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Abstract. Petri nets are a simple formalism for modeling concurrent
computation. Recently, they have emerged as a promising tool for mod-
eling and analyzing biochemical interaction networks, bridging the gap
between purely qualitative and quantitative models. Biological networks
can indeed be large and complex, which makes their study difficult and
computationally challenging. In this paper, we focus on two structural
properties of Petri nets, siphons and traps, that bring us information
about the persistence of some molecular species. We present two meth-
ods for enumerating all minimal siphons and traps of a Petri net by
iterating the resolution of Boolean satisfiability problems executed with
either a SAT solver or a CLP(B) program. We compare the performances
of these methods with respect to a state-of-the-art algorithm from the
Petri net community. On a benchmark with 80 Petri nets from the Petri-
web database and 403 Petri nets from curated biological models of the
Biomodels database, we show that miniSAT and CLP(B) solvers are
overall both faster by two orders of magnitude with respect to the ded-
icated algorithm. Furthermore, we analyse why these programs perform
so well on even very large biological models and show the existence of
hard instances in Petri nets with unbounded degrees.

1 Introduction

Petri nets were introduced in the 60’s as a simple formalism for describing and
studying information processing systems that are characterized as being concur-
rent, asynchronous, non-deterministic and possibly distributed [21].

The use of Petri nets for representing biochemical reaction models, by map-
ping molecular species to places and reactions to transitions, was introduced
quite late in [22], together with some Petri net concepts and tools for the anal-
ysis of metabolic networks [28]. In [24], a Constraint Logic Program over finite
domains (CLP(FD)) is proposed for computing place invariants, which in turn
provides structural conservation laws that can be used to reduce the dimension of
the Ordinary Differential Equations (ODE) associated to a biochemical reaction
model.

In this paper, we consider the Petri net concepts of siphons and traps. A
siphon is a set of places that, once it is unmarked, remains so. A trap is a set
of places that, once it is marked, can never loose all its tokens. Thus, siphons



and traps have opposing effects on the token distribution in a Petri net. These
structural properties provide sufficient conditions for reachability (whether the
system can reach a given state) and liveness (freedom of deadlocks) properties.
It is proved that in order to be live, it is necessary that each siphon remains
marked. Otherwise (i.e. once it is empty), transitions having their input places
in a siphon can not be live. One way to keep each siphon marked is to have
a marked trap inside it. In fact, this condition is necessary and sufficient for a
free-choice net to be live [21]. Mixed integer linear programs have been proposed
in [19,4] and a state-of-the-art algorithm from the Petri net community has been
described later in [6] to compute minimal sets of siphons and traps in Petri nets.

In this article, we present a simple Boolean model capturing these notions
and two methods for enumerating the set of all minimal siphons and traps of a
Petri net. The first method iterates the resolution of the Boolean model executed
with a SAT solver while the second proceeds by backtracking with a CLP(B)
program.

On a benchmark composed of the 80 Petri nets of Petriweb 1 [10] and the
403 curated biological models of the biomodels.net 2 repository [16], we show
that miniSAT and CLP(B) solvers are both faster by two orders of magnitude
than the dedicated algorithms and can in fact solve all instances. Furthermore,
we analyse why these programs perform so well on even very large biological
models and show the existence of hard instances in Petri nets with unbounded
degrees.

2 Preliminaries

2.1 Petri nets

A Petri net graph PN is a weighted bipartite directed graph PN = (P, T,W ),
where P is a finite set of vertices called places, T is a finite set of vertices (disjoint
from P ) called transitions and W : ((P × T ) ∪ (T × P )) → N represents a set
of directed arcs weighted by non-negative integers (the weight zero represents
the absence of arc). Places are graphically represented by circles and transitions
by boxes. Unlabeled edges are implicitly labeled with weight 1. A marking for a
Petri net graph is a mapping m : P → N which assigns a number of tokens to
each place. A place p is marked by a marking m iff m(p) > 0. A subset S ⊆ P is
marked by m iff at least one place in S is marked by m. A Petri net is a 4-tuple
(P, T,W,m0) where (P, T,W ) is a Petri net graph and m0 is an initial marking.

