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Abstract—Diagnosis of prostate cancer (CaP) currently involves
examining tissue samples for CaP presence and extent via a micro-
scope, a time-consuming and subjective process. With the advent
of digital pathology, computer-aided algorithms can now be ap-
plied to disease detection on digitized glass slides. The size of these
digitized histology images (hundreds of millions of pixels) presents
a formidable challenge for any computerized image analysis pro-
gram. In this paper, we present a boosted Bayesian multiresolution
(BBMR) system to identify regions of CaP on digital biopsy slides.
Such a system would serve as an important preceding step to a
Gleason grading algorithm, where the objective would be to score
the invasiveness and severity of the disease. In the first step, our al-
gorithm decomposes the whole-slide image into an image pyramid
comprising multiple resolution levels. Regions identified as cancer
via a Bayesian classifier at lower resolution levels are subsequently
examined in greater detail at higher resolution levels, thereby al-
lowing for rapid and efficient analysis of large images. At each res-
olution level, ten image features are chosen from a pool of over 900
first-order statistical, second-order co-occurrence, and Gabor filter
features using an AdaBoost ensemble method. The BBMR scheme,
operating on 100 images obtained from 58 patients, yielded: 1)
areas under the receiver operating characteristic curve (AUC) of
0.84, 0.83, and 0.76, respectively, at the lowest, intermediate, and
highest resolution levels and 2) an eightfold savings in terms of
computational time compared to running the algorithm directly at
full (highest) resolution. The BBMR model outperformed (in terms
of AUC): 1) individual features (no ensemble) and 2) a random for-
est classifier ensemble obtained by bagging multiple decision tree
classifiers. The apparent drop-off in AUC at higher image resolu-
tions is due to lack of fine detail in the expert annotation of CaP
and is not an artifact of the classifier. The implicit feature selection
done via the AdaBoost component of the BBMR classifier reveals
that different classes and types of image features become more rel-
evant for discriminating between CaP and benign areas at different
image resolutions.
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I. INTRODUCTION

THE AMERICAN Cancer Society predicts that over

192 000 new cases of prostate cancer (CaP) will be di-

agnosed in the U.S. in 2009, and over 27 000 men will die due

to the disease. Successful treatment for CaP depends largely

on early diagnosis, determined via manual analysis of biopsy

samples [1]. Over one million prostate biopsies are performed

annually in the U.S., each of which generates approximately 6–

14 tissue samples. These samples are subsequently analyzed for

presence and grade of disease under a microscope by a pathol-

ogist. Approximately 60%–70% of these biopsies are negative

for CaP [2], implying that the majority of a pathologist’s time

is spent examining benign tissue. Regions identified as CaP are

assigned a Gleason score, reflecting the degree of malignancy

of the tumor based on the patterns present in the sample [3].

Accurate tissue grading is impeded by a number of factors,

including pathologist fatigue, variability in application and in-

terpretation of grading criteria, and the presence of benign tissue

that mimics the appearance of CaP (benign hyperplasia, high-

grade prostatic intraepithelial neoplasia) [4], [5]. These pitfalls

can be mitigated by introducing a quantitative “second reader”

capable of automatically, accurately, and reproducibly finding

suspicious CaP regions on the image [6]. Such a system would

allow the pathologist to spend more time determining the grade

of the cancerous regions and less time on finding them.

The recent emergence of “digital pathology” has necessi-

tated study on developing quantitative and automated com-

puterized image-analysis algorithms to assist pathologists in

interpreting the large quantities of digitized histological im-

age data being generated via whole-slide digital scanners [7].

Computer-aided diagnosis (CAD) algorithms have been pro-

posed for detecting neuroblastoma [8], identifying and quan-

tifying extent of lymphocytic infiltration on breast biopsy tis-

sue [9], and grading astrocytomas in brain biopsies [10]. In the

context of detecting CaP on histopathology, earlier CAD ap-

proaches have employed low-level image characteristics, such

as color, texture, and wavelets [11], second-order statistical [12],

and morphometric attributes [13] in conjunction with classifier

systems to distinguish benign from CaP regions. Diamond et

al. [14] devised a system for distinguishing between stroma, be-

nign epithelium, and CaP images measuring 100 × 100 pixels

in size taken from whole-mount histology specimens. Using

0018-9294/$31.00 © 2012 IEEE
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Fig. 1. Illustration of the multiresolution approach, where lower resolutions are used to identify suspicious regions that are later analyzed at higher resolution.
This multiresolution approach results in significant computational savings. The most discriminatory features for CaP detection are learned and used to train a
classifier at each image resolution.

morphological and texture features, an overall accuracy of

79.3% was obtained on 8789 samples, each of which repre-

sented a homogeneous section of tissue. Tabesh et al. [13] pre-

sented a CAD system for distinguishing between: 1) 367 CaP

and non-CaP regions and 2) 268 images of low and high Gleason

grades of CaP on tissue microarray images using texture, color,

and morphometric features, achieving an accuracy of 96.7%

and 81.0% for each respective task. However, these results only

reflect the system accuracy when distinguishing between small

spots on a tissue microarray. Farjam et al. [15] used size and

shape of gland structures in selected regions of prostate tissue

to determine the corresponding Gleason grade of the cancer. An

average accuracy of 96.5% in correctly classifying the Gleason

grade (1–5) of two different sets of images were obtained. Again,

these results are achieved on preselected image regions, where

the implicit assumption was that the tissue was homogeneous

across the region of interest (ROI).

One of the most challenging tasks in developing CAD algo-

rithms for grading disease on digitized histology is to first easily

identify the spatial extent and presence of disease, which can

then be subjected to a more detailed analysis [15]–[17]. The

reliance on preselected ROIs limits the general usability of the

automated grading algorithms, since ROI determination is not

a trivial problem, one may argue even more challenging than

grading preextracted ROIs. Ideally, a comprehensive CAD algo-

rithm would first detect these suspicious ROIs in a whole-slide

image, the image having been digitized at high optical magni-

fication (generating images with millions of pixels that take up

several gigabytes of hardware memory). Once these ROIs have

been identified, a separate suite of grading algorithms can be

leveraged to score the invasiveness and malignancy of the dis-

ease in the ROIs. In this paper, we address the former problem

of automatically detecting CaP regions from whole-slide digi-

tal images of biopsy tissue quickly and efficiently, allowing the

pathologist to focus on a more detailed analysis of the cancerous

region for the purposes of grading.

Our methodology employs a boosted Bayesian multiresolu-

tion (BBMR) classifier to identify suspicious areas, in a manner

similar to an expert pathologist who will typically examine the

tissue sample via a microscope at multiple magnifications to find

regions of CaP. Fig. 1 illustrates the scheme employed in this

study for CaP detection by hierarchically analyzing the image at

multiple resolutions. The original image obtained from a scan-

ner is decomposed into successively lower representations to

generate an “image pyramid.” Low resolutions (near the “peak”

of the pyramid) are analyzed rapidly. A classifier trained on

image features at the lowest resolution is used to assign a prob-

ability of CaP presence at the pixel level. Based on a predefined

threshold value, obviously benign regions are eliminated at the

lowest resolution. Successive image resolutions are analyzed in

this hierarchical fashion until a spatial map of disease extent is

obtained, which can then be employed for Gleason grading. This

approach is inspired by the use of multiresolution image features

employed by Viola and Jones [18], where coarse image features

were used to rapidly identify ROIs for face detection, followed

by computationally expensive but detailed features calculated

on those ROIs. This led to an overall reduction in the compu-

tational time for the algorithm. For our study, we begin with

low-resolution images that are fast to analyze, but contain little

structural detail. Once obviously benign areas are eliminated,

high-resolution image analysis of suspicious ROIs is performed.

At each resolution level, we perform color normalization by

converting the image from the red, green, and blue (RGB) color

space to the hue, saturation, and intensity (HSI) space to mit-

igate variability in illumination caused by differences in scan-

ning, staining, or lighting of the biopsy sample. From each of

these channels, we extract a set of image features extracted at the

pixel level that include first-order statistical, second-order co-

occurrence [19], and wavelet features [20], [21]. The rationale

for these texture features is twofold: 1) first- and second-order

texture statistics mitigate the sensitivity of the classifier to varia-

tions in illumination and color and 2) it is known that cancerous

glands in the prostate tend to be arranged in an arbitrary fashion

so that in CaP dominated regions, the averaged gland orienta-

tion is approximately zero. In normal areas, glands tend to be

strongly oriented in a particular direction. The choice of wavelet

features (e.g., Gabor) is dictated by the desire to exploit the dif-

ferences in orientation of structures in normal and CaP regions.

At low-resolution levels, it is expected that subtle differences in

color and texture patterns between the CaP and benign classes,

captured by first- and second-order image statistics, will be im-

portant for class discrimination, whereas at higher resolution

levels when the orientation and size of individual glands be-

come discernible, wavelet- and orientation-based features [21]

will be more important (see Fig. 1).

Kong et al. [8] employed a similar multiresolution frame-

work for grading neuroblastoma on digitized histopathology.

They were able to distinguish three degrees of differentiation

in neuroblastoma with an overall accuracy of 87.88%. In that

study, subsets of features obtained via sequential floating for-

ward selection were subjected to dimensionality reduction and

tissue regions were classified hierarchically using a weighted
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combination of nearest neighbor, nearest mean, Bayesian, and

support vector machine (SVM) classifiers. During this pro-

cess, the meaning of the individual features is lost through

the dimensionality reduction and classifier combination. Sboner

et al. [23] used a multiclassifier system to determine whether

an image of a skin lesion corresponds to melanoma or a benign

nevus using either an “all-or-none” rule, where all classifiers

must agree that a lesion is benign for it to be classified as such,

or a “majority voting” rule, where two out of three classifiers

is taken as the final result. However, this set of rules is based

on a number of domain-specific assumptions and is not suitable

for high-dimensional feature ensembles. Hinrichs et al. [24]

employed linear programming boosting (LPboosting), where

a linear optimization approach is taken to combine multiple

features; however, the LP approach does not provide a clear in-

sight on feature ranking or selection, and it is difficult to derive

an intuitive understanding of why certain features outperform

others. Madabhushi et al. [25] evaluated 14 different classifier

ensemble schemes for the purpose of detecting CaP in images

of high-resolution ex vivo MRI, showing that the technique used

to create ensembles and the relevant parameters can have an ef-

fect on the resulting classification performance, given identical

training and testing data.

In our study, we have sought to select and extract features

in a way that reflects visual image differences in the cancer

and benign classes at each image resolution. To that end, we

model the extracted features in a Bayesian framework to gen-

erate a set of weak classifiers, which are combined using a set

of feature weights determined via the AdaBoost algorithm [22].

Each feature’s weight is determined by how well the feature

can discriminate between cancer and noncancer regions, en-

abling implicit feature selection at each resolution by choosing

the features with the highest weights. The computational ex-

pense involved in training the AdaBoost algorithm is mitigated

by the use of the multiresolution scheme. In our scheme, the

classifier allows for connecting the performance of a feature to

physical or visual cues used by pathologists to identify malig-

nant tissue, thereby, providing an intuitive understanding as to

why some features can discriminate between tissue types more

effectively than others. A similar task was performed by Ochs

et al. [26], who employed a similar AdaBoost technique to the

classification of lung bronchovascular anatomy in computed to-

mography. In that study, AdaBoost-generated feature weights

provided insight into how different features performed in terms

of their discriminative capabilities, an important characteristic

in designing and understanding a biological image classification

system. Unlike ensemble methods that sample the feature space

(random forests) [27] or project the data into higher dimen-

sional space (SVMs) [28], the AdaBoost algorithm provides a

quantitative measurement of which features are important for

accurate classification, thus providing a look at which features

are providing the discriminatory information used to distinguish

the cancer and noncancer classes.

Our methodology, called the boosted BBMR approach, has

two main advantages: 1) it can identify suspicious tissue regions

from a whole-slide scan of a prostate biopsy as a precursor to

automated Gleason grading and 2) it can process large images

quickly and quantitatively, providing a framework for rapid and

standardized analysis of full biopsy samples at high resolution.

We quantitatively determine the efficiency of our methodology

with respect to different classifier ensembles on a set of 100

biopsy images (image sizes range from 10 000–50 000 pixels

along each dimension) taken from 58 patient studies.

The rest of this paper is organized as follows. In Section II,

we discuss our dataset and the initial preprocessing steps. In

Section III, we discuss the feature extraction procedure. In

Section IV, we describe the BBMR algorithm. Experimental

design is described in Section V, and the results of analysis are

presented in Section VI. Discussion of the results and conclud-

ing remarks are presented in Sections VII and VIII, respectively.

II. BRIEF OVERVIEW OF METHODOLOGY

AND PREPROCESSING OF DATA

A. Image Digitization and Decomposition

An overview of our methodology is illustrated in Fig. 2. A

cohort of 100 human prostate tissue biopsy cores taken from 58

patients are fixed onto glass slides and stained with hematoxylin

(H) and eosin (E) to visualize cell nuclei and extra- and intracel-

lular proteins. The glass slides are then scanned into a computer

using a ScanScope CS whole-slide scanning system operating

at 40× optical magnification. Images are saved to disk using the

ImageScope software package as 8-bit tagged image file format

files (scanner and software both from Aperio, Vista, CA). Tis-

sue staining, fixing, and scanning were done at the Department

of Surgical Pathology, University of Pennsylvania. The images

digitized at the 40× magnification ranged in size from 10 000

to 50 000 pixels along each of the x- and y-axes, depending on

the orientation and size of the tissue sample on a slide, with file

sizes ranging between 1–2 GB.

An image pyramid was created using the pyramidal decompo-

sition algorithm described by Burt and Adelson [29]. In this pro-

cedure, Gaussian smoothing is performed on the full-resolution

(40×) image followed by subsampling of the smoothed image

by a factor of 2. This reduces the image size to one-half of the

original height and width; the process is repeated n times to

generate an image pyramid of successively smaller and lower

resolution images. The value of n depends on the structures

in the image; a large n corresponds to several different image

resolutions. A summary of the data is given in Table I.

B. Color Normalization

Variations in illumination caused by improper staining or

changes in ambient lighting conditions at the time of digitiza-

tion may dramatically affect image characteristics, potentially

affecting classifier performance. To deal with this potential arti-

fact, we convert the images from the original RGB color space

captured by the scanner to the HSI space. In the HSI space,

intensity or brightness in a channel are kept separate from the

color information. This will confine variation in brightness and

illumination to only one channel (intensity), whereas the RGB

space combines brightness and color [30]. Thus, differences
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Fig. 2. Flowchart illustration of the working of the BBMR algorithm. (a) Slide digitization captures tissue samples at high resolution and (b) ground-truth regions
of cancer are manually labeled. (c) Pyramidal decomposition is performed to obtain a set of successively smaller resolution levels. (d) At each level, several image
features are extracted and (e) modeled via a Bayesian framework. (f) Weak classifiers thus constructed are combined using (g) the AdaBoost algorithm [22] into a
single strong classifier for a specific resolution. (h) Probabilistic output of the AdaBoost classifier [22] is then converted to a hard output reflecting the extent of the
CaP region (based on the operating point of the ROC curve learned during training). Thus, obviously benign regions are masked out at the next highest resolution
level. The process repeats until image resolution is sufficient for application of advanced region-based grading algorithms. (i) Evaluation is performed against the
expert-labeled ground truth.

TABLE I
DESCRIPTION OF THE DATASET, IMAGE PARAMETERS, GROUND-TRUTH ANNOTATION, AND PERFORMANCE MEASURES USED IN THIS STUDY

that naturally occur between different biopsy slides will be con-

strained to one channel instead of affecting all three.

C. Ground-Truth Annotation for Disease Extent

For each of the 100 images used in this study, ground-truth

labels were manually assigned by an expert pathologist using

the ImageScope slide-viewing software. Labels were placed

on the original scanned image and were propagated through

the pyramid using the decomposition procedure described in

Section II-A. The expert was instructed to label all cancer within

the tissue image for training and evaluation purposes and was

permitted to use any magnification necessary to accurately de-

lineate CaP spatial extent. A subset of the noncancer class,

comprising benign epithelium and stroma, was also labeled for

training; for evaluation, all noncancer regions (whether labeled

as benign or unlabeled) were considered to be benign. Regions

where both cancer and noncancerous tissues appear growing in

a mixed pattern were labeled as cancerous with the understand-

ing that some stroma or benign epithelium may be contained

within the cancer-labeled region [see Fig. 3(d)].

Fig. 3. (a) Original image with cancer (black contours) and noncancer (gray
contour) regions labeled by an expert. (b) Closeup of the noncancer region.
(c) and (d) Closeups of cancerous regions. Regions shown in (b), (c), and (d)
are indicated on (a) by black arrows and text labels.

D. Notation

The notation used in this paper is summarized in Table II.

We represent a digitized image by a pair C = (C, f), where C
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TABLE II
LIST OF FREQUENTLY APPEARING NOTATION AND SYMBOLS IN THIS PAPER

Fig. 4. Illustration of the procedure for calculating image features. (a) Mag-
nified region of the original tissue image. (b) Pixelwise magnification of the
region with the window Nw (w = 3) indicated by a white border and center
pixel shaded with diagonal stripes.

is a 2-D grid of image pixels and f is a function that assigns a

value to each pixel c ∈ C. The pyramidal representation of the

original image C is given by P = {C0 , C1 , . . . , Cn−1}, where

Cj = (Cj , f) corresponds to the image at the jth level of the

pyramid, where j ∈ {0, 1, . . . , n − 1}. We define the lowest

(i.e., “coarsest”) resolution level as C0 and the highest resolution

level (at which the image was originally scanned) as Cn−1 . For

brevity, notation referring to pyramidal level is only included

when such a distinction is necessary. At each resolution level,

feature extraction is performed such that for each pixel c ∈ C
in an image, we obtain a K-dimensional feature vector F(c) =
[fu (c)|u ∈ {1, 2, . . . ,K}], where fu (c) is the value of feature

u at pixel c ∈ C. We denote as Φu , where u ∈ {1, 2, . . . ,K},

the random variable associated with each of the K features. An

observation of Φu is made by calculating fu (c), for c ∈ C.

