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Abstract

Background: Cancer has remarkable complexity at the molecular level, with multiple genes, proteins, pathways

and regulatory interconnections being affected. We introduce a systems biology approach to study cancer that

formally integrates the available genetic, transcriptomic, epigenetic and molecular knowledge on cancer biology

and, as a proof of concept, we apply it to colorectal cancer.

Results: We first classified all the genes in the human genome into cancer-associated and non-cancer-associated

genes based on extensive literature mining. We then selected a set of functional attributes proven to be highly

relevant to cancer biology that includes protein kinases, secreted proteins, transcription factors, post-translational

modifications of proteins, DNA methylation and tissue specificity. These cancer-associated genes were used to

extract ‘common cancer fingerprints’ through these molecular attributes, and a Boolean logic was implemented in

such a way that both the expression data and functional attributes could be rationally integrated, allowing for the

generation of a guilt-by-association algorithm to identify novel cancer-associated genes. Finally, these candidate

genes are interlaced with the known cancer-related genes in a network analysis aimed at identifying highly

conserved gene interactions that impact cancer outcome. We demonstrate the effectiveness of this approach using

colorectal cancer as a test case and identify several novel candidate genes that are classified according to their

functional attributes. These genes include the following: 1) secreted proteins as potential biomarkers for the early

detection of colorectal cancer (FXYD1, GUCA2B, REG3A); 2) kinases as potential drug candidates to prevent tumor

growth (CDC42BPB, EPHB3, TRPM6); and 3) potential oncogenic transcription factors (CDK8, MEF2C, ZIC2).

Conclusion: We argue that this is a holistic approach that faithfully mimics cancer characteristics, efficiently

predicts novel cancer-associated genes and has universal applicability to the study and advancement of cancer

research.

Background
Cancer is a complex genetic disease that exhibits

remarkable complexity at the molecular level with mul-

tiple genes, proteins and pathways and regulatory inter-

connections being affected. Treating cancer is equally

complex and depends on a number of factors, including

environmental factors, early detection, chemotherapy

and surgery. Cancer is being recognized as a systems

biology disease [1,2], as illustrated by multiple studies

that include molecular data integration and network and

pathway analyses in a genome-wide fashion. Such stu-

dies have advanced cancer research by providing a glo-

bal view of cancer biology as molecular circuitry rather

than the dysregulation of a single gene or pathway. For

instance, reverse-engineering of gene networks derived

from expression profiles was used to study prostate can-

cer [3], from which the androgen-receptor (AR)

emerged as the top candidate marker to detect the

aggressiveness of prostate cancers. Similarly, sub-

networks were proposed as potential markers rather

than individual genes to distinguish metastatic from

non-metastatic tumors in a breast cancer study [4]. The

authors in this study argue that sub-network markers
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are more reproducible than individual marker genes

selected without network information and that they

achieve higher accuracy in the classification of meta-

static versus non-metastatic tumor signaling. Using gen-

ome-wide dysregulated interaction data in B-cell

lymphomas, novel oncogenes have been predicted

in-silico [5]. Finally, taking a signaling-pathway approach,

a map of a human cancer signaling network was built [6]

by integrating cancer signaling pathways with cancer-

associated, genetically and epigenetically altered genes.

Gene expression profiling has been widely used to

investigate the molecular circuitry of cancer. In particu-

lar, DNA microarrays have been used in almost all of

the main cancers and promise to change the way cancer

is diagnosed, classified and treated [1]. However, expres-

sion analyses often result in hundreds of outliers, or dif-

ferentially expressed genes between normal and cancer

cells or across time points [2]. Owing to the large num-

ber of candidate genes, several different hypotheses can

be generated to explain the variation in the expression

patterns for a given study. In addition, the preferential

expressions of some tissue-specific genes present addi-

tional challenges in expression data analyses. Neverthe-

less, recent systems approaches have attempted to

prioritize differentially expressed genes by overlaying

expression data with molecular data, such as interaction

data [3], metabolic data [4] and phenotypic data [5].

Human malignancies are not just confined to genes

and gene products, but also include epigenetic modifica-

tions such as DNA methylation and chromosomal aber-

rations. However, in order to effectively capture the

properties that emerge in a complex disease, we need

analytical methods that provide a robust framework to

formally integrate prior knowledge of the biological

attributes with the experimental data. The simplest

heuristic will search for novel genes with a profile, in

terms of differential expression and/or network connec-

tivity, similar to those for which an association to dis-

ease has been well established (see, for instance, the

approaches of [7,8]).

Boolean logic has been found to be optimal for such

tasks. Within the context of cancer, Mukherjee and

Speed [9] show how a series of biological attributes

including ligands, receptors and cytosolic proteins, can

be included in the network inference. More recently,

Mukherjee and co-workers [10] introduced an approach

based on sparse Boolean functions and applied it to the

responsiveness of breast cancer cell lines to an anti-

cancer agent. In addition, large scale literature-based

Boolean models have been used to study apoptosis path-

ways as well as pathways connected with them.

In this study, we propose a systems biology approach

to predict disease-associated genes that are either not

previously reported (novel) or poorly characterized and

using colorectal cancer as a case study. To achieve this

goal, we first implemented a Boolean logic schema

derived from cancer-associated genes and developed a

guilt-by-association (GBA) algorithm, which is subse-

quently applied in a genome-wide fashion. Although

gene expression data are central to this approach, other

biologically relevant functional attributes, such as tissue

specificity, are treated as equally important in the Boo-

lean logic informing the GBA algorithm. Finally, novel

cancer-associated genes are interlaced with the known

cancer-related genes in a weighted network circuitry

aimed at identifying highly conserved gene interactions

that impact cancer outcome.

Results and Discussion
Overview of the systems biology approach

Figure 1 shows the schema of the proposed analytical

approach. The first phase deals with the analysis of gene

expression data to obtain a list of differentially expressed

and condition specific genes. Conceptually, differentially

expression differs from condition specificity in that the

former requires the postulation of a contrast of interest

while the latter enriches for genes that are preferentially

expressed in one of the (potentially many) experimental

conditions being considered. Nevertheless, the expecta-

tion is for a substantial overlap in the genes identified

between either criterion. In the second phase, public

databases are mined to compile a list of cancer-asso-

ciated genes, non cancer-associated genes and functional

attributes that are of relevance in the context of cancer.

We considered a total of six functional attributes as fol-

lows: tissue specificity (TS), transcription factors (TF),

post-translational modifications (PTM), kinases (KIN),

secreted proteins (SEC) and CpG island methylation

(MET)(see Additional File 1 for rationale behind choos-

ing these attributes). Table 1 summarizes the general

characteristics of the functional attributes with a few

prototypic examples of representative genes. Additional

File 2 provides the list of 749 cancer-associated genes

that we compiled within each attribute. These features

were selected based also on the fact that there is a

strong functional interconnection among them and

therefore we see the overlapping of these genes across

attributes.

The resulting set of variables (differentially expression,

condition specificity, and the six functional attributed)

are each binarized and used in a Boolean logic frame-

work. The Boolean logic is then applied to cancer-

associated genes to develop a GBA algorithm. When

applied to non cancer-associated genes, the GBA algo-

rithm preferentially ranks those genes whose behavior

across all variables most mimics that of cancer-asso-

ciated genes. Finally, in order to gain a global under-

standing of the novel candidate genes, we generate a
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series of gene co-expression networks. The resulting

networks are surveyed with a focus on the interacting

partners of candidate genes and within the context of

the original functional attributes.

Differentially expressed and condition specific genes

We explored three measures of differential expression

(DE1 = Carcinoma - Normal; DE2 = Carcinoma - Ade-

noma; and DE3 = Carcinoma - Inflammation) and iden-

tified 444, 658 and 179 differentially expressed genes for

DE1, DE2, and DE3, respectively. We observed several

overlaps among the three differentially expressed gene

categories, and 15 genes were found to be differentially

expressed in all three categories (Figure 2). Among

them, we highlight CLCA4, CRNDE, DEFA5, DUOXA2,

GCG, KLK10, and UGT2A3. In particular, CRNDE (col-

orectal neoplasia differentially expressed) was the most

differentially expressed (up-regulated) gene with a 16-

fold change in expression. CRNDE gene is localized to

chromosome 16 (16q12.2) and is poorly characterized

with no functional information on its role in colorectal

cancer except its differential expression from the EST

data (UniGene Id: 167645). Another differentially

expressed gene KLK10 is a member of the kallikrein

gene family which is well documented biomarker for the

detection of colon, ovarian and pancreatic cancers

[8,11].

In addition, we identified 83, 61, 23, and 48 condition

specific genes for Normal, Adenoma, Carcinoma and

Inflammation, respectively. Among these genes, 23 were

found to be specific to carcinoma (CS3) (see Additional

File 1 Table S1). Notably, CCDC3, EREG, IL6, PAPPA,

SERPINE1, TFPI2 and THBS2 are a few examples of the

condition specific genes that appeared as top candidates.

Figure 1 The schema for the identification of novel genes associated with complex diseases. The expression profiles from the cancer data

are analyzed to predict differentially expressed and condition-specific genes. The functional attributes over-represented in cancer are selected

and representative datasets from public resources mined. The common cancer fingerprints from cancer-associated genes are processed through

Boolean logic to develop a guilt-by-association classifier which, applied to non-cancer-associated genes, predicts novel candidate cancer-

associated genes. Finally, novel candidate genes are further analyzed using network theory approaches.
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In particular, CCDC3 (coiled-coil domain containing

3) and TFPI2 (tissue factor pathway inhibitor 2) genes

were the most carcinoma-specific genes.TFPI2 has been

proposed to be a tumor suppressor gene as it’s fre-

quently methylated in colorectal cancer [7]. The CCDC3

encoded protein is predicted to be localized to extracel-

lular matrix [12] with no previous association with col-

orectal cancer. Higher IL-6 levels might be prognostic

indicator in colorectal cancer as they are associated with

increasing tumor stages and tumor size, with metastasis

and decreased survival [13].

Expression-profiling analyses often result in hundreds

of candidate genes. The challenge is exacerbated when

the expression data are gathered at different time points

or in multiple conditions, as in the current study with a

number of differentially expressed and condition specific

genes. Nevertheless, it is a common practice to stop the

in-silico expression analysis with the list of outliers and

select one or more genes for experimental characteriza-

tion based on the underlying biology. Often, expression

data analyses are accompanied by downstream bioinfor-

matics investigations such as Gene Ontology (GO)

Table 1 Overview of the genetic, epigenetic and molecular information used in this study

Functional
Attribute

Role in Cancer Potential application Examples Data source Reference

Cancer
associated
genes

Genes with at least 2 mutations in
causally implicated in cancer.
Includes oncogenes, tumor
suppressor genes

Potential drug targets and
diagnostic or prognostic
markers

Oncogenes: BCL2, c-Jun, ERG,
ERBB2, RAS, c-MYC, c-SRC
Tumor Suppressor Genes:
RB1, P53, APC, BRCA-1,
BRCA-2

http://www.
sanger.ac.uk/
genetics/CGP/
Census/
http://hprd.org/
Reviews:
(Futreal et al,
2004; Hahn et al,
2002; Mitelman,
2000; Vogelstein
et al, 2004)

NA

Non-cancer
associated
genes

There is no previous report of any
causal mutation.

If cancer association is
established, these genes are
either potential drug
targets and diagnostic or
prognostic markers

AMN, B3GNTL1, CDC42BPB
S100A9, TRPM6, VNN1, ZIC2

NCBI - Human
Genome
http://www.ncbi.
nlm.nih.gov/
projects/genome/
guide/human/

NA

Kinases More than 30% of cancer related
genes are kinases and the most
common domain that is encoded
by cancer genes is the protein
kinase domain

Drug targets through
inhibitors

c-Src, c-Abl, RAS, mitogen activated
protein (MAP) kinase,
phosphotidylinositol-3-kinase
(PI3K), AKT, and the epidermal
growth factor receptor (EGFR)

Human Kinome
Consortium
http://kinase.com/
human/kinome/

[15]
[17,51]

Excretory -
Secretory
proteins

Malignant tumors secrete
increased levels of ES proteins

non-invasive diagnostic or
prognostic markers for early
detection

alpha-fetoprotein, CD44, kallikrein
6, kallikrein 10, MIC-1

Secreted Protein
Database (SPD)
http://spd.cbi.pku.
edu.cn/

[52,53]
[54]
[55]

Transcription
factors

Overactivity of TFs at different
stages of cancer is well
documented and novel treatment
strategies have been suggested
for targeted inhibition of
oncogenic TFs

Alternative therapeutic
strategy, potential drug
targets

C-MYB, NF-kappaB, AP-1, STAT and
ETS transcription factors

Genomatix
http://www.
genomatix.de/

[15,56]
[57]
[58]

DNA
Methylation

Methylation patterns are altered in
cancer cells as shown in
hypomethylation of oncogenes
and hypermethylation of tumor
suppressor resulting in gene
silencing or gene inactivation

CpG island methylation
could be used as a
biomarker of malignant
cells

hMLH1, BRCA1, MGMT, p16(INK4a),
p14(ARF), p15(INK4b, DAPK, APAF-1

Human Colon
Methylome from
[29]

[27,59]
[28]

[60,61]

Post-
translational
modifications

Key proteins driving oncogenesis,
Can undergo PTM Although
Phosphoryltion is partially covered
in kinases section, other PTMs
such as glycosylation and
ubiquitination reported to play a
role in malignancies, are included
separate functional gene
attributes.

BRCA1, EGFR, c-Src, c-Abl, RAS, TP53 HPRD http://hprd.
org/

[18]
Burger

and Seth,
2004)
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enrichment, pathway mapping and network reconstruc-

tion. It is also believed that expression data are not suf-

ficient to accurately reconstruct biological networks [14]

and that the incorporation of additional biological data

is required to constrain the number of plausible hypoth-

eses. We approached this challenge by first identifying

the most relevant functional attributes that has been

well documented in cancer and then extracting this

information to build a Boolean logic.

Boolean logic to develop a guilt-by-association (GBA)

algorithm

We developed a model to infer a gene’s association to

cancer. The model accommodates biologically motivated

semantics into a Boolean logic schema, but is of a prob-

abilistic nature, allowing it to efficiently and effectively

accommodate noise in biological concepts and data

when ranking candidate genes (see Methods).

We trained the model from data based on the beha-

vior of the cancer-associated genes across 13 binarized

Boolean variables: the three measures of differential

expression (whether or not a gene was differentially

expressed in each of the three contrasts), the four mea-

sures of condition specificity (similarly binarized), and

the six cancer-biology attributes as previously described.

At least one of the 13 variables was assigned to 530 of

the 749 cancer-associated genes. These were used to

construct a probabilistic Boolean truth table (Additional

File 3) with 70 combinations (out of a total of 213 =

8192 possible combinations).

The trained model is efficient in weighing each attri-

bute based on firmly established principles in cancer

biology. For instance, more than 30% of the cancer-

associated genes encode protein kinases [15] and this

information is implemented ‘as is’. In addition the pro-

portion of kinases that undergo a PTM is also stored in

the model and applied to non cancer-associated genes

to capture similar kinases that harbor PTM but are

strongly controlled by differential expression or condi-

tion specific properties in a given expression study.

Furthermore, the flexibility of this method lies in its

ability to simultaneously address different aspects of

cancer. For example, the model predicts novel biomar-

kers by analyzing the genome-wide expression profiles

and exclusively selecting secreted proteins as functional

attributes. This will identify differentially expressed or

condition specific secreted proteins expressed in blood/

serum/urine.

Next, we sought to obtain an overview of the represen-

tation of the 13 binarized Boolean variables across differ-

ent gene classes which might provide additional insights

into features of cancer genes in comparison to other

genes. We selected the following four categories of genes:

i. All the genes included in the analyses (n = 21 892); ii.

The cancer-associated genes (n = 749), iii. The candidate

genes processed by the GBA algorithm (n = 1017); and

iv. The top candidate genes (n = 134, 13.2% of the genes

processed by the GBA). Figure 3 shows the distribution

of the four gene categories across the 13 variables. We

observed enrichment for PTM and secreted proteins in

Figure 2 The classification of differentially expressed genes resulting from the expression data analysis. The top 15 DE genes in all of

the three categories are tabulated with their expression values in normal, adenoma, carcinoma and inflammation.
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both cancer-associated and top candidate genes. For

instance, 40% of cancer-associated genes encoding pro-

tein had a PTM and 98% among the top candidate genes.

Similarly, 8% and 47% of genes encoded for secreted pro-

teins in cancer-associated genes and top candidate genes

respectively. These results lead us to inspect the coverage

for PTM and secreted protein both in cancer-associated

genes as well as other genes as they contributed signifi-

cantly in ranking the candidate genes. Additional File 1

Table S2 Shows exclusive and combined distribution of

secreted proteins and PTM. Using chi-square test of

independence, we examined the association of these two

functional attributes and obtained a significant p-value of

3.713 E-06. This indicates that the association of PTM

and secreted proteins either in combination or individu-

ally in cancer associated genes are significantly different

compared to other genes. Finally, we note that the Boo-

lean logic that gives rise to the GBA algorithm operates

by exploiting the combinatorial nature of the 13 vari-

ables. Although, PTM are over-represented in both can-

cer-associated genes and hence candidate genes, their

inclusion as one among five attributes was necessary as

aberrant activation of signaling pathways drives cancer

progression. For example, phosphorylation [16,17], glyco-

sylation [18] and ubiquitination [19] have been documen-

ted to play key role in cancer progression.