The set of predecessors (resp. successors) of a transition t ∈ T is the set of
places •t = {p ∈ P | W (p, t) > 0} (resp. t• = {p ∈ P | W (t, p) > 0}). Similarly,
the set of predecessors (resp. successors) of a place p ∈ P is the set of transitions
•p = {t ∈ T |W (t, p) > 0} (resp. p• = {t ∈ T |W (p, t) > 0}).

For every two markings m,m′ : P → N and every transition t ∈ T , there

is a transition step m
t→ m′, if for all p ∈ P , m(p) ≥ W (p, t) and m′(p) =

1 http://www.petriweb.org/
2 http://www.biomodels.net/
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Fig. 1. Petri net associated to the biochemical reaction model of Example 1,
displayed here with an arbitrary marking that enables the transition t1.

m(p)−W (p, t) +W (t, p). This notation extends to sequence of transitions σ =

(t0 . . . tn) by writing m
σ→ m′ if m

t0→ m1
t1→ . . .

tn−1→ mn
tn→ m′ for some markings

m1, . . . ,mn.
The classical Petri net view of a reaction model is to associate biochemical

species to places and biochemical reactions to transitions.

Example 1. The system known as Michaelis-Menten enzymatic reactions can be
represented by the Petri net depicted in Figure 1. It consists of three enzy-
matic reactions that take place in two discrete steps: the first involves reversible
formation of a complex (AE) between the enzyme (E) and substrate (A) and
the second step involves breakdown of the (AE) to form product (B) and to
regenerate the enzyme.

A+ E � AE → B + E

2.2 Siphons and Traps

Let PN = (P, T,W ) be a Petri net graph.

Definition 1. A trap is a non-empty set of places P ′ ⊆ P whose successors are
also predecessors, P ′• ⊆ •P ′.

A siphon is a non-empty set of places P ′ ⊆ P whose predecessors are also
successors: •P ′ ⊆ P ′•.

A siphon (resp. a trap) is proper if its predecessor set is strictly included in
its successor set,•P ′ ( P ′• (resp. P ′• ( •P ′).

A siphon (resp. a trap) is minimal if it does not contain any other siphon
(resp. trap).

It is worth remarking that a siphon in PN is a trap in the dual Petri net
graph, obtained by reversing the direction of all arcs in PN . Note also that since
predecessors and successors of an union are the union of predecessors (resp.
successors), the union of two siphons (resp. traps) is a siphon (resp. a trap).
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Fig. 2. Petri net graph of Example 2.

Example 2. In the Petri net graph depicted in Figure 2, {A,B} is a minimal
proper siphon, since •{A,B} = {r1, r2} ⊂ {•A,B} = {r1, r2, r3}. {C,D} is a
minimal proper trap, scine {C,D}• = {r4, r5} ⊂ •{C,D} = {r3, r4, r5}.

The following propositions show that traps and siphons provide a structural
characterization of some particular dynamical properties on markings.

Proposition 1. [21] For every subset P ′ ⊆ P of places, P ′ is a trap if and only
if for any marking m ∈ NP with mp ≥ 1 for some place p ∈ P ′, and any marking

m′ ∈ NP such that m
σ→ m′ for some sequence σ of transitions, there exists a

place p′ ∈ P ′ such that m′p′ ≥ 1.

Proposition 2. [21] For every subset P ′ ⊆ P of places, P ′ is a siphon if and
only if for any marking m ∈ NP with mp = 0 for all p ∈ P ′, and any marking

m′ ∈ NP such that m
σ→ m′ for some sequence σ of transitions, we have m′p′ = 0

for all p′ ∈ P ′.