III. FEATURE EXTRACTION

The operations described in the following are performed

on a neighborhood of pixels, denoted Nw , centered on the

pixel of interest, where w denotes the radius of the neighbor-

hood. This is illustrated in Fig. 4. At every c ∈ C, Nw (c) =
{d ∈ C|d �= c, ‖d − c‖∞ ≤ w}, where ‖ · ‖∞ is the L∞ norm.

Feature value fu (c) is calculated on the values of the pixels

in Nw (c). This is done for all pixels in an image that yields

the corresponding feature image. For a single pixel c ∈ C, the

K-dimensional feature vector is denoted by F(c). Some repre-

sentative feature images are shown in Fig. 5. The black contour

in Fig. 5(a) represents the cancer region. Table III summarizes

Fig. 5. (a) Original digitized prostate histopathological image with the manual
segmentation of cancer overlaid (black contour), and five corresponding feature
scenes. (b) Correlation (w = 7). (c) Sum variance (w = 3). (d) Gabor filter
(θ = 5π/8, κ = 2, w = 3). (e) Difference (w = 3). (f) Standard deviation
(w = 7).

the image features extracted; details regarding the computation

of the individual feature classes are given in the following.

1) First-order Statistics: A total of 135 first-order statistical

features are calculated from each image. These features

included average, median, standard deviation, and range of

the image intensities within small neighborhoods centered

at every image pixel. Additionally, Sobel filters in the x-,

y-, and two diagonal axes, three Kirsch filter features,

gradients in the x- and Y -axes, difference of gradients,

and diagonal derivative for window sizes w ∈ {3, 5, 7}
were also extracted.

2) Co-occurrence Features: Co-occurrence features [19] are

computed by constructing a symmetric 256 × 256 co-

occurrence matrix Oc , for each Nw (c), c ∈ C, where Oc

describes the frequency with which two different pixel

intensities appear together within a fixed neighborhood.

The number of rows and columns in the matrix Oc are de-

termined by the maximum possible intensity value in the

image I . For 8-bit images, I corresponds to 28 = 256. The

value Oc [a, b] for a, b ∈ {1, . . . , I} represents the number

of times two distinct pixels, d, k ∈ Nw (c), with pixel val-

ues f(d) = a and f(k) = b, are within a unit distance of

each other. A detailed description of the construction of Oc

can be found in [19]. From Oc , a set of Haralick features

(joint entropy, energy, inertia, inverse difference moment,
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TABLE III
SUMMARY OF THE FEATURES USED IN THIS STUDY, INCLUDING A BREAKDOWN OF EACH OF THE THREE MAJOR FEATURE CLASSES (FIRST-ORDER,

SECOND-ORDER HARALICK, AND GABOR FILTER) WITH ASSOCIATED FILTER PARAMETERS

correlation, two measurements of correlation, sum aver-

age, sum variance, sum entropy, difference average, differ-

ence variance, difference entropy, dhade, prominence, and

variance) are extracted. These 16 features are calculated

from each of the three image channels (hue, saturation,

and intensity) for w ∈ {3, 5, 7}, yielding a total of 144

co-occurrence image features.

3) Steerable Filters: The Gabor filter is constructed as a

Gaussian function modulated by a sinusoid [21], [31].

The filter provides a large response for image regions

with intensity patterns that match the filter’s orientation

and frequency-shift parameters. For a pixel c ∈ C located

at image coordinates (x, y), the Gabor filter bank response

is given as

G(x, y, θ, κ) = e
− 1

2 (( x ′

σ x
)2 +( y ′

σ y
)2 )

cos(2πκx′) (1)

where x′ =x cos(θ)+ y sin(θ), y′ = y cos(θ)+ x sin(θ),
κ is the filter’s frequency shift, θ is the filter phase, σx and

σy are the standard deviations along the x-, y-axes. We

created a filter bank using eight different frequency-shift

values κ ∈ {0, 1, . . . , 7} and nine orientation parameter

values (θ = ǫπ/8 where ǫ ∈ {0, 1, . . . , 8}), generating 72

different filters. The response for each of these was cal-

culated for window sizes w ∈ {3, 5, 7} and from each of

the three image channels (hue, saturation, and intensity),

yielding a total of 648 Gabor features.

IV. BOOSTED BBMR CLASSIFIER

A. Bayesian Modeling of Feature Values

For each image feature-extracted (see Section III), a train-

ing set of labeled samples is employed to construct a prob-

ability density function (PDF) p(fu (c)|ωi), which is the like-

lihood of observing feature value fu (c) for class ωi , where

u ∈ {1, 2, . . . ,K}, i ∈ {1, 0}. We refer to the cancer class

as ω1 and the noncancer class as ω0 . The posterior class-

conditional probability that pixel c belongs to class ωi is denoted

as P (ωi |fu (c)) and may be obtained via Bayes rule [32]. In this

study, a total of K = 927 PDFs are generated, one for each of

the extracted texture features.

The PDFs are modeled in the following way. For each ran-

dom variable Φu , for u ∈ {1, 2, . . . ,K}, we are interested in

modeling the a posteriori probability, denoted by P (ωi |Φu ),
that feature values in Φu reflect class ωi . This probability is

given by the Bayes Rule [32]

P (ωi |Φu ) =
P (ωi)p(Φu |ωi)

∑1
k=0 P (ωk )p(Φu |ωk )

(2)

where P (ωk ) is the prior probability of class ωk and p(Φu |ωi)
is the class-conditional probability density for ωi given Φu . We

can estimate the PDF as a gamma function parameterized by

a scale parameter τ and a shape parameter η from the training

data as follows:

p(Φu |ωi) ≈ Φτ−1
u

e−Φu /η

ητ Γ(τ)
(3)

where Γ is the gamma function and parameters τ, η > 0. The

gamma distribution was chosen over alternatives such as the

Gaussian distribution due to the observed shapes of feature

histograms, which tend to be asymmetric about the mean. Il-

lustrated in Fig. 6 are examples of parameterized PDFs corre-

sponding to class ω1 at resolution levels (a) j = 0, (b) j = 1,

and (c) j = 2, as well as ω0 at levels (d) j = 0, (e) j = 1, and

(f) j = 2 for the Haralick variance feature. The solid black line

indicates the gamma distribution estimate, calculated from the

feature values plotted as the gray histogram. Note that while

the gamma distribution (3) models the cancer class distribution

very accurately, some discrepancy between the model fit and

the data for the noncancer class is observable in Fig. 6(d)–(f).

This discrepancy between the model and the empirical data is

due to the high degree of variability and heterogeneity found

in the noncancer class. Because all tissue data not labeled as

cancer is considered part of the noncancer class, the noncancer

class includes a diverse array of tissue types including stroma,

normal epithelium, low- and high-grade prostatic intraepithelial

neoplasia, atrophy, and inflammation [6], [33]. These diverse

tissue types cause a high degree of variability in the noncancer

class, decreasing the goodness of the fit to the model. In an

ideal scenario, each of these tissue types would constitute a sep-

arate class with its own model; unfortunately, this is a nontrivial

task, limited by the time and expense required to obtain detailed

annotations of these tissue classes.
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Fig. 6. PDFs for the Haralick variance feature for w = 7. Shown are the PDFs for resolutions levels (a) and (d) j = 0, (b) and (e) j = 1, and (c) and (f) j = 2.
All PDFs in the top row [(a), (b), and (c)] are calculated for the cancer class, and in the bottom row [(d), (e), and (f)] for the noncancer class. The best-fit gamma
distribution models are superimposed (black line) on the empirical data (shown in gray). The change in PDFs across different image resolution levels (j ∈ {0, 1, 2})
reflects the different class discriminatory information present at different resolution levels in the image pyramid.

B. Boosting Weak Classifiers

We first construct a set of weak Bayesian classifiers, one for

each of the extracted features, using (2). Note that the term

“weak classifier” is used here to denote a classifier constructed

using a single attribute. The pixelwise Bayesian classifier Πu ,

for c ∈ C, u ∈ {1, 2, . . . ,K}, is constructed as

Πu (c) =

{

1, if P (ω1 |fu (c)) > δu

0, if P (ω1 |fu (c)) < δu

(4)

where Πu (c) = 1 corresponds to a positive (cancer) classifica-

tion, Πu (c) = 0 corresponds to a negative (noncancer) classifi-

cation, and δu ∈ [0, 1] is a feature-specific threshold value. The

optimal threshold value was learned offline on a set of training

images using Otsu’s thresholding method [34], a rapid method

for choosing the optimal threshold by minimizing intraclass

variance.

Once the weak classifiers, Πu , for u ∈ {1, 2, . . . ,K}, have

been constructed, they are combined to create a single strong

classifier via the AdaBoost ensemble method [22]. The output

of selected classifiers is combined as a weighted average to gen-

erate the final strong classifier output. The algorithm maintains

a set of weights D for each of the training samples, which is

iteratively updated to choose classifiers that correctly classify

“difficult” samples (i.e., samples that are often misclassified).

The algorithm is run for T iterations to output 1) a modified set

of T pixelwise classifiers h1 , h2 , . . . , hT , where h1(c) ∈ {1, 0}
indicates the output of the highest weighted classifier and 2) T
associated weights α1 , α2 , . . . , αT for each classifier. Note that

α1 , α2 , . . . , αT reflect the importance of each of the individual

features (classifiers) in discriminating CaP and non-CaP areas

across different image resolutions. While T is a free parameter

(1 ≤ T ≤ K), it is typically chosen such that the difference in

accuracy using T + 1 classifiers is negligible. For this study, we

set T = 10. The result of the ensemble classifier at a given pixel

c and at a specific image resolution is denoted as

AAda(c) =

T
∑

t=1

αtht(c). (5)

The output of the ensemble result can be thresholded to obtain

a combined classification for pixel c ∈ C

ΠAda(c) =

{

1, if AAda(c) > δAda

0, otherwise
(6)

where δAda is chosen using Otsu’s method. For additional details

on the AdaBoost algorithm (see [22]).

C. Multiresolution Implementation

The multiresolution framework is illustrated in Algorithm

BBMR(). Once the classification results are obtained from the

final ensemble and at a particular image resolution, we obtain

a binary image Bj = (Cj ,ΠAda), representing the hard seg-

mentation of CaP at the pixel level. Linear interpolation is then

applied toBj to resize the classification result to fit the size of the

image at pyramid level j + 1. We begin the overall multiresolu-

tion algorithm with j = 0. While we construct image pyramids

with n = 7, the classifier is only applied at image levels 0, 1,

and 2. At lower image resolutions, benign and suspicious areas

become difficult to resolve and at resolutions j > 2, significant

incremental benefit is not obtained from a detection perspective.

At higher image resolutions, the clinical problem is more about

the grading of the invasiveness of the disease and not about de-

tection. Note that in this study, we are not addressing the grading

problem.

V. EXPERIMENTS AND EVALUATION METHODS

A. Experimental Design

Our system was evaluated on a total of 100 digitized tissue

sample images obtained from 58 patients. We evaluated the clas-

sification performance of the BBMR system using: 1) qualitative
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TABLE IV
LIST OF THE DIFFERENT CLASSIFIERS COMPARED IN THIS STUDY

likelihood scene analysis; 2) area under the receiver operating

characteristic (ROC) curve; and 3) classification accuracy at the

pixel level (see Section V-C). Additional experiments were per-

formed to explore different aspects of the BBMR algorithm. The

list of experiments is as follows.

1) Experiment 1 (Evaluation of BBMR Classifier): We eval-

uated the output of the BBMR algorithm using the metrics

listed in Section V-C, which include both qualitative and

quantitative performance measures.

2) Experiment 2 (Classifier Comparison): We compared the

BBMR classifier, denoted as ΠBBMR , with five other clas-

sifiers (summarized in Table IV). Two aspects of the sys-

tem were altered to obtain the additional classifiers: a)

the method of constructing the feature PDFs was changed

from a Gamma distribution estimate (Section IV) to a

nonparametric PDF obtained directly from the feature his-

tograms (see the gray bars in Fig. 6) and b) The method

used for combining weak classifiers was changed from

the AdaBoost method to a randomized forest ensemble

method [27]. Additionally, we tested a nonensemble ap-

proach, where the single best performing feature was used

for classification. Different combinations of the method

for generating the PDFs (parametric and nonparametric)

and ensembles (AdaBoost, random, forests) yield the five

additional classifiers shown in Table IV. While many ad-

ditional ensemble and classification methods exist (for

example, extremely randomized trees [35] is a recent

alternative to random forests, and the SVM [28] is a clas-

sifier that does not employ a PDF), it is beyond the scope

of this paper to empirically test all combinations of these

methodologies. The purpose of testing the five classifiers

in Table IV is to show that BBMR can provide similar

or better performance compared to some other common

ensemble based classifier schemes, in addition to the other

benefits of transparency and speed.

