created through the use of convex analysis.

Constitutive equations are solved with mathematical programming algorithms and the numerical implementation of this theory

uses the Finite Elements Method for spatial discretization.

RESULTS: The proposed theory was applied to a one-dimensional example, and two situations (an undamaged material and an

initially damaged material) were simulated. The one-dimensional example shows a microscopic view of a trabecula under the

influence of a growing load cycle throughout 1200 days. This dynamic process may represent the rehabilitation of an athlete,

starting with light exercises up to a very heavy physical activity.

CONCLUSIONS: The model was able to represent one bone remodelling cycle in the trabecula. Although it is not yet possible

to obtain an experimental curve of a traction test in vivo, the in silico model showed a process of damage that is similar to the

static test of the literature. The results also suggest a modification in the equation adopted for the Helmholtz potential shown

here. This study presents a consistent thermodynamic formalism for bone remodelling, which may allow further contributions

as the incorporation of chemical reactions, mass transference and anisotropic damage.
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1. Introduction

Bone diseases caused by an imbalance of bone

turnover represent a major public health concern

worldwide. Studies involving bone remodelling mech-

anisms can assist in the treatment of osteoporosis,

osteopenia and in cases of fractures. Changes in the
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homeostasis of the dynamic system of the bone are

affected by mechanical stimuli [57, 58]. Groups of

specialized cells, such as osteoblasts and osteoclasts,

are responsible for, respectively, forming and resorbing

bone matrix [2].

Several authors have developed bone remodelling

models in recent decades. Cowin and Hegedus have

used the strain tensor as the mechanical signal that is

the driving factor of bone adaptation, and the fabric

tensor was introduced for describing the microstruc-

ture of cancellous bone remodelling [30, 57]. Some

authors have used strain energy density as the stimuli

for bone remodelling [44]. Frost described the differ-

ence between modelling and remodelling [19–21] and

[17, 56] related to Young’s modulus with the appar-

ent density. Prendergast and Taylor [41] suggested that

the bone adapts itself to attain an optimal strength by

regulating the damage generated in its microstructural

elements.

In the study by Jacobs et al. [6], an anisotropic evo-

lution of the elasticity tensor was presented, and bone

resorption was assumed to be a cumulative damage

process. Cowin and Hegedus [56] proposed an adap-

tive elasticity theory, while Ramtani and Zidi [54]

included the contribution of bone microdamage as a

stimulus. Prendergast and Taylor [41] suggested that

microcracks in the bone could be correlated with cell

activation. Garcı́a-Aznar et al. [23] considered a bone

remodelling model that could simulate microdamage

growth and repair in a coupled way. According to

McNamara and Prendergast [33], there is a consensus

among researchers that microdamage is an important

stimulus for bone remodelling.

In this study, the thermodynamic state variables are

two internal variables that represent the loss of stiffness

(damage) and the gain of stiffness in bone mechanics.

The evolution of those variables follows an associated

potential that is related to the choice of the Helmholtz

free energy, according to [3, 30, 31]. The gradient of the

conjugated Helmholtz potential provides the direction

for the evolution of the internal variables. This associ-

ated contribution is important for the development of

a consistent mathematical model for the remodelling

process.

The numerical implementation through optimisa-

tion follows the principles of continuum damage

mechanics and the plasticity theory [1, 25, 53]. Convex

analysis techniques were used in the development of

the mathematical formulation based on other studies

[9, 12, 16, 36, 38, 46, 48, 62].

The aim of this study is to propose a mathematical

formulation based on thermodynamics to describe the

process of bone remodelling. The aim of the numerical

simulation is to model a simple trabecula geometry

subjected to cyclic loading. The experimental curve of

a traction test [8] is used to calibrate the model in the

damage phase. One fundamental purpose of the model

is to create a posterior part of the stress-strain diagram,

which can restore part of the original stiffness while

simulating a hypothetical remodelling process.

Following the hypothesis of several authors [23,

33, 35, 41, 54] the damage level was chosen to be

the mechanical stimulus for remodelling. Once one

material point reaches a critical damage, remodelling

begins, i.e., an optimisation starts the restoring process

of the original stiffness.

The dissipation potential describes how variables of

state evolve over time. As an analogy of the classi-

cal plasticity theory, which defines a yielding function

as a restriction for elastic stress, in this study the

remodelling functions related to bone formation and

degradation define a region of admissible generalised

thermodynamic forces. Such formalism generates a

nonlinear programming problem that is used to define

bone loss or bone formation at each point of a finite

element model. Hence, the material properties are

updated, characterizing an increase or decrease in bone

density.

1.1. Bone remodelling

Bones are responsible for the global structural stiff-

ness and strength of the body. They can grow, modify

and self-renew over the course of life through a process

called bone remodelling. One of the most important

characteristics of the bone is its self-adaptation capa-

bility, which consists in the change in microstructure

and material properties according to the mechanical

environment. Remodelling occurs throughout life and

it plays a fundamental role in the evolution of the bone

microstructure, and consequently, in the adaptation of

the structural properties and the repair of microdamage

[35].

According to Turner [5], there are three rules for

bone adaptation to mechanical stimuli. First, bone

adaptation is driven by dynamic – rather than static

– loading. Second, only a short duration of mechanical

loading is necessary to initiate an adaptive response.

Extending the duration of the loading has a diminish-

ing effect on further bone adaptation. The last rule is
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that bone cells accommodate to a customary mechani-

cal loading environment, making them less responsive

to routine loading signals.

Four distinct cells perform the local formation,

resorption and maintenance of the bone: osteoblasts,

osteoclasts, osteocytes, and bone lining cells [27]. The

coupling process is based on the separate actions of

bone-degrading cells (osteoclasts) and bone-forming

cells (osteoblasts) [29], and it begins on the surface

of the bone with osteoclasts isolating the area, while

adhering to the bone matrix and creating an irregular

board in the bone/osteoclast interface. After that, the

osteoclasts secrete an acid into the micro-environment

and dissolve the organic and inorganic bone matrix

[45].

After the degradation process, some osteoblasts

move to the same location and begin to form a new

tissue. During the formation stage some osteoblasts

remain “buried” in the bone matrix and turn into osteo-

cytes. When osteoblasts stop synthesizing bone, they

can either die through the apoptosis process or be

transformed into cells that cover the new bone sur-

face (lining cells). Those surface cells become highly

attached to the bone matrix through the network of

canaliculi [45]. This whole process is known as the

basic metabolic unit (BMU) [51].

In recent studies, it is considered that bone remod-

elling is not only a process of adaptation to external

loading, but also a consequence of microdamage

removal [4, 7, 41, 49, 50, 59].

2. Proposal of a constitutive model for bone

remodelling using internal scalar variables

A bone remodelling model should be capable of

describing the bone degradation and bone formation

processes in the presence of stimuli.

Some studies [6, 11, 15, 22, 55] present a mechanical

approach for bone remodelling using damage, plastic

deformation and bone repair as variables, but none of

them has considered bone degradation and bone for-

mation in the same model.

In this study, the elasto-plasticity theory presented

by [38, 39, 46, 47, 62], which uses the convex analysis

concepts of [26, 52] and of thermodynamics [24, 43],

is adapted to describe the law of bone remodelling,

which is characterised by the action of a dissipative

process (bone degradation) and of an energy gain (bone

formation).

The behaviour of the material is described by

the definition of two thermodynamic potentials, an

energy function (potential for forces) and a dissipation

function (potential for the irreversible phenomena).

The constitutive relations are directly derived from

the free energy (Helmholtz potential), and this free

energy function is obtained from the Clausius-Duhem

inequality.

The formulation used is based on generalised ther-

modynamics, in which internal scalar variables are

introduced on the basis of constitutive relations to

describe an inelastic process that occurs on materials

[10, 37]. The construction of the constitutive equation

was performed under the consideration that equations

can be solved by using some mathematical program-

ming algorithms [14]. The spatial discretization is

made by the Finite Element Method.

Parameters and curves of experimental tests from

the literature were used to calibrate the model; some

of the relevant studies were done by [8, 18, 32, 35,

40, 42].

2.1. State variables

The process of bone loss and repair, which is an

internal process that occurs in the bone structure, will

be completely defined for the isothermal case if the

deformation tensor ε (observable variable) and a set

of N internal scalar variables {α1, α2, α3, . . . , αN} are

known. Some of those variables, which are called

{αd}i, will be used to describe the stiffness degrada-

tion process (microcracking, bone loss), while the other

variables, called {αh}j , will be used to describe the

stiffness gain process (formation, bone gain).

The bulk density ρ is affected by the same mecha-

nisms of loss and repair, and is defined by:

ρ = ρ({αd}i, {αh}j) (1)

The current thermodynamic state can be described

by the Helmholtz free energy density ψ, which is a

proper, strictly convex function of both observable and

internal variables.

ψ = ψ(ε, {αd}i, {αh}j) (2)

where ε is the admissible strain tensor and

{αd}i, {αh}j are the internal variables used to describe

the loss and gain of stiffness, respectively.
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For the linear elastic material, the Helmholtz free

energy density ψ is defined by the following:

ψ(ε, {αd}i, {αh}j) =
1

2ρ
D({αd}i, {αh}j)ε · ε (3)

where D({αd}i, {αh}j) is a fourth order tensor called

elastic tensor, which incorporates the effect of the loss

and gain of stiffness, and the symbol (·) represents the

internal product.

The dual variables, stress σ and the set of thermo-

dynamic forces {Ad}i, {Ah}j associated with the sets

of internal variables {αd}i, {αh}j are derived from the

density free energy ψ according to the state laws as

follows:

σ(ε, αd, αh) = ρ(αd, αh)
∂ψ(ε, αd, αh)

∂ε

= D(αd, αh)ε (4)

Ad(ε, αd, αh) = −ρ(αd, αh)
∂ψ(ε, αd, αh)

∂αd

= −
1

2

∂D(αd, αh)

∂αd
ε · ε

−
1

2

1

ρ(αd, αh)

∂ρ(αd, αh)

∂αd
D(αd, αh)ε · ε (5)

Ah(ε, αd, αh) = ρ(αd, αh)
∂ψ(ε, αd, ah)

∂αh

=
1

2

∂D(αd, αh)

∂αh
ε · ε

+
1

2

1

ρ(αd, αh)

∂ρ(αd, αh)

∂αh
D(αd, αh)ε · ε (6)

To simplify, let i = 1, therefore αd, αh will repre-

sent {αd}i, {αh}j and also Ad, Ah to represent the sets

{Ad}i, {Ah}j .

The dual convex function or the conjugated function

ψC ofψ is obtained by the Legendre-Fenchel transform

as follows:

1

ρ(αd, αh)
ψC(σ, Ad, Ah)

= sup
ε,αd ,αh

[σ · ε − Adαd + Ahαh

−ρ(αd, αh)ψ(ε, αd, αh)] (7)

and may be used to define the state laws in an equivalent

way as follows:

ε =
1

ρ(αd, αh)

∂ψC(σ, Ad, Ah)

∂σ
(8)

αd = −
1

ρ(αd, αh)

∂ψC(σ, Ad, Ah)

∂Ad
(9)

αh =
1

ρ(αd, αh)

∂ψC(σ, Ad, Ah)

∂Ah
(10)

For the purpose of obtaining the strains �, αd and

αh, the sets of internal variables are used to describe

the loss and gain of stiffness.

2.2. Evolution laws

In order to complete the constitutive equations, the

evolution laws of the internal variables (loss and gain of

stiffness) must be added to the state laws. The thermo-

dynamics theory for irreversible processes provides a

guideline and some restrictions to obtain the evolution

laws, so that the second principle of thermodynam-

ics must be satisfied for any evolution of the material,

in other words, so that the dissipation is non-negative

[28].

Similarly to the plasticity theory, two models can

be constructed. The first model, on which this paper

is based, addresses an “associated” law for which the

normality rule is valid. The second model, with a

“non-associated” law, involves the construction of a

double potential function of two variables. The result is

biconvex and satisfies the generalised inequality from

Fenchel, whose proposal is found in the studies of

[13, 34].

In this study, the evolution laws of the internal vari-

ables are based on the framework of convex analysis

and more specifically on Theorems and Lemmas stated

by [62].

Let us consider the region of admissible thermody-

namic forces P , which is defined as follows:

P = {(σ, Ad, Ah)/f (σ, Ad, Ah) ≤ 0} (11)

However, the bone remodelling model proposed in

this study does not induce dissipation on the ten-

sion field, since the bone has elastic behaviour. Thus,

it is considered that the region of admissible ther-

modynamic forces PA defined in Equation 12 is the
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projection of region P in the area of thermodynamics

forces A = (Ad, Ah).

This way, PA is defined by the following:

PA = {(Ad, Ah)/f (σ, Ad, Ah) ≤ 0} (12)

which is assumed to be a closed, convex and nonempty

set.

Function f (σ, A) is called remodelling function,

and it is equivalent to the yield function that is used

in the plasticity theory.

There is a “dead zone” where even the degradation

or gain of elastic stiffness does not occur, and this zone

appears when f (σ, A) < 0; whereas the behaviour of

a loss and gain of stiffness appears when f (σ, A) = 0.

The situation of f (σ, A) > 0 is unacceptable.

Let χ be the support function of PA:

χ(α̇) = sup
A

∗∈PA

(A∗ · α̇) (13)

where α̇ is the rate for internal variables and, in the con-

text of elasto-plasticity, χ is the dissipation function,

and in this study it represents the energy dissipated or

introduced in the system. This function is conjugated

to the indicator function of PA, IndPA
, as defined by

the following:

IndPA
(A) =

{

0, if A ∈ PA

∞, if A /∈ PA,
(14)

and it is: convex, positively homogeneous, lower semi-

continuous. Function χ must satisfy the inequality

(χ(α̇) ≤ 0) and must contain the origin, being equal

to zero in it, χ(0) = 0. Therefore, it follows that:

α̇ ∈ ∂IndPA
↔ A ∈ ∂χ(α̇) (15)

Equation 15 allows the establishment of two equiv-

alent forms of the evolution law. It is necessary to

complete the theory and to write the evolution law

using a Lagrange multiplier λ; thus, it follows that:

α̇ ∈ ∂IndPA
↔ ∃λ ≥ 0 ∀ α̇ ∈ ∂f (σ, A) (16)

Equation 16 represents a generalisation of the nor-

mality law.

The definition of the convex region of admissible

thermodynamic forces must be made based on some

experimental parameters; therefore, the boundary of

the region that limits the thermodynamic forces val-

ues (or a composition of them) determines the strength

change (loss or gain of strength).

For optimum solution of the nonlinear programming

problem the Karush-Kuhn-Tucker conditions must be

satisfied. They can be written as follows:

λ ≥ 0, f ≤ 0, λ̇f = 0 (17)

2.3. Incremental formulation for

damage-remodelling constitutive equations

For the implementation of the proposed formulation,

it is necessary to write the continuous equations in a

discrete form.

Consider the time interval [0, T ], which defines

a damage-repair process. This time interval can be

divided into N sub-intervals, with size �T . The size

of the time sub-intervals doesn’t need to be the same.

0 = t0 < t1 < t2 < · · · < tn−1 < tn < tn+1 <

. . . < tN−2 < tN−1 < tN = T (18)

Let us assume that the value of any variable β in

time tn is β(tn) = βn and that �β = βn − βn−1. The

solution of the problem on interval [0, T ] is given by

solving N additional problems in finite iterative time

steps.

This approach is considered to be an implicit solu-

tion method that guarantees the convergence and

stability of the solution. The following expressions

were written after applying Euler’s regressive approx-

imations:

εt+�t =
1

ρ(αd
t , α

h
t )

∂ψC(σt+�t, A
d
t+�t, A

h
t+�t)

∂σ
(19)

αd
t+�t = αd

t + �αd (20)

αh
t+�t = αh

t + �αh (21)

σt+�t = σt + �σ (22)

Ad
t+�t = Ad

t + �Ad (23)

Ah
t+�t = Ah

t + �Ah (24)

In this study, the formulation proposed by [38] for

the elasto-plastic model is adapted to a constitutive

damage-remodelling model. Potential jC, in incremen-
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tal form is defined by the following:

jC(�σ, �Ad, �Ah)

=
ψC(σ + �σ, Ad + �Ad, Ah + �Ah)

ρ(αd + �αd, αh + �αh)

−�σ · ∇σ

ψC(σ, Ad, Ah)

ρ(αd, αh)

−�Ad · ∇Ad

ψC(σ, Ad, Ah)

ρ(αd, αh)

−�Ah · ∇Ah

ψC(σ, Ad, Ah)

ρ(αd, αh)

−
ψC(σ, Ad, Ah)

ρ(αd, αh)
(25)

for which �σ, �Ad, �Ah are, respectively, the incre-

ments of stress, thermodynamic force of loss of

stiffness and thermodynamic force of gain of stiffness.

The following is the conjugate:

j(�ε, �αd, �αh)

= sup
�σ,�Ad ,�Ah

{�σ · �ε − �Ad�αd

+�Ah�αh − jC(�σ, �Ad, �Ah)} (26)

which can be condensed as follows:

(�σ, �Ad, �Ah) = j(�ε, �αd, �αh) ⇔

(�ε, �αd, �αh) = jC(�σ, �Ad, �Ah) (27)

The Equation defined on 26 is satisfied at the end

of each time step. The peculiarity of this formulation

is that the solution takes the form of a minimisation

process of a convex function in a convex set; therefore,

it is a convex optimisation problem.

The increments of tension and thermodynamic

forces �σ, �Ad, �Ah could be determined from

increments of the deformation and internal variables

��, �αd, �αh by constitutive relation 26.

According to [52], Equation 28 expresses the neces-

sary and sufficient condition that the generalised stress

(�σ, �Ad, �Ah) is found to be the solution of the

problems.

(�αd, �αh) ∈ ∂IndPA
(Ad

t+�t, A
h
t+�t) (28)

3. Proposed formulation for a one-dimensional

case

The proposed formulation for the one-dimensional

case and the construction of the constitutive equa-

tions are based on the choice of internal variables and

thermodynamic potentials. One of the most important

characteristics of the presented potentials is the con-

vexity, but according to [31], in some cases convexity

is not implicated in the whole domain, which can be

solved by imposing admissible domain restrictions on

the formulation.

3.1. One-dimensional formulation with internal

scalar variables of the gain and loss of

stiffness

The remodelling function for the one-dimensional

case is defined by a function of dual variables. There-

fore, the remodelling function considers the stresses σ

and the thermodynamic forces (Ad, Ah) and may be

written as f = f (σ, Ad, Ah).

According to the remodelling function, the admissi-

ble region is defined by the following:

P = {(σ, Ad, Ah)/f (σ, Ad, Ah) ≤ 0} (29)

One of the assumptions of the proposed model is that

there is no dissipation in the tension field. This way,

the admissible region PA becomes a projection of the

P region in the thermodynamic force domain and is

defined as follows:

PA = {(Ad, Ah)/f (σ, Ad, Ah) ≤ 0} (30)

3.1.1. Stage of material loss of stiffness

In the stage of loss of stiffness, damage effects

appear in the material, therefore, αd /= 0 and αh = 0.

The diagram in Fig. 1 presents the behaviour of the

material, which suffers a loss of stiffness. The dark-

ened areas shown in Fig. 1 represent thermodynamic

forces of loss of stiffness Ad and of gain of stiffness Ah.

The effective tension of the material is defined by

σ̃x = E0�x.

3.1.2. Stage of material gain of stiffness

In the stage of gain of stiffness, there is material

reparation, therefore: αd = αd
crit and αh /= 0. The crit-

ical damage, αd
crit, was adopted as 0,67. The diagram

that shows the behaviour of the material, which was

previously damaged and is gaining stiffness, is shown
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Fig. 1. Stress-strain diagram for the material at the stage of loss of

stiffness.

Fig. 2. Stress-strain diagram for the material at the stage of gain of

stiffness.

in Fig. 2. The darkened area in Fig. 2 represents the

thermodynamic forces of loss of stiffness Ad and of

gain of stiffness Ah.

The effective stress of material is defined as σ̃x =
Eh

0�x, where Eh
0 = E0(1 − αd

crit) is Young’s modulus

of the bone in the moment it starts the gain of stiffness,

in other words, the variable of loss of stiffness reaches

the maximum value.

Figure 3 shows the admissible region PA as a projec-

tion of the admissible region P in the thermodynamic

forces space and also the sub-differential of the indi-

cator function of region PA. Region PA is the region

of admissible thermodynamic forces.

For the one-dimensional problem, the formulation

can be written considering the following:

Fig. 3. Generalized stress diagram indicating the thermodynami-

cally admissible regions for the problem.

D(αd, ah) ≡ E0(1 − αd)nd (1 + αh)nh (31)

ε ≡ εx (32)

where E0 is Young’s modulus for undamaged materi-

als, nd is the exponent of damage, nh is the exponent

of recuperation and εx ∈ R is the longitudinal defor-

mation.

In a similar study [11], the variables of loss and gain

were defined with a unitary exponent. That consid-

eration, associated with the results described in [42],

justified the choice of nd = nh = 1. As a result, it fol-

lows that:

D(αd, αh) = E0(1 − αd)(1 + αh) (33)

ψ(εx, α
d, αh) =

1

2ρ
E0(1 − αd)(1 + αh)ε2

x (34)

σx(εx, α
d, αh) = E0(1 − αd)(1 + αh)εx (35)

Ad(εx, α
d, αh) =

1

2
E0(1 + αh)ε2

x (36)

Ah(εx, α
d, αh) =

1

2
E0(1 − αd)ε2

x (37)

In order to define the dissipation potential, it is

necessary to determine the complementary potential

(Gibbs free energy density) as a function of dual vari-

ables. Thus, substituting Equation 34 to Equation 7,

one can obtain the complementary potential:

1

ρ
ψC(σ, Ad, Ah) = sup

ε,αdαh

[σxεx − Adαd + Ahαh

−
1

2ρ
E0(1 − αd)(1 + αh)ε2

x] (38)
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Alternatively, as a function of dual variables, for a

time t, it follows that:

1

ρ
ψC(σ, Ad, Ah)

= sup
ε,αd ,αh

[

3
3
√

2E0
(σ2

xA
dAh)

1
3 − Ad − Ah

]

(39)

Additionally, for a time t + �t, that becomes:

1

ρ
ψC(σ + �σ, Ad + �Ad, Ah + �Ah)

= sup
ε+�ε,αd+�αd ,αh+�αh

{

3
3
√

2E0
[(σx+�σx)2(Ad +�Ad)(Ah+�Ah)]

1
3

−(Ad + �Ad) − (Ah + �Ah)
}

(40)

According to Equation 25 and considering that from

now on potential ψC is the free energy per density, the

dissipation potential in incremental form is defined by

the following:

jC(�σ, �Ad, �Ah)

= ψC(σ + �σ, Ad + �Ad, Ah + �Ah)

−�σ · ∇σψC(σ, Ad, Ah)

−�Ad · ∇Ad ψC(σ, Ad, Ah)

−�Ah · ∇AhψC(σ, Ad, Ah)

−ψC(σ, Ad, Ah) (41)

Applying the Convex Analysis definitions [26],

potential jC, defined as a function of generalised ther-

modynamic forces (dual variables), is established by

the following:

jC(�σ, �Ad, �Ah)

=
3

3
√

2E0
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1
3 − Ad − Ah (42)

The increments of internal variables are written as

follows:

�αd = ∇�Ad jC(�σ, �Ad, �Ah) (43)

�αh = ∇�AhjC(�σ, �Ad, �Ah) (44)

For the one-dimensional case, it becomes the

following:

�αd

=
3

3
√

2E0

[
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2
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1
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(45)

�αh
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3

3
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2E0
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2
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3
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1
3 (Ah)−

2
3

]

(46)

The nonlinear programming problem can be

formulated according to function f . If the remod-

elling function is negative and different from zero,

f (σ, Ad, Ah) < 0, then αd = αd = 0 and no optimisa-

tion needs to be performed. If f (σ, Ad, Ah) = 0 then

the internal variables (restrictions) must be different

from zero, αd > 0 and αh > 0, the values of αd and αh

are found by optimisation. The objective function f is

never greater than zero.

3.2. One-dimensional example of a bar that

represents the bone sample

The proposed example represents one bar (an exper-

imental sample of a bone trabecula), shown in Fig. 4.

This example is comprised by two one-dimensional

elements, as shown in Fig. 5, which are under the influ-

ence of a growing load cycle. This dynamic process can

represent the rehabilitation of an athlete, starting with

light exercises up to a heavy physical activity. In this

context, one load cycle represents a day of exercises.
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Fig. 4. (A) Bone trabecula formed by two elements, (B) width and thickness represented by letters a and b.

Fig. 5. Definition of the elements and nodes for the one-dimensional

geometry of a trabecula model.

For the numerical solution of the problem, the

REMOLD 1D program was developed and imple-

mented using the Galerkin spatial discretization and

rigidity matrices. This program solves the global equi-

librium of forces through the Quasi-Newton Method

and the constitutive problem (the evolution of internal

variables) through the Newton-Raphson Method.

The compiler used was GFortran 4.1 (GNU Fortran

compiler) and the programming language of the code

is Fortran 90. The Gnuplot 4.2 program was used for

the visualisation of the results.

The remodelling function used for the one-

dimensional example has the form:

f (σ, Ad, Ah) = σx + (Ad − Ad
0) + (Ah − Ah

0) ≤ 0

(47)

Equation 47 is one adaptation of the Drucker-Prager

model for the uniaxial stress state, as established in

study [30].

Two simulations were performed: first, both ele-

ments of the bar were considered initially with the

same rigidity, and then, there was one element with ini-

tial damage. The results of the simulations described

above were compared with the experimental results

of [8].

Table 1 shows the data for both simulation schemes

(without initial damage and with initial damage in one

element).The numbers of the elements and the nodes of

the model are drawn in Fig. 5. Bones are anisotropic

and heterogeneous structures, and the differences in

Table 1

Data of the Model

Data Element 1 Element 2

Length L (m) 0,015 0,015

Height b (m) 0,01 0,01

Thickness a (m) 0,01 0,01

Young’s modulus E (MPa) 450 450

Maximum of αd = αd
crit 0,67 0,67

Maximum of αh = αh
crit 1,0 1,0

Thermodynamic force Ad
0 (Pa) 969,61 969,61

Thermodynamic force Ah
0 (Pa) 10000,0 10000,0

the level of damage in each element play an important

role in distinct stages of the remodelling process.

The total number of load cycles is 1200; each load

cycle has only one load step and the final load applied in

the bar is 350 N. The loads start from zero and increase

in equal increments for each load cycle up to day 1200.

4. Results

4.1. Initially undamaged material

Figure 6 illustrates the stress-strain diagrams for

both elements that are considered to be initially undam-

aged. Those results were obtained for 1200 load cycles

in the REMOLD 1D program. The load of each load

cycle grows over time; therefore the load of a subse-

quent load cycle is always greater than the previous

cycle. There is only one load step in each load cycle.

The evolution of the internal scalar variables of bone

remodelling, αd and αh, can be found in Fig. 7. The

results are shown up to the 1000 load cycle. Figure 8

shows the evolution of Young’s modulus.

4.2. Initially damaged material for element 2

In this case, an initial value of 10% for αd

(the loss of stiffness variable) of element 2 was
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Fig. 6. Stress-strain diagrams for element 1 (A) and element 2 (B).

Fig. 7. Evolution of internal variables (αd ) and (αh) for element 1 (A) and element 2 (B) along the load cycles.

Fig. 8. Evolution of Young’s modulus for element 1 (A) and element 2 (B) along the load cycles.

established. The internal variable αd for element

1 is zero at the beginning of the simulation. For

this example, the program processed 1200 load

cycles.

The results obtained for the stress-strain diagram

are illustrated in Fig. 9. Figures 10 and 11 show the

evolution of internal variables and Young’s modulus,

respectively.
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5. Discussion

5.1. Initially undamaged material

This example shows how the remodelling process in

the trabecula is processed. After a damage or loss of

stiffness process, the biological system acts in a way

to restore the initial stiffness.

Figure 6 shows that the obtained result was very

close to the result described by [8] in terms of the ini-

tial elasticity (linear) and loss of stiffness (non-linear).

For deformation levels greater than 2.0%, the stage of

gain of stiffness begins. In this stage there are no experi-

mental results for comparison yet. Due to this scenario,

the authors adopted some parameters that needed to be

calibrated according to experimental results regarding

bone formation.

In Fig. 7, when the loss of stiffness variable αd

reaches its maximum value, 0.67, the damage is main-

tained and the gain process begins from the damaged

material.