Although siphons and traps are stable under union, it is worth noting that
minimal siphons do not form a generating set of all siphons. A siphon is called
a basis siphon if it can not be represented as a union of other siphons [19].
Obviously, a minimal siphon is also a basis siphon, however, not all basis siphons
are minimal. For instance, in Example 2, there are two basis siphons, {A,B} and
{A,B,C,D}, but only the former is minimal, the latter cannot be obtained by
union of minimal siphons.

2.3 Application to Deadlock Detection

One reason to consider minimal siphons is that they provide a sufficient condition
for the non-existence of deadlocks.

It has been shown indeed that in a deadlocked Petri net (i.e. where no transi-
tion can fire), all unmarked places form a siphon [3]. The siphon-based approach
for deadlock detection checks if the net contains a proper siphon that can become
unmarked by some firing sequence. A proper siphon does not become unmarked
if it contains an initially marked trap. If such a siphon is identified, the initial
marking is modified by the firing sequence and the check continues for the re-
maining siphons until a deadlock is identified, or until no further progress can
be done. Considering only the set of minimal siphons is sufficient because if any
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Fig. 3. Petri net representation of the model of Example 3.

siphon becomes unmarked during the analysis, then at least one of the minimal
siphons must be unmarked.

The relevance of siphons and traps for other liveness properties is summarized
in [11].

2.4 Complexity

Deciding whether a Petri net contains a siphon or a trap and exhibiting one if
it exists is polynomial [5]. However, the decision problem of the existence of a
minimal siphon containing a given place is NP-hard [26].

Furthermore, there can be an exponential number of minimal siphons and
traps in a Petri net, as shown by the following:

Example 3. In the Petri net depicted in Figure 3, defined by the transitions:
A1 +B1 → A2 +B2, A2 +B2 → A3 +B3, . . . , An +Bn → A1 +B1, there are 2n

minimal siphons and 2n minimal traps, each one including either Ai or Bi but
not both of them, for all i’s.

2.5 Application to Systems Biology

One example of the relevance of traps and siphons in biology was given in [28]
for the analysis of the potato plant that produces starch and accumulates it in
the potato tubers during growth, while starch is consumed after the tubers are
deposited after the harvest. The starch and several of its precursors then form
traps in the reaction net during growth, while starch and possible intermediates
of degradation form siphons after the harvest.

The underlying Petri net is shown in Figure 4, where G1 stands for glucose-1-
phosphate, Gu is UDP-glucose, S is the starch, I stands for intermediary species
and P1 and P2 represent external metabolites [25]. In this model, either the
branch producing starch (t3 and t4) or the branch consuming it (t5 and t6) is
operative. Two Petri nets are derived from this model: one Petri net where t5
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Fig. 4. Petri net graph modeling the growth metabolism of the potato plant
[28].

and t6 are removed (in this Petri net, t3 and t4 are said to be operative) and one
Petri net where t3 and t4 are removed.

It can be easily observed that the set {Gu, S} is a trap when t3 and t4 are
operative: once a token arrives in S, no transition can be fired and the token
remains there independently of the evolution of the system. Dually, {S, I} is a
siphon when t5 and t6 are operative: once the last token is consumed from S and
I, no transition can generate a new token in these places, so they remain empty.

In most cells containing starch, starch and specific predecessors form traps,
whereas starch and specific successors form siphons. This provides a very simple
explanation for the fact that either the branch producing starch or the branch
degrading it is operative. This is realized by complete inhibition of the appro-
priate enzymes by the gene regulatory network.

Another interesting example, also from [28], deals with the analysis of the
role of the triosephosphate isomerase (TPI) in Trypanosoma brucei metabolism
by detecting solely siphons and traps. At the beginning, Helfert et al. [12] sup-
posed that glycolysis could proceed without TPI. But unexpected results where
all system fluxes (Pyruvate, Glycerol) decrease were found so that the authors
built a kinetic model for explaining that phenomenon. Then a purely structural
explanation for the necessary presence of TPI in glycolysis and glycerol produc-
tion was provided in [28] by simply considering the presence of siphons and traps
in the model.

3 Boolean Model

In the literature, many algorithms have been proposed to compute minimal
siphons and traps of Petri nets. Since a siphon in a Petri net N is a trap of the
dual net N ′, it is enough to focus on siphons, the traps are obtained by duality.
Some algorithms are based on linear programming [19,4], Horn clause satisfaction
[13,17] or algebraic approaches [15]. More recent state-of-the-art methods are
presented in [5,6].
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Here we present two Boolean methods for enumerating minimal siphons.
First, siphons can be straightforwardly characterized with a boolean model rep-
resenting the belonging or not of each place to the siphon. For a Petri net with
n places and m transitions, a siphon S is a set of places whose predecessors are
also successors. S can be represented with a vector V of {0, 1}n such that for
all i ∈ {1, 2, .., n}, Vi = 1 if and only if pi ∈ S. The siphon constraint can then
be formulated as

∀i, Vi = 1⇒ •pi ⊆ (
⋃
Vj=1

{pj})•

which is equivalent to

∀i, Vi = 1⇒ (∀t ∈ T, t ∈ •pi ⇒ t ∈ (
⋃
Vj=1

{pj})•)

which is equivalent to

∀i, Vi = 1⇒ (∀t ∈ T, t ∈ •pi ⇒ ∃pj ∈ •t, Vj = 1)

which can be rewritten in clausal form as:

∀i, Vi = 1⇒
∧
t∈•pi

(
∨
pj∈•t

Vj = 1)

To exclude the case of the empty set, the following constraint is added:∨
i

Vi = 1

.
These clauses are Horn-dual clauses (i.e. clauses with at most one negative

literal). They are trivially satisfied by taking all variables true.
Second, the enumeration of all minimal siphons (w.r.t. set inclusion) can be

ensured by a search strategy and the addition of new Boolean constraints during
search. One strategy is to find siphons in set inclusion order, and to add a new
constraint ∨

pi∈S
Vi = 0

each time a siphon S is found to disallow any superset of this siphon to be
found in the continuation of the search. It is worth remarking that this clause is
not the dual of a Horn clause. The whole clauses are thus now non-Horn.

In a previous approach based on Constraint Logic Programming [20], the
enumeration by set inclusion order was ensured by labeling a cardinality variable
in increasing order. Labeling directly on the Boolean variables, with increasing
value selection (first 0, then 1), reveals however much more efficient and in fact
easier to enforce. The following proposition shows that this strategy correctly
finds siphons in set inclusion order.
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Proposition 3. Given a binary tree such that, in each node instantiating a
variable X, the left sub-edge posts the constraint X = 0 and the right sub-edge
posts the constraint X = 1, then for all distinct leaves A and B, leaf A is on the
left of leaf B only if the set represented by B is not included in the set represented
by A (that is to say, there exists a variable X such that XB > XA, where XA

and XB denote the values instantiated to X in the paths leading to A and B
respectively).

Proof. A and B have a least common ancestor node instantiating a variable X.
If leaf A is on the left of leaf B, the sub-edge leading to A is the left one, with
the constraint X = 0 and the sub-edge leading to B is the right one, with the
constraint X = 1, therefore XB > XA. ut

In a post-processing phase, the computed set of minimal siphons can be
filtered for only keeping the minimal siphons that contain a given set of places,
and hence solve the above mentioned NP-hard decision problem. It is worth
remarking that posting the inclusion of the selected places first would not ensure
that the siphons found are indeed minimal w.r.t. set inclusion.

4 Boolean Algorithms

This section describes two implementations of the above model and search strat-
egy, one using an iterated SAT procedure and the other based on Constraint
Logic Programming with Boolean constraints.