3) Experiment 3 (BBMR Parameter Analysis): We evaluated

three aspects of the BBMR scheme: 1) the number of

weak classifiers used in the ensemble T ; 2) types of fea-

tures selected at each image resolution level; and 3) the

computational savings of using the BBMR approach.

B. Classifier Training

1) BBMR Classifier: To ensure robustness of BBMR to

training data, randomized threefold cross-validation was per-

formed on both a per-image and a per-patient basis.

1) Image-Based Cross-Validation: Cross-validation is per-

formed on a per-image basis, since images taken from the

same patient are assumed to be independent. This is mo-

tivated by the fact that biopsy cores are obtained in a ran-

domized fashion from different sextant locations within

the prostate, and the appearance of cancer regions within

a single patient can be highly heterogeneous. Thus, for

the purposes of finding pixels that contain cancer, each

image is independent. The entire dataset (100 images) is

randomly split into three roughly equal groups: G1 , G2 ,

and G3 , respectively, each representing a collection of im-

ages. Each trial consists of three rounds: in the first round,

the classifier is trained using pixels drawn at random from

images in groups G1 and G2 , and is tested by classifying

the pixels from images in G3 . The purpose of sampling

pixels at random is to ensure that equal numbers of cancer

and noncancer pixels are selected for training. For testing,

all pixels in the image are used for testing, except for those

left out as a result of noncancer classification at lower res-

olution levels. In the second round, G1 and G3 are used

to generate the training, and the pixels from images in G2

are classified. Here, the PDFs are recreated using features

calculated from pixels in the G1 and G3 groups. As be-

fore, equal numbers of cancer and noncancer samples are

used to generate the training set, while all of the pixels in

G2 that have not been classified as noncancer at an earlier

scale are used for testing. In the third and final round, G2

and G3 are used for training, and G1 is classified. In this

way, each image has its pixels classified exactly once per

trial using training pixels drawn at random from two-thirds

of the images in the dataset. The second trial repeats the

process, randomly generating new G1 , G2 , and G3 sets

of images. A total of 50 trials were run in this manner to

ensure classifier robustness to training data.

2) Patient-Based Cross-Validation: In addition, we per-

formed a second set of cross-validation experiments,

where G1 , G2 , and G3 contain images from separate pa-

tients, that is, a single patient could not have images in
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more than one group, ensuring that training images were

from different patients than testing images.

2) Random Forest Classifier: The random forest ensemble

constructs a set of decision trees using a random subset of train-

ing data and a randomly chosen set of features. The output of

each tree represents a binary classification “vote” for that tree,

and the number of trees in the ensemble determines the max-

imum number of votes. Hence, each random forest classifier

yields a fuzzy voting scene. The voting scene is thresholded

for some value δRF (determined via Otsu’s method), yielding

a binary scene. The random forest ensemble is evaluated us-

ing accuracy and area under the ROC curve as described in

Section V-C. A total of T trees were used in the ensemble, each

of which used a maximum of K/T randomly selected features to

generate the tree. For each of the trees, the C4.5 algorithm [36]

was employed to construct and prune the tree. Each tree was

optimally pruned to a length that helped maximize classifier

accuracy.

C. Evaluation Methods

Evaluation of classification performance is done at the pixel

level. The number of true positive (TP), true negative (TN), false

positive (FP), and false negative (FN) pixels was determined for

each image. We denote the expert manually labeled ground truth

for tumor in C, as G = (C, g), where g(c) = 1 for cancer and

g(c) = 0 for noncancer pixels, for all c ∈ C. We determine three

methods for classifier evaluation: 1) likelihood scene analysis;

2) area under the ROC curve (AUC); and 3) accuracy.

1) Comparative Analysis of Classifier-Generated CaP Prob-

ability: We obtain a likelihood scene Lj = (Cj ,AAda) for im-

age resolution level j ∈ {0, 1, 2}, where each pixel’s value is

given by AAda(c) (5). Likelihood scenes are compared with

pathologist-defined ground truth for a qualitative evaluation of

classifier performance.

2) Area Under the ROC Curve (AUC): Classifier sensitivity

(SENS) and specificity (SPEC) in detecting disease extent is

determined by varying δAda (see Section IV-B). For a specific

threshold δAda , and for all c ∈ C, the number of true positives

(TPδA d a
) is found as |{c ∈ C|g(c) = ΠAda(c) = 1}|, false pos-

itives (FPδA d a
) is |{c ∈ C|g(c) = 0,ΠAda(c) = 1}|, true nega-

tives (TNδA d a
) is |{c ∈ C|g(c) = ΠAda(c) = 0}|, and false neg-

atives (FNδA d a
) is |{c ∈ C|g(c) = 1,ΠAda(c) = 0}|, where |S|

denotes the cardinality of set S. For brevity, we ignore notation

referring to the threshold for TP, TN, FP, and FN. SENSδA d a

and SPECδA d a
can then be determined as

SENSδA d a
=

TP

TP + FN
(7)

SPECδA d a
=

TN

TN + FP
. (8)

By varying the threshold as 0 ≤ δAda ≤ max[AAda ], ROC

curves for all the classifiers considered can be plotted by varying

sensitivity versus 1 − specificity for the full range of threshold

values. A large area under the ROC curve (AUC ≈ 1.0) reflects

superior classifier discrimination between the cancer and non-

cancer classes.

3) Accuracy: The accuracy of the system at threshold δAda

is determined as

ACCδA d a
=

TP + TN

TP + TN + FP + FN
=

TP + TN

|C|
. (9)

For our evaluation, we choose δAda as described in Section IV-B,

using Otsu’s thresholding. The motivation for this thresholding

technique as opposed to the use of the operating point of the

ROC curve is that the operating point finds a tradeoff between

sensitivity and specificity, while we wish to favor false positives

over false negatives (since a false negative would be propagated

through higher resolution levels when the masks are resized).

VI. EXPERIMENTAL RESULTS

A. Experiment 1: Evaluation of BBMR Classifier

Figs. 7 and 8 show qualitative results of ΠBBMR on two sam-

ple images from the database. The original image is shown in the

top row, with the corresponding likelihood scenes L0 , L1 , and

L2 shown in the second, third, and fourth rows, respectively. It

is important to note that the increase in resolution levels changes

the likelihood values from j = 0 (second row) to j = 2 (fourth

row). Shown in Figs. 7(b) and 8(b) are the magnified image

areas corresponding to the cancer region (as determined by the

pathologist), and shown in Figs. 7(c) and 8(c) are the noncancer

image areas. As the image resolution increases, more benign

regions are pruned and eliminated at the lower resolutions.

B. Experiment 2: Classifier Comparison

The comparison of average classifier accuracy (μACC ) and

AUC (μAUC ) values for each of the classifiers listed in Table IV

is shown for the image-based cross-validation experiments in

Table V. Shown in Table VI are the sample results for a patient-

based cross-validation experiment, where images from the same

patient are grouped together for cross-validation. μACC is calcu-

lated at the threshold determined by Otsu’s method, and μAUC

was obtained across 50 trials with threefold cross-validation.

Fig. 10(a) illustrates ROC curves for the BBMR classifier over

all images in our database at image resolution levels j = 0 (blue

dashed line), j = 1 (red solid line), and j = 2 (black solid line).

In Fig. 9, there is a qualitative comparison of the three dif-

ferent feature ensemble methods: Fig. 9(a) shows the origi-

nal image with the cancer region denoted in white, while the

BBMR, random forest, and single-feature classifiers are shown

in Figs. 9(b)–(d), respectively. The displayed images are from

image resolution level j = 1. When compared with the BBMR

method, the random forest ensemble is unable to find CaP re-

gions with high probability, while the single best feature cannot

capture the entire cancer region. False negatives at this resolution

level would be propagated at the next level, decreasing overall

accuracy.

C. Experiment 3: BBMR Parameter Analysis

1) AdaBoost Ensemble Size T : The graph in Fig. 10(b) il-

lustrates how the AUC values for ΠBBMR change with T , i.e.,

the number of weak classifiers combined to generate a strong
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Fig. 7. Illustration of CaP classification via ΠBBM R on a single prostate image sample. The full image is shown in (a), with corresponding likelihood scenes
L0 , L1 , and L2 shown in (d), (g), and (j), respectively. Closeups of cancer and benign regions (indicated by boxes on the full image) are shown in (b) and (c),
respectively, with corresponding CaP classification shown in subsequent rows as for the full image. Note the decrease in false-positive classifications (third column)
compared to the stability of the cancerous regions in the second column.

Fig. 8. Illustration of CaP classification via ΠBBM R on a single prostate image sample. The full image is shown in (a), with corresponding likelihood scenes
L0 , L1 , and L2 shown in (d), (g), and (j), respectively. Closeups of cancer and benign regions are shown in (b) and (c), with corresponding CaP classification
shown in subsequent rows as for the full image.
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TABLE V
IMAGE-BASED CROSS-VALIDATION RESULTS

TABLE VI
PATIENT-BASED CROSS-VALIDATION RESULTS

Fig. 9. Qualitative comparison of classifier performance on a single prostate
image sample. The original image is shown in (a) with the cancer region denoted
in a white contour. Likelihood scenes corresponding to ΠBBM R , ΠRF ,gam m a ,
and Πb est ,gam m a are shown in (b)–(d), respectively. All images are shown from
resolution level j = 1. The BBMR method is able to detect CaP with a higher
probability than the random forest ensemble, and with fewer false negatives
than when using a single feature.

Fig. 10. (a) ROC curves generated at j = 0 (dashed blue line), j = 1 (solid
red line), and j = 2 (solid black line) using the BBMR classifier. The apparent
decrease in classifier (BBMR) accuracy with increasing image resolution is
due to a lack of granularity in image annotation at the higher resolutions (see
Fig. 12). (b) Change in AUC as a result of varying T in the BBMR AdaBoost
ensemble for level j = 2. Similar trends were observed for j = 0 and j = 1.

classifier ensemble. The independent axis in Fig. 10(b) shows

the number of weak classifiers used in the ensemble, while the

dependent axis shows the corresponding AUC for the strong

BBMR classifier averaged over 100 studies at image resolution

level j = 2. We note that as the number of classifiers increases,

μAUC increases up to a point, beyond which adding additional

weak classifiers does not significantly increase performance.

For the plot shown in Fig. 10(b), T was varied from 1 to 20, and

μAUC remained relatively stable beyond T = 10. The trends

shown in Fig. 10(b) for j = 2 were also observed for j = 0 and

j = 1.

2) AdaBoost Feature Selection: The features chosen by

AdaBoost at each resolution level are specific to the informa-

tion available at that image resolution. Table VII shows the top

five features selected by AdaBoost at each image resolution.

Table VII reveals that features corresponding to a larger scale

(greater window size) performed better compared to smaller

scale attributes (smaller window size), while first-order sta-

tistical gray-level features do not discriminate between can-

cer and benign areas at any resolution. The poor performance

of first-order statistical features suggests that simple pixel-

level intensity statistics (area, standard deviation, mode, etc.)

are insufficient to explain image differences between cancer

and benign regions. Additionally, Gabor features performed

well across all image resolutions, suggesting that differences

in texture orientation and phase are significant discriminatory

attributes.

3) Computational Efficiency: Fig. 11 illustrates the com-

putational savings in employing the multiresolution BBMR

scheme. The nonmultiresolution-based approach employs ap-

proximately four times as many pixel-level calculations as the

BBMR scheme at image resolution levels j = 1 and j = 2. At

the highest resolution level considered in this study and for im-

ages of approximately 1000 × 1000 pixels, the analysis of a sin-

gle image requires less than 3 min on average. All computations
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TABLE VII
LIST OF THE TOP FIVE FEATURES CHOSEN BY ADABOOST AT THE THREE RESOLUTION LEVELS

Fig. 11. Efficiency of the system using the BBMR system (black) and a
nonhierarchical method (gray), measured in terms of the number of pixel-level
calculations for levels j = 0, j = 1, and j = 2.

