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Abstrat

Estimators of the extreme-value index are based on a set of upper

order statistis. We present an adaptive method to hoose the num-

ber of order statistis involved in an optimal way, balaning variane

and bias omponents. Reently this has been ahieved for the similar

but somewhat less involved ase of regularly varying tails (Drees and

Kaufmann(1997); Danielsson et al.(1996)). The present paper follows

the line of proof of the last mentioned paper.

Key words & phrases: Moment estimator, Pikands estimator,

bootstrap, mean squared error.

1 Introdution

Suppose we have i.i.d. observations X

1

; X

2

; � � � ; X

n

whose ommon distribu-

tion funtion F is in the domain of attration of an extreme-value distribution

G



(notation: F 2 D(G



)). The shape parameter  2 R of this extreme-

value distribution (funtional form: exp(�(1 + x)

�1=

)) an be estimated

in various ways starting from the sample X

1

; X

2

; � � � ; X

n

. Two popular es-

timators are Pikands' estimator (in its generalized form see e.g. Pereira

(1993)):

̂

n;�

(k) := (� log �)

�1

log

X

n;n�[k�

2

℄

�X

n;n�[k�℄

X

n;n�[k�℄

�X

n;n�k

(1.1)
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(� 2 (0; 1)) where X

n;1

� � � � � X

n;n

are the order statistis of X

1

; � � � ; X

n

and [z℄ denotes the largest integer whih is not larger than z, and the moment

estimator

̂

n;2

(k) := M

(1)

n

(k) + 1�

1

2

(1�

(M

(1)

n

(k))

2

M

(2)

n

(k)

)

�1

(1.2)

withM

(j)

n

(k) :=

1

k

P

k�1

i=0

(logX

n;n�i

� logX

n;n�k

)

j

. For this estimator we have

to require that the right end point of the distribution is positive.

The estimators from (1.1) and (1.2) are onsistent for  provided k =

k(n) ! 1, k(n) = o(n)(n ! 1). If one inreases the speed at whih

k(n) goes to in�nity, the asymptoti variane dereases but the asymptoti

bias inreases. There is an optimal sequene balaning variane and bias

omponents (see �gure 1). This optimal sequene k

0

(n) an be determined

when the underlying distribution is known, provided the distribution funtion

has a seond order expansion involving an extra unknown parameter (Hall

(1982); Dekkers and de Haan (1993)). Here we develop a purely sample based

way of obtaining the optimal sequene k

0

(n) where we assume a seond order

expansion but do not assume the seond order (or �rst order) harateristi

known. The proedure is based on a double bootstrap (see also Hall (1990).

Results for the moment estimator and for Pikands' estimator are given in

Setion 3 and Setion 4 respetively. All the proofs are postponed till Setion

5. Setion 6 reports the result of a small simulation study and setion 7

demonstrates the appliation of the proedure to North Sea wave height data.

In an appendix we explain why we use di�erent seond order onditions in

Setion 3 and Setion 4.

2 Outline

We want (in the set-up of (1.2)) the value of k minimizing E

F

(̂

n;2

(k)� )

2

although this is only meant in an asymptoti sense (seond moment of the

asymptoti distribution). Call this value k

0

(n). There are two unknowns in

this expression:  and the distribution funtion F . The idea is to replae 

by a seond estimator ̂

n;3

(k) and to replae F by the empirial distribution

funtion F

n

. This amounts to bootstrapping. It is proved that minimizing

the resulting expression, whih an be alulated purely on the basis of the

sample, still leads to the optimal k

0

(n) with the help of a seond bootstrap.

A similar proedure applies to the estimator from (1.1). Setions 3 and

4 provide the sienti� bakground for the bootstrap proedure. Here we

explain step by step how to implement the proedure.
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We start with a sample X

1

; � � � ; X

n

.

Step 1: Selet randomly and independently n

1

times (n

1

<< n) a mem-

ber of the set fX

1

; X

2

; � � � ; X

n

g, We indiate the result byX

�

1

; � � � ; X

�

n

1

. Form

the order statistis X

�

n

1

;1

� � � � � X

�

n

1

;n

1

and ompute ̂

�

n

1

;2

(k) and ̂

�

n

1

;3

(k)

(aording to the formula after Theorem 3.2 below) for k = 1; 2; � � � ; n

1

.

Form q

�

n

1

;k

= (̂

�

n

1

;4

(k))

2

for k = 1; 2; � � � ; n

1

:

Step 2: Repeat this proedure r times independently. This results in a

sequene q

�

n

1

;k;s

, k = 1; 2; � � � ; n

1

and s = 1; 2; � � � ; r. Calulate

1

r

P

r

s=1

q

�

n

1

;k;s

:

The number r an be taken as big as neessary.

Step 3: Minimize

1

r

P

r

s=1

q

�

n

1

;k;s

with respet to k. Denote by

�

k

�

0;1

(n

1

)

the value of k where the minimum is obtained.

Step 4: Repeat Step 1 up to 3 independently with the number n

1

replaed by n

2

= (n

1

)

2

=n. So n

2

is smaller than n

1

. This results in

�

k

�

0;1

(n

2

).

Step 5: Calulate

^

k

0

(n) on the basis of

�

k

�

0;1

(n

1

) and

�

k

�

0;1

(n

2

) aording

to its de�nition in Corollary 3.3 below with ̂

n

:= ̂

n;2

([n

1=2

℄) for example

and �̂

n

aording to the formula in the same Corollary.

This

^

k

0

(n) is the adaptively obtained optimal number of order statistis.

3 Main results for moment estimator

We shall write throughout 

+

for _0 and 

�

for ^0. Assume F 2 D(G



),

i.e. there exists a positive funtion a(t) suh that

lim

t!1

U(tx)� U(t)

a(t)

=

x



� 1



for x > 0;

whih implies that

lim

t!1

logU(tx)� logU(t)

a(t)=U(t)

=

x



�

� 1



�

for x > 0:

Throughout this setion we assume U(1) > 0 and the following seond

order ondition:

lim

t!1

logU(tx)�logU(t)

a(t)=U(t)

�

x



�

�1



�

A(t)

= H(x) (3.1)

where U(t) is the inverse funtion of the funtion 1=(1� F ), a(t) is positive

and A not hanging sign eventually. The funtion H(x) is assumed not to

be a multiple of (x



�

� 1)=

�

and takes the form (supposing the funtion a

3



and A are hosen properly)

H(x) =

1

�

[

x

�+

�

�1

�+

�

�

x



�

�1



�

℄

=

8

>

<

>

:

(log x)

2

=2 if � = 0;  � 0;

1



[x



log x�

x



�1



℄ if � = 0;  < 0;

1

�

[

x

�+

�

�1

�+

�

�

x



�

�1



�

℄ if � 6= 0;

(3.2)

depending on a seond order parameter � � 0 (see de Haan and Stadtm�uller,

relation (2.9) page 387).

We present a series of results ulminating in Corollary 3.3 that provides

a sample based sequene

^

k

0

(n) suh that for any (random or non-random)

sequene k(n)

lim sup

n!1

Ef(̂

n;2

(

^

k

0

(n))� )

2

g

Ef(̂

n;2

(k(n))� )

2

g

� 1

First we restate in slightly greater generality a result from Dekkers and de

Haan (1993) providing the optimal number of order statistis for the moment

estimator as a funtion of ; � and the funtion A.

Theorem 3.1. Suppose F 2 D(G



) and that (3.1) and (3.2) hold for � < 0,

 6= � and  6= 0. Let k

0

= k

0

(n) be a sequene of integers suh that the

asymptoti seond moment of ̂

n;2

(k)� is minimal when hoosing k = k

0

(n).

Then

k

0

(n)=fn(

V

2

()

b

2

(; �)

)

1

1�2�

�

(s

�

(

1

n

))

�1

g ! 1 (3.3)

as n!1, where

�

�

=

8

>

<

>

:

� if  > 0;

 if � <  < 0;

� if  < �;

V

2

() =

(

 + 1 if  > 0;

(1�)

2

(1�2) (6

2

�+1)

(1�3) (1�4)

if  < 0

(3.4)

(the variane omponent) with 

+

= 0 _  and 

�

= 0 ^  and

b(; �) =

8

>

<

>

:

(

1

�(1��)

) +

1

(1��)

2

for  > 0;

1

1�

for � <  < 0;

(1�) (1�2)

(1���) (1���2)

for  < �

(3.5)
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(the bias omponent). The funtion s

�

is the inverse funtion of the dereas-

ing funtion s satisfying

A

2

0

(t) = (1 + o(1))

Z

1

t

s(u) du; (3.6)

where

A

0

(t) =

8

>

<

>

:

A(t) if  > 0;

a(t)

U(t)

if � <  < 0 and

A(t) if  < �:

Remark 3.1. Sine we only know anything about the asymptoti mean square

error for intermediate k, here and in the rest of the paper, when we minimize

over k, we only onsider values between logn and n=(logn), both being

intermediate sequenes with the optimal value in between.

Remark 3.2. We exlude the two ases  = 0 and  = � in Theorem 3.1.

The reason an be seen from Theorem A in Appendix. This also happens in

Dekkers and de Haan (1993).

We are going to turn the asymptoti seond moment of ̂

n;2

(k) �  into

something we an handle adaptively, the �rst step is to replae the unknown

 in the formula by an alternative estimator for . The alternative estimator

is

̂

n;3

(k) :=

q

M

(2)

n

(k)=2 + 1�

2

3

(1�

M

(1)

n

(k)M

(2)

n

(k)

M

(3)

n

(k)

)

�1

:

The following theorem is the analogue of theorem 3.1 for the aymptoti se-

ond moment of ̂

n;2

(k)� ̂

n;3

(k).

Theorem 3.2. Assume the onditions of Theorem 3.1. Determine

�

k

0

=

�

k

0

(n) suh that the asymptoti seond moment of ̂

n;2

(k)�̂

n;3

(k) is minimal.

Then

�

k

0

(n)=fn(

�

V

2

()

�

b

2

(; �)

)

1

1�2�

�

(s

�

(

1

n

))

�1

g ! 1

as n!1, where

�

V

2

() =

(

1

4

(

2

+ 1) if  > 0;

1

4

(1�)

2

(1�8+48

2

�154

3

+263

4

�222

5

+72

6

)

(1�2) (1�3) (1�4) (1�5) (1�6)

if  < 0
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and

�

b(; �) =

8

>

>

<

>

>

:

�

(1��)+�

2 (1��)

3

if  > 0;

1�2�

p

(1�) (1�2)

(1�) (1�2)

if � <  < 0;

1

2

�� (1�)

2

(1���) (1�2��) (1�3��)

if  < �:

In order to show the onvergene of mean squared error, we onsider the

following quantity

̂

n;4

(k) := (̂

n;2

(k)� ̂

n;3

(k))1(ĵ

n;2

(k)� ̂

n;3

(k)j � k

Æ�1=2

);

where Æ > 0. Then we have

Theorem 3.3. Assume the onditions of Theorem 3.1. Suppose � < 0. De-

termine

�

k

0;1

=

�

k

0;1

(n) suh that Ef(̂

n;4

(k))

2

g is minimal. Then as n!1

�

k

0;1

(n)=

�

k

0

(n)! 1:

Hene

�

k

0;1

(n)=fn(

�

V

2

()

�

b

2

(; �)

)

1

1�2�

�

(s

�

(

1

n

))

�1

g ! 1:

Remark 3.3. Note that Theorem 3.3 holds for any Æ > 0 in the de�nition of

̂

n;4

(k). Thus, in our simulation study, we use ̂

n;2

(k) � ̂

n;3

(k) instead of

̂

n;4

(k).

Next we are going to introdue the bootstrap proedure. One takes

n

1

independent drawings from the empirial distribution funtion of X

n

:=

fX

1

; � � � ; X

n

g. This results in observations X

�

1

; � � � ; X

�

n

1

. We form the order

statistis X

�

n

1

;1

� � � � � X

�

n

1

;n

1

and de�ne

M

(j)�

n

1

(k) :=

1

k

k

X

i=1

(logX

�

n

1

;n

1

�i+1

� logX

�

n

1

;n

1

�k

1

)

j

for k < n

1

and j = 1; 2; 3: Next de�ne

̂

�

n

1

;2

(k) := M

(1)�

n

1

(k) + 1�

1

2

(1�

(M

(1)�

n

1

(k))

2

M

(2)�

n

1

(k)

)

�1

and

̂

�

n

1

;3

(k) :=

q

M

(2)�

n

1

(k)=2 + 1�

2

3

(1�

M

(1)�

n

1

(k)M

(2)�

n

1

(k)

M

(3)�

n

1

(k)

)

�1

:
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By bootstrapping we an now estimate

Q(n

1

; k) := Ef(̂

�

n

1

;4

(k))

2

jX

n

g

with

̂

�

n;4

(k) := (̂

�

n;2

(k)� ̂

�

n;3

)1(ĵ

�

n;2

(k)� ̂

�

n;3

(k)j � k

Æ�1=2

)

as well as we wish.

Now we want to onnet the asymptoti behavior of arg infQ with the

orresponding quantity for the asymptoti expetation as onsidered in e.g.

Theorem 3.1.

Theorem 3.4. Suppose the onditions of Theorem 3.1 hold and n

1

= O(n

1��

)

for some 0 < � < 1=2. The random quantity

�

k

�

0;1

(n

1

) is de�ned as follows:

�

k

�

0;1

(n

1

) := arg inf

k

Ef(̂

�

n

1

;4

(k))

2

jX

n

g:

Then

�

k

�

0;1

(n

1

)=fn

1

(

�

V

2

()

�

b

2

(; �)

)

1

1�2�

�

(s

�

(

1

n

1

))

�1

g ! 1

in probability.

We now use the known quantity

�

k

�

0;1

to estimate k

0

(n) and do this via

�

k

0

(n).

Corollary 3.1. Suppose the onditions of Theorem 3.4 hold and A

0

(t) = t

�

�

with  6= 0 and �

�

< 0. Then

�

k

0

(n)=f

�

k

�

0;1

(n

1

)(

n

n

1

)

�2�

�

1�2�

�

g ! 1

in probability.

Remark 3.4. Sine A

0

in Theorem 3.1 is a regularly varying funtion, the

extra requirement means that the slowly varying funtion is in fat a onstant.

Next we get rid of the fator (n=n

1

)

�2�

�

1�2�

�

. We do this via an independent

seond bootstrap proedure with bootstrap sample size n

2

.

Theorem 3.5. Suppose the onditions of Corollary 3.1 hold and n

2

= (n

1

)

2

=n.

Let

�

k

�

0;1

(n

2

) := arg inf

k

Ef(̂

�

n

2

;4

(k))

2

jX

n

g:

Then

�

k

0

(n)=f(

�

k

�

0;1

(n

1

))

2

=

�

k

�

0;1

(n

2

)g ! 1 in probability.
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Corollary 3.2. Under the onditions of Theorem 3.5,

k

0

(n)=f

(

�

k

�

0;1

(n

1

))

2

�

k

�

0;1

(n

2

)

(

V

2

()

�

b

2

(; �)

�

V

2

()b

2

(; �)

)

1

1�2�

�

g ! 1 in probability.

Corollary 3.3. Suppose the onditions of Theorem 3.5 hold. De�ne

^

k

0

(n) :=

(

�

k

�

0;1

(n

1

))

2

�

k

�

0;1

(n

2

)

�

V

2

(̂

n

)

�

b

2

(̂

n

; �̂

n

)

�

V

2

(̂

n

) b

2

(̂

n

; �̂

n

)

�

1

1�2�̂

n

with

�

k

�

0;1

(n

1

) and

�

k

�

0;1

(n

2

) as de�ned in Theorem 3.4 and Theorem 3.5 respe-

tively and with ̂

n

any onsistent estimator of  (for instane ̂

n;2

(k) with

k = k(n) any sequene with k ! 1; k=n ! 0), �̂

n

any onsistent estimator

for �

�

, for instane

�̂

n

:=

log

�

k

�

0;1

(n

1

)

�2 logn

1

+ 2 log

�

k

�

0;1

(n

1

)

:

Then

^

k

0

(n)=k

0

(n)! 1 in probability;

hene the asymptoti seond moment of ̂

n;2

(

^

k

0

(n))� is asymptotially equal

to the asymptoti seond moment of ̂

n;2

(k

0

(n))� .

4 Main results for Pikands' estimator

Throughout this setion we assume that F is in the di�erentiable domain of

attration of G



(notation: F 2 D

dif

(G



)), i.e., F is di�erentiable in a left

neighborhood of x

1

:= supfx : F (x) < 1g and there exist a

n

> 0 and b

n

2 R

suh that

lim

n!1

�

�x

[F

n

(a

n

x+ b

n

)℄ = G

0



(x) (4.1)

loally uniformly for all x 2 R. This is mainly done for onveniene. In fat

not muh is lost of the general ase and the omputations are more simple.

The di�erentiable domains of attration were introdued by Pikands (1986).

Clearly F 2 D

dif

(G



) implies F 2 D(G



) for the same normalizing onstants

a

n

and b

n

. De�ne U(t) := (1=(1� F ))

�

(t). The following proposition har-

aterizes the di�erentiable domain of attration of G



.

Proposition 1. F 2 D

dif

(G



) for some  2 R if and only if U(t) is di�eren-

tiable for all suÆiently large t and U

0

(t) 2 RV

�1

.

8



Proof. See Pikands (1986).

In order to get the limit distribution funtion of estimator ̂

n;�

(k) we have

to require some kind of seond order ondition. Beause of Proposition 1 it is

quite natural to assume that there is a positive funtion A

�

(t)(! 0 as t!1)

suh that

lim

t!1

U

0

(tx)

U

0

(t)

� x

�1

A

�

(t)

exists for every x > 0. In order to avoid trivialities we also assume that the

limit funtion is not a multiple of x

�1

. Then the limit funtion must be of

the form 

0

x

�1

x

�

�1

�

for onstants � � 0 and 

0

6= 0 (see Theorem 1.9 of Geluk

and de Haan (1987) or Lemma 3.2.1 of Bingham et al. (1987); (x

0

� 1)=0 is

de�ned as log x). We an and will subsume the onstant 

0

in the funtion

A

�

. So suppose there is a funtion A with lim

t!1

A(t) = 0 and not hanging

sigh near in�nity, suh that

lim

t!1

U

0

(tx)

U

0

(t)

� x

�1

A(t)

= x

�1

x

�

� 1

�

(4.2)

for all x > 0. The funtion jAj is then regularly varying with index �(notation :

jAj 2 RV

�

). It an be proved (see Pereira(1993) or de Haan and Stadtm�uller(1996))

that (3.2) is equivalent to

lim

t!1

U(tx) � U(t)� tU

0

(t)

x



�1



tU

0

(t)A(t)

= h

;�

(x) :=

1

�

[

x

+�

� 1

 + �

�

x



� 1



℄: (4.3)

First we determine the theoretially optimal value k

0

(n) asymptotially.

Theorem 4.1. Assume F 2 D

dif

(G



) and (4.3) holds for A(t) = t

�

with

 6= 0 and � < 0. Determine k

0

= k

0

(n) suh that the asymptoti seond

moment of ̂

n;�

(k)�  is minimal. Then

k

0

(n)=f(

(�

�1

� 1)(1 + �

�2�1

)

�2�

2

(

1��

�

�

)

2

(

�

���

�1

+�

)

2

�

�2�

)

1

1�2�

n

�2�

1�2�

g ! 1

as n!1:

Next we ompute the optimum with  replaed by ̂

n;�

(k�

2

):

Theorem 4.2. Assume F 2 D

dif

(G



) and (4.3) holds for A(t) = t

�

with

 6= 0 and � < 0. Determine

�

k

0

=

�

k

0

(n) suh that the asymptoti seond

moment of ̂

n;�

(k)� ̂

n;�

(k�

2

) is minimal. Then

�

k

0

(n)=f(

(�

�1

� 1)(1 + �

�2�1

)(1 + �

�2

)

�2�

2

(

1��

�

�

)

2

(

�

���

�1

+�

)

2

�

�2�

(1� �

�2�

)

2

)

1

1�2�

n

�2�

1�2�

g ! 1

as n!1:
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Corollary 4.1. Assume F 2 D

dif

(G



) and (4.3) holds for A(t) = t

�

with

 6= 0 and � < 0. Determine k

0

(n) suh that the asymptoti seond moment

of ̂

n;�

(k)�  is minimal and

�

k

0

(n) suh that the asymptoti seond moment

of ̂

n;�

(k)� ̂

n;�

(k�

2

) is minimal. Then

�

k

0

(n)

k

0

(n)

! (

1 + �

�2

(1� �

�2�

)

2

)

1

1�2�

as n!1:

In order to show the onvergene of mean squared error, we onsider the

following quantity

�

n;�

(k) := (̂

n;�

(k)� ̂

n;�

2

(k�

2

))1(ĵ

n;�

(k)� ̂

n;�

2

(k�

2

)j � k

Æ�1=2

);

where Æ > 0. Then we have

Theorem 4.3. Assume F 2 D

dif

(G



) and (4.3) holds for A(t) = t

�

with

 6= 0 and � < 0. Determine

�

k

0;1

=

�

k

0;1

(n) suh that Ef(�

n;�

(k))

2

g is mini-

mal. Then as n!1

�

k

0;1

(n)=

�

k

0

(n)! 1:

As in Setion 3, we draw resamples X

�

n

1

= fX

�

1

; � � � ; X

�

n

1

g from X

n

=

fX

1

; � � � ; X

n

g with replaement. Let n

1

< n and X

�

n

1

;1

� � � � � X

�

n

1

;n

1

denote the order statistis of X

�

n

1

and de�ne

̂

�

n

1

;�

(k

1

) := (� log �)

�1

log

X

�

n

1

;n

1

�[k

1

�

2

℄

�X

�

n

1

;n

1

�[k

1

�℄

X

�

n

1

;n

1

�[k

1

�℄

�X

�

n

1

;n

1

�k

1

:

Then we propose to use the following bootstrap estimate of the mean square

error

Ef(�

�

n

1

;�

(k

1

))

2

jX

n

g:

We an prove

Theorem 4.4. Assume F 2 D

dif

(G



) and (4.3) holds for A(t) = t

�

with

 6= 0 and � < 0. Let n

1

= O(n

1��

) for some � 2 (0; 1). Determine k

�

1;0

(n

1

)

suh that Ef(�

�

n

1

;�

(k))

2

jX

n

g is minimal. Then

k

�

1;0

(n

1

)=f(

(�

�1

� 1)(1 + �

�2�1

)(1 + �

�2

)

�2�

2

(

1��

�

�

)

2

(

�

���

�1

+�

)

2

�

�2�

(1� �

�2�

)

2

)

1

1�2�

n

�2�

1�2�

1

g

p

! 1

as n!1:
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Finally we onnet k

0

(n) with k

�

1;0

and k

�

2;0

asymptotially.

Theorem 4.5. Assume F 2 D

dif

(G



) and (3.3) holds for A(t) = t

�

(� < 0).

Let n

1

= O(n

1��

) for some � 2 (0; 1=2) and n

2

= (n

1

)

2

=n. Determine

k

�

i;0

(n

i

) suh that Ef(�

�

n

i

;�

(k

i

))

2

jX

n

g is minimal (i = 1; 2). De�ne f

�

(�) =

(

1+�

�2

(1��

�2�

)

2

)

1

1�2�

: Then

(k

�

1;0

)

2

k

�

2;0

f

�

(

log k

�

1;0

2(log k

�

1;0

�log n

1

)

)

=k

0

(n)

p

! 1

as n!1:

So as before we get an estimator for k

0

(n) whih leads to an estimator

for � whih has asymptotially the lowest mean squared error.

5 Proofs

We shall give some lemmas �rst.

Lemma 5.1. Let Y

1

; � � � ; Y

n

be i.i.d. random variables with ommon distri-

bution funtion 1� x

�1

(x > 1) and Y

n;1

� � � � � Y

n;n

be the order statistis.

Assume k !1, k=n! 0. Then

(i) Y

n;n�k

=

n

k

! 1 in probability

(ii) De�ne

8

>

<

>

:

P

n

:=

1

k

P

k

i=1

(Y

n;n�i+1

=Y

n;n�k

)



�

�1



�

�

1

1�

�

Q

n

:=

1

k

P

k

i=1

(

(Y

n;n�i+1

=Y

n;n�k

)



�

�1



�

)

2

�

2

(1�

�

)(1�2

�

)

R

n

:=

1

k

P

k

i=1

(

(Y

n;n�i+1

=Y

n;n�k

)



�

�1



�

)

3

�

6

(1�

�

)(1�2

�

)(1�3

�

)

:

We have

p

k(P

n

; Q

n

; R

n

) onverges in distribution to (P;Q;R), say, whih is

normally distributed with mean vetor zero and ovariane matrix

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

EP

2

=

1

(1�

�

)

2

(1�2

�

)

EQ

2

=

4(5�11

�

)

(1�

�

)

2

(1�2

�

)

2

(1�3

�

)(1�4

�

)

ER

2

=

36(19�105

�

+146

2

�

)

(1�

�

)

2

(1�2

�

)

2

(1�3

�

)

2

(1�4

�

)(1�5

�

)(1�6

�

)

E(PQ) =

4

(1�

�

)

2

(1�2

�

)(1�3

�

)

E(PR) =

18

(1�

�

)

2

(1�2

�

)(1�3

�

)(1�4

�

)

E(QR) =

12(9�21

�

)

(1�

�

)

2

(1�2

�

)

2

(1�3

�

)(1�4

�

)(1�5

�

)

11



Moreover,

8

<

:

k EP

2

n

! EP

2

k EQ

2

n

! EQ

2

k ER

2

n

! ER

2

:

(iii) De�ne for j = 1; 2; 3

d

(j)

n

:=

1

k

k

X

i=1

j H(Y

n;n�i+1

=Y

n;n�k

) (

(Y

n;n�i+1

=Y

n;n�k

)



�

� 1



�

)

j�1

Then by the law of large numbers

d

(j)

n

p

! d

j

=

Z

1

1

j H(y) (

y



�

� 1



�

)

j�1

dy

y

2

; j = 1; 2; 3

or expliitly

d

1

=

1

(1� 

�

)(1� �� 

�

)

;

d

2

=

2(3� 2�� 4

�

)

(1� 

�

)(1� 2

�

)(1� �� 

�

)(1� �� 2

�

)

and

d

3

=

18

2

�

� 22

�

+ 15� 

�

+ 3�

2

� 8� + 6

(1� 

�

) (1� 2

�

) (1� 3

�

) (1� �� 

�

) (1� �� 2

�

) (1� �� 3

�

):

Proof. Similar to the proof of Theorem 3.4 of Dekkers et al. (1989) by writing

(P

n

; Q

n

; R

n

) as a sum of i.i.d. random vetors.

The following is an extension of a result by Drees (1998).

Lemma 5.2. Let f be a measurable funtion. Suppose there exist a real

parameter � and funtions a

1

(t) > 0 and A

1

(t)! 0 suh that for all x > 0

lim

t!1

f(tx)�f(t)

a

1

(t)

�

x

�

�1

�

A

1

(t)

= H

1

(x)

where

H

1

(x) =

1

�

[

x

�+�

� 1

� + �

�

x

�

� 1

�

℄ (� � 0):

Then for any � > 0 there exists t

0

> 0 suh that for all t � t

0

, tx � t

0

,

j

f(tx)�f(t)

a

1

(t)

�

x

�

�1

�

A

1

(t)

�H

1

(x)j � �[1 + x

�

+ 2x

�+�

e

�j log xj

℄:
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Proof. Suppose � 6= 0. Then from relation (2.2) of Theorem 1 of de Haan

and Stadm�uller (1996), we have

(tx)

��

a

1

(tx)� t

��

a

1

(t)

t

��

a

1

(t)A

1

(t)

!

x

�

� 1

�

:

Hene

f(tx)�a

1

(tx)=��(f(t)�a

1

(t)=�)

a

1

(t)A

1

(t)=�

=

f(tx)�f(t)�a

1

(t)

x

�

�1

�

a

1

(t)A

1

(t)=�

�x

�

(tx)

��

a

1

(tx)�t

��

a

1

(t)

t

��

a

1

(t)A

1

(t)

! �H

1

(x)� x

�

x

�

�1

�

= �

x

�+�

�1

�+�

:

Similar to the proof of Lemma 2.2 of de Haan and Peng (1997), we get

jx

�

(tx)

��

a

1

(tx)�t

��

a

1

(t)

t

��

a

1

(t)A

1

(t)=�

� x

�

x

�

�1

�

j

� x

�

�[1 + x

�

e

�j log xj

℄

and

j

f(tx)�a

1

(tx)=��(f(t)�a

1

(t)=�)

a

1

(t)A

1

(t)=�

+

x

�+�

�1

�+�

j

� �[1 + x

�+�

e

�j log xj

℄:

Hene

j

f(tx)�f(t)

a

1

(t)

�

x

�

�1

�

A

1

(t)

�H

1

(x)j

= j

f(tx)�a

1

(tx)=��(f(t)�a

1

(t)=�)

a

1

(t)A

1

(t)

+

x

�+�

�1

�(�+�)

+x

�

(tx)

��

a

1

(tx)=��t

��

a

1

(t)=�

t

��

a

1

(t)A

1

(t)

� x

�

x

�

�1

��

j

�

�

j�j

[1 + x

�

+ 2x

�+�

e

�j log xj

℄:

Suppose � = 0 and � < 0. Then from the proof of Theorem 2 (iii) of de

Haan and Stadtm�uller (1996) we have a

1

(t) ! 

0

2 (0;1) and



0

�a

1

(t)

a

1

(t)A

1

(t)

!

�1=�. Hene

f(tx)� 

0

log(tx)� (f(t)� 

0

log t)

a

1

(t)A(t)

!

1

�

x

�

� 1

�

:

The rest of proof for � = 0 and � < 0 is similar to the ase � 6= 0.

Suppose � = � = 0. Write

g(t) := f(t)�

1

t

Z

t

0

f(s) ds

13



whih implies

f(t) = g(t) +

Z

t

0

g(s)

s

ds

(see Corollary 1.2.1 of de Haan (1970)). From Omey and Willekens (1988)

we have

g(tx)� g(t)

a

1

(t)A

1

(t)

! log x:

Note that

f(tx)�f(t)�a

1

(t) log x

a

1

(t)A

1

(t)

=

g(tx)�g(t)

a

1

(t)A

1

(t)

+

R

x

1

g(ts)�a

1

(t)

sa

1

(t)A

1

(t)

ds:

Hene

g(tx)� a

1

(t)

a

1

(t)A

1

(t)

! log x� 1:

Furthermore

g(t)� a

1

(t)

a

1

(t)A

1

(t)

! �1:

Using Proposition 1.19.4 of Geluk and de Haan (1987), we an easily see the

lemma holds. Thus we omplete the proof.

Let F

n

denote the empirial distribution funtion of X

n

and U

n

= (

1

1�F

n

)

�

.

Lemma 5.3. If (3.1) and (3.2) hold and n

1

= O(n

1��

0

) for some �

0

2 (0; 1).

Then for any 0 < � < 1 there exists t

0

> 0 suh that for all t

0

� t �

n

1

(logn

1

)

2

and t

0

� tx � n

1

(logn

1

)

2

j

logU

n

(tx)�logU

n

(t)

a(t)=U(t)

�

x



�

�1



�

A(t)

�H(x)j

� [

p

tx log n

n

+ �℄d(

�

; �)x

�

e

�j log xj

+[

p

t logn

n

+ �℄d(

�

; �)

+�[1 + x



�

+ 2x



�

+�

e

�j log xj

℄

+

d(

�

;�)

jA(t)j

log n

n

[

p

tx+

p

t℄ a.s.

(5.1)

where d(

�

; �) > 0 is a onstant whih only depends on 

�

and �.
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Proof. Let G

n

denote the empirial distribution funtion of n independent,

uniformly distributed random variables. As n is large enough and n

1

=

O(n

1��

0

), we have

1=2 � sup

t�n

1

(log n

1

)

2

jtG

�

n

(

1

t

)j � 2 a.s. (5.2)

and

sup

t�2

j

p

t(G

n

(

1

t

)�

1

t

)j �

logn

p

n

a.s.

(see equations (10) and (17) of Chapter 10.5 of Shorak and Wellner (1986)).

Hene

sup

4�t�n

1

(log n

1

)

2

s

1

G

�

n

(

1

t

)

jG

n

(G

�

n

(

1

t

))�G

�

n

(

1

t

)j �

logn

p

n

a.s.

Therefore for all 4 � t � n

1

(logn

1

)

2

jtG

�

n

(

1

t

)� 1j �

2

p

t logn

p

n

a.s. (5.3)

Now we use Lemma 5.2, (5.2), (5.3),

jy



� 1j � jj(2

�1

_ 2

�+1

)jy � 1j for 1=2 � y � 2

and U

n

d

= U(

t

tG

�

n

(

1

t

)

): It follows that for any � 2 (0; 1) there exists t

0

> 4 suh
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that for all t

0

� t � n

1

(logn

1

)

2

and t

0

� tx � n

1

(logn

1

)

2

j

logU

n

(tx)�logU

n

(t)

a(t)=U(t)

�

x



�

�1



�

A(t)

�H(x)j

d

= j

logU(

tx

txG

�

n

(

1

tx

)

)�logU(tx)�

a(tx)

U(tx)

(txG

�

n

(

1

tx

))

�

�

�1



�

A(tx)a(tx)=U(tx)

A(tx)a(tx)=U(tx)

A(t)a(t)=U(t)

�

logU(

t

tG

�

n

(

1

t

)

)�logU(t)�

a(t)

U(t)

(tG

�

n

(

1

t

))

�

�

�1



�

A(t)a(t)=U(t)

+

logU(tx)�logU(t)�

a(t)

U(t)

x



�

�1



�

A(t)a(t)=U(t)

�H(x)

+

a(tx)

U(tx)

(txG

�

n

(

1

tx

))

�

�

�1



�

A(t)a(t)=U(t)

�

(tG

�

n

(

1

t

))

�

�

�1



�

A(t)

j

� fjH(

1

txG

�

n

(

1

tx

)

)j+ �[1 + (txG

�

n

(

1

tx

))

�

�

+2(txG

�

n

(

1

tx

))

�

�

+�

e

�j log(txG

�

n

(

1

tx

))j

℄g(1 + �)x

�

e

�j log xj

+jH(

1

tG

�

n

(

1

t

)

)j+ �[1 + (tG

�

n

(

1

t

))

�

�

+2(tG

�

n

(

1

t

))

�

�

+�

e

�j log(tG

�

n

(

1

t

))j

℄

+�[1 + x



�

+ 2x



�

+�

e

�j log xj

℄

+(1 + �)j

(txG

�

n

(

1

tx

))

�

�

�1



�

A(t)

j+ j

(tG

�

n

(

1

t

))

�

�

�1



�

A(t)

j a.s.

� [d(

�

; �)

p

tx log n

p

n

+ �d(

�

; �)℄x

�

e

� log xj

+d(

�

; �)

p

t log n

p

n

+ �d(

�

; �)

+�[1 + x



�

+ 2x



�

+�

e

�j log xj

℄

+

d(

�

;�)

jA(t)j

p

tx logn

p

n

+

d(

�

;�)

jA(t)j

p

t log n

p

n

a.s.

where d(

�

; �) > 0 is a onstant only depending on 

�

and �: The lemma

follows.

Proof of Theorem 3.1. A full proof of a somewhat restrited ase has been

given in Dekkers and de Haan (1993). We shall give a sketh of the proof.

By Lemma 5.2, for any � > 0 there exists t

0

> 0 suh that for all t � t

0

,

tx � t

0

j

logU(tx)�logU(t)

a(t)=U(t)

�

x



�

�1



�

A(t)

�H(x)j � �[1 + x



�

+ 2x



�

+�

e

�j log xj

℄:

Applying this relation with t replaed by Y

n;n�k

and x by Y

n;n�i

=Y

n;n�k

,

adding the inequalities for i = 0; 1; � � � ; k � 1 and dividing by k we get

M

(1)

n

(k)

a(Y

n;n�k

)=U(Y

n;n�k

)

�

1

1�

�

+ P

n

+ A(Y

n;n�k

)

1

k

P

k

i=1

H(Y

n;n�i+1

=Y

n;n�k

)

+�A(Y

n;n�k

)

1

k

P

k

i=1

f1 + (Y

n;n�i+1

=Y

n;n�k

)



�

+2(Y

n;n�i+1

=Y

n;n�k

)



�

+�

e

�j log(Y

n;n�i+1

=Y

n;n�k

)j

g
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Note that fY

n;n�i+1

=Y

n;n�k

g

k

i=1

d

= fY

0

i

g

k

i=1

with Y

0

1

; � � � ; Y

0

k

i.i.d. with ommon

distribution funtion 1� 1=x (x > 1). We apply the law of large numbers

to the third and fourth terms. Also note that

k

n

Y

n;n�k

! 1 in probability,

so that sine jAj is regularly varying, we have (A(n=k))

�1

A(Y

n;n�k

) ! 1 in

probability. As a result

M

(1)

n

(k)

a(Y

n;n�k

)=U(Y

n;n�k

)

=

1

1� 

�

+ P

n

+ A(n=k) d

1

+ o

p

(A(n=k)):

Hene

(M

(1)

n

(k))

2

a

2

(Y

n;n�k

)=U

2

(Y

n;n�k

)

=

1

(1�

�

)

2

+

2P

n

1�

�

+

2A(n=k) d

1

1�

�

+ o

p

(A(n=k)):

Similarly

M

(2)

n

(k)

a

2

(Y

n;n�k

)=U

2

(Y

n;n�k

)

=

2

(1�

�

)(1�2

�

)

+Q

n

+ A(n=k) d

2

+ o

p

(A(n=k)):

Combining these expansions we get

̂

n;2

(k)� 

= M

(1)

n

(k)� 

+

+

M

(2)

n

(k)�2(M

(1)

n

(k))

2

2M

(2)

n

(k)�2(M

(1)

n

(k))

2

� 

�

= (

+

+

a(Y

n;n�k

)

U(Y

n;n�k

)

� 

+

)[

1

1�

�

+ P

n

+ d

1

A(n=k)℄� 

+

+

(1�

�

)

2

(1�2

�

)

2

f(1� 2

�

)Q

n

� 4P

n

+ (d

2

� 2

�

d

2

� 4d

1

)A(n=k)g

+o

p

(A(n=k))

= (

a(Y

n;n�k

)

U(Y

n;n�k

)

� 

+

)

1

1�

�

+ (

a(Y

n;n�k

)

U(Y

n;n�k

)

� 

+

)[P

n

+ d

1

A(n=k)℄

+

(1�

�

)

2

(1�2

�

)

2

f(

2

+

(1�

�

)

2

(1�2

�

)

� 4)P

n

+ (1� 2

�

)Q

n

+(d

2

� 2

�

d

2

� 4d

1

+

2

+

(1�

�

)

2

(1�2

�

)

d

1

)A(n=k)g+ o

p

(A(n=k)):

From the proof of Lemma 5.2 and Theorem 2, part (iii) of de Haan and

Stadtm�uller (1996) we an prove

a(t)

U(t)

� 

+

A(t)

=

8

>

>

<

>

>

:

a(t)

U(t)

�

A(t)

!



�

if  > 0

a(t)

U(t)

=jA(t)j ! 1 if � <  � 0

a(t)

U(t)

=A(t)! 0 if  < �:

Consequently, by Lemma 5.1, we have that the asymptoti seond moment

of ̂

n;2

(k)�  equals

(V

2

()=k + b

2

(; �)A

2

0

(n=k))

= (V

2

()r=n+ b

2

(; �)A

2

0

(r))

17



with r := n=k. One obtains the minimum with respet to r by using (3.6)

and equating the derivative to zero (for details see Dekkers and de Haan

(1993)). Sine we have assumed in the derivation that k(n) is an interme-

diate sequene, we still have to show that the resulting k

0

(n) is really the

optimum. But it is easy to see that for any k(n) with k(n)=k

0

(n)! 0 or 1

the asymptoti seond moment of ̂

n;2

(k) �  is of large order as long as

k(n)!1 and k(n)=n! 0 (n!1). In order to stay within these bounds,

one an add the extra restrition logn � k(n) � n= logn in the optimization

proedure. The theorem follows.

Proof of Theorem 3.2. First we develop an asymptoti expansion for the al-

ternative estimator ̂

n;3

(k). By the same arguments as in the proof of Theo-

rem 3.1 we may show

M

(3)

n

(k)

a

3

(Y

n;n�k

)=U

3

(Y

n;n�k

)

=

6

(1�

�

)(1�2

�

)(1�3

�

)

+R

n

+ d

3

A(n=k) + o

p

(A(n=k))

and

M

(1)

n

(k)M

(2)

n

(k)

a

3

(Y

n;n�k

)=U

3

(Y

n;n�k

)

=

2

(1�

�

)

2

(1�2

�

)

+

2P

n

(1�

�

)(1�2

�

)

+

Q

n

1�

�

+(

2d

1

(1�

�

)(1�2

�

)

+

d

2

1�

�

)A(n=k) + o

p

(A(n=k)):
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Hene

̂

n;3

(k)� 

=

q

M

(2)

n

(k)=2� 

+

+

M

(3)

n

(k)�3M

(1)

n

(k)M

(2)

n

(k)

3M

(3)

n

(k)�3M

(1)

n

(k)M

(2)

n

(k)

� 

�

=

a(Y

n;n�k

)

U(Y

n;n�k

)

q

1

(1�

�

)(1�2

�

)

+

Q

n

2

+

d

2

2

A(n=k)� 

+

+

(1�

�

)

2

(1�2

�

)(1�3

�

)

12

f�

6

1�2

�

P

n

� 3Q

n

+ (1� 3

�

)R

n

+((1� 3

�

)d

3

�

6

1�2

�

d

1

� 3d

2

)A(n=k)g+ o

p

(A(n=k))

= (

+

+

a(Y

n;n�k

)

U(Y

n;n�k

)

� 

+

)f

1

p

(1�

�

)(1�2

�

)

+

p

(1�

�

)(1�2

�

)

4

Q

n

+

p

(1�

�

)(1�2

�

)

4

d

2

A(n=k)g � 

+

+

(1�

�

)

2

(1�2

�

)(1�3

�

)

12

f�

6

1�2

�

P

n

� 3Q

n

+ (1� 3

�

)R

n

+((1� 3

�

)d

3

�

6

1�2

�

d

1

� 3d

2

)A(n=k)g+ o

p

(A(n=k))

= (

a(Y

n;n�k

)

U(Y

n;n�k

)

� 

+

)

1

p

(1�

�

)(1�2

�

)

+(

a(Y

n;n�k

)

U(Y

n;n�k

)

� 

+

)[

p

(1�

�

)(1�2

�

)

4

Q

n

+

p

(1�

�

)(1�2

�

)

4

d

2

A(n=k)℄

+

(1�

�

)

2

(1�2

�

)(1�3

�

)

12

f�

6

1�2

�

P

n

+ (

3

+

p

(1�

�

)(1�2

�

)

(1�

�

)

2

(1�2

�

)(1�3

�

)

� 3)Q

n

+(1� 3

�

)R

n

+ [(1� 3

�

)d

3

�

6

1�2

�

d

1

� 3d

2

+

3

+

p

(1�

�

)(1�2

�

)

(1�

�

)

2

(1�2

�

)(1�3

�

)

d

2

℄A(n=k)g+ o

p

(A(n=k)):

Combining the above expansion with the expansion of ̂

n;2

(k)� in the proof

of Theorem 3.1, we have

̂

n;2

(k)� ̂

n;3

(k)

= (

a(Y

n;n�k

)

U(Y

n;n�k

)

� 

+

)(

1

1�

�

�

1

p

(1�

�

)(1�2

�

)

)

+(

a(Y

n;n�k

)

U(Y

n;n�k

)

� 

+

)(P

n

+ d

1

A(n=k)�

p

(1�

�

)(1�2

�

)

4

Q

n

�

p

(1�

�

)(1�2

�

)

4

d

2

A(n=k))

+

(1�

�

)

2

(1�2

�

)(1�3

�

)

12

f[

12

+

(1�

�

)

2

(1�2

�

)(1�3

�

)

�

24

1�3

�

+

6

1�2

�

℄P

n

+[

6(1�2

�

)

1�3

�

�

3

+

p

(1�

�

)(1�2

�

)

(1�

�

)

2

(1�2

�

)(1�3

�

)

+ 3℄Q

n

� (1� 3

�

)R

n

+[

6(1�2

�

)

1�3

�

d

2

�

24

1�3

�

d

1

+

12

+

(1�

�

)

2

(1�2

�

)(1�3

�

)

d

1

� (1� 3

�

)d

3

+

6

1�2

�

d

1

+ 3d

2

�

3

+

p

(1�

�

)(1�2

�

)

(1�

�

)

2

(1�2

�

)(1�3

�

)

d

2

℄A(n=k)g+ o

p

(A(n=k)):

The rest of proof is similar to the proof of Theorem 3.1.
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Proof of Theorem 3.3. Let

E

(1)

n

:=

n

! : all of jP

n

j; j

k

n

Y

n;n�k

� 1j; jd

(1)

n

� d

1

j and

jD

(1)

n

�D

(1)

j are less than or equal to k

Æ

0

�1=2

o

for some Æ

0

2 (0; 1=2), where

D

(1)

n

:= �

1

k

k�1

X

i=0

�

1 + (Y

n;n�i

=Y

n;n�k

)



�

+ 2(Y

n;n�i

=Y

n;n�k

)



�

+�+�

	

and

D

(1)

:= �

Z

1

1

(1 + x



�

+ x



�

+�+�

)x

�2

dx:

Now take � and t

0

as in the proof of Theorem 3.1. Then, provided

n

k

(1 �

k

Æ

0

�1=2

) � t

0

, we have Y

n;n�k

� t

0

on E

(1)

n

. Also, sine A is regularly varying

we have

jA(Y

n;n�k

)� A(n=k)j < 2�A(n=k)

on E

(1)

n

. Using these two fats and the inequalities in the beginning of the

proof of Theorem 3.1, we �nd

�

�

�

M

(1)

n

(k)

a(Y

n;n�k

)=U(Y

n;n�k

)

�

1

1� 

�

� P

n

� A(n=k)d

1

�

�

�

< �A(n=k)

on the set E

(1)

n

: so we have o(A(n=k)) instead of o

p

(A(n=k)). De�ning sets

E

(2)

n

and E

(3)

n

related to the behavior of M

(2)

n

and M

(3)

n

we get similar in-

equalities for those.

De�ne

E

n

:= E

(1)

n

\ E

(2)

n

\ E

(3)

n

:

Using the mentioned inequalities and the fat that the onditions for the

set E

n

imply that P

n

, Q

n

, R

n

and A are surely small, we an also replae

o

p

(A(n=k)) by o(A(n=k)) in the expansions given for ̂

n;2

(k) and ̂

n;3

(k) in

the proof of Theorems 3.1 and 3.2 as long as we stay inside E

n

.

Moreover the inequality j

k

n

Y

n;n�k

� 1j � k

Æ

0

�1=2

guarantees that we an

replae

a(Y

n;n�k

)

U(Y

n;n�k

)

� 

+

by

a(n=k)

U(n=k)

� 

+
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(f. the limit relation for �

+

+a(t)=U(t) in the proof of Theorem 3.1). Hene

as in the proofs of Theorems 3.1 and 3.2 we �nd

Ef̂

2

n;4

1(E

n

)g

(

�

V

2

()=k +

�

b

2

(; �)A

2

0

(n=k))

! 1:

Next we show that the ontribution of the set E



n

to the expetation may

be negleted. For example by the de�nition of ̂

n;4

Ef̂

2

n;4

1(jP

n

j > k

Æ

0

�1=2

)g � k

2Æ�1

PrfjP

n

j > k

Æ

0

�1=2

g

and by Bennett's inequality (f. Petrov, 1975, Ch. III, x5) we an show

PrfjP

n

j > k

Æ

0

�1=2

g � k

��

eventually for any � > 0. Hene

Ef̂

2

n;4

1(jP

n

j > k

Æ

0

�1=2

)g

(

�

V

2

()=k +

�

b

2

(; �)A

2

0

(n=k))

! 0; n!1:

The reasoning in ase any of the other onditions of the set E

n

is violated

is exatly the same (the inequality Prfj

n

k

Y

n;n�k

� 1j > k

Æ

0

�1=2

g � k

��

an

be obtained by translating the inequality for

k

n

Y

n;n�k

into one for its inverse

1

k

P

n

i=1

1fY

i

>

n

k

xg and then applying Bennets inequality). This ompletes

the proof of Theorem 3.3.

Proof of Theorem 3.4. Given X

n

:= fX

1

; � � � ; X

n

g, we have

M

(1)�

n

1

(k

1

)

d

=

1

k

1

k

1

X

i=1

logU

n

(Y

n

1

;n

1

�i+1

)� logU

n

(Y

n

1

;n

1

�k

1

)

with fY

n

1

;i

g

n

1

i=1

the order statistis from a distribution funtion 1�1=x (x >

1) and independent of X

n

. By the same arguments as in the proof of Theorem

3.1 using Lemma 5.3 instead of Lemma 5.2 we get

M

(1)�

n

1

(k

1

)

a(Y

n

1

;n

1

�k

1

)=U(Y

n

1

;n

1

�k

1

)

=

1

1�

�

+ P

n

1

+

A(n

1

=k

1

)

(1�

�

)(���

�

)

+ o

p

(A(n

1

=k

1

)) +O

p

(

p

n

1

=k

1

log n

p

n

):

Note that

p

n

1

=k

1

log n

p

n

= o(1=

p

k

1

), so that the last term an be absorbed

into the seond one. The expansion for M

(1)�

n

1

(k

1

) is the same as for M

(1)

n

1

(k

1

)
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given X

n

. Similarly forM

(2)�

n

1

(k

1

) andM

(3)�

n

1

(k

1

). So the result of Theorem 3.1

holds with k

0

replaed by

k

�

0;1

(n

1

) := arg inf

k

as. Ef(̂

�

n

1

;2

(k))

2

jX

n

g:

and n by n

1

. A similar analogue holds to the results of Theorem 3.2. Finally

in a way analoguous to what was done in Theorem 3.3 we an replae as. E

by the non-asymptoti expetation. Hene the onlusion.

Proof of Corollary 3.1. Note that lim

t!1

t

�

a(t)=U(t) is a positive onstant

in the ase � <  < 0 (see de Haan and Stadtm�uller (1993)). Thus A

0

(t) �



0

t

�

�

whih implies

s

�

(1=t) � (�2

2

0

�

�

)

1

1�2�

�

t

1

1�2�

�

:

The Corollary easily follows from Theorems 3.4 and 3.5.

Proof of Theorem 3.5. This follows by ombining the results of Corollary 3.1

for

�

k

�

0;1

(n

1

) and

�

k

�

0;1

(n

2

).

Proof of Corollary 3.2. It easily follows from Theorems 3.1, 3.2 and 3.5.

Proof of Corollary 3.3. We an use the result of Corollary 3.2 and we only

have to prove that �̂

n

is a onsistent estimator of �

�

. By Theorem 3.4 the

sequene

�

k

�

0;1

(n

1

) is asymptoti to 

1

n

�2�

�

1�2�

�

1

. Hene

log

�

k

�

0;1

(n

1

)= logn

1

!

�2�

�

1� 2�

�

in probability. This gives the onsisteny.

Lemma 5.4. If F 2 D

dif

(G



), then (4.1) holds for a

n

= nU

0

(n) and b

n

=

U(n) and for any k !1, k=n! 0 and � 2 (0; 1℄, the stohasti proess

W

n;k

(�) :=

p

k

X

n;n�[k�℄

� U(

n

k�

)

n

k

U

0

(

n

k

)

onverges (in the sense of onvergene of all �nite marginal distributions) to

a Gaussian proess w(�) whih has mean zero and ovariane struture

Cov(w(�

1

); w(�

2

)) = �

�

1

�

��1

2

; 0 < �

1

� �

2

� 1:

Proof. See Theorem 2.3 of Cooil (1985).
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Lemma 5.5. If (4.3) holds and n

1

= O(n

1��

0

) for some �

0

2 (0; 1). Then

for any 0 < � < 1 there exists t

0

> 0 suh that for all t

0

� t � n

1

(logn

1

)

2

and t

0

� tx � n

1

(logn

1

)

2

j

U

n

(tx)�U

n

(t)

a(t)

�

x



�1



A(t)

� h

;�

(x)j

� [

p

tx log n

n

+ �℄D(; �)x

+�

e

�j log xj

+[

p

t log n

n

+ �℄D(; �)

+�[1 + x



+ 2x

+�

e

�j log xj

℄

+

D(;�)

jA(t)j

p

t logn

n

[

p

x + 1℄ a.s.

(5.4)

where D(; �) > 0 is a onstant whih only depends on  and �.

Proof. Similar to the proof of Lemma 5.3.

Proof of Theorem 4.1. By Lemma 5.4 we have

p

k(̂

n;�

(k)� )

=

p

k(

1

� log �

log

X

n;n�[k�

2

℄

�X

n;n�[k�℄

X

n;n�[k�℄

�X

n;n�k

� )

=

p

k

� log �

log(1 + �



X

n;n�[k�

2

℄

�X

n;n�[k�℄

X

n;n�[k�℄

�X

n;n�k

� 1)

d

=

p

k

� log �

X

n;n�[k�

2

℄

�X

n;n�[k�℄

��

�

(X

n;n�[k�℄

�X

n;n�k

)

�

�

(X

n;n�[k�℄

�X

n;n�k

)

(1 + o

p

(1))

= [

p

k

� log �

X

n;n�[k�℄

�U(

n

k�

2

)�(1+�

�

)(X

n;n�[k�℄

�U(

n

k�

))+�

�

(X

n;n�k

�U(

n

k

))

�

�

(X

n;n�[k�℄

�X

n;n�k

)

+

p

k

� log �

U(

n

k�

2

)�(1+�

�

)U(

n

k�

)+�

�

U(

n

k

)

�

�

(X

n;n�[k�℄

�X

n;n�k

)

℄(1 + o

p

(1))

( note

X

n;n�[k�℄

�X

n;n�k

n

k

U

0

(

n

k

)

p

!

�

�

�1



)

d

= [

p

k

� log �

X

n;n�[k�

2

℄

�U(

n

k�

2

)�(1+�

�

)(X

n;n�[k�℄

�U(

n

k�

))+�

�

(X

n;n�k

�U(

n

k

))

n

k

U

0

(

n

k

)�

�

�

�

�1



+

p

k

� log �

U(

n

k�

2

)�(1+�

�

)U(

n

k�

)+�

�

U(

n

k

)

n

k

U

0

(

n

k

)�

�

�

�

�1



℄(1 + o

p

(1))

d

=

1

� log �

1

�

�

�

�

�1



(w(�

2

)� (1 + �

�

)w(�) + �

�

w(1)) + o

p

(1)

+

p

k

� log �

U(

n

k�

2

)�(1+�

�

)U(

n

k�

)+�

�

U(

n

k

)

n

k

U

0

(

n

k

)�

�

�

�

�1



(1 + o

p

(1));

thus the asymptoti variane of

p

k(̂

n;�

(k)� ) equals



2

(�

�1

� 1)(1 + �

�2�1

)

(log �)

2

(�

�

� 1)

2

and the asymptoti bias of

p

k(̂

n;�

(k)� ) equals

p

kA(

n

k

)

�

��

� log �



�

�

� 1

1� �

�

�

�

���

� 1

 + �

:
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By A(t) = t

��

we get in a way similar to the proof of Theorem 3.1

k

0

(n)=f(

(�

�1

� 1)(1 + �

�2�1

)

�2�

2

(

1��

�

�

)

2

(

�

���

�1

+�

)

2

�

�2�

)

1

1�2�

n

�2�

1�2�

g ! 1:

Proof of Theorem 4.2. By Lemma 5.4 we have

p

k(̂

n;�

(k)� ̂

n;�

(k�

2

))

=

p

k(̂

n;�

(k)� )�

p

k(̂

n;�

(k�

2

)� )

d

= [

p

k

� log �

X

n;n�[m�

2

℄

�U(

n

k�

2

)�(1+�

�

)(X

n;n�[k�℄

�U(

n

k�

))+�

�

(X

n;n�k

�U(

n

k

))

�

�

(X

n;�[k�℄

�X

n;n�k

)

+

p

k

log �

U(

n

k�

2

)�(1+�

�

)U(

n

k�

)+�

�

U(

n

k

)

�

�

(X

n;n�[k�℄

�X

n;n�k

)

�

p

k

� log �

X

n;n�[k�

4

℄

�U(

n

k�

4

)�(1+�

�

)(X

n;n�[k�

3

℄

�U(

n

k�

3

))+�

�

(X

n;n�[k�

2

℄

�U(

n

k�

2

))

�

�

(X

n;n�[k�

3

℄

�X

n;n�[k�

2

℄

)

�

p

k

� log �

U(

n

k�

3

)�(1+�

�

)U(

n

k�

2

)+�

�

U(

n

k�

2

)

�

�

(X

n;n�[k�

3

℄

�X

n;n�[k�

2

℄

)

℄(1 + o

p

(1))

( note

X

n;n�[k�

3

℄

�X

n;n�[k�

2

℄

n

k

U

0

(

n

k

)

p

! �

�2

�

�

�1



)

d

=

1

� log �

1

�

�

�

�

�1



(w(�

2

)� (1 + �

�

)w(�) + �

�

w(1)) + o

p

(1)

+

p

k

� log �

U(

n

k�

2

)�(1+�

�

)U(

n

k�

)+�

�

U(

n

k

)

n

k

U

0

(

n

k

)�

�

�

�

�1



(1 + o

p

(1))

�

1

� log �

1

�

�3

�

�

�1



(w(�

4

)� (1 + �

�

)w(�

3

) + �

�

w(�

2

)) + o

p

(1)

�

p

k

� log �

U(

n

k�

4

)�(1+�

�

)U(

n

k�

3

)+�

�

U(

n

k�

2

)

n

k

U

0

(

n

k

)�

�3

�

�

�1



(1 + o

p

(1));

thus the asymptoti variane of

p

k(̂

n;�

(k)� ̂

n;�

(k�

2

)) equals



2

(1 + �

�2�1

)(�

�1

� 1)(1 + �

�2

)

(log �)

2

(�

�

� 1)

2

and the asymptoti bias of

p

k(̂

n;�

(k)� ̂

n;�

(k�

2

)) equals

p

kA(

n

k

)

�

��

� log �

1� �

�

�

�

���

� 1

 + �



�

�

� 1

(1� �

�2�

):

By A(t) = t

��

we get in a way similar to the proof of Theorem 3.1

�

k

0

(n)=f(

(�

�1

� 1)(1 + �

�2�1

)(1 + �

�2

)

�2�

2

(

1��

�

�

)

2

(

�

���

�1

+�

)

2

�

�2�

(1� �

�2�

)

2

)

1

1�2�

n

�2�

1�2�

g ! 1:
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Proof of Theorem 4.3. Similar to the proof Theorem 3.3.

Proof of Theorem 4.4. Similar to the proof of Theorem 3.4 by using Lemma 5.5

instead of Lemma 5.3.

Proof of Theorem 4.5. Similar to the proof of Corollary 3.3.

6 Simulations

The bootstrap proedure was tested on various distribution funtions in

a small simulation study: 200 samples of size 10.000 are generated from

eah distribution funtion. To eah sample the bootstrap method was ap-

plied, with � = 0:05, that is n

1

= 708 and n

2

= 502, and 200 boot-

strap samples. The distributions are Cauhy, generalized Pareto distribution

(GPD) with  = 1=4 and  = �1=4, generalized extreme value distribu-

tion (GEV) with  = �1=4 and  = �3=2 and �nally the distribution with

U(t) = H

;�

(t) ,equation (3.2) with  = �1=4, � = �1=10 and � = �1 (to

have a distribution that allows a free hoie of �).

Figure 1 illustrates the results for the Cauhy distribution: The bottom

graph shows the observed and theoretial mean squared error of the  esti-

mate as a funtion of k: the solid line represents the observed mean squared

error (i.e. the sample mean of the estimated (̂

n;2

(k)� )

2

of the individual

simulated samples), and the dashed line the theoretial value alulated as

V

2

() + (A(n=k) b(; �))

2

. The vertial line indiates the sample mean of

the k

0

estimates. The two omponents of the MSE, bias and variane are

illustrated in the top and middle graphs. Table 1 summarizes the simulation

results. For eah parameter the table reports

� the theoretial value,

� statistis of the bootstrap estimates (sample mean, standard deviation

and MSE of the estimates produed by the bootstrap proedure in the

individual samples)

� observed optimal k, and the sample mean and MSE of the  estimate

at this k.

The general onlusion is that the bootstrap proedure gives reasonable es-

timates for the sample fration to be used. It is reasonable in terms of the

MSE of the  estimate: for all but the last distribution the MSE of ̂

n;2

(

^

k

0

)

is of the order of the MSE of the estimate at the observed optimal k.
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The seond order parameter � is only estimated orretly for the Cauhy

distribution. The diÆulty of estimating � has also been reported by others

(see [3℄) and is subjet for further study.

For three of the distributions no theoretial values for k

0

has been given.

These distributions have � = , a situation exluded in theorems (3.1) and

(3.2). In this situation one annot deide whih part of the bias,

a(n=k)=U(n=k)

1

1� 

or A(n=k)

�

� 2(1� )

2

(1� 2) d

1

+

(1� )

2

2

d

2

�

is dominant. Most standard distributions with negative  turn out to fall in

this ategory.

Clearly more work needs to be done: �rst of all the performane of the

� estimator and the  = � situation need lari�ation. And of ourse the

e�ets of the number of bootstrap repliations and the size of the bootstrap

samples have to be studied.

7 Appliation

In the Neptune projet (see de Haan and de Ronde (1997) for a review) we

studied the joint distribution of extremes of wave-height, wave-period and

sea levels. The projet aimed at estimating failure probabilities of sea walls,

based on the joint distribution of the extremes of the variables. A small

dataset of 828 measurements overing 10 years at the Eierland station in

the North sea was available. As is lear from �gure 2, the wave height data

series does not behave very niely, but it was what was available to us. The

diÆulty in seleting a number of order statistis, makes the series a nie

andidate for the bootstrap proedure (at the time we deided that only 27

order statistis should be used for estimation resulting in ̂

n;2

= 0).

We applied the bootstrap method in the following way: as in the simu-

lation experiment we used 200 bootstrap samples, resulting in an estimate

of the optimal k. In order to evaluate and improve the preision of this es-

timate, the proedure was repeated with again 200 bootstrap samples, and

the estimates averaged, until the average had an estimated standard error

less then 2.

In �gure 2 both the optimal

^

k

0

= 259, estimated with � = 0:1 and the

orresponding ̂

n;2

(259) = 0:06 are indiated. This value is reasonably in line

with  = 0, the value used in the Neptune projet.

The results for di�erent values of �, determining the size of the bootstrap

sample are shown in table 2. The optimal k is not very sensitive to �, but
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it dereases with � only when � > 0:2, but those values orrespond to a very

small seond bootstrap size.

A Seond order onditions

The seond order relations in the Setions 3 and 4 are di�erent. The reason

for this stems from the expansion of the logarithms. Let us try to proeed

from one to the other. The domain of attration ondition is

lim

t!1

U(tx) � U(t)

a(t)

=

x



� 1



for all x > 0: (A.1)

It follows, if U(1) > 0, that

lim

t!1

logU(tx)� logU(t)

a(t)=U(t)

=

x



�

� 1



�

: (A.2)

So far there are no ompliations. The natural seond order ondition related

to (A.1) is

lim

t!1

U(tx)�U(t)

a(t)

�

x



�1



A(t)

= H(x) (A.3)

for some funtion A (positive or negative) with A(t)! 0 (t!1). Now we

try to work towards a seond order ondition for logU . Starting from (A.3)

logU(tx)� logU(t)

= log(1 + (

U(tx)

U(t)

� 1))

=

U(tx)

U(t)

� 1�

1

2

(

U(tx)

U(t)

� 1)

2

+ � � �

So that (let us take  < 0 for example)

logU(tx)�logU(t)

a(t)=U(t)

�

x



�1



= (

U(tx)�U(t)

a(t)

�

x



�1



)�

U(t)

2a(t)

(

U(tx)

U(t)

� 1)

2

+ � � �

Now in some ases the �rst term is dominant (the "nie" situation), but in

other ases the seond term is dominant. And sometimes there is no relative

limit. The various ases are dealt with in the next Theorem and the Remark.

Theorem A. Assume U(1) > 0 and there exist funtions a(t) > 0 and

A(t)! 0 suh that

U(tx)�U(t)

a(t)

�

x



�1



A(t)

! H

;�

(x)
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where

H

;�

(x) =

1

�

[

x

+�

� 1

 + �

�

x



� 1



℄ (� � 0):

Suppose that  6= �. Then

lim

t!1

a(t)

U(t)

� 

+

A(t)

=  2 [�1;1℄

where

 =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

0 if  < �



+�

if  > ��



+�

if 0 <  < �� and lim

t!1

(U(t)� a(t)=) = 0

�1 if � <  � 0

�1 if 0 <  < �� and lim

t!1

(U(t)� a(t)=) 6= 0

�1 if  = ��:

Furthermore

logU(tx)�logU(t)

a(t)=U(t)

�

x



�

�1



�

~

A(t)

! H



�

;�

0

(x)

where

~

A(t) =

8

<

:

A(t) if  = 0



+

�

a(t)

U(t)

if  = �1

�A(t)=( + �) if  = =( + �);

~

A(t) 2 RV

�

0

,

�

0

=

8

<

:

� if 0 <  � ��

 if � <  � 0

� if  < � or  > ��:

Remark A. Hene �

0

= 0 if  = 0.

Proof. Suppose that  6= 0. Then from the proof of Lemma 5.2 we have

U(tx)� a(tx)= � (U(t)� a(t)=)

a(t)A(t)

! �

1



x

+�

� 1

 + �

:

If  + � > 0, then

U(t)� a(t)=

a(t)A(t)

! �

1

( + �)

:
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Hene

a(t)=U(t)� 

A(t)

=

a(t)

U(t)

a(t)= � U(t)

a(t)A(t)

! =( + �):

If  + � = 0, i.e.,  = �� > 0, then

U(t)� a(t)=

a(t)A(t)

! �1:

Hene

a(t)=U(t)� 

A(t)

=

a(t)

U(t)

a(t)= � U(t)

a(t)A(t)

! �1:

If  + � < 0, then

(

U(t)� a(t)= ! 

0

2 (�1; 0) [ (0;1)

U(t)�a(t)=�

0

a(t)A(t)

! �

1

(+�)

:

For  + � < 0 and  > 0,i.e., 0 <  < ��, we have

a(t)=U(t)�

A(t)

=

a(t)

U(t)

(

a(t)=�U(t)+

0

a(t)A(t)

�



0

a(t)A(t)

)

!

�

�1 if 

0

6= 0

=( + �) if 

0

= 0

:

For  + � < 0 and  < 0, i.e.,  < 0, we ja(t)=(U(t)A(t))j 2 RV

��

: Hene

a(t)=(U(t)A(t))!

�

�1 if  � � > 0 &  < 0

0 if  � � < 0 &  < 0:

Suppose that  = 0 and � < 0. Then from the proof of Lemma 5.2

a(t)! 

1

2 (�1; 0) [ (0;1). Hene

a(t)=(U(t)A(t)) � 

1

=(U(1)A(t))! �1:

We have now proved the �rst part of the theorem.

Note that a(t)=U(t)! 

+

: For  � 0; we have

log

U(tx)

U(t)

= logf1 +

a(t)

U(t)

[

x



�

�1



�

+ A(t)H

;�

(x) + o(A(t))℄g

=

a(t)

U(t)

[

x



�

�1



�

+ A(t)H

;�

(x) + o(A(t))℄

�

1

2

(

a(t)

U(t)

)

2

[

x



�

�1



�

+ A(t)H

;�

(x) + o(A(t))℄

2

+ o((

a(t)

U(t)

)

2

);
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i.e.,

logU(tx)�logU(t)

a(t)=U(t)

�

x



�

�1



�

= A(t)H

;�

(x) + o(A(t))

�

a(t)

2U(t)

[(

x



�

�1



�

)

2

+ 2

x



�

�1



�

A(t)H

;�

(x) + o(A(t))℄ + o(

a(t)

U(t)

):

For  > 0, we have

x

�

U(tx)

U(t)

= x

�

+

a(t)

U(t)

1�x

�



+ x

�

a(t)

U(t)

[A(t)H

;�

(x) + o(A(t))℄

= 1 + (x

�

� 1)(1�

a(t)

U(t)

) + x

�

a(t)

U(t)

[A(t)H

;�

(x) + o(A(t))℄;

i.e.,

logU(tx)�logU(t)

a(t)=U(t)

� logx

= �(log x +

x

�

�1



)

U(t)

a(t)

(a(t)=U(t)� )

+x

�

A(t)H

;�

(x) + o(A(t)) + o(a(t)=U(t)� ):

So the seond part of the theorem follows easily.

Remark B. It is not true that a seond order ondition for U always implies

a seond order ondition for logU : Let  = � and de�ne

U

0

(t) = t

�1

expf

Z

t

1

s

�1

(2 + sin(log log s)) dsg:

From the representation (2.5) of de Haan and Resnik (1996) we �nd

U(tx)�U(t)

tU

0

(t)

�

x



�1



t



[2 + sin(log log t)℄

!

Z

x

1

u

�1

u

�

� 1

�

du:

Hene

a(t)=(U(t)A(t))

=

tU

0

(t)

U(t)t



[2+sin(log log t)℄

�

expf

R

1

1

s

�1

[2+sin(log log s)℄ ds

U(1)[2+sin(log log t)℄

whih does not have a limit.

30



Referenes

[1℄ N.H. Bingham, C.M. Goldie, and J.L. Teugels. Regular Variation. Cam-

bridge University Press, New York, 1987.

[2℄ B. Cooil. Limiting multivariate distributions of intermediate order

statistis. Ann. Probab., 13:469{477, 1985.

[3℄ J. Danielsson, L. de Haan, L. Peng, and C.G. de Vries. Using a bootstrap

method to hoose the sample fration in the tail index estimation. 1996.

Submitted.

[4℄ L. de Haan. On regular variation and its appliation to the weak on-

vergene of sample extremes. Tehnial Report CWI Trat 32, CWI,

Amsterdam, 1970.

[5℄ L. de Haan and L. Peng. Rates of onvergene for bivariate extremes.

Journal of Multivariate Analysis, 61(2):195{230, 1997.

[6℄ L. de Haan and S.I. Resnik. Seond order regular variation and rates of

onvergene in extreme value theory. Annals of Probability, 24:97{124,

1996.

[7℄ L. de Haan and U. Stadtm�uller. Generalized regular variation of seond

order. J. Austral. Math. So. (Series A), 61:381{395, 1996.

[8℄ Laurens de Haan and John de Ronde. Sea and wind: Multivariate

extremes at work. Extremes, 1(1):7{45, 1998.

[9℄ A.L.M. Dekkers and L. de Haan. Optimal hoie of sample fration in

extreme value estimation. Journal of Multivariate Analysis, 47(2):173{

195, 1993.

[10℄ A.L.M. Dekkers, J.H.J. Einmahl, and L. de Haan. A moment estimator

for the index of an extreme value distribution. Ann. Statis., 17(4):1833{

1855, 1989.

[11℄ H. Drees. On smooth statistial tail funtionals. Sandinavian Journal

of Statistis,, 25(1):187{210, 1998.

[12℄ H. Drees and E. Kaufmann. Seleting the optimal sample fration in

univariate extreme value estimation. Stoh. Pro. Appl., 75:149{172,

1998.

31



[13℄ W. Feller. An Introdution to Probability Theory and its Appliations,

volume II. Wiley, New York, 1966.

[14℄ J. Geluk and L. de Haan. Regular variation, extensions and tauberian

theorems. Tehnial Report CWI Trat 40, CWI, Amsterdam, 1987.

[15℄ J. Pikands III. Statistial inferene using extreme order statistis. Ann.

Statis., 3:119{131, 1975.

[16℄ J. Pikands III. The ontinuous and di�erentiable domains of attration

of the extreme value distributions. Ann. Probab., 14:996{1004, 1986.

[17℄ E. Omey and E. Willekens. �-variation with remainder. J. London

Math. So., 37:105{118, 1988.

[18℄ T.T. Pereira. Seond order behaviour of domains of attration and the

bias of generalized pikands' estimator. In J. Lehner J. Galambos and

E. Simin, editors, Extreme Value Theory and Appliations III, Pro.

Gaithersburg Conferene (NIST speial publ), 1993.

[19℄ V. Petrov. Sums of independent random variables. Springer, Berlin,

1975.

[20℄ G. Shorak and J. Wellner. Empirial Proesses with Appliations to

Statistis. John Wiley & Sons, 1986.

32



Table 1: Simulation study. Statistis of the bootstrap estimates ompared

to theoretial values and observed (empirial) estimates of k

0

, � and  (see

setion 6).

Bootstrap estimator observed

Parameter theoretial mean stdev MSE mean MSE

Cauhy

k

0

1563.9 1354.3 667.62 1546

� -2 -1.9459 0.52107

(k

0

) 1 0.99828 0.091811 0.0084 1.0148 0.00166

GPD(1/4)

k

0

641.97 1140.3 632.26 587

� -0.25 -1.7416 0.48564

(k

0

) 0.25 0.28981 0.062448 0.0055 0.28548 0.0032

GPD(-1/4)

k

0

719.86 483.82 1403

� -0.25 -1.6816 0.40212

(k

0

) -0.25 -0.21809 0.053223 0.0038 -0.21945 0.0018

H

�1=4;�1=10

k

0

94.697 160.34 150.39 92

� -0.1 -0.95093 0.21389

(k

0

) -0.25 -0.12098 0.18311 0.0500 -0.12362 0.0286

H

�1=4;�1

k

0

325.54 215.94 347

� -0.25 -1.173 0.27012

(k

0

) -0.25 -0.22321 0.1224 0.0156 -0.22616 0.00401

GEV(-1/4)

k

0

746.38 441.34 1239

� -0.25 -1.7196 0.39267

(k

0

) -0.25 -0.24751 0.052803 0.0028 -0.25281 0.0010

GEV(-3/2)

k

0

957.98 3022.9 1012.2 1083

� -1 -3.1803 0.54967

(k

0

) -1.5 -1.8992 0.44293 0.3546 -1.5899 0.01641
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Table 2: Wave height data (n = 828). The e�et of the bootstrap sample

size, determined by �, on the estimated �, optimal number of order statistis

^

k

0

and ̂

n;2

(k

0

). See setion 7.

� n

1

n

2

�̂

^

k

0

̂

n;2

std.err

0.05 592 424 -5.3795 270 0.074693 0.061144

0.1 423 217 -4.9549 250.86 0.045954 0.063972

0.15 303 111 -4.5453 258.55 0.059485 0.063004

0.2 216 57 -4.4864 258.11 0.059485 0.058986

0.25 155 30 -3.9546 223.01 -0.0011046 0.070302

0.3 111 15 -3.2259 137.83 -0.22552 0.094392
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Figure 1: The estimate ̂

n;2

for the Cauhy distribution: from top to bottom

the sample mean (i.e. the average of all simulations), the variane and the

mean squared error against the number of order statistis. The solid lines

represent the observed values and the dashed line the theoretial values. See

setion 6.
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Figure 2: Wave height . The top graph shows the ̂

n;2

estimate as a funtion

of the number of order statistis k. The optimal k

0

and the ̂

n;2

estimate

are indiated by the vertial resp. horizontal lines. The inset enlarges the

graph for the top 100 order statistis. The other graphs show the bootstrap

estimates of Ef(̂

n;2

�̂

n;3

)

2

g as a funtion of k(n

1

) resp. k(n

2

) (200 bootstrap

repeats; � = 0:1). See setion 7.
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