4.1 Iterated SAT Algorithm

The Boolean model can be directly interpreted using a SAT solver to check the
existence of a siphon or trap. We use sat4j 3, an efficient library of SAT solvers
in Java for Boolean satisfaction and optimization. It includes an implementation
of the MiniSAT algorithm in Java.

The example of the enzymatic reaction of example 1 is encoded as follows:
each line is a space-separated list of variables representing a clause; a positive
value means that corresponding variable is under positive form (so 2 means V2),
and a negative value means the negation of that variable (so −3 means ¬V3). In
this example, variables 1, 2, 3 and 4 correspond respectively to E, A, AE and
B. In the first iteration, the problem amounts to solve the following encoding of
Horn-dual clauses:
−2 3
−3 1 2
−1 3
−1 3
−4 3

3 http://www.sat4j.org/
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The problem is satisfied with the values: −1, 2, 3, −4 which means that {A,AE}
is a minimal siphon.

To ensure minimality, the (non Horn-dual) clause −2 −3 is added and the
program iterates an other time. The problem is satisfied with 1, −2, 3, −4, mean-
ing that {E,AE} is also a minimal siphon. A new clause is added stating that
either E or AE does not belong to the siphon and no more variable assignment
can satisfy the problem.

Therefore, this model contains 2 minimal siphons: {A,AE} and {E,AE}.
The enzyme E is a catalyst protein for the transformation of the substrate E in
a product B. Such a catalyst increases the rate of the reaction but is conserved
in the reaction.

4.2 Backtrack Replay CLP(B) Algorithm

The search for siphons can also be implemented with a Constraint Logic Program
with Boolean constraints (CLP(B)). We use GNU-Prolog 4 [8] for its efficient
low-level implementation of Boolean constraint propagators.

The enumeration strategy is a variation of branch-and-bound, where the
search is restarted to find a non-superset siphon each time a new siphon is
found. We tried two variants of the branch-and-bound: with restart from scratch
and by backtracking.

In the branch-and-bound with restart method, it is essential to choose a vari-
able selection strategy which ensures diversity. Indeed, an enumeration method
with a fixed variable order accumulates failures by always trying to enumerate
the same sets first and these failures are only lately pruned by the non-superset
constraints. As a consequence, the developed search tree gets more and more
dense after each iteration since the previous forbidden sets are repeatedly tried
again. This phenomenon does not exist in SAT solvers thanks to no-good record-
ing. In CLP, this problem can be compensated for however, by using a random
selection strategy for variables. This provides a good diversity and performs
much better than any uniform heuristics.

However, branch-and-bound by backtracking gives better performance when
care is taken for posting the non-superset constraint only once, since reposting
it at each backtrack step proved to be inefficient. Our backtrack replay strategy
is implemented as follows:

1. each time a siphon is found, the path leading to this solution is memorized,
2. then the search is fully backtracked in order to add to the model the new

non-superset constraint,
3. and then the memorized path is rolled back to continue the search at the

point it was stopped.

Figure 5, generated with CLPGUI 5 [9] depicts the search tree that is devel-
oped for enumerating the 64 minimal siphons of a biological model of 51 species

4 http://www.gprolog.org/
5 http://contraintes.inria.fr/∼fages/CLPGUI
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Fig. 5. Search tree developed with the backtrack replay strategy for enumerating
the 64 minimal siphons of model 239 of biomodels.net (described in Section 5.1).

and 72 reactions. Each sub-tree immediately connected to the root corresponds
to the replay of the path with a minimality constraint added. It is remarkable
that with the backtrack replay strategy, very few backtracking steps are neces-
sary to search for all solutions.

5 Evaluation

5.1 Benchmark

Petriweb Our first benchmark of Petri nets is Petriweb [10], a benchmark of
80 Petri nets from the Petri net community. The most difficult instances of this
benchmark come from case studies in process refinement, namely problems 1454,
1479 and 1516.