Fig. 12. Qualitative results illustrating the apparent dropping off in pixel-
level classifier accuracy at higher image resolutions. (a) Original image with
the cancer region annotated in gray. Binary image in (b) shows the overlay
of the BBMR classifier detection results for CaP at j = 0 and (c) shows the
corresponding results for j = 2. Note that at j = 2, the BBMR classifier begins
to discriminate between benign stromal regions and cancerous glands; that level
of annotation granularity is not, however, captured by the expert.

in this study were done on an dual core Xeon 5140 2.33-GHz

computer with 32-GB RAM running the Ubuntu Linux oper-

ating system and MATLAB software package version 7.7.0

(R2008b) (The MathWorks, Natick, Massachusetts).

VII. DISCUSSION

Examining the ROC curves in Fig. 10(a), we can see that

the classification accuracy appears to go down at higher image

resolutions. We can explain the apparent drop-off in accuracy

by illustrating BBMR classification on an example image at

Fig. 13. (a) Comparison of ROC curves between pixel-based classification
(solid black line) and patch-based classification (black dotted line). (b) Original
image with a uniform 30-by-30 grid superimposed. Black boxes indicate the
cancer region. (c) Pixel-wise classification results at resolution level j = 2,
yielding the solid black ROC curve in (a). (d) Patch-wise classification results
according to the regions defined by the grid in (b), yielding the dotted black
ROC curve in (a). The use of patches removes spurious benign areas within the
CaP ground-truth region from being reported as false negatives.

resolutions j = 0 and j = 2 (see Fig. 12). The annotated cancer

region appears in a gray contour. Also shown are subsequent

binary classification results obtained via the BBMR classifier at

image resolution levels j = 0 and j = 2 (see Fig. 12(b) and (c),

respectively).

As is discernible in Fig. 12(a), the cancer region annotated by

the expert is heterogeneous, comprising many benign structures

(stroma, intragland lumen regions) within the general region.

However, the manual ground-truth annotation of CaP does not

have the granularity to resolve these regions properly. Thus,

at higher image resolutions where the pixel-wise classifier can

begin to discriminate between these spurious benign regions

and cancerous glands, the apparent holes within the expert de-

lineated ground truth are reported as false-negative errors. We

emphasize that these reported errors are not the result of poor

classifier performance; they instead illustrate an important prob-

lem in obtaining spatial CaP annotations on histology at high

resolutions. At high image resolutions, a region-based classi-

fication algorithm which takes these heterogeneous structures

into account is more appropriate.

The BBMR classifier was modified to perform patch-based

instead of pixel-based classification at j = 2. A uniform grid

was superimposed on the original image [see Fig. 13(b)],

dividing the image into uniform 30-by-30 regions. A patch was
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labeled as suspicious, if the majority of the pixels in that patch

were labeled as disease on ground truth. The BBMR classifier

was trained using patches labeled as benign and diseased, since

at j ≥ 2, identifying diseased regions is more appropriate com-

pared to pixel-based detection. The features calculated at the

pixel level were averaged to provide a single value for each

patch. The results of patchwise classification on a sample image

at level j = 2 are shown in Fig. 13(d) and compared with the

BBMR pixel-level classifier on the same image in Fig. 13(c).

Intertwined regions of benign tissue within the diseased areas,

classified as benign by the pixelwise BBMR classifier (and la-

beled as “false negatives” as a result) are classified as cancerous

by the patchwise BBMR classifier. This yields an ROC curve

with a greater area; compare corresponding curves for the pixel-

based and patch-based BBMR classifiers in Fig. 13(a).

We would like to point out that the apparent drop-off in classi-

fier accuracy has to do with the lack of ground-truth granularity

at higher resolutions. Pathologists are able to distinguish cancer

from noncancer at low magnifications, only using higher mag-

nifications to confirm a diagnosis and perform Gleason grading.

We believe that a proper region-based algorithm, with appropri-

ately chosen features (such as nuclear density, tissue architec-

ture, gland-based values, etc.) will be the best method for de-

scribing tissue regions as opposed to tissue pixels, which was the

objective of this study. In a Gleason grading system [13], [37],

such additional high-level features will be calculated from the

suspicious regions detected at the end of the BBMR classifica-

tion algorithm.

VIII. CONCLUDING REMARKS

In this study, we presented a boosted BBMR classifier for au-

tomated detection of CaP from digitized histopathology, a nec-

essary precursor to automated Gleason grading. To the best of

our knowledge, this study represents the first attempt to automat-

ically find regions involved by CaP on digital images of prostate

biopsy needle cores. The classifier is able to automatically and

efficiently detect areas involved by disease across multiple im-

age resolutions (similar to the approach employed manually by

pathologists) as opposed to selecting an arbitrary image resolu-

tion for analysis. The hierarchical multiresolution BBMR classi-

fier yields areas under the ROC curves of 0.84, 0.83, and 0.76 for

the lowest, medium, and highest image resolutions, respectively.

The use of a multiresolution framework reduces the amount of

time needed to analyze large images by approximately 4–6 times

compared to a nonmultiresolution-based approach. The implicit

feature selection method via AdaBoost reveals which features

are most salient at reach resolution level, allowing the classifier

to be tailored to incorporate class discriminatory information,

as it becomes available at each image resolution. Larger scale

features tended to be more informative compared to smaller

scale features across all resolution levels, with the Gabor filters

(which pick up directional gradient differences) and Haralick

features (which capture second-order texture statistics), being

the most important. We also found that the BBMR approach

yielded higher AUC and accuracy than other classifiers using a

random forest feature ensemble strategy, as well as those using

a nonparametric formulation for feature modeling.

Pixelwise classification breaks down, as the structures in

the image are better resolved, leading to a number of “false-

negative” results, which are in fact correctly identified “benign”

areas within the region manually delineated as CaP. This is due

to a limit on the granularity of manual annotation and is not an

artifact of the classifier. At high resolution, a patch-based sys-

tem is more appropriate compared to pixel-level detection. The

results of this patch-based classifier would serve as the input to

a Gleason grade classifier at higher image resolutions.
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