Computational validation of the analytical approach

We designed a two-step approach to ascertain the infer-

ential validity of the proposed GBA. In the first step, we

processed all genes through the Boolean logic using the

previously developed probabilistic truth table. We found

that known cancer genes received an average Boolean

score of 0.219 (range: 0.002 to 0.687), compared to an

average score of 0.081 (range: 0.000 to 0.589) for the

other genes. This indicates that our Boolean logic yields

a score to cancer genes that is on average 2.71-fold

higher than that of candidate genes. This odds ratio was

used as the threshold to be applied for the calibration in

the second step of the validation.

The second step of the validation consisted of a stan-

dard cross-validation schema by which a random 4/5 of

Figure 3 Trends showing the distribution of genes across 13 binarized Boolean variables. Four classes of genes were used for the

comparison; i. all the genes in the human genome (21 892), ii. cancer-associated genes (749), iii. GBA ranked candidate genes candidate genes

(1017) and iv. top candidate genes (134, 13.2%of the GBA ranked candidate genes). PTM and SEC classes are enriched in cancer-associated genes

as well as in candidate genes category.
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the cancer genes comprised the training sample used to

build the GBA to be tested against the remaining 1/5 of

the cancer genes (testing sample). After repeating this

process 1000 times, each with a different 4/5 training/1/

5 testing random samples, we found that a ranked list of

candidate genes comprising the top 13.2% of genes

guarantees a 2.71-fold over-representation of cancer

genes (Figure 4A). We also found that selecting the 50%

most extreme genes, captures 90% of all cancer genes

(Figure 4B).

When the subject is concerned with the identification

of differentially expressed genes after normalising the

data, one can invoke the Gaussian distribution to

produce p-values. Similarly, when the issue is to ascer-

tain enrichment of a particular biological process, one

could invoke the hypergeometric distribution to produce

p-values.

However and quite importantly, no parametric distri-

bution functions were invoked in the development of the

Boolean logic and the subsequent guilt-by-association

algorithm. Instead, the sensitivity of the proposed

approach in terms of its power to detect cancer genes

was explored using a two-step procedures comprised of

first assessing its efficiency when applied to cancer-

associated genes, and then developing a cross-validation

schema to identify the threshold beyond which the power

to detect candidate genes is higher than the one obtained

with known cancer-associated genes.

The emergence of ranked candidate genes from the GBA

algorithm

Table 2 lists the top 20 candidate genes and Additional

File 4 contains the entire ranked list of 134 candidate

genes (or 13.2% of the 1017 genes processed through

the GBA). While a detailed description of the individual

genes is beyond the scope of this study, we focus on

candidates that also figure in the network analysis

section described later, based on their connectivity to

cancer-related genes and their position in the co-

expression network.

Excretory-Secretory proteins as diagnostic or prognostic

biomarkers

ES proteins are particularly relevant in colorectal cancer

because most colorectal cancers develop slowly; begin-

ning as small benign colorectal adenomas that progress

over several years to larger dysplastic lesions that even-

tually become malignant. A total of 178 genes encoding

ES proteins were found using this approach, of which

51 genes were tissue-specific to the colon. 64 entries

had evidence for a PTM and 25 genes showed methyla-

tion in colon cell lines. Among these, we highlight PYY

and GUCA2B. PYY (peptide YY) is a gut hormone

highly expressed in the colon [20] and down regulated

eight-fold in adenomas compared with the normal colon

(Table 2). Its distinct variation in expression levels in

the colon and gut region (gastric mucosa and rectum)

compared with the cancerous colon makes it an impor-

tant candidate gene for detailed biochemical characteri-

zation. As PYY is down regulated in carcinoma, it is

unlikely candidate for early detection as decreased levels

of protein in the cancer would not alter levels in the

peripheral blood. GUCA2B (Uroguanylin) is a physiolo-

gical regulator of intestinal fluid and electrolyte trans-

port, 8-fold down regulated in adenoma, and its

expression is observed in blood and urine [21]. There-

fore, GUCA2B could be exploited as a non-invasive bio-

marker for the early detection of colorectal cancer.

Figure 4 Two-step computational validation approach to

ascertain the inferential validity of the proposed GBA. 4A

shows the ratio of the average Boolean score given to cancer genes

over the average score given to the other genes. Candidate genes

comprising the top 13.2% of genes guarantee a 2.71-fold over-

representation of cancer genes. 4B. Standard cross-validation in

which the proportion of cancer-associated genes are compared to

genes with extreme Boolean scores. By selecting the 50% most

extreme genes captures 90% of all cancer genes.
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Transcription factors as novel oncogenic regulators for the

treatment for colorectal cancer

The altered activity of a few key TFs results in aberrant

expression of their target genes, which can eventually

lead to tumor development. The combination of the

GBA and regulatory impact factor (RIF) analyses yielded

58 TF genes. Thirty-eight of these TFs showed colon-

specific expression, 19 genes had DNA methylation and

6 proteins encoded by TFs had evidence for at least one

PTM (Table 2). Here, we highlight the biological rele-

vance of the top two candidates: SPIB and MEF2C. SPIB

is an adenoma condition-specific down regulated gene.

The DNA-binding ETS domain of SPIB is highly homo-

logous to the ETS domain from the oncoprotein Spi-1/

PU.1 [22] and may be an oncogenic TF awaiting experi-

mental characterization. In addition, SPIB interacts with

the promoter region of the c-JUN oncogene and

MAPK3 gene [23] that are implicated in several cancers,

including ovarian cancer. Similarly, MEF2C has been

proven to play a role in angiogenesis [24], and shown to

be over-expressed in hepatocellular carcinoma [25].