Biomodels.net We also consider the Petri nets associated to biochemical reac-
tion models of the biomodels.net repository of 403 models [16] and some other
complex biochemical models. The most difficult models are the following ones:

– Kohn’s map of the mammalian cell cycle control [14,2], a model of 509 species
and 775 reactions;

– Model BIOMD0000000175 of biomodels.net, a model of 118 species and 194
reactions involved in ErbB signaling;

– Model BIOMD0000000205 of biomodels.net, a model of 194 species and 313
reactions involved in the regulation of EGFR endocytosis and EGFR-ERK
signaling by endophilin-mediated RhoA-EGFR crosstalk;

– Model BIOMD0000000239, a core model of 51 species and 72 reactions rep-
resenting the glucose-stimulated insulin secretion of pancreatic beta cells.

5.2 Results and Comparison

In this section, we compare the two Boolean methods described in the previous
section with the state-of-the-art dedicated algorithm of [6]. This algorithm uses a
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Database # # siphons siphons size total time
model min–max (avg.) min–max (avg.) dedicated SAT GNU

algorithm Prolog

Biomodels.net 403 0–64 (4.21) 1–413 (3.10) 19734 611 195

Petriweb 80 0–11 (2.85) 0–7 (2.03) 2325 156 6

Table 1. Performance on the whole benchmark.

model # # # dedicated sat GNU
siphons places transitions algorithm Prolog

Kohn’s map of cell cycle 81 509 775 28 1 221

BIOMD000000175 3042 118 194 ∞ 137000 ∞
BIOMD000000205 32 194 313 21 1 34

BIOMD000000239 64 51 72 2980 1 22

Table 2. Performance on the hardest instances.

recursive problem partitioning procedure to reduce the original search problem to
multiple simpler search subproblems. Each subproblem has specific additional
place constraints with respect to the original problem. This algorithm can be
applied to enumerate minimal siphons, place-minimal siphons, or even siphons
that are minimal with respect to a given subset of places.

Table 1 presents the CPU times for enumerating all minimal siphons of the
Petri nets in Petriweb and biomodels.net. All times are in milliseconds and have
been obtained on a PC with an intel Core processor 2.20 GHz and 8 GB of mem-
ory. For each benchmark, we provide the total number of models, the minimal,
maximal and average numbers of siphons and the total computation time for
enumerating all of them.

Surprisingly, but happily, on all these practical instances, except one instance
detailed below, the SAT and CLP(B) programs solve the minimal siphon enumer-
ation problem, in less than one millisecond in average, with a better performance
for the CLP(B) program over the SAT solver, and by two orders of magnitude
over the dedicated algorithm.

However, one particular model, number 175 in biomodels.net, was excluded
from this table because its computational time is very high. Table 2 presents
the performance figures obtained on this model and on the three other hardest
instances for which we also provide the number of places and transitions. On
these hard instances, the SAT solver is faster than the CLP(B) program by one
to two orders of magnitude, and is the only algorithm to solve the problem for
model 175, in 137 seconds.

That model 175 represents a quantitative model that relates EGF and HRG
stimulation of the ErbB receptors to ERK and AKt activation in MCF-7 breast
cancer cells [1]. This is the first model to take into account all four ErbB recep-
tors, simultaneous stimulation with two ligands, and both the ERK and AKt
pathways. Previous models of ErbB (e.g. the model developed in [23]) were lim-
ited to a single ErbB because of combinatorial complexity. It is well known that
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Fig. 6. Petri net graphs considered for the reduction of 3-SAT to the existence
of a minimal siphon containing place q0.

the ErbB signaling network is highly connected and indeed the underlying Petri
net contains the highest number of arcs of the biomodels.net repository.

5.3 Hard instances

MiniSAT and CLP(B) outperform the specialized algorithm by at least one order
of magnitude and the computation time is extremely short on our practical
examples. Even if the model is quite large, e.g. for Kohn’s map of the cell cycle
control with 509 species and 775 reactions, the computation time for enumerating
its 81 minimal siphons is astonishingly short: one millesecond only. However, this
enumeration of all minimal siphons solves the decision problem of the existence
of a minimal siphon containing a given set of places which has been proved
NP-hard by reduction of 3-SAT in [27], and the question is: why the existing
benchmarks from systems biology and petriweb are so easy?

We can provide some hints of explanation by considering the well-known
phase transition phenomenon in 3-SAT. The probability that a random 3-SAT
problem is satisfiable has been shown to undergo a sharp phase transition as
the ratio α of the number of clauses over the number of variables crosses the
critical value of about 4.26 [18,7], going from satisfiability to unsatisfiability with
probability one when the number of variables grows to the infinity.
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model # Petri net view 3-SAT view time
siphons # places # transitions density # variables # clauses α (ms)

pn0.2.xml >129567 801 441 0.56 200 40 0.2 60000

pn0.6.xml >32392 801 521 0.65 200 120 0.6 60000

pn1.xml >1075 801 601 0.751 200 200 1 60000

pn2.xml >74462 801 801 1 200 400 2 60000

pn3.xml >63816 801 1001 1.24 200 600 3 60000

pn4.xml >59827 801 1201 1.49 200 800 4 60000

pn4.2.xml >41415 801 1241 1.54 200 840 4.2 60000

pn4.4.xml 200 801 1281 1.59 200 880 4.4 1596

pn4.6.xml 200 801 1321 1.64 200 920 4.6 1411

pn5.xml 200 801 1401 1.74 200 1000 5 370

pn6.xml 200 801 1601 1.99 200 1200 6 175

pn7.xml 200 801 1801 2.24 200 1400 7 157

pn8.xml 200 801 2001 2.49 200 1600 8 157

pn9.xml 200 801 2201 2.74 200 1800 9 133

pn10.xml 200 801 2401 2.99 200 2000 10 137

Table 3. Computational results for the enumeration of minimal siphons in Petri
nets encoding 3-SAT.

The reduction of three-satisfiability (3-SAT) to the problem of existence of
a minimal siphon containing a given place has been shown in [27] with the Petri
net structure illustrated in Figure 6. It is worth noticing that in this encoding,
the Petri net has a maximum place indegree (for q0) which is linear in the number
of clauses, and a maximum place outdegree (for t0) which is linear in the number
of variables.

Not surprisingly, this family of Petri nets provides a hard benchmark for
enumerating minimal siphons 6. Table 3 contains experimental results on these
Petri nets associated to random 3-SAT problems. The table gives the number of
minimal siphons and the time to compute them with a timeout of 60 seconds.
The table also provides information concerning both the 3-SAT problem and
its corresponding Petri net. For each 3-SAT problem, we provide the number of
Boolean variables, the number of clauses and the ratio α. For the corresponding
Petri net, we provide the number of places, the number of transitions and the
density (ratio of the number of transitions over the number of places). The
computation time of all minimal siphons as a function of α, the density of the
initial 3-SAT problem, is represented in Figure 7.

The reason for the timeout obtained for all 3-SAT problems of density below
the threshold value 4.26 is that for small values of α, the clause is satisfiable with
an exponential number of valuations which gives rise to an exponential number
of minimal siphons to compute. On the other hand, for values of alpha above

6 All benchmarks of this section are available at
http://contraintes.inria.fr/∼nabli/indexhardinstances.html.
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Fig. 7. CPU time for computing all minimal siphons in Petri nets encoding
3-SAT problems of density ranging from 0 to 10 with a time-out of 2 seconds.

nb places nb transitions density nb siphons time

random-degree-pn1 801 80 0.099875156 >77918 60000

random-degree-pn2 801 320 0.399500624 >69246 60000

random-degree-pn3 801 560 0.699126092 >45782 60000

random-degree-pn4 801 801 1 >28285 60000

random-degree-pn5 801 1041 1.299625468 0 7473

random-degree-pn6 801 1281 1.599250936 0 11233

random-degree-pn7 801 1521 1.898876404 0 15040

random-degree-pn8 801 1762 2.199750312 0 9548

random-degree-pn9 801 2242 2.799001248 0 13807

bounded-degree-pn1 801 80 0.099875 377 120

bounded-degree-pn2 801 320 0.399501 250 55

bounded-degree-pn3 801 560 0.699126 146 32

bounded-degree-pn4 801 801 1 66 14

bounded-degree-pn5 801 1041 1.299625 29 11

bounded-degree-pn6 801 1281 1.599251 13 3

bounded-degree-pn7 801 1521 1.898876 4 5

bounded-degree-pn8 801 1762 2.199750312 1 1

bounded-degree-pn9 801 2242 2.799001248 0 2

Table 4. Computational results for the enumeration of minimal siphons in ran-
dom Petri nets with varying density and linear versus bounded degrees.

the threshold, the clause are unsatisfiable and there is indeed no minimal siphon
containing q0 (only the 200 minimal siphons without q0 are computed).

Now, Table 4 shows that similar bad performance figures are obtained with
randomly generated Petri nets with a number of in and out degrees that is
linear in the number of places and transitions, while on random Petri nets with
a bounded degree (less than 5), the enumeration of minimal siphons is easy. This
is the situation encountered in our practical application. As shown in Table 5, the
Petri nets associated to the biochemical reaction models of biomodels.net have
small in and out degrees for places and transitions even in very large models.
Model 175 mentioned in Section 5.2 appears as an exception combining a large
size with a high connectivity on places, with some species that are both the
reactants of 32 reactions and the products of 31 reactions.
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minimum maximum average model 175

number of arcs 1 913 92 1125

Avg-indegree-places 0 8 1.89 5

Avg-indegree-transitions 0 3 1.06 3

Max-indegree-places 1 54 5.94 31

Max-indegree-transitions 1 14 2.72 11

Avg-outdegree-places 0 8 1.93 5

Avg-outdegree-transitions 0 3 0.99 3

Max-outdegree-places 0 36 5.53 32

Max-outdegree-transitions 1 14 2.87 11

Table 5. In and out degrees for places and transitions in the Petri nets of the
biomodels.net benchmark with model 175 apart.

6 Conclusion

Siphons and traps in Petri nets define meaningful pools of places that display a
specific behavior during the dynamical evolution of a Petri net, or of a system
of biochemical reactions whatever kinetic parameters are.

We have described a Boolean model for the problem of enumerating all mini-
mal siphons in a Petri net and have compared two Boolean methods to a state-of-
the-art algorithm from the Petri net community [6]. The miniSAT solver and the
CLP(B) program both solve our large benchmark of real-size problems and out-
perform the dedicated algorithm by two orders of magnitude. On the benchmark
of 403 biological models in biomodels.net, the Boolean method for enumerating
all minimal siphons using miniSAT is very efficient. It also scales very well in
the size of the net. The CLP(B) program also solves all but one instances of the
benchmark, with a better performance than miniSAT in average, but does not
scale-up as well to large size models like Kohn’s map with 509 species and 775
reactions.

The surprising efficiency of the miniSAT and CLP(B) methods for solving
the practical instances of this NP-hard problem has been analyzed in connection
to the well-known phase transition phenomenon in 3-SAT, and to the fact that
the degree of Petri nets associated to even very large models of several hundreds
of biochemical species and reactions remains limited to small values in practice.
This explains why these Boolean methods perform so well in the practical context
of systems biology applications.

These results militate for the analysis of biochemical networks with Petri net
concepts and Constraint Programming tools.

Acknowledgment This work is supported by the French OSEO project Bioin-
telligence.
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