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Abstract

Estimators of the extreme-value index are based on a set of upper
order statistics. We present an adaptive method to choose the num-
ber of order statistics involved in an optimal way, balancing variance
and bias components. Recently this has been achieved for the similar
but somewhat less involved case of regularly varying tails (Drees and
Kaufmann(1997); Danielsson et al.(1996)). The present paper follows
the line of proof of the last mentioned paper.
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1 Introduction

Suppose we have i.i.d. observations X, X5, -+, X,, whose common distribu-
tion function F'is in the domain of attraction of an extreme-value distribution
G, (notation: F' € D(G.,)). The shape parameter 7 € R of this extreme-
value distribution (functional form: exp(—(1 + y2)~*?)) can be estimated
in various ways starting from the sample X, Xo,---, X,,. Two popular es-
timators are Pickands’ estimator (in its generalized form see e.g. Pereira
(1993)):

Xon—[k02] — X (k0]

Yno(k) == (=log#) 'log (1.1)

Xn,n—[ktﬂ - Xn,nfk



(6 € (0,1)) where X,,; < --- < X, , are the order statistics of Xy, -, X,
and [z] denotes the largest integer which is not larger than z, and the moment
estimator

Tualh) 1= M (R) +1 = (1 = =08y (12)

with M,gj)(k) = % Zi':ol (log Xy n—i—log X, n—k)?. For this estimator we have
to require that the right end point of the distribution is positive.

The estimators from (1.1) and (1.2) are consistent for v provided k£ =
k(n) — oo, k(n) = o(n)(n — o00). If one increases the speed at which
k(n) goes to infinity, the asymptotic variance decreases but the asymptotic
bias increases. There is an optimal sequence balancing variance and bias
components (see figure 1). This optimal sequence ko(n) can be determined
when the underlying distribution is known, provided the distribution function
has a second order expansion involving an extra unknown parameter (Hall
(1982); Dekkers and de Haan (1993)). Here we develop a purely sample based
way of obtaining the optimal sequence kq(n) where we assume a second order
expansion but do not assume the second order (or first order) characteristic
known. The procedure is based on a double bootstrap (see also Hall (1990).
Results for the moment estimator and for Pickands’ estimator are given in
Section 3 and Section 4 respectively. All the proofs are postponed till Section
5. Section 6 reports the result of a small simulation study and section 7
demonstrates the application of the procedure to North Sea wave height data.
In an appendix we explain why we use different second order conditions in
Section 3 and Section 4.

2 Outline

We want (in the set-up of (1.2)) the value of & minimizing Ep(5,.2(k) — v)?

although this is only meant in an asymptotic sense (second moment of the
asymptotic distribution). Call this value ky(n). There are two unknowns in
this expression: 7 and the distribution function F. The idea is to replace vy
by a second estimator 4, 3(k) and to replace F' by the empirical distribution
function Fj,. This amounts to bootstrapping. It is proved that minimizing
the resulting expression, which can be calculated purely on the basis of the
sample, still leads to the optimal kqg(n) with the help of a second bootstrap.
A similar procedure applies to the estimator from (1.1). Sections 3 and
4 provide the scientific background for the bootstrap procedure. Here we
explain step by step how to implement the procedure.



We start with a sample Xy, -+, X,,.

Step 1: Select randomly and independently n; times (n; << n) a mem-
ber of the set { X, X, ---, X, }, Weindicate the result by X7, ---, X . Form
the order statistics X | < --- < X and compute ¥, ,(k) and 4, 3(k)
(according to the formula after Theorem 3.2 below) for £ = 1,2,--- n;.
Form g} , = (5, 4(k))* for k =1,2,-- n,.

Step 2: Repeat this procedure r times independently. This results in a
sequence ¢, ., k=1,2,---,nyand s =1,2,---,r. Calculate % S, Uiy ks
The number r can be taken as big as necessary.

Step 3: Minimize 2377 ¢ , . with respect to k. Denote by kj,(n1)
the value of k where the minimum is obtained.

Step 4: Repeat Step 1 up to 3 independently with the number n,
replaced by ny = (n1)?/n. So 1 is smaller than n;. This results in kj, (n2).

Step 5: Calculate ko(n) on the basis of kg1 (n1) and k) (ny) according
to its definition in Corollary 3.3 below with 4, := 4, 2([n'/?]) for example
and p, according to the formula in the same Corollary.

This ko(n) is the adaptively obtained optimal number of order statistics.

3 Main results for moment estimator

We shall write throughout v for vV 0 and v_ for yA0. Assume F' € D(G,),
i.e. there exists a positive function a(t) such that
Ulte) =U(t) a7 —1

lim = for x > 0,
toooaft) v

which implies that

— - —
lim log U(tz) —logU(t) _ 1 for 2 > 0.
toooa(t)/U(t) V-

Throughout this section we assume U(oco) > 0 and the following second
order condition:

logU(tx)—logU(t)  z7——1
. a(t)/U(t) -
tlgglo AT = H(x) (3.1)

where U(t) is the inverse function of the function 1/(1 — F), a(t) is positive
and A not changing sign eventually. The function H(z) is assumed not to
be a multiple of (z7~ — 1)/y_ and takes the form (supposing the function a



and A are chosen properly)

H(z) =12 =t o=

Pl ot
(log )°/2 tp=0y20,
= %[ﬂlogm—%] if p=0,7<0, (3-2)
LraPt’-—1 27— -1 :
E[ pry- - ] it p #0,

depending on a second order parameter p < 0 (see de Haan and Stadtmiiller,
relation (2.9) page 387).

We present a series of results culminating in Corollary 3.3 that provides
a sample based sequence ko(n) such that for any (random or non-random)
sequence k(n)

sy ELGnaho(m) =%} _

First we restate in slightly greater generality a result from Dekkers and de
Haan (1993) providing the optimal number of order statistics for the moment
estimator as a function of v, p and the function A.

Theorem 3.1. Suppose F' € D(G.,) and that (3.1) and (3.2) hold for p < 0,
v # pandy # 0. Let kg = ko(n) be a sequence of integers such that the
asymptotic second moment of 4y, 2(k)— is minimal when choosing k = ky(n).
Then

V2(y) (1 1
ko(n)/{n = (s (=)'} =1 3.3
o(n)/{ (bQ(%p)) (s7(=)) "} (3.3)
as n — 0o, where
p ifv>0,
pr=q7 ifp<y<0,
p o ify<p,
v+1 if v >0,
VZ(’Y) = {(1 )2 (1—27) (672 —7+1) . (3.4)
“omar o <0
(the variance component) with v, =0V v and v =0 A~y and
(p(llfp) )7 + (13p)2 fO’f’ Y > 07
b(v.p) = § 1 for p <7y <0, (3.5)
1-7) (1-2
(1—(p—z; El—pz)27) Jory<p



(the bias component). The function s~ is the inverse function of the decreas-
ing function s satisfying

Aan:(y+qnxlmqwd% (3.6)

where
A(t)  ify >0,
Ay(t) = g,((?) if p<v<0 and
A(t)  ify < p.

Remark 3.1. Since we only know anything about the asymptotic mean square
error for intermediate k, here and in the rest of the paper, when we minimize
over k, we only consider values between logn and n/(logn), both being
intermediate sequences with the optimal value in between.

Remark 3.2. We exclude the two cases v = 0 and 7 = p in Theorem 3.1.
The reason can be seen from Theorem A in Appendix. This also happens in
Dekkers and de Haan (1993).

We are going to turn the asymptotic second moment of 4, 2(k) — v into
something we can handle adaptively, the first step is to replace the unknown
v in the formula by an alternative estimator for 7. The alternative estimator

(1) (2)

The following theorem is the analogue of theorem 3.1 for the aymptotic sec-
ond moment of Y, 2(k) — Fn.3(k).

Theorem 3.2. Assume the conditions of Theorem 3.1. Determine ky =
ko(n) such that the asymptotic second moment of 4y, 2(k) —n.3(k) is minimal.
Then

V)
b*(7, p)

Fo(m)Anl g )5 (57(1) ) 1

as n — 0o, where

9 PO+ if v >0,
14 (7) = Y 1 (1—7)% (1—87+487y2 —15473 426372 —2227547275) . 0
1 (1-27) (1-37) (1—47) (1-57) (1—67) if v <



and

T if >0,
7 1-2v— 1- 1-2 .
b(v,p) = 7(1_7() (13)22) Z) if p<v <0,
(1

1 —p(1=y -
2 T (=g (3=p) WV <P

In order to show the convergence of mean squared error, we consider the
following quantity

Ana(k) = (Yn2(k) = Fn3(k))1(|Yn2(k) — ns(k)| < ]{1.6—1/2)7
where ¢ > 0. Then we have

Theorem 3.3. Assume the conditions of Theorem 3.1. Suppose p < 0. De-
termine ko = ko1(n) such that E{(4,.4(k))*} is minimal. Then as n — oo

];071 (TL)/];Z[) (Tl) — 1.

Hence

V)
b*(7, p)

Remark 3.3. Note that Theorem 3.3 holds for any ¢ > 0 in the definition of
Ana(k). Thus, in our simulation study, we use 9,2(k) — ¥n3(k) instead of
PAVnA(k)'

Next we are going to introduce the bootstrap procedure. One takes
n, independent drawings from the empirical distribution function of X, :=
{Xi, -, Xy}, This results in observations Xf,---, X . We form the order
statistics X:{l; <. <X, and define

ni,n1

ko,l(”)/{n(

) (s () o L

k
Méjl) (k) = k E :(long,m—i-i-l - lOanl,nl—kl)J

i=1
for k < ny and j =1, 2, 3. Next define

1 (M (k)2

i o(k) = MU (k) + 1 — —(1 — )
2 2 M (k)

and

Fapa(k) = \/ M (k) /2 + 1 - Fihe 1M(3>*(k‘1) )L



By bootstrapping we can now estimate

Q(n1, k) = B{(%, 4(k))*| Xn}
with

’?;,4(k) = (%2(@ — %73)1(@;72(]{;) _ %3(1{;” < k6—1/2)

as well as we wish.

Now we want to connect the asymptotic behavior of arginf ) with the
corresponding quantity for the asymptotic expectation as considered in e.g.
Theorem 3.1.

Theorem 3.4. Suppose the conditions of Theorem 3.1 hold and ny = O(n'~)
for some 0 < e <1/2. The random quantity ki ,(n.1) is defined as follows:
Foa(m) = arginf B{(37, 4())*| X0}

Then
V2 1 1

Fo () {0 = (o (L)1) 5 1

b2(v, p) n

in probability.

We now use the known quantity kj, to estimate ko(n) and do this via
]%0(7’1,)

Corollary 3.1. Suppose the conditions of Theorem 3.4 hold and Ay(t) = ct?”
with ¢ # 0 and p* < 0. Then

7. 7% L #pi
Fio(n) /Lo, () ()77} = 1
in probability.

Remark 3.4. Since Ay in Theorem 3.1 is a regularly varying function, the
extra requirement means that the slowly varying function is in fact a constant.

—92p*
Next we get rid of the factor (n/n;) =27 . We do this via an independent
second bootstrap procedure with bootstrap sample size n,.

Theorem 3.5. Suppose the conditions of Corollary 3.1 hold andny = (ny)?/n.
Let

Foa(n2) = arginf B{(37, 4(k))*| X}
Then
ko(r) /{ (k3 1 (n1))? kg1 (n2)} — 1 in probability.



Corollary 3.2. Under the conditions of Theorem 3.5,

]_f* 2 2 12
( O,I(nl)) (‘_/ (Mo* (v, p))ﬁ} — 1 wn probability.

ka(n2) V()03 (v, p)
Corollary 3.3. Suppose the conditions of Theorem 3.5 hold. Define

ko(n)/{

s (kga(n)? V2(3) B (i, ) \
ko(n) == ké;(”?) <V2(%) b2(%7ﬁn))

with k§ 1 (n1) and k5, (n2) as defined in Theorem, 3.4 and Theorem 3.5 respec-
tively and with 3, any consistent estimator of v (for instance 4y, 2(k) with
k = k(n) any sequence with k — oo, k/n — 0), p, any consistent estimator
for p*, for instance

. log %3,1(”1)
Pn = —2logny + 2log kg, (n1)

Then
kio(n)/ko(n) — 1 in probability,

hence the asymptotic second moment of’yng(l%()(n )=~ is asymptotically equal
to the asymptotic second moment of 4, 2(ko(n)) — 7.

4 Main results for Pickands’ estimator

Throughout this section we assume that F'is in the differentiable domain of
attraction of G, (notation: F' € Dgi(G)), i.e., F' is differentiable in a left
neighborhood of =, := sup{x : F'(z) < 1} and there exist a, > 0 and b, € R
such that

0
Jim. %[F"(anm +b,)] = G () (4.1)
locally uniformly for all x € R. This is mainly done for convenience. In fact
not much is lost of the general case and the computations are more simple.
The differentiable domains of attraction were introduced by Pickands (1986).
Clearly F' € Dg;¢(G,) implies F' € D(G,) for the same normalizing constants
an and b,. Define U(t) := (1/(1 — F))~(t). The following proposition char-
acterizes the differentiable domain of attraction of G,.

Proposition 1. F' € Dgi(G,) for some v € R if and only if U(t) is differen-
tiable for all sufficiently large ¢ and U'(t) € RV,_;.



Proof. See Pickands (1986). O

In order to get the limit distribution function of estimator 4, ¢(k) we have
to require some kind of second order condition. Because of Proposition 1 it is
quite natural to assume that there is a positive function A*(¢)(— 0 as t — o0)
such that

U’ (tz —
lim —UI((t)) —
exists for every z > 0. In order to avoid trivialities we also assume that the
limit function is not a multiple of z7~!. Then the limit function must be of
the form c’aﬂ_le’l for constants p < 0 and ¢ # 0 (see Theorem 1.9 of Geluk
and de Haan (1987) or Lemma 3.2.1 of Bingham et al. (1987); (z° —1)/0 is
defined as logz). We can and will subsume the constant ¢’ in the function
A*. So suppose there is a function A with lim; ., A(¢) = 0 and not changing
sigh near infinity, such that

U'(ts) x’y—l P
7 -1
lim O~ it (4.2)
oo A(l) p
for allz > 0. The function |A| is then regularly varying with index p(notation :
|A| € RV,). It can be proved (see Pereira(1993) or de Haan and Stadtmiiller(1996))
that (3.2) is equivalent to
Ultz) — U(t) — tU'(t) 2 120 1 27 —1
fi 2 ) = U O = hy (7)== [ ~ T 0 (@3)
t—00 tU'(t)A(t) ’ pYEp Y
First we determine the theoretically optimal value ky(n) asymptotically.

Theorem 4.1. Assume F' € Dyy(G,) and (4.8) holds for A(t) = ct? with
¢ # 0 and p < 0. Determine ky = ko(n) such that the asymptotic second
moment of Yn.9(k) — v is minimal. Then
O~ —1)(14+621 1 =2
ko(n)/{(_2( 2(&55(97;’-1)222p)1_2pn1_2p} — ]'
PET v+p

as n — 0o.
Next we compute the optimum with v replaced by 4, ¢(k6?).

Theorem 4.2. Assume F' € Dyf(G,) and (4.3) holds for A(t) = ct” with
¢ # 0 and p < 0. Determine ky = ko(n) such that the asymptotic second
moment of Y p(k) — Yn0(k0?) is minimal. Then

. @' -1+ H1+672) e
kO(n)/{(_2p62(%)2(9—;:;1)292p(1 _ 9*2p)2) } — 1

as n — Q.



Corollary 4.1. Assume F' € Dy/(G,) and (4.3) holds for A(t) = ct? with
¢ # 0 and p < 0. Determine ko(n) such that the asymptotic second moment
of An.o(k) — v is minimal and ko(n) such that the asymptotic second moment
of An.o(k) — An.o(k0?) is minimal. Then

ko(n) 1+672 ﬁ
W) gy

as n — Q.

In order to show the convergence of mean squared error, we consider the
following quantity

Y0 () = (G (k) = T2 (K6*)) 1 (.0 (k) = g2 (k6| < K*172),
where 6 > 0. Then we have

Theorem 4.3. Assume F' € Dy;(G,) and (4.3) holds for A(t) = ct” with

c#0 and p < 0. Determine ko1 = ko1(n) such that E{(F,.0(k))*} is mini-
mal. Then as n — o0

17{1071 (TL)/I%O (TL) — 1.

As in Section 3, we draw resamples X; = {X7,---,X; } from X, =
{X1,---, X} with replacement. Let n; < n and X; | < --- < X
denote the order statistics of A}; and define

* — X*
A _ ;n1—[k162] ny,n1—[k16]
Ty (k1) = (= log ) ' log — :
" an,m*[klﬂ} - an,nl—k1

Then we propose to use the following bootstrap estimate of the mean square
error

E{ (9, 0 (k1))*| %0}

We can prove

Theorem 4.4. Assume F' € Dyy(G.) and (4.83) holds for A(t) = ct? with
¢ #0 and p < 0. Let ny = O(n'~°) for some € € (0,1). Determine ki o(ny)
such that B{(7;, 4(k))*|Xn} is minimal. Then

; O DA+ HA+072) o
kl,O(nl)/{(_2p62(1__0p)2(0777/1_1)20_2p(1 _ 9—2p)2

Iz T+p

as n — oQ.

10



Finally we connect ko(n) with &7 ; and k3, asymptotically.

Theorem 4.5. Assume F € Dyy(G.,) and (3.3) holds for A(t) = ct? (p < 0).
Let ny = O(n'™%) for some ¢ € (0,1/2) and ny = (n1)?*/n. Determine
kio(ni) such that B{(3; 4(k:))?|Xn} is minimal (i = 1,2). Define fo(p) =

(%)17 o. Then

(k1,)”

loglc10
k; 0f6‘( 2(log k Oflognl))

[ko(n) 51

as n — 00.

So as before we get an estimator for ky(n) which leads to an estimator
for # which has asymptotically the lowest mean squared error.

5 Proofs

We shall give some lemmas first.

Lemma 5.1. Let Yy, ---,Y, be i.i.d. random variables with common distri-
bution function 1 —z™' (x > 1) and Y, < --- <Y, be the order statistics.
Assume k — oo, k/n — 0. Then

(i) Yon-r/% — 1 in probability

(ii) Define
nn z+1/Ynn k) 71_ 1

:1 17"/_

>

Zk ( nn z+1/Ynn k) 1)2 _ 2
=1

>

(I=y-)(1-2v-)
( nn 7,+1/Ynn k) 71)3 _ 6
=1 v- (1=7=)(1=27-)(1-3y-)"

ESITae . L

We have Vk(P,, Qn, R,) converges in distribution to (P, Q, R), say, which is
normally distributed with mean vector zero and covariance matriz

/ 2 1
EP2 NG e
_ e
EQ" = oo soa a0

9 36(19—105v_ +14672 )
B = ey p s 2= (=5 67

E(PQ) = gompaars o
T P27 )
12
)2

(1=7y-)?(1—27-

7-)

=
51570

(
)
)
ol

1—3v_
(9—21
(1—3y

11



Moreover,

kEP? — E P?
kEQ? - EQ?
kER? - E R

(1ii) Define for j =1,2,3

(Yn,n7i+1/Yn,nfk)77 - 1)]‘71

k
. 1 .
dg) = E E J H(Yn,nfiJrl/Yn,nfk) ( 0%
=1 -

Then by the law of large numbers

- _1
Iyt j=123

d§3’>$d-:/o®jﬂy
i= (y) ( o y

or explicitly

. 1
) —p—)
2(3—2p — 4y
4, — (3—2p—47) and
(1=7 )0 =27 )1 =p=7)A=p—27)
p 187y2 —22y_ +15py_ +3p* —8p+6
3:

(1=7)(1=2y )1 =37 )A-p=7)A=p=27)1—=p—37).
Proof. Similar to the proof of Theorem 3.4 of Dekkers et al. (1989) by writing
(P, Qn, Ry,) as a sum of i.i.d. random vectors. O

The following is an extension of a result by Drees (1998).

Lemma 5.2. Let f be a measurable function. Suppose there exist a real
parameter « and functions a,(t) > 0 and A;(t) — 0 such that for all x > 0

flz)—f@) _ a1

. a1(t) a
Jm A (1) = ()

where
1
= [3[

Then for any € > 0 there exists ty > 0 such that for all t > ty, tx > to,

x0th— 1 -1

() a+p o

| (8<0)

fz)=f() _ z*—1

20 T ) < L 2]

12



Proof. Suppose o # 0. Then from relation (2.2) of Theorem 1 of de Haan
and Stadmiiller (1996), we have

(tr)~%ai(tx) — t %a (t) ¥ —1
ea (A8 B

Hence
f(tz)—ai(tz)/a—(f(t)—a1(t)/a)
A
_ ft)— (t) ()L
o= ()(/a> a1
—¢ t*aal()ﬂ 1(t) i
— aHy(z) — J:axﬂ_l = —on_B_l.

Similar to the proof of Lemma 2.2 of de Haan and Peng (1997), we get

a(tr)” a1 (tz)—t"%ay () azf-1
|z xt—azll(thl(t)/Zl — 155 |

< xa€[1+xﬂee|loga:|]

and
L))o G0 @) | gty
a1 (t)A1(t)/ o a+f
< 6[1+xa+pee\logw\]‘
Hence

fz)—f(t)  2%—1

|%—H1(x)|

) sl a0 s (0) | 5201
R 2y RO
xr a1 \tr)/ o al

L o
< glltat + 2g+Beellogal],

_xaazﬂ 1|

Suppose o = 0 and # < 0. Then from the proof of Theorem 2 (iii) of de
Haan and Stadtmiiller (1996) we have a;(t) — ¢y € (0,00) and —2 )'21('(5)) —
—1/3. Hence

f(tw) — colog(tz) — (f(t) —cologt) | 1a" —1
ar (t)A(t) BB

The rest of proof for & = 0 and 5 < 0 is similar to the case o # 0.
Suppose @ = 3 = 0. Write

olt) = 1) =5 [ 1) ds




which implies

(see Corollary 1.2.1 of de Haan (1970)). From Omey and Willekens (1988)
we have

g(tr) —g(t)

=t s logx.
ar (DAL (1) &
Note that
f(tz)—f(t)—ai(t) log
glte) o) 't glts)—as(t)
. T)— T s)—a1
= aonn T Ji sat(D)AL (L ds
Hence
g(tz) — air(t)
— logxr —1
a®A
Furthermore
o) —anlt)
a1 (t) A1 (t)
Using Proposition 1.19.4 of Geluk and de Haan (1987), we can easily see the
lemma holds. Thus we complete the proof. O

Let F, denote the empirical distribution function of X, and U, = (1=5-) "

Lemma 5.3. If (3.1) and (3.2) hold and ny = O(n*~%) for some ¢ € (0, 1).
Then for any 0 < € < 1 there exists tg > 0 such that for all tm < t <
ny(logny)? and ty <tz < ny(logny)?

log Up (tz)—log Un(t) z7— —1

| a(®)/U(t) - H(ZL‘)|
A(t)
< [EER - d(y, plaredios
+H[HoER 1 ed(y, p)
+e[l + 27 + 2x7*+pe€|1°g“7|]

+AO BN S 1 VE] as.

(5.1)

where d(y_, p) > 0 is a constant which only depends on y_ and p.

14



Proof. Let G,, denote the empirical distribution function of n independent,
uniformly distributed random variables. As n is large enough and n; =
O(n'~%), we have

1
1/2<  sup |tG, (=) <2 as. (5.2)
t<ni(logni)? t
and
1 1 logn
tGh(=)— ) < .
sup [VH(Gn(5) = )| < Jn &S

£>2

(see equations (10) and (17) of Chapter 10.5 of Shorack and Wellner (1986)).
Hence

sup L 6.6 () — G by < 8

4<t<ni(logni)? G;(%) t

a.s.

Therefore for all 4 <t < ny(logny)?
(5.3)

Now we use Lemma 5.2, (5.2), (5.3),

ly? =1 < |y|27 v 2 Tt Yy 1] for 1/2<y <2

and U, < U(tG;(%)). It follows that for any € € (0,1) there exists ¢y > 4 such

15



that for all o <t < ny(logny)? and to < tx < ny(logn,)?

log Up (tz)=log Un(t) 27— —1

| a(t)/U(;l)(t) = —H(.’L‘)|

e a(tr) (t2Gp ()" 7= -1
(or)-losUlta)— i) £ A(te)a(tz) /U (tz)
A(tz)a(tz) /U (tx) A(t)a(t)/U(t)

_a(t) (tGp ()77 =
tGE(;)) log U(2) 777

A(Da ((t))/U( 3
log U (tz)—log U (t)— g(t) = ,Yi_
AWa(/T(0 ~ H(z)
a(te) (tzGy ( z)) -1
+U((’i£> o _ GG
A)a()/U(0) :A(
n

{1H ()| + 1 + (t2G () -
|

tex Gy ( 1z
+2(tzG;; (tt1 )7 +p el log(te G (7)) ]}(1 + e)xpeellogarl
]

+HH ()| + el + (0G5 (5
(1)

+2(th(t)) = +pee\log (tGn (5
+e[l 4+ 27~ 4 227-Hrecllog]]

(trGr (37) "~ —1 (tGr ({) "~ 1
+(1+¢)] o A(?) |+ | 7EA(,5) |

A= ) Y2 + ed (-, p)lae

+d(v-, p)% + ed(v-, p)
+€[l + 27~ 4 227-HPecllog ]

d(y—,p) Vitzlogn | d(y—,p) Vtlogn
TR Ve T AQL Ve &S

log U
| 87N ea, (&)

IES

log U(

IN

(
(
)™

)|

a.s.

IN

where d(y_,p) > 0 is a constant only depending on v_ and p. The lemma
follows. [

Proof of Theorem 3.1. A full proof of a somewhat restricted case has been
given in Dekkers and de Haan (1993). We shall give a sketch of the proof.

By Lemma 5.2, for any € > 0 there exists t; > 0 such that for all ¢ > ¢,
tx Z to

logU(tx)=logU(t)  z'——1

| a(t)/U(?{(t) - H(.’L‘)| < 6[1 4+ 27 + 2x77+P€€|10gQ3|]_

Applying this relation with ¢ replaced by Y, ,—r and = by Y, n—i/ Yo nt,
adding the inequalities for 2 = 0,1, -+, k — 1 and dividing by k£ we get

M(l)( k)
a(Ynn k)/U( n,n— k)

+ P+ AYpe) 8 H(Ynnii1/ Yones)

+€A(Ynn k) Zz 1{1+( n,n— l+1/Ynn k)
+2(Yn nfz+1/Yn nflc)’y +p66“0g( n,n— Z+1/Ynn k)‘}

IN
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Note that {Y, nit1/Ynn-r}r, = {Y’ ~, with Y], -+, Y/ ii.d. with common
distribution function 1 — 1/z (z > 1) We apply the law of large numbers
to the third and fourth terms. Also note that %Yn,n,k — 1 in probability,
so that since |A| is regularly varying, we have (A(n/k))"'A(Yn,n ) — 1in
probability. As a result

M(k)
a(yn,n—k)/U(Yn,n—k) B 1- V-

+ P, + A(n/k) dy + 0,(A(n/k)).

Hence

(M (k)2
QZ(Ynn k')/U ( n,n—k

)
A(n/k
= (177_)2 + 21?,” +2 f /7) + 0p(A(n/k)).

Similarly

M) (k)
az(ynn k)/U ( n,n— k)
= T + Qu + A(n/k) ds + 0,(A(n/k)).

T2

Combining these expansions we get

Inalk) =7 ) &)
1 M (k)—2(MmP (k))?
= M, )(k) 7+t M(z)(( )) ((M(l)(( )))) 7=

= (1 + 5= = 1)l + P+ diA(n/R)] -
2
IS S Se M)Qn — AP, + (dy — 27-dy — 4dr) A(n/k)}

+op(A(nF) .
= (gay — ) + (Gaty — )P+ diA(n/k)]
A \2(1—2~
4+ 0= )2(1 2y ){((1—77)22‘76—%& P, + (1 —2v)Q,

+(d2 — 2’}Ld2 — 4d1 + dﬁdﬂz‘l(ﬂ/k))} + op(A(n/k))

From the proof of Lemma 5.2 and Theorem 2, part (iii) of de Haan and
Stadtmiiller (1996) we can prove

a(t)

o U(t) - 1 .
U((tt)) — t) -5 ?fy >0
TA() 5 /1A )I%OO if p<y<0
(t)/A() if v <p.
Consequently, by Lemma 5.1, we have that the asymptotic second moment

of 4n2(k) — v equals

(VE(y)/k + 0*(v, p)A§(n/k))
= (V2(y)r/n+ (v, p)A3(r))
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with r := n/k. One obtains the minimum with respect to r by using (3.6)
and equating the derivative to zero (for details see Dekkers and de Haan
(1993)). Since we have assumed in the derivation that k(n) is an interme-
diate sequence, we still have to show that the resulting ky(n) is really the
optimum. But it is easy to see that for any k(n) with k(n)/ko(n) — 0 or co
the asymptotic second moment of 9, 2(k) — v is of large order as long as
k(n) — oo and k(n)/n — 0 (n — oo). In order to stay within these bounds,
one can add the extra restriction logn < k(n) < n/logn in the optimization
procedure. The theorem follows. O

Proof of Theorem 3.2. First we develop an asymptotic expansion for the al-
ternative estimator 4, 3(k). By the same arguments as in the proof of Theo-
rem 3.1 we may show

M (k)
a3(Yn,n—k)/U3(Yn,n—k)

= 6 + R, + d3A(n/k) + Op(A(n/k))

(I=y—)(1=27y-)(1-37-)

and

My (k) My (k)
a3(Yn,n—2k)/U3(Yn,n—k) 9P, 0
n ) +

TP 20 T 0o -20) T ooz

(2 + 1 20) A(n/k) + 0,(A(n/k)).

1—y_)(1—2v— 1—y_
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Hence

3MY (k) —3MAY (k)M (k)

(3) (1) (2)
)

J— a(Yn,nf n 2
= U(Yn,njg o 5 FAM/E) -
1—vy_ 1—2y_)(1-3vy—
4 =) 2y ) 7){ 137 P, —3Q,+ (1—-3y.)R,
(1 =370y = S A/Y + (Al )
_ a(Yonk) (1—y-)(1-2v-)
= (1 + U(Ynn—k) %f){\/( )(1 2v_) 4 Qn
1 1 2
I, AR — v
1— 1-2 1—
+( —1-)°( 127 M3y ){_1_67 n 3Qn + (1 — 3’)’—)Rn
+((1 —37-)ds — 1=3-d1 — 3d2) A(n/k)} + 0,(A(n/k))
U< S N (=S (e

n

Yoo V(o) (1-272) V(=) (1-272)
(e — ) [, YIS g, 4 (k)]
(1=

12y )(1-37_ 3744/ (1=7-)(1-27-)
+ ) ( 127 S ){_1—37 P+ (( 5 ) (1—27)(1-37_) _3)Qn
e/ (L—7=)(1-2
+ 1727 T d2]A(n/k)}+0p( (N/k))-

Combining the above expansion with the expansion of 4, 2(k) —~ in the proof

of Theorem 3.1, we have

ﬁ’n,Q(k) - ﬁ’n,3(k)
_ ( a(Yn,nfk)

- 1 o 1
U(Yn,n—k) f)/+)(1_7* \/(177_)(1727_))

(=) — o, ) (B + dy A(n/k) — ),
_\/(1*7—4)(1*27—)d2A(n/k))
+(1—77)2(1—12277)(1—377){[(1_%)2(11_2;/;7)(1_3%) _ 1_23477 + l_g’%]Pn
+[6(11__3277: = (13_7:,)2((11:72_7),()1(1373_7),) +3]Qn — (1 = 37-) R,
+[6(11—_3277:)d2 1 2347 d + =y (11227; gy h — (L= 37-)ds

d + 3y — N NS oA (0 K)} + 0,(A(n /).

T 2"/ 7)(1727)1 3v-)

The rest of proof is similar to the proof of Theorem 3.1.
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Proof of Theorem 3.3. Let

k
EW .= {w call of [Py, |~ Yyt — 1], [dD — dy| and
n

n

n

DY) — DW] are less than or equal to k6°_1/2}

for some &y € (0,1/2), where

k—1

Z {1 + (Ynan—i/Yn,n—k)fL + 2(Yn,n_i/Yn,n_k)’Y—+p+e}

1=0

DW .= ¢

n

x| =

and
DW .= e/ (142" + 27 TP 2dy.
1

Now take € and ty as in the proof of Theorem 3.1. Then, provided 7(1 —

k%~1/2) > ¢, we have Y, ,,_x >t on EM. Also, since A is regularly varying
we have

AV s) — Aln/k)| < 2¢A(n/k)

on Efll). Using these two facts and the inequalities in the beginning of the
proof of Theorem 3.1, we find

MM (k) 1
a(Yn,nfk)/U(Yn,nfk) 1 - =

on the set E": so we have o(A(n/k)) instead of 0,(A(n/k)). Defining sets

EP and EY related to the behavior of MY and M we get similar in-
equalities for those.
Define

— Py — A(n/k)dy| < eA(n/k)

E, =EVNEPNEY.

Using the mentioned inequalities and the fact that the conditions for the
set F, imply that P,, ),,, R, and A are surely small, we can also replace
0,(A(n/k)) by o(A(n/k)) in the expansions given for 4, (k) and 4, 3(k) in
the proof of Theorems 3.1 and 3.2 as long as we stay inside E,,.

Moreover the inequality |£Y; ,_r — 1| < k% '/? guarantees that we can
replace

a(Yon—k) a(n/k)
Uy Tl 7




(cf. the limit relation for —vy; +a(t)/U(t) in the proof of Theorem 3.1). Hence
as in the proofs of Theorems 3.1 and 3.2 we find

E{f%%,zll(En)} N
(V2(7)/k + b2(7, p) A§ (n/k))

Next we show that the contribution of the set Ef to the expectation may
be neglected. For example by the definition of ¥, 4

E{97 41(|Pa] > K2 712)} < K7 Pr{|P,| > k0 71/2)
and by Bennett’s inequality (cf. Petrov, 1975, Ch. III; §5) we can show
Pr{|P,| > k* 2} <g#
eventually for any # > 0. Hence
E{37 1(|Pa] > k%712)}
(V2(7)/k + b2(y, p) A3 (n/k))

The reasoning in case any of the other conditions of the set E, is violated
is exactly the same (the inequality Pr{|2Y, , , — 1| > k% %2} < k% can
be obtained by translating the inequality for %Yn,n,k into one for its inverse
%Z?:l 1{Y; > 7} and then applying Bennets inequality). This completes
the proof of Theorem 3.3.

— 0,n — o0.

U
Proof of Theorem 3.4. Given X, := {Xy,---,X,}, we have

k1
1
MO (k) = > 108 Un (Vi 1) — 108 Un (Y, -1y
Lot

with {Y},,;}71, the order statistics from a distribution function 1-1/z (z >
1) and independent of X;,. By the same arguments as in the proof of Theorem
3.1 using Lemma 5.3 instead of Lemma 5.2 we get

My (ki)
a‘(Ynl ny—kp )/U(Ynl ,nlfkl)

A(ni/k v/ ni/kilogn
57+ Pay + 555 4 0p(A(ma /) + Op (V725

Note that 7”“/;;.?;71 = o(1/Vk1), so that the last term can be absorbed

into the second one. The expansion for M"*(k;) is the same as for M. (k)
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given X,. Similarly for M{* (k1) and M (ky). So the result of Theorem 3.1
holds with ky replaced by

F51(n) := arginf as. B{(Y;, ,(k))*|X,}.

and n by ny. A similar analogue holds to the results of Theorem 3.2. Finally
in a way analoguous to what was done in Theorem 3.3 we can replace as.E
by the non-asymptotic expectation. Hence the conclusion. O

Proof of Corollary 3.1. Note that lim;_,o, t™7a(t)/U(t) is a positive constant
in the case p < v < 0 (see de Haan and Stadtmiiller (1993)). Thus Ay(t) ~
cot?” which implies

s (1/t) ~ (=2c2p") T2 tTo" .
The Corollary easily follows from Theorems 3.4 and 3.5. O

Proof of Theorem 3.5. This follows by combining the results of Corollary 3.1
for k1 (n1) and kg, (n2). O

Proof of Corollary 3.2. 1t easily follows from Theorems 3.1, 3.2 and 3.5. O
Proof of Corollary 3.3. We can use the result of Corollary 3.2 and we only

have to prove that p, is a consistent estimator of p*. By Theorem 3.4 the
_22*

sequence k| (ny) is asymptotic to ¢;ny > . Hence
_ —2p*
log kg, (ny)/logn, —
g 0,1( 1)/ gn 1— 20
in probability. This gives the consistency. O

Lemma 5.4. If F' € DyyG,), then (4.1) holds for a, = nU'(n) and b, =
U(n) and for any k — oo, k/n — 0 and 6 € (0, 1], the stochastic process

Xnn- ko] — U(i)
Wk(0) = Vi £

converges (in the sense of convergence of all finite marginal distributions) to
a Gaussian process w(6) which has mean zero and covariance structure

Cov(w(fy),w(B)) = 677077, 0< 6, <6, <1.

Proof. See Theorem 2.3 of Cooil (1985). O
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Lemma 5.5. If (4.8) holds and ny = O(n*~%) for some €y € (0,1). Then
for any 0 < € < 1 there ewists ty > 0 such that for all ty < t < ny(logny)?
and ty < tx < ny(logny)?

Up(tz)—Unp(t) Y¥—1
| a(t)A(t) = = hy,p(@)]
< [ 4 dD(y, p)artrerlier
+[¥1esn 1 D (y, ) 54)
+e[l + 27 4 227+ ecllosal]

D(~, n
+ 2GR SBR[ 3 1] s,

where D(7y, p) > 0 is a constant which only depends on vy and p.
Proof. Similar to the proof of Lemma 5.3. O
Proof of Theorem 4.1. By Lemma 5.4 we have

VRGuh) -9
= \/E( 1og910g XM[MZ] )

(k6] —Xn,n—k

nn (k62 X"” [k6]
i \/_ Xn,n—[k92]_X"” ["7‘9] 0 ’Y(X [ko]_X”an_k)(1+ (1))
a —10g(9 eiw(Xn,n—[ke]_Xn,n—k) Op
. [ Vi Xnn-ko1=U(5z) = (14077 (X o) —U(55)) +077 (X - =U (%))
a log 0 0= (X (k0] Xnn—k)

Ulggz)—(A+0"NU(55)+077U (%)
+7\1£Eg0 ke; 7( n,n—[k6] kg(nn k) ](1 +0p(1))

nn Xn,nf -
( note %““{’,],( ™ LNy f/ L)
< [ X e oy~ U () ~(1+0 ) (XKoo= U )40~ (K =T (3))
f— 10g(9 nU/( ‘)0779*":—1
U(pay)— (140" U(55)+0U(%)
+_\1{’Eg0 2 nyr(n)g—y1=1 =](1 4 0,(1))
>
d — _
£ g (w(0?) = (L+ 07w (0) + 07 w(1)) + 0(1)
Ul ) (140-"U(Z)+0-7U (%)
+ i L 1+ 0,(1)),

=
%U’(%)H ~ 0 > 1

thus the asymptotic variance of V&(9,4(k) — ) equals

V(01— 1)(1+6727)
(log 0)*(0=7 — 1)?

and the asymptotic bias of V& (9,0(k) — ) equals

n, 6°° v 1=0r07 P -1
kA(— .
vk (k)—log00—7—1 p Y+ p
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By A(t) = ¢t " we get in a way similar to the proof of Theorem 3.1

MGl E ot WS
1-0P\2/0-7—P_1\92 Qp)l_ZPTLl_Zp} — L
P (57 )2 ()20

ko(n)/{(—

Proof of Theorem 4.2. By Lemma 5.4 we have

\/E(fsln ﬂ(k) - ﬁ/n,ﬂ(k02))

VE@no(k) = 7) = VE(,0(k07) =)
[ \/E Xn,nf[m‘Q?]_ (kQZ) (1+‘9 7)( n,n—[k6] — U(%))‘l'o_’y(xn,n—k_[](%))
log 0 0= (X, — k6]~ Xn,n—k)
VE U(2)— (10U () +0 U ()
log 0 6~ ’Y( n,n—[k8] Xnn k)
f Xn,n—[k;04] U(k94) (1+0 7)( nn—[k03]7U(kg%3))+97’Y(Xn,n—[k92]7U(ko%))

= I

_|_

—log 0 07 (X - k03]~ X n— (k62])
n - n - _n_
—log 0 Q—V(Xn,n_[ k03] Xnn [k 92]) p

- - _Xn,n 2
) ( note —* [’“’%3[1],(%) (k6% Py p-2y077-1 1 1)
= —_égaw%m(w(@?)—( “Nw(®) + 0w (1)) + oy(1)
Vi U =040 )U()+0-7U(2)
+ 1(1)g0 = ny(R)o- 7kf -1 - (1+0p(1))
- 10gam( w(0®) = (1+0-7)w(6®) + 0~ w(62)) + 0,(1)
Vi Ulga)- (1+0 MU (25 )+ 7U(—)
“lgs nyr(2)g-3y 0= —(1+0,(1)),

£
thus the asymptotic variance of V& (9,.9(k) — 4n.0(k0?)) equals

P+ )0 —1)(1+672)
(log §)(6=7 —1)?

and the asymptotic bias of V& (9.9(k) — Yn0(k0?)) equals

n, 077 1—-07077""—-1 ~
A~ 1—02).
vk (k)—logﬁ p Y+p 9*7—1( o)

By A(t) = ¢t we get in a way similar to the proof of Theorem 3.1

. @ t-11+0H1+672) L B
kO(n)/{(—2p62(%)2(0 :;+pp 1)29 2p( _ 9*2p)2) }—> 1.
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Proof of Theorem 4.3. Similar to the proof Theorem 3.3. U

Proof of Theorem 4.4. Similar to the proof of Theorem 3.4 by using Lemma 5.5
instead of Lemma 5.3. O

Proof of Theorem 4.5. Similar to the proof of Corollary 3.3. O

6 Simulations

The bootstrap procedure was tested on various distribution functions in
a small simulation study: 200 samples of size 10.000 are generated from
each distribution function. To each sample the bootstrap method was ap-
plied, with ¢ = 0.05, that is ny = 708 and ny = 502, and 200 boot-
strap samples. The distributions are Cauchy, generalized Pareto distribution
(GPD) with v = 1/4 and v = —1/4, generalized extreme value distribu-
tion (GEV) with v = —1/4 and v = —3/2 and finally the distribution with
U(t) = H,,(t) jequation (3.2) with v = —1/4, p = —1/10 and p = —1 (to
have a distribution that allows a free choice of p).

Figure 1 illustrates the results for the Cauchy distribution: The bottom
graph shows the observed and theoretical mean squared error of the ~y esti-
mate as a function of k: the solid line represents the observed mean squared
error (i.e. the sample mean of the estimated (9, 2(k) — 7)? of the individual
simulated samples), and the dashed line the theoretical value calculated as
V2(y) + (A(n/k) b(v, p))?. The vertical line indicates the sample mean of
the ko estimates. The two components of the MSE, bias and variance are
illustrated in the top and middle graphs. Table 1 summarizes the simulation
results. For each parameter the table reports

e the theoretical value,

e statistics of the bootstrap estimates (sample mean, standard deviation
and MSE of the estimates produced by the bootstrap procedure in the
individual samples)

e observed optimal k£, and the sample mean and MSE of the v estimate
at this k.

The general conclusion is that the bootstrap procedure gives reasonable es-
timates for the sample fraction to be used. It is reasonable in terms of the
MSE of the 7 estimate: for all but the last distribution the MSE of 4, 2 (ko)
is of the order of the MSE of the estimate at the observed optimal k.

25



The second order parameter p is only estimated correctly for the Cauchy
distribution. The difficulty of estimating p has also been reported by others
(see [3]) and is subject for further study.

For three of the distributions no theoretical values for ky has been given.
These distributions have p = v, a situation excluded in theorems (3.1) and
(3.2). In this situation one cannot decide which part of the bias,

(1-79)?
2

aln/k)[U(n/8) T or A(n/F) (=2(1 =) (1 = 2y + @)
is dominant. Most standard distributions with negative v turn out to fall in
this category.

Clearly more work needs to be done: first of all the performance of the
p estimator and the v = p situation need clarification. And of course the
effects of the number of bootstrap replications and the size of the bootstrap
samples have to be studied.

7 Application

In the Neptune project (see de Haan and de Ronde (1997) for a review) we
studied the joint distribution of extremes of wave-height, wave-period and
sea levels. The project aimed at estimating failure probabilities of sea walls,
based on the joint distribution of the extremes of the variables. A small
dataset of 828 measurements covering 10 years at the Eierland station in
the North sea was available. As is clear from figure 2, the wave height data
series does not behave very nicely, but it was what was available to us. The
difficulty in selecting a number of order statistics, makes the series a nice
candidate for the bootstrap procedure (at the time we decided that only 27
order statistics should be used for estimation resulting in 4,5 = 0).

We applied the bootstrap method in the following way: as in the simu-
lation experiment we used 200 bootstrap samples, resulting in an estimate
of the optimal k. In order to evaluate and improve the precision of this es-
timate, the procedure was repeated with again 200 bootstrap samples, and
the estimates averaged, until the average had an estimated standard error
less then 2.

In figure 2 both the optimal /;:0 = 259, estimated with ¢ = 0.1 and the
corresponding 9, 2(259) = 0.06 are indicated. This value is reasonably in line
with v = 0, the value used in the Neptune project.

The results for different values of €, determining the size of the bootstrap
sample are shown in table 2. The optimal £ is not very sensitive to €, but
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it decreases with € only when e > 0.2, but those values correspond to a very
small second bootstrap size.

A Second order conditions

The second order relations in the Sections 3 and 4 are different. The reason
for this stems from the expansion of the logarithms. Let us try to proceed
from one to the other. The domain of attraction condition is

Ulte) =U(t) a7 -1

lim = for all x > 0. (A.1)
toooaft) v

It follows, if U(oo) > 0, that

lim logU(tx) —logU(t) 7= —1
toooa(t)/U(t) A

So far there are no complications. The natural second order condition related

o (A.l)is

(A.2)

Uts)—-U(®t) @71

i e

for some function A (positive or negative) with A(t) — 0 (¢ — c0). Now we
try to work towards a second order condition for logU. Starting from (A.3)

log U(tz) — log Ul(t)
= log(1+ (({J Z)
t)

U )
o 1

(U 1)+

So that (let us take v < 0 for example)

logU(tx)—logU(t)  z7—1
U(tx ()tl/U(()) 71 K (t) (U(tx) 2
= o 5 wwlog VT

Now in some cases the first term is dominant (the "nice” situation), but in
other cases the second term is dominant. And sometimes there is no relative
limit. The various cases are dealt with in the next Theorem and the Remark.

Theorem A. Assume U(oco) > 0 and there exist functions a(t) > 0 and
A(t) — 0 such that




where

Sl -1 -1
AR v
Suppose that v # p. Then

H, ()

a(t)

LUm Tt
tlgglo AT ¢ € [—00, 0]
where
(0 ify<p
- ' _
v+p ify>—p '
. ﬁ if0<vy < —pand limy,(U(t) —a(t)/v) =0
N +o00 ifp<y<0
+00 if 0 <y < —pand limy,o(U(t) —a(t)/y) #0
== if v=—p.
Furthermore
logU(tx)—logU(t) 27— -1
a(t)/U(#) -
= —H (T
At) o (2)
where
A(t) ife=0
A(t) = Y4 — g((?) if ¢ = +o0
pA@)/(y+p)  ife=79/(v+p),
A(t) € RV,
- if0<y<—p
P ify<porvy>—p.

Remark A. Hence p' =0 if 7 = 0.

Proof. Suppose that v # 0. Then from the proof of Lemma 5.2 we have
Ulte) — alt)/y — (U() —a()/y) 1277~ 1

a(t)A(t) v v+
If v+ p >0, then
ui)—a®)/y . 1
a(t)A(t) (v +p)



Hence

a(t)/U() =y _ alt)ya®)/y = U(R)
a0 U0 emap  0Fe

Ifv+p=0,ie.,v=—p>0, then

Hence

If v+ p <0, then

{ U(t) — a(t) /v — ¢ € (—00,0) U (0, 00)

U(t)—a(t)/v—co 1

a(t)A(t) Y(v+p) "

For v+ p <0 and v > 0,i.e., 0 < v < —p, we have

a()/Ut)—y
A(t)
—  at)y (a(t)/V*U(tHCo o)
U(t) n a(t)A(t) _fa(t)A(t)
. 00 if cg #0
V/(y+p) e =

+00 ify—p>0 & <0
/v -{ 5§07 6 150

Suppose that v+ = 0 and p < 0. Then from the proof of Lemma 5.2
a(t) = ¢ € (—00,0) U (0,00). Hence

a(t)/(U(t)A(t)) ~ c1/(U(00)A(t)) — Foo.

We have now proved the first part of the theorem.
Note that a(t)/U(t) — 4. For v <0, we have

log ({](83) log{l + U @ [x”—_l + A( ) (;1;) + O(A(t))]}
[al:'L =l A( )H (m) + O(A(t))]
4 KO P[EL L A, (x) + o AW + of(22

9(*

)),
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i.e.,

logU(tx)=logU(t)  z7'-—1
a(t)/U(t) 7~

= A()H,,(r) + o(A(t))
(212 4 25 LA H () + o A(D)] + o 9).

For v > 0, we have

-

(t)
0]

R a((tt)) =7 | v SO A4 H, ,(z) + o(A())]
- 1+ 7

xf’y

T 7—13/(

~—~

ie.,

log U(tz)—log U(t
a0 08z

- ng+x”w(w<wﬂmn—w
TV A, () + o( A1) + o(a(t) /(1) — 7).

So the second part of the theorem follows easily. O

Remark B. It is not true that a second order condition for U always implies
a second order condition for logU: Let v = p and define

t
U'(£) = £ exp / (2 + sin(log log 5)) ds).
1

From the representation (2.5) of de Haan and Resnick (1996) we find

Ulte)-U(t)  z7—1

DHOR %/xuv—ltf”—ldu
t7[2 + sin(log log t)] L — '

Hence

alt)/(U(t)A(t))
tU” (t)
t)t7[2+sin(loglog t)]
exp{f s7~1[2+sin(log log s)] ds
U(00)[2+sin(log log t)]

which does not have a limit.
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Table 1: Simulation study. Statistics of the bootstrap estimates compared
to theoretical values and observed (empirical) estimates of ky, p and v (see
section 6).

Bootstrap estimator observed
Parameter || theoretical mean stdev. ~ MSE mean MSE
Cauchy
ko 1563.9 1354.3 667.62 1546
p -2 | -1.9459  0.52107
v (ko) 1| 0.99828 0.091811 0.0084 1.0148 0.00166
GPD(1/4)
ko 641.97 1140.3 632.26 587
p -0.25 | -1.7416  0.48564
v (ko) 0.25 | 0.28981 0.062448 0.0055 | 0.28548  0.0032
GPD(-1/4)
ko 719.86 483.82 1403
p -0.25 | -1.6816  0.40212
v (ko) -0.25 | -0.21809 0.053223 0.0038 | -0.21945  0.0018
H_1/4,-1/10
ko 94.697 160.34 150.39 92
p -0.1 | -0.95093  0.21389
v (ko) -0.25 | -0.12098  0.18311 0.0500 | -0.12362  0.0286
H 14
ko 325.54 215.94 347
p -0.25 -1.173  0.27012
v (ko) -0.25 | -0.22321 0.1224 0.0156 | -0.22616 0.00401
GEV(-1/4)
ko 746.38 441.34 1239
p -0.25 | -1.7196  0.39267
v (ko) -0.25 | -0.24751 0.052803 0.0028 | -0.25281  0.0010
GEV(-3/2)
ko 957.98 3022.9 1012.2 1083
p -1 | -3.1803  0.54967
v (ko) -1.5 | -1.8992  0.44293 0.3546 | -1.5899 0.01641
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Table 2: Wave height data (n = 828). The effect of the bootstrap sample
size, determined by ¢, on the estimated p, optimal number of order statistics

ko and An.2(ko). See section 7.

€ Ny Mo p l%o Yn,2 std.err
0.05 592 424 | -5.3795 270 0.074693 0.061144
0.1 423 217 | -4.9549 | 250.86 0.045954 0.063972
0.15 303 111 | -4.5453 | 258.55 0.059485 0.063004
0.2 216 57| -4.4864 | 258.11 0.059485 0.058986
0.25 155 30 | -3.9546 | 223.01 | -0.0011046 0.070302
0.3 111 15 -3.2259 | 137.83 -0.22552  0.094392
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Figure 1: The estimate ¥, » for the Cauchy distribution: from top to bottom
the sample mean (i.e. the average of all simulations), the variance and the
mean squared error against the number of order statistics. The solid lines
represent the observed values and the dashed line the theoretical values. See

section 6.
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Figure 2: Wave height v. The top graph shows the 4, , estimate as a function
of the number of order statistics k. The optimal k; and the ¥, o estimate
are indicated by the vertical resp. horizontal lines. The inset enlarges the
graph for the top 100 order statistics. The other graphs show the bootstrap
estimates of E{(§,,2—9s.,3)?} as a function of k(n1) resp. k(ny) (200 bootstrap
repeats; € = 0.1). See section 7.
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