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Abstract—Eigenvalue analysis is an important aspect in many
data modeling methods. Unfortunately, the eigenvalues of the
sample covariance matrix (sample eigenvalues) are biased esti-
mates of the eigenvalues of the covariance matrix of the data
generating process (population eigenvalues). We present a new
method based on bootstrapping to reduce the bias in the sample
eigenvalues: the eigenvalue estimates are updated in several
iterations, where in each iteration synthetic data is generated
to determine how to update the population eigenvalue estimates.
Comparison of the bootstrap eigenvalue correction with a state
of the art correction method by Karoui shows that depending
on the type of population eigenvalue distribution, sometimes the
Karoui method performs better and sometimes our bootstrap
method.

Index Terms—bootstrapping, eigenvalue correction, general
statistical analysis, isotonic tree method

I. INTRODUCTION

Second order statistics are used extensively in data model-
ing methods. For example, in Principle Component Analysis
(PCA) (see [1]), the second order statistics of high dimensional
data are used to find subspaces containing the strongest modes
of variation. In Linear Discriminant Analysis (LDA), the ratio
of within class and between class variance is used to find the
highest discriminating directions (see [2]).

When applying these methods, it is usually assumed that the
data generating process can be modeled with a multivariate
probability function P (x), where x is a multidimensional
random variable. It is then assumed that P (x) is reasonably
characterised by only the mean and second order statistics.
The second order statistics of a multidimensional random
variable are described by the covariance matrix, given by
Σ = E (

x̃ · x̃T
)
, x̃ = x−E(x), where E() is the expectancy

operator.
The covariance matrix Σ can be decomposed as Σ = E·D·

ET. Here, E = [e1 e2 . . . ep], with ei the ith eigenvector, and
D is a diagonal matrix with the eigenvalues on the diagonal.
Often the decomposition results are required instead of Σ. We
denote the eigenvectors and eigenvalues of the decomposition
of Σ by population eigenvectors and population eigenvalues
respectively.

However, since neither P (x) nor Σ are known beforehand,
an estimate of Σ has to be obtained from a training set. A
commonly used estimator is given by Σ̂ = 1

N−1X·XT, where
X is a matrix in which each column consists of the difference
of a training sample and the average of the training samples.
N is the number of training samples. The decomposition

results of Σ̂ are denoted by sample eigenvectors and sample
eigenvalues. In a mathematical framework, the column vector
consisting of the population eigenvalues is denoted by λ. The
column vector consisting of the sample eigenvalues is denoted
by l.

A problem of high dimensional training sets is that even
though Σ̂ is an unbiased estimate of Σ, l is a biased estimate
of λ. The bias becomes significant if the number of samples
is of the same order as the dimensionality of the data. The
bias has a negative effect on systems using these estimates as
is shown for classification systems in [3], [4] for example.

To reduce this negative effect, the sample eigenvalues could
be corrected to remove the bias. In this paper we present a
bootstrap approach [5] to eigenvalue correction: our approach
iteratively improves eigenvalue estimates without introducing
new measurements. Instead, we generate synthetic data in each
iteration which we use to update the population eigenvalue
estimates.

The system of eigenvalue estimation and correction is
schematically represented in Figure 1. In the figure, F rep-
resents the entire procedure of data generation and the sample
eigenvalue estimation from this data. If the number of samples
and the number of dimensions is large enough, F only
introduces a bias on the eigenvalues as will be explained
later on. Our aim is to obtain the inverse function F−1 that
compensates for the bias in the sample eigenvalues. A method
which applies F̂−1 to sample eigenvalues is called a correction
method. We add a superscript c to symbols representing results
of such a correction method.
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Fig. 1. Schematic representation of the bias introduction and bias correction
in eigenvalue estimation.

The currently available correction methods can roughly be
divided in three categories: regularisation methods, corrections
based on Steins loss criterion and corrections based on theo-
retical descriptions of the bias. The regularisation methods are
often empirical and lack a strong theoretical foundation (See
for example [6]). Correction algorithms based on Stein’s loss
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criterion actually introduce a new bias to reduce the criterion
(e.g. [7], [8]).

For the last category bias descriptions are needed. A de-
scription of the bias for many data distributions was proved
in 1995 [9]. Karoui derived a correction method based on this
relation. This method therefore has a strong theoretical basis
as opposed to most regularisation algorithms, it reduces the
bias as opposed to Stein’s loss criterion based methods and it
has been shown to reduce bias in real experiments [10]. We
therefore consider this method to be one of the state of the
art methods so we compare the performance of our bootstrap
correction with the performance of this method.