Genes encoding protein kinases

A total of 11 genes encoding protein kinases were identi-

fied of which 2 were tissue-specific and 3 genes were DNA

methylated: EPHB3, NPR1 and TRPM6. EPHB3 is a recep-

tor tyrosine kinase that mediates several developmental

processes [26]. Importantly, EPHB3 interacts with the Fyn

oncogene in vivo, and EPHB3 has a suggested role in

tumor suppression. Other kinases predicted by the GBA

include NPR1, a novel guanylate cyclase that catalyzes the

production of cGMP from GTP and TRPM6, also called

channel kinase 2, which is significantly down regulated in

adenomas.

Post-Translational Modifications

PTMs such as glycosylation also go awry in cancer cells.

This is seen as a result of the initial oncogenic transfor-

mation and a key event in the induction of invasion and

metastasis in cancer [18]. By treating PTMs of proteins

as a separate functional attribute in the Boolean logic,

we found a total of 158 genes whose protein product

harbors at least one PTM. A total of 32 entries with a

PTM were tissue-specific with four overlapping the

kinase set and 64 being secreted proteins, some of

which had already been described in the previous sec-

tions. REG3A, a secreted protein that undergoes a pro-

teolytic cleavage (a form of PTM) is up-regulated in

adenomas, and could be a potential biomarker for the

early detection of colorectal cancer.

DNA methylation as an epigenetic modification

DNA methylation (DNAm) patterns are altered in cancer

cells, as shown by the hypomethylation of oncogenes and

hypermethylation of tumor suppressor genes resulting in

Table 2 The top candidates identified by the GBA algorithm (genes with similar functional attributes are clustered

together)

Candidate
Genes

Normal Adenoma Carcinoma Inflammation Condition
Specificity

Colon
tissue

specificity

Secreted
Proteins

Transcription
Factors

Protein
kinases

PTMs DNA
Methylation

GUCA2B 11.01 5.66 7.52 8.05 ✓ ✓ ✓ ✓

MMP1 6.35 9.2 10.28 10.48 ✓ ✓ ✓

PAPPA 6.51 5.88 7.71 7.12 ✓ ✓ ✓ ✓ ✓

PYY 10.14 4.76 6.87 8.21 ✓ ✓ ✓ ✓ ✓

REG1A 5.71 10.87 10.8 12.17 ✓ ✓ ✓ ✓

MEF2C 8.66 7.36 8.43 9.04 ✓

SOX2 4.18 3.39 4.61 3.89 ✓ ✓ ✓

SPIB 9.11 6.15 6.76 8.26 ✓ ✓ ✓ ✓

WWTR1 8.31 7.22 8.69 8.78 ✓ ✓ ✓

ZIC2 2.22 4.8 3.53 2.55 ✓ ✓ ✓

CDK8 8.62 8.75 8.96 8.29 ✓ ✓

EPHB3 8.58 9.97 8.63 8.12 ✓ ✓ ✓ ✓

ROR2 5.16 4.4 5.47 5.56 ✓ ✓

NPR1 5.02 3.36 4.42 4.71 ✓ ✓ ✓

TRIB3 6.93 8.76 9.01 7.84 ✓

TRPM6 10.54 6.27 8.04 7.08 ✓ ✓ ✓

GCG 10.42 6.24 7.69 9.55 ✓ ✓ ✓ ✓

REG3A 4.95 10.34 10.1 11.19 ✓ ✓ ✓ ✓

SERPING1 8.9 8.11 9.28 10.21 ✓ ✓

SLC4A4 11.76 8.76 9.57 9.81 ✓ ✓ ✓
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gene silencing and gene inactivation respectively [27,28].

Using genome-wide DNA methylome data for colon, we

obtained 99 genes from the GBA algorithm as methylated

genes. 17 of these genes have a preference for colon tis-

sue expression and 19 of them were transcription factors,

23 proteins with a PTM and 22 secreted proteins. The

ADAMTS16, GUCA2B, PYY and THBS2 genes were

hypomethylated, whereas FXYD1 and WWTR1 were

hypermethylated [29]. DNAm information can serve as

additional evidence for these genes as potential candidate

genes and should be further investigated.

Gene co-expression networks reveal novel associations

between cancer and candidate genes

It is thought that co-expressed genes are co-regulated by

similar regulatory mechanisms; hence, possible functional

collaborations between co-expressed genes have been

proposed. To obtain a holistic view of the relationship

between known and novel genes identified by the GBA

algorithm, we constructed a series of gene co-expression

networks using highly correlated differentially expressed

and condition specific genes. Each network contained

1347 genes including the 530 cancer-associated genes

and the 817 candidate genes that were captured by at

least one of the seven expression-based variables (differ-

entially expression or condition specificity). Of the 1 617

503 correlations evaluated in each network, the propor-

tion found to be significant (referred to as clustering

coefficient) according to PCIT algorithm and varied from

4.6% for the Adenoma network to 11.7% for the Carci-

noma network (Table 3). The nodes (genes) and edges

(connections) which were conserved in three or more

network were retained to build what we referred to as

the ‘always-conserved network’.

The always-conserved network shown in Figure 5 was

further dissected into eight different networks and inves-

tigated for their properties. The first four networks were

built in such a way that all the functional attributes were

included. In essence, the first network (Figure 5A) repre-

sents pairs of genes connected in (i) all four networks, (ii)

all four networks except Normal or (iii) all four networks

except Carcinoma. The second network (Figure 5B)

retains only those connections involving at least one top

candidate gene. In the third network (Figure 5C), connec-

tions involving at least one top candidate gene where

both genes have more than two connections are retained.

Finally, the fourth network (Figure 5D) contains the least

number of nodes among those connections involving at

least one top candidate gene with a significant connec-

tion in all the four networks. The remaining four net-

works were constructed based on similar functional

attributes. For instance, the TF-TF only (nodes: 49,

edges: 37) network was built, in which only those con-

nections where a transcription factor is connected to

another transcription factor are retained. Similarly, other

networks based on the post-translational modifications

(nodes: 216, edges: 372), secreted proteins (nodes: 135,

edges: 346) and kinases (nodes: 7, edges: 4) were built.