Near load cycle 1000 (day 1000), the value of the

gain of stiffness variable αh overcomes the value of

the loss of stiffness variable, but this scenario does not

indicate that the material reaches its initial Young’s

modulus value, as it is shown in Fig. 8.

Figure 8 shows that the loss of stiffness occurs until

approximately day 100, when the gain of stiffness pro-

cess begins, at a lower rate.

The stage of loss of stiffness may represent the activ-

ity of the osteoclasts (removing bone matrix) or the

mechanical damage. The stage of gain of stiffness rep-

resents the activity of the osteoblasts (forming new

bone). The example shows the evolution of the elastic-

ity modulus in one cycle of bone remodelling for the

trabecula.

5.2. Initially damaged material for element 2

The purpose of this example is to analyse how

different parts of the same trabecula model behave

with different initial conditions. While in the previ-

ous example both elements had the same remodelling

results, in this example element 2 starts the stage of

gain of stiffness before element 1.

The stress × strain diagram of both elements (Fig. 9)

is similar to the results of [8]; element 2 presents

lower stress levels compared to element 1 in the

stage of loss of stiffness. The stage of gain of stiff-

ness begins from a lower deformation level (between

1.5% and 2.0%) in element 2 and finishes with a

higher level of stress. This scenario was expected

because the damage was set to begin in element 2

first.

By the end of the remodelling process, at load cycle

750 (Fig. 10), the value of αh for element 2 is higher

than for element 1. This can be explained by the

initial conditions, element 2 reaches maximum dam-

age level before element 1, so it starts the stage of

gain of stiffness before element 1 and grows before

too.

The Young’s modulus of element 2 begins with a

smaller value compared to element 1. Afterwards, it

decreases in the stage of loss of stiffness (up to day

100) and increases in the stage of gain of stiffness,

as it is expected and shown in Fig. 11. The remod-

elling process occurs before in the initially damaged

element.

Fig. 9. Results of stress-strain diagrams for element 1 (A) and element 2 (B) - initial damage.
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Fig. 10. Evolution of internal variables (αd ) and (αh) for element 1 (A) and for element 2 (B) along the load cycles – initial damage.

Fig. 11. Evolution of Young’s modulus for element 1 (A) and element 2 (B) along the load cycles - initial damage.

6. Conclusion

This study presents a consistent thermodynamic for-

malism for bone remodelling, which may allow further

contributions, such as the incorporation of chemical

reactions, mass transference, anisotropic damage and

other significant characteristics of this complex nat-

ural phenomenon. The constitutive equations derived

from state equations are more reliable compared to the

empiric approaches, because the former automatically

satisfy the thermodynamic restrictions.

This framework also allows the reproduction of

other constitutive model formulations that are found

in the literature, depending on the appropriate choice

of internal variables and on the kind of constitutive

potential.

Nowadays, there is little equipment that can have

access to in vivo data that could be used to estimate

bone density history during remodelling. However, a

mechanical test can give some insights as to whether

the model is able to respond to a varying time load case

or not, especially in the damage zone. The presented

model was calibrated for a traction experiment of a

bone specimen.

The proposed theory was applied to a one-

dimensional finite element example, and two situations

(an undamaged material and an initially damaged

material) were compared to the experiment curve.

Focusing the comparison only on the part of the loss

of stiffness (before load cycle 100) the presented stress

× strain curves showed accordance to the experiment

results.

Figures 7 and 8, respectively, show the evolution of

the internal variables and Young’s Modulus concern-

ing load cycles in the initially undamaged simulation,

respectively. It can be seen that when αh = αd
crit the

elasticity modulus does not reach the original value.

This can be explained by the choice of the Helmholtz



F.V. Tormena et al. / A bone remodelling model based on generalised thermodynamic potentials 187

free energy potential and subsequent derivation of the

thermodynamic forces. A different formulation that

will respond equally during the stages of loss and gain

of stiffness is shown below:

ψ(εx, α
d, αh) =

1

2ρ
E0(1 − αd + αh)ε2

x (48)

The aim of the simulation was achieved with the

application of the REMOLD 1D program. Neverthe-

less, further developments can be studied such as other

propositions for the Helmholtz free energy potentials

and the extension to two and three-dimensional cases.

Next steps for the research should also include differ-

ent failure criteria for bone [61] and the differences

between the tensile and compressive strengths of bone

[60].
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