The overview of the remainder of the article is as fol-
lows: we start with an analysis of the eigenvalue bias in
section II-A. In section II-B we introduce the Marčenko Pastur
equation which describes this bias. A brief description of the
Karoui correction is given in section II-C. We then describe
the bootstrap correction method (section III) and compare
correction results of the two methods in section IV for a
number of synthetic data sets. Section V gives a summary
and conclusions.

II. EIGENVALUE BIAS ANALYSIS AND CORRECTION

A. Eigenvalue bias analysis

To find the statistics of estimators often Large Sample
Analysis (LSA) is performed. In LSA it is assumed that the
number of samples grows very large so the statistics of the
estimator become a function depending solely on the number
of samples, N . In this limit case the sample eigenvalues show
no bias. However, for example in biometrics, the number
of samples is often in the same order as the number of
dimensions p or even lower and LSA cannot be used. Instead
in the analysis of the statistics of the sample eigenvalues the
following limit may be considered: N, p → ∞ while p

N → γ,
where γ is some positive constant. Analysis in this limit are
denoted as General Statistical Analysis (GSA) [11]. In GSA
the sample eigenvalues do have a bias.

Figure 2 demonstrates why the limit in GSA is needed. It
shows results of three experiments. For each experiment, the
population eigenvalues are chosen uniformly between 0 and 1.
While γ is kept constant at 1

5 , the number of dimensions is set
to 4, 20 and 100 in figures 2a, 2b and 2c respectively. In each
figure the population eigenvalue distribution function and the
sample eigenvalue distribution functions for 4 repeated exper-
iments are given. Given a set of eigenvalues li, i = 1 . . . p, the
corresponding distribution function is given by equation 1:

Fp(l) =
1
p

p∑
i=1

u (l − li) (1)

here u (l) is the step function.
Figure 2 shows that the empirical sample distribution func-

tions converge with increasing dimensionality. The bias in
the estimates is visible because they converge to a different
distribution function than the population distribution function.
For low dimensional examples, the bias is only a small part

of the error in the estimates. The major part of the error is
caused by random fluctuations of Fp(l).

B. Marčenko Pastur equation

It turns out that under certain conditions a relation between
the sample eigenvalues and the population eigenvalues can be
given in the GSA limit. The main proofs and conditions on
the input data are given in [12] and [9]. Here we briefly repeat
the main points.

The relation requires the following Stieltjes transform vp (z)
of a distribution function based on the empirical sample
eigenvalue distribution function:

vp(z) = (1 − γ)
−1
z

+ γ ·
∫

dGp (l)
l − z

(2)

here Gp(l) is the empirical sample eigenvalue distribution
function as given by equation 1 and z ∈ C

+. In the GSA limit,
if the population eigenvalue distribution function converges to
H∞(λ), then Gp(l) converges weakly to a G∞(l) such that
the relation between the corresponding v∞(z) and H∞(λ) is
given by equation 3.

− 1
v∞(z)

= z − γ

∫
λ · dH∞(λ)
1 + λ v∞(z)

, z ∈ C
+ (3)

Because of this relation, reduction of the bias in the sample
eigenvalues should be possible.

C. Karoui correction method

The Karoui method is based on the assumption that the
number of samples and the number of dimensions is high
enough such that the conditions given in section II-B are
met and equation 3 holds. It is also assumed that the density
function h (λ) exists. The method approximates h(λ) by a
weighed sum of fixed density functions pi (λ) (see equation 4).
In our implementation of the method we used a weighed sum
of delta pulses and uniform distributions.

ĥ(λ) =
∑

ai · pi(λ),
∑

ai = 1, ai ≥ 0 (4)

This approximation is then used in equation 3 after sub-
stitution of dH (λ) with h (λ) dλ. The empirical sample
eigenvalue density function given by equation 1 is substituted
in equation 2 to determine a set of corresponding vp (z) and
z values. The Karoui method then determines the set of ai

values which best satisfies equation 3 for this set of z values.
For more details, we refer to [10].

III. BOOTSTRAP EIGENVALUE CORRECTION METHOD

DERIVATION

The objective of eigenvalue correction is to find λ. However,
since λ is unknown, the objective of the bootstrap correction
method we propose is to find a λ̂c such that F

(
λ̂c

)
= F (λ).

The general procedure of the method is given schematically
in figure 3. To start the algorithm an initial estimate of λ is
needed. We use l as initial estimate. The method then performs
a number of iterations, where in each iteration the steps in
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Fig. 2. Examples of eigenvalue estimation bias toward the GSA limit. The dashed line indicates the population distribution Hp, the four solid lines are the
empirical sample distribution Gp.

figure 3 are performed starting from the right. In each iteration
a synthetic set of white Gaussian distributed data samples
Xw,n is generated with the same number of samples and
the same dimensionality as the original measurement. These
samples are scaled so their population eigenvalues are equal
to the current estimate of the population eigenvalues λ̂c

:,n,
where n is the current iteration index and subscript : indicates
the entire column vector. From this synthetic data set the
sample covariance matrix Σ̂n is estimated. From this matrix
the sample eigenvalues l̂:,n are determined. If the cost function

K =
∣∣∣l − l̂:,n

∣∣∣2 is below a threshold, the sample eigenvalues
of the real data and the synthetic data are considered to be
equal and therefore the current estimate of the population
eigenvalues are used as final estimates of the population
eigenvalues. If the cost function is not below the threshold,
λ̂c

:,n is updated via update rule:

λ̂c
:,n+1 = λ̂c

:,n − μ · ∂K

∂λ̂c
:,n

(5)

The parameter μ determines the size of the adjustment steps
taken in the method. After this update a new iteration starts
and the previously described steps are repeated.
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Fig. 3. Schematic representation of the bootstrap eigenvalue correction

To find the derivative in the right hand side of equation 5

we can relate this derivative with the derivative ∂ l̂:,n

∂λ̂c
:,n

via

∂K

∂λ̂c
:,n

∝ −
(
l − l̂:,n

)T

· ∂ l̂:,n

∂λ̂c
:,n

(6)

The derivative ∂ l̂:,n

∂λ̂c
:,n

can be found using the expression

for l̂:,n in equation 7, where M is the number of synthetic
data samples. Note that we use normal distributed synthetic
samples although we do not know the real distribution of
the data samples. However, according to the Marčenko Pastur
equation, in the GSA limit many distributions, including
the normal distribution, will have the same relation between
sample eigenvalues and population eigenvalues.

l̂n = diag
{
ÊT

n ·
(
D̂c

n

) 1
2 · 1

M − 1
· Xw,n·

XT
w,n ·

(
D̂c

n

) 1
2 · Ên

}
(7)

Here Ên are the eigenvectors of the synthetic data covariance
matrix and D̂c

n is a diagonal matrix with λ̂c
:,n on the diagonal.

From equation 7 we find the derivative ∂ l̂:,n

∂λ̂c
:,n

, given element

wise in equation 8.

∂ l̂:,n

∂λ̂c
j,n

= diag

{
2 · ÊT

n ·
(
D̂c

n

) 1
2 · Xw,n · XT

w,n

M − 1
·

∂

∂λ̂c
j,n

(
D̂c

n

) 1
2 · Ên

}
(8)

∂
∂λ̂c

j,n

(
D̂c

n

) 1
2

is a matrix with zeros except for element

{j, j}, which is
(
λ̂c

j,n

)− 1
2

. Because of this last matrix, the
method does not converge if one of the population eigenvalues
becomes zero. We solved this problem by using l as initial
estimate of λ, but replacing the zero eigenvalues with the
lowest non zero eigenvalue. In our experiments no eigenvalues
turned to zero during the iterations. Another solution is to use
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λ̂c
1 λ̂c

2 λ̂c
3 λ̂c

4 λ̂c
5 λ̂c

6

λ̂c
m,1,3 λ̂c

d,1,3 λ̂c
m,2,3 λ̂c

d,2,3 λ̂c
m,3,3 λ̂c

d,3,3

λ̂c
m,1,2 λ̂c

d,1,2 λ̂c
m,2,2

λ̂c
m,1,1 λ̂c

d,1,1

TABLE I
ISOTONIC TREE WITH 6 POPULATION EIGENVALUES.

the gradient with respect to standard deviations. However, the
first option proved to give more accurate reconstructions and
faster convergence.

A. Order preservation in the bootstrap correction method

When updating the eigenvalues without any constraints,
oscillations may occur in which λ̂c

i,n switch value with λ̂c
i+1,n

in each iteration. A order preserving algorithm was presented
by Stein in [13]. We used an isotonic tree method, which
allows blocks of eigenvalues to have a large change in value
simultaneously and the method can also be implemented more
efficiently.

The isotonic method first builds a tree: the top
layer consists of the current population eigenvalues. Each
lower layer is based on the difference and the mean
of mean elements of the previous layer above, or
λ̂c

d,k,l =
(
λ̂c

m,2k,l+1 − λ̂c
m,2k−1,l+1

)
/2 and λ̂c

m,k,l =(
λ̂c

m,2k−1,l+1 + λ̂c
m,2k,l+1

)
/2 respectively. Here the first

subscript of the left hand side symbol indicates whether the
element is a mean (m) or a difference (d) element, the second
subscript is the index of the element in the layer, and the third
index is the layer index. So λ̂c

d,k,l is the kth difference term
on the lth layer and λ̂c

m,k,l is the kth mean term on the lth

layer. See the example in table I. To reconstruct the λ̂c
n only

the difference terms in all the layers and the final mean term
are needed.

The derivative in the update rule can be split into a tree a
similar manner. The update is then performed per layer starting
from the bottom layer. First the average term is updated via
λ̂c

m,1,1,2 = λ̂c
m,1,1 + μdλ̂c

m,1,1. Then the following two steps
are repeated for every layer: first, the difference terms are up-
dated via λ̂c

d,k,l,2 = λ̂c
d,k,l +μdλ̂c

d,k,l. Next the mean terms on
layer l−1 are updated via λ̂c

m,k,l−1,2 = λ̂c
m,k/2,l,2±λ̂c

d,k/2,l,2,
where the decision of doing an addition or a subtraction is
based on whether k is odd or even.

For k even, it may happen that λ̂c
m,k+1,l−1,2 > λ̂c

m,k,l−1,2.
In that case the mean terms k and k + 1 are updated
via λ̂c

m,k+1,l−1,2 = λ̂c
m,k,l−1,2 = λ̂c

m,k/2,l,2 + λ̂c
d,k/2,l,2 ·

λ̂c
d,k/2,l,2+λ̂c

d,1+k/2,l,2

λ̂c
m,1+k/2,l,2−λ̂c

m,k/2,l,2

. The update of the population eigenval-

ues is completed by taking λ̂c
n+1,k = λ̂c

m,k,lmax,2. In case of
an odd number of mean elements on a layer, the last mean
element is just copied from the lower level.

IV. EXPERIMENTS AND DISCUSSION

To evaluate the performance of the bootstrap correction we
generated a number of synthetic data sets with a number of

chosen population eigenvalues set beforehand. We corrected
the sample eigenvalues measured from these sets with the
bootstrap method and the Karoui method and measured the
Levy distance,

dL (F,G) = inf {ε > 0 : F (x − ε) − ε ≤
G (x) ≤ F (x + ε) + ε,∀x} (9)

between the corrections and the population eigenvalues. Like
Karoui, we calculate a score for a correction result by de-
termining the ratio dL(G,H)/dL(Ĥc,H), where Ĥc is the
corrected population eigenvalue distribution.

We performed the comparison with 6 different set-ups.
For most experiments we drew 501 samples from an 100
dimensional normal distribution. The first three experiments
have the same set-up as the experiments in [10]: experiment
1 (identity) has λk = 1,∀k, experiment 2 (two cluster) has
λk = 1|k = 1 . . . 50 and λk = 2|k = 51 . . . 100 and
experiment 3 (Toeplitz) has the eigenvalues of a Toeplitz
matrix. In the fourth experiment (Slope) λk = 1 + k/100.
In the fifth experiment (one over n) we used λk = 1

k , a
common model for eigenvalues of facial data [6]. In the sixth
experiment (undersampled slope) we draw 201 samples for a
600 dimensional normal distribution with λk = 1 + k/600.

By repeating the experiments collections of scores for the
different set-ups are obtained. These score collections are
represented by the histograms in figure 4. A large score
indicates that the corrected population eigenvalue distribution
and the population eigenvalue distribution are much more alike
than the sample eigenvalue distribution and the population
eigenvalue distribution. Therefore which ever method has the
most density to the right of the histogram provides the best
correction according to the Levy distance measure.

In the identity and two cluster experiments (figures 4a
and 4b) the bootstrap method shows a steady improvement
with an average score around 2. The Karoui correction
achieves much higher scores, albeit with a huge spread. In
the Toeplitz experiment (figure 4c) and the slope experiment
(figure 4d), the bootstrap method has significantly higher
scores. In the one over n case (figure 4e), the bootstrap method
also performs better, however, its scores indicate its estimate
has almost the same precision as the sample eigenvalues.

In the undersampled slope case (figure 4f) the Bootstrap
method still outperforms the Karoui method, however the
difference is not as big as in the slope experiment in figure 4d.
For a more detailed discussion on the results of this experiment
an example repetition is shown in figure 5, with figure 5a
containing the population eigenvalue scree plots and figure 5b
contains the sample eigenvalue scree plots.

There are large differences between the population eigen-
values. The Karoui correction models the eigenvalues similar
to the spiked population model: almost all eigenvalues are
equal except for a few considerably larger ones (see [14] and
[15]). It also sets a few population eigenvalues to zero. The
bootstrap method sets all the population eigenvalues which
were estimated as zero by the sample eigenvalue estimator to
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Fig. 4. Histogram of scores of both the bootstrap eigenvalue correction and the Karoui eigenvalue correction.
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Fig. 5. Example repetition with the undersampled slope population eigenvalues.

an equal, non zero value. For the remainder of the eigenvalues
a slope is estimated, but with a higher gradient.

Despite the differences in the population eigenvalues, the
sample eigenvalue scree plots are almost the same. This shows
that the undersampled case is a very difficult problem, which
seems to be under determined: multiple population eigenvalue
distributions seem to generate the same sample eigenvalue
distributions. In practice an equal value for all population
eigenvalues in the zero space of the sample eigenvalues is
required, since the order of the estimated eigenvectors in the

zero space is random. Combining the estimated eigenvectors
with different values will introduce arbitrariness. This will
lead to arbitrary likelihood estimates for new samples with a
component in the sample null space. The bootstrap method
corrects all zero sample eigenvalues to almost the same
value and seems therefore more applicable to undersampled
problems.

We used the Levy distance to be comparable to the tests
in [10], but the use of the distance is somewhat arbitrary and
causes problems in performance comparisons. The distance

822

Authorized licensed use limited to: UNIVERSITEIT TWENTE. Downloaded on January 29, 2010 at 10:05 from IEEE Xplore.  Restrictions apply. 



is not scale invariant as is demonstrated by the example in
figure 6. Another problem is that the use of a different criterion
may very well result in a different ordering of the methods.

0
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0.4

0.6

0.8

1

F
G
scale small
scale large

Fig. 6. Scaling behaviour Levy distance. The dash-dotted line and the dotted
line indicate the F (x − ε) ± ε line in case of small scale and in case of
large scale respectively. In the small scale, the infimum is determined by the
difference on the left, while in the large scale, the infimum is determined by
the difference on the right.

It appears that both methods are still biased: the Karoui
method seems to be biased toward clusters, what could be
explained by the approximation of the population density
by the weighed sum of fixed distribution functions. The
bootstrap method still over estimates the largest eigenvalues
and under estimates the smallest eigenvalues, probably due to
inaccuracies in the gradient estimate.

V. CONCLUSIONS AND RECOMMENDATIONS

We introduced the bootstrap correction method, which cor-
rects the bias in sample eigenvalues, and we did a performance
comparison between the bootstrap method and the Karoui
method. Both methods do improve the estimate of the eigen-
values for most cases, except for the undersampled case. The
Karoui correction performs better on clustered densities while
the bootstrap method performs better on smooth distributions
of the population eigenvalues. Both methods still leave a
bias in the eigenvalues after correction: the Karoui correction
introduces more clusters, while the bootstrap method still
estimates the largest eigenvalues too large, while the smallest
eigenvalues are estimated too small.

The comparison of the methods using the Levy distances
is still somewhat arbitrarily: the order may change when the
scale of the distributions is changed and the ordering by the
Levy distance may very well differ from the order found using
other measures. In the undersampled case the use of the Levy
distance becomes even more problematic: different population
eigenvalue distributions seem to lead to the same sample
distributions, while the Levy distance between the population
distributions can be considerable.

In the undersampled case there is a clear advantage for the
bootstrap method: the smallest population eigenvalues which
were estimated to be zero with the sample estimator are
assigned an equal value. Because the original sample eigen-
values were all zero, the corresponding sample eigenvectors
are a random basis in the zero space. Replacing the zero

valued sample eigenvalues by non zero corrected eigenvalues
introduces some arbitrariness, unless the non zero corrected
eigenvalues all have the same value.

In the tests we performed we did not focus on the con-
vergence rate of the two methods with respect to the GSA
limit. As we described previously, the Karoui correction relies
heavily on the Marčenko Pastur relation, while the bootstrap
method only uses this relation to justify the use of Gaussian
distributed synthetic data samples. The Karoui correction may
therefore rely more on the GSA limit and have reduced
performance for lower dimensional problems.

To reduce random fluctuations in the gradient estimate, the
sample covariance matrix of white samples in equation 8 can
be constructed using the Marčenko Pastur rule [16].
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