The always-conserved networks are scale-free networks

and the connectivity of the network follows a power-law

distribution (Additional File 1 Figure S1). We addressed

four key questions in the network analysis section:

(i) which of the top candidate genes are hub genes?

(ii) are there novel functional links between cancer and

non-cancer-associated genes? (iii) are there any highly

connected gene modules functionally relevant to cancer?

and (iv) what is the nature of the attribute networks

(TF-TF, SEC-SEC etc)?

Our network analysis identified a number of hub

genes including several top candidate genes (Figure 5D).

A notable, high impact module with GUCA2B as a hub

gene with 41 connections is significant (Figure 5A).

GUCA2B was connected to other top candidates such as

GUCA2A, CHGA and importantly the nuclear receptor

NR3C2, which is highly implicated in leukemia [30], col-

orectal carcinoma [31], and other carcinomas. Interest-

ingly, CHGA was found to be the central link between

two modules, one with GUCA2B as a hub and another

module where PYY, GCG and CHGB, all candidate

genes, were connected. Because these connections are

based on significant correlations between gene pairs,

they provide the first insights towards functional colla-

borations among the candidate genes found in this

study. A number of network relationships were found

among cancer-associated and non-cancer-associated

genes. The MMP2 gene product which promotes tumor

progression and metastasis by the degradation of the

extra-cellular matrix [32] was connected to genes encod-

ing candidate secreted proteins, C1 S and COL5A1.

We further explored functional relationships between

cancer-associated and non-cancer associated genes by con-

ducting enrichment analysis of GO categories using the

BiNGO plug-in [33]. Among the top ten over-represented

GO terms were anatomical structure development,

immune response, response to stress and negative regula-

tion of biological process. Notably, over-representation of

GO category of importance from the colorectal cancer

Table 3 The properties of network connectivity

Normal Adenoma Carcinoma Inflammation

Normal 5.18 2.28 3.31 4.25

Adenoma 1.20 4.63 8.26 5.25

Carcinoma 2.01 3.89 11.67 11.07

Inflammation 2.30 1.96 4.01 11.10

Clustering coefficients (%, on diagonals) and percent overlap computed from

the ratio of common links divided by the total number of unique links for

positive (above diagonal) and negative (below diagonal) links across each

pair-wise network comparison.
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viewpoint is the inflammatory response, as chronic inflam-

mation is widely believed to be a predisposing factor for

colorectal cancer particularly in individuals with inflamma-

tory bowel diseases; however the underlying molecular

links between these two conditions have remained elusive.

The only documented example is the role of STAT3 that

links inflammation to tumor development in colorectal

cancer [34]. Therefore, our list of candidate genes (C1 S,

CXCL11, and REG3A) where inflammatory response is

over-represented can be considered as potential candidates

for elucidating unresolved cellular mechanisms mediating

this relationship in colorectal cancer.

Next, we applied a combination of the BiNGO and

MCODE plug-ins to study over-represented GO cate-

gories in the sub-networks [35]. Overall, we found 23

sub-networks of which the scores of five sub-networks

were significant (Additional File 1). The first sub-

network comprised of 44 highly connected nodes and 78

edges (4 cancer-associated genes and 40 non-cancer asso-

ciated genes). This cluster was over-represented by GO

terms, phosphate transport and response to external sti-

mulus (that includes candidate genes FPR2 and S100A8).

The cluster also contains several collagen sub-unit genes

(COL4A1, COL3A1, COL1A2, and COL5A2). Again,

over-representation of cell adhesion was evident in the

second cluster with membership from five cancer-asso-

ciated genes including MMP2. These cell adhesion mole-

cules bind to components of the extracellular matrix and

up-regulation and down-regulation of candidate genes

identified in this study may play a role in cancer invasion

and metastasis by altering the ability of cells to adhere to

surrounding cells and the extracellular matrix [36].

Figure 5 The Always Conserved network visualized using the Cytoscape software at our levels of resolution: (A) Connections involving

at least one top candidate gene; (B) derived from A where only genes with more than two connections are displayed; (C) derived from B where

only connections that were deemed to be significant across the four original networks (Adenoma, Carcinoma, Inflammation and Normal) are

displayed; and (D) only those connections involving at least one top candidate gene in the four networks. The specific nature of edges, nodes

and other features such as shape and color along with the Cytoscape file is provided in our website http://www.livestockgenomics.csiro.au/

courses/crc.html.
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Finally, network analysis of similar functional attributes

such as the transcription factors only network and the

secreted proteins only network captured additional regula-

tory hot spots and secreted protein modules that were not

predicted with significant scores previously (Additional File

5). These four networks are of great relevance, since they

are correlated by similar expression patterns, have interre-

lated functional attributes and are candidate non-cancer

associated genes. For instance, in the TF-TF network

(Additional File 5 Figure S1C), the hub genes (NR5A2,

MEF2C) could be seen as regulatory hot spots that control

gene expression via regulation of transcription.

The RIF (Regulatory Impact Factor) analysis

We have recently introduced a novel metric called RIF or

‘regulatory impact factors’ to measure the regulatory

capacity of transcription factors from gene expression

data alone [37]. RIF uses two different measures, RIF1

and RIF2, to predict key regulators (TF) in driving the

phenotypically relevant component of a given co-expres-

sion network. The highest impact regulators (extreme

RIF |z-score| > 2) resulting from the RIF1 and RIF2 ana-

lysis are documented in Additional File 1 Table S3. A few

notable regulators with extreme scores include SAP18,

CDK8, NR3C1, NFYC, CEBPB, PHF19 and TEAD4. Of

particular interest was the accurate prediction of CDK8

as the second-most significant regulator, recently identi-

fied as a colorectal cancer oncogene that regulates beta-

catenin activity [38]. Second, CEBPB was established as a

target gene for regulation in myeloid cells transformed by

the BCR/ABL oncogene and also has a suggested role in

promoting tumor invasiveness. Other potential regulators

predicted by RIF such as EPC1, SAP18 and ZNHIT3 have

no previous link with cancer and therefore provide an

opportunity for further investigation.

Conclusions
The method introduced here is highly flexible and can

be implemented for any cancer type in a rather

straightforward manner. Tissue specificity is one of the

variables in the Boolean combinatorial logic that will

require updating with every cancer type. For instance,

one could study breast or pancreas-specific genes and

their association with cancer by applying this method.

Nuclear receptors are considered to be ideal drug can-

didates for treating breast cancer. We also believe that

this approach could be applied to study other heredi-

tary diseases such as Alzeimer’s and Down’s syndrome,

provided sufficient molecular attributes are available

for the respective diseases. Importantly, the candidate

genes described here are classified based on individual

attributes. Hence, those genes that share a number of

attributes could be ranked as more promising candi-

dates than their counterparts. For instance, PYY is

a differentially expressed, condition-specific, tissue-specific

to the colon, encoded product is a secreted protein that

harbors a PTM and the gene is DNA hypomethylated in

a colon cancer cell line. Therefore, PYY could be consid-

ered as a ‘master candidate’ awaiting further biochemical

characterization. Finally, we argue that this is a holistic

approach that faithfully mimics cancer characteristics,

systematically predicts plausible cancer-associated candi-

date genes and has universal applicability to the study

and advancement of cancer research.

Methods
Gene expression data: Identification of differentially

expressed and condition-specific genes

We used the gene expression data from the colorectal

cancer study of Galamb et al. (2008) profiling the gene

expression from tissue samples classified as one of the

following four conditions: normal (n = 8 samples), ade-

noma (15), carcinoma (15) and inflammation (15). Using

the MAS5 detection call utility, probes yielding an absent

signal in all 53 hybridizations were removed. As a result,

we retained a total of 2 897 775 expression intensity sig-

nals across 34 844 probes that were annotated to 21 892

unique human genes were available for further analysis.

For the identification of differentially expressed genes we

explored three contrasts: 1. Carcinoma vs. Normal; 2. Car-

cinoma vs. Adenoma; and 3. Carcinoma vs. Inflammation.

For each contrast and following previously described

approaches [39], a combination of ANOVA models and

mixtures of distributions were employed to normalize

expression signals and to identify differentially expressed

genes, respectively. In brief, for each of the four datasets,

data normalization was achieved by fitting a parsimonious

mixed-effect ANOVA model containing the main fixed

effect of the hybridization and the random effects of gene,

gene × experimental condition interaction, and residual

error. After building and solving the ANOVA model, the

difference between the normalized expression of a gene in

the two conditions of the given contrast was computed as

the measure of (possible) differential expression. Finally,

differentially expressed genes were identified using a two-

component normal mixture model with an estimated

experiment-wise false discovery rate (FDR) of < 1%.

For the identification of condition specific genes, a

measure of the condition specificity of each gene was

obtained from the ratio of its expression in the j-th con-

dition (j = 1 to 4 for normal, adenoma, carcinoma and

inflammation) over its expression summed across all

four conditions as follows:

CS
x

x
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ij

ij

j

=

=

∑
1

4
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Following the above expression, four measures of con-

dition specificity were computed for each gene, and a

gene was set to be condition-specific for the j-th condi-

tion if its expression in the j-th condition was (1) above

the average expression of all genes in the j-th condition;

(2) greater than its expression in any of the other three

conditions; and (3) such that CSij was greater than three

standard deviations of all other CSij’s.

Cancer-associated genes

We compiled a list of cancer-associated genes by man-

ual curation of literature and web-based resources.

More than 1% of all human genes are implicated in

cancer via mutations, and these genes collectively form

the basis of cancer biology [15]. These genes form the

basis of our “cancer-associated genes” dataset. First, we

obtained 437 representative cancer-associated genes

from the Cancer Gene Census at the Sanger Centre

http://www.sanger.ac.uk/genetics/CGP/Census/. Next,

we retrieved a second list of cancer related genes from

the Atlas of Genetics and Cytogenetics in Oncology

[40]. A third list was collated from the disease associa-

tion data of HPRD database [41] and based on high

confidence protein expression entries in multiple cancer

tissues. In addition, we surveyed the lists of genes

reported in the following research and review articles:

[15]; [42]; [43]; and [44]. Finally, we collated these data-

sets to a master list of 749 cancer-associated genes

Additional File 2.

Functional attributes

We retrieved expression data from massively parallel

signature sequencing (MPSS) covering 182 719 tag sig-

natures across 32 tissues [45]. The complete list of TFs

was retrieved from BiblioSphere [46] in the Genomatix

web site http://genomatix.de. The post-translational

modification (PTM) data were downloaded from the

most recent version of the Human Protein Reference

Database (HPRD - Release 9). A list of 1 764 high-

confidence secreted proteins was obtained from the

secreted protein database [47]. A catalogue of 518 pro-

tein kinase genes was downloaded from [48,49]. A list of

alterations in DNA methylation specific for colorectal

cancer using DNAm was obtained from the human

colon cancer methylome [29]. Datasets for functional

attributes are provided in Additional File 2.

The Boolean Logic and the Guilt-by-Association Algorithm

As detailed in Mukherjee et al. [10], a k-ary Boolean

function is a function f: {0,1}k {0,1} which maps each of

the 2k possible states of its binary arguments X = (X1 ...

Xk) to a binary state Y. Such a function can also be

represented as a truth table. In our case, we considered

a total of k = 13 variables in the Boolean logic: Three

measures of differentially expression, four measures of

condition specificity, and the six functional attributes

(TS, TF, PTM, KIN, SEC, and MET). These were binar-

ized (prototypically 0 and 1) and used to compute what

it’s known as the probabilistic truth table, where the

probabilities were obtained from the proportion of

cancer-associated genes presenting a particular profile of

0’s and 1’s across the 13 variables. Therefore, the prob-

abilistic Boolean truth table assigns a probability value

to each existing combination of Boolean variables. In

our case, this probability was derived from the propor-

tion of cancer-associated genes exhibiting that combina-

tion. This trained model was then used as a GBA

algorithm applied to non-cancer related genes in the

human genome.

The GBA algorithm proceeded as follows:

• The particular combination across the 13 Boolean

variables observed for a given non-cancer gene of

interest was decomposed into its roots.

• The probability associated with each root was cap-

tured from the probabilistic Boolean truth table.

• These probabilities were added to rank the impor-

tance of the non-cancer gene of interest as a novel

candidate. We illustrate this concept with an

example.

Let’s consider a gene, MEF2C, being differentially

expressed for the second contrast, TF, PTM and MET.

Across the 13 variables, this is equivalent to the Boolean

profile"0100000011001” which can be decomposed in

the following 14 roots each associated with a probability

value corresponding to the probabilistic Boolean truth

table (Table 4). Probability values on the third column

Table 4 The Boolean probabilistic truth table for MEF2C

gene

No Binarized Boolean profile Probability values

1 0000000000001 0.05094

2 0000000001000 0.23019

3 0000000001001 0.02453

4 0000000010000 0.10755

5 0000000010001 0.03396

6 0000000011000 0.07925

7 0000000011001 0.03019

8 0100000000000 0.01509

9 0100000000001 0.00377

10 0100000001000 0.00377

11 0100000001001 0.00189

12 0100000010000 0.00377

13 0100000010001 0.00189

14 0100000011000 0.00189
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add to 0.58868 and this value is the Boolean score used

in the ranking of MEF2C as a novel cancer-related gene.

Computational Validation of the analytical approach

We designed a two-step approach to ascertain the infer-

ential validity of the proposed GBA. In the first step, we

processed all genes through the Boolean logic using the

previously developed probabilistic truth table and

recorded how extreme the cancer genes were ranked

relative to the other genes. The ratio of the average

Boolean score given to cancer genes over the average

score given to the other genes was used as the threshold

to be applied for the calibration in the second step of

the validation.

The second step of the validation consisted of a standard

cross-validation schema by which a random 4/5 of the

cancer genes comprised the training sample used to build

the GBA to be tested against the remaining 1/5 of the

cancer genes (testing sample). We repeated this process

1000 times, each with a different 4/5 training/1/5 testing

random samples. In each iteration, the number of cancer

genes captured in the top x-percentile (for x = 1,2....,100)

was recorded and used as the measure of sampling distri-

bution upon which to infer the size of the ranked list of

candidate genes that guarantees the threshold obtained in

the step one of the validation is met.

Reconstruction of Gene Co-Expression Networks

The PCIT algorithm [50] was used to reverse-engineer

four gene networks, one for each condition: Normal,

Adenoma, Carcinoma and Inflammation. The networks

were constructed in such a way that a gene pair was

allowed in the network only if it was conserved in at

least three out of four conditions. Therefore, we refer

to these networks as the ‘Always conserved networks’

A network for each of the four conditions, Normal,

Adenoma, Carcinoma and Inflammation, was con-

structed and integrated (intersect) to create four levels

of resolution. The first network (1255 nodes, 5122

edges) was built to include the pairwise connections of

the genes that were connected in all four networks. It

addition, we also produced pair-wise connections of all

genes except the Normal and Carcinoma genes, which

enabled us to investigate exclusive interactions in Nor-

mal and Carcinoma sets. The second network (534

nodes, 5122 edges) retained only those connections

involving at least one top candidate gene. The third

network consisted of those connections involving at

least one top candidate gene and where both genes

had more than two connections (146 nodes, 367

edges). Finally, the fourth network contained those

connections involving at least one top candidate gene

found to be significant in the four networks (99 nodes,

79 edges). The remaining four networks were specific

to the functional attributes. They were the transcrip-

tion factors only, the secreted proteins only and so on

where all of the nodes belonged to one functional

attribute. Functional enrichment using GO was carried

out using BiNGO plug-in [33] in Cytoscape. In this

study, hypergeometric test was used to assess the sta-

tistical significance (p < 0.05) and the Benjamini &

Hochberg False Discovery Rate (FDR) correction.

Identification of key transcription factors

Once the gene networks were obtained we applied the

regulatory impact factor (RIF) algorithm of [37] to iden-

tity the key regulators, with emphasis in those not pre-

viously described as related to cancer. RIF assigns an

extreme score to those transcription factors that are

consistently most differentially co-expressed with the

highly abundant and highly differentially expressed

genes (case of RIF1 score), and to those transcription

factors with the most altered ability to predict the abun-

dance of differentially expressed genes (case of RIF2

score).

Additional material

Additional file 1: Additional text, tables and figures that describe

the rationale behind choosing the functional gene attributes,

cancer pathway analysis and gene co-expression network analysis.

The file contains additional text on rationale behind choosing the

functional gene attributes, text on cancer pathway analysis, figures and

tables on network connectivity and network analysis using MCODE,

BINGO plug-ins and RIF analysis.

Additional file 2: The list of cancer associated genes and publicly

available datasets on functional attributes used in this study. The

list includes cancer associated genes, kinases, transcription factors,

secreted proteins, proteins that undergo post-translational modifications

and genes with CpG island methylation.

Additional file 3: Probabilistic Boolean truth table. The truth table

constructed from 749 cancer associated genes.

Additional file 4: The list of genes ranked by guilt-by-association

algorithm. The list comprises of 138 ranked list of candidate genes.

Additional file 5: Additional network analysis figures. Network

analysis of similar functional attributes (the TF only network, the SEC only

network, TF only network and PTM only network).
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