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Abstra
t

Estimators of the extreme-value index are based on a set of upper

order statisti
s. We present an adaptive method to 
hoose the num-

ber of order statisti
s involved in an optimal way, balan
ing varian
e

and bias 
omponents. Re
ently this has been a
hieved for the similar

but somewhat less involved 
ase of regularly varying tails (Drees and

Kaufmann(1997); Danielsson et al.(1996)). The present paper follows

the line of proof of the last mentioned paper.

Key words & phrases: Moment estimator, Pi
kands estimator,

bootstrap, mean squared error.

1 Introdu
tion

Suppose we have i.i.d. observations X

1

; X

2

; � � � ; X

n

whose 
ommon distribu-

tion fun
tion F is in the domain of attra
tion of an extreme-value distribution

G




(notation: F 2 D(G




)). The shape parameter 
 2 R of this extreme-

value distribution (fun
tional form: exp(�(1 + 
x)

�1=


)) 
an be estimated

in various ways starting from the sample X

1

; X

2

; � � � ; X

n

. Two popular es-

timators are Pi
kands' estimator (in its generalized form see e.g. Pereira

(1993)):


̂

n;�

(k) := (� log �)

�1

log

X

n;n�[k�

2

℄

�X

n;n�[k�℄

X

n;n�[k�℄

�X

n;n�k

(1.1)
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(� 2 (0; 1)) where X

n;1

� � � � � X

n;n

are the order statisti
s of X

1

; � � � ; X

n

and [z℄ denotes the largest integer whi
h is not larger than z, and the moment

estimator


̂

n;2

(k) := M

(1)

n

(k) + 1�

1

2

(1�

(M

(1)

n

(k))

2

M

(2)

n

(k)

)

�1

(1.2)

withM

(j)

n

(k) :=

1

k

P

k�1

i=0

(logX

n;n�i

� logX

n;n�k

)

j

. For this estimator we have

to require that the right end point of the distribution is positive.

The estimators from (1.1) and (1.2) are 
onsistent for 
 provided k =

k(n) ! 1, k(n) = o(n)(n ! 1). If one in
reases the speed at whi
h

k(n) goes to in�nity, the asymptoti
 varian
e de
reases but the asymptoti


bias in
reases. There is an optimal sequen
e balan
ing varian
e and bias


omponents (see �gure 1). This optimal sequen
e k

0

(n) 
an be determined

when the underlying distribution is known, provided the distribution fun
tion

has a se
ond order expansion involving an extra unknown parameter (Hall

(1982); Dekkers and de Haan (1993)). Here we develop a purely sample based

way of obtaining the optimal sequen
e k

0

(n) where we assume a se
ond order

expansion but do not assume the se
ond order (or �rst order) 
hara
teristi


known. The pro
edure is based on a double bootstrap (see also Hall (1990).

Results for the moment estimator and for Pi
kands' estimator are given in

Se
tion 3 and Se
tion 4 respe
tively. All the proofs are postponed till Se
tion

5. Se
tion 6 reports the result of a small simulation study and se
tion 7

demonstrates the appli
ation of the pro
edure to North Sea wave height data.

In an appendix we explain why we use di�erent se
ond order 
onditions in

Se
tion 3 and Se
tion 4.

2 Outline

We want (in the set-up of (1.2)) the value of k minimizing E

F

(
̂

n;2

(k)� 
)

2

although this is only meant in an asymptoti
 sense (se
ond moment of the

asymptoti
 distribution). Call this value k

0

(n). There are two unknowns in

this expression: 
 and the distribution fun
tion F . The idea is to repla
e 


by a se
ond estimator 
̂

n;3

(k) and to repla
e F by the empiri
al distribution

fun
tion F

n

. This amounts to bootstrapping. It is proved that minimizing

the resulting expression, whi
h 
an be 
al
ulated purely on the basis of the

sample, still leads to the optimal k

0

(n) with the help of a se
ond bootstrap.

A similar pro
edure applies to the estimator from (1.1). Se
tions 3 and

4 provide the s
ienti�
 ba
kground for the bootstrap pro
edure. Here we

explain step by step how to implement the pro
edure.
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We start with a sample X

1

; � � � ; X

n

.

Step 1: Sele
t randomly and independently n

1

times (n

1

<< n) a mem-

ber of the set fX

1

; X

2

; � � � ; X

n

g, We indi
ate the result byX

�

1

; � � � ; X

�

n

1

. Form

the order statisti
s X

�

n

1

;1

� � � � � X

�

n

1

;n

1

and 
ompute 
̂

�

n

1

;2

(k) and 
̂

�

n

1

;3

(k)

(a

ording to the formula after Theorem 3.2 below) for k = 1; 2; � � � ; n

1

.

Form q

�

n

1

;k

= (
̂

�

n

1

;4

(k))

2

for k = 1; 2; � � � ; n

1

:

Step 2: Repeat this pro
edure r times independently. This results in a

sequen
e q

�

n

1

;k;s

, k = 1; 2; � � � ; n

1

and s = 1; 2; � � � ; r. Cal
ulate

1

r

P

r

s=1

q

�

n

1

;k;s

:

The number r 
an be taken as big as ne
essary.

Step 3: Minimize

1

r

P

r

s=1

q

�

n

1

;k;s

with respe
t to k. Denote by

�

k

�

0;1

(n

1

)

the value of k where the minimum is obtained.

Step 4: Repeat Step 1 up to 3 independently with the number n

1

repla
ed by n

2

= (n

1

)

2

=n. So n

2

is smaller than n

1

. This results in

�

k

�

0;1

(n

2

).

Step 5: Cal
ulate

^

k

0

(n) on the basis of

�

k

�

0;1

(n

1

) and

�

k

�

0;1

(n

2

) a

ording

to its de�nition in Corollary 3.3 below with 
̂

n

:= 
̂

n;2

([n

1=2

℄) for example

and �̂

n

a

ording to the formula in the same Corollary.

This

^

k

0

(n) is the adaptively obtained optimal number of order statisti
s.

3 Main results for moment estimator

We shall write throughout 


+

for 
_0 and 


�

for 
^0. Assume F 2 D(G




),

i.e. there exists a positive fun
tion a(t) su
h that

lim

t!1

U(tx)� U(t)

a(t)

=

x




� 1




for x > 0;

whi
h implies that

lim

t!1

logU(tx)� logU(t)

a(t)=U(t)

=

x




�

� 1




�

for x > 0:

Throughout this se
tion we assume U(1) > 0 and the following se
ond

order 
ondition:

lim

t!1

logU(tx)�logU(t)

a(t)=U(t)

�

x




�

�1




�

A(t)

= H(x) (3.1)

where U(t) is the inverse fun
tion of the fun
tion 1=(1� F ), a(t) is positive

and A not 
hanging sign eventually. The fun
tion H(x) is assumed not to

be a multiple of (x




�

� 1)=


�

and takes the form (supposing the fun
tion a

3



and A are 
hosen properly)

H(x) =

1

�

[

x

�+


�

�1

�+


�

�

x




�

�1




�

℄

=

8

>

<

>

:

(log x)

2

=2 if � = 0; 
 � 0;

1




[x




log x�

x




�1




℄ if � = 0; 
 < 0;

1

�

[

x

�+


�

�1

�+


�

�

x




�

�1




�

℄ if � 6= 0;

(3.2)

depending on a se
ond order parameter � � 0 (see de Haan and Stadtm�uller,

relation (2.9) page 387).

We present a series of results 
ulminating in Corollary 3.3 that provides

a sample based sequen
e

^

k

0

(n) su
h that for any (random or non-random)

sequen
e k(n)

lim sup

n!1

Ef(
̂

n;2

(

^

k

0

(n))� 
)

2

g

Ef(
̂

n;2

(k(n))� 
)

2

g

� 1

First we restate in slightly greater generality a result from Dekkers and de

Haan (1993) providing the optimal number of order statisti
s for the moment

estimator as a fun
tion of 
; � and the fun
tion A.

Theorem 3.1. Suppose F 2 D(G




) and that (3.1) and (3.2) hold for � < 0,


 6= � and 
 6= 0. Let k

0

= k

0

(n) be a sequen
e of integers su
h that the

asymptoti
 se
ond moment of 
̂

n;2

(k)�
 is minimal when 
hoosing k = k

0

(n).

Then

k

0

(n)=fn(

V

2

(
)

b

2

(
; �)

)

1

1�2�

�

(s

�

(

1

n

))

�1

g ! 1 (3.3)

as n!1, where

�

�

=

8

>

<

>

:

� if 
 > 0;


 if � < 
 < 0;

� if 
 < �;

V

2

(
) =

(


 + 1 if 
 > 0;

(1�
)

2

(1�2
) (6


2

�
+1)

(1�3
) (1�4
)

if 
 < 0

(3.4)

(the varian
e 
omponent) with 


+

= 0 _ 
 and 


�

= 0 ^ 
 and

b(
; �) =

8

>

<

>

:

(

1

�(1��)

)
 +

1

(1��)

2

for 
 > 0;

1

1�


for � < 
 < 0;

(1�
) (1�2
)

(1���
) (1���2
)

for 
 < �

(3.5)
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(the bias 
omponent). The fun
tion s

�

is the inverse fun
tion of the de
reas-

ing fun
tion s satisfying

A

2

0

(t) = (1 + o(1))

Z

1

t

s(u) du; (3.6)

where

A

0

(t) =

8

>

<

>

:

A(t) if 
 > 0;

a(t)

U(t)

if � < 
 < 0 and

A(t) if 
 < �:

Remark 3.1. Sin
e we only know anything about the asymptoti
 mean square

error for intermediate k, here and in the rest of the paper, when we minimize

over k, we only 
onsider values between logn and n=(logn), both being

intermediate sequen
es with the optimal value in between.

Remark 3.2. We ex
lude the two 
ases 
 = 0 and 
 = � in Theorem 3.1.

The reason 
an be seen from Theorem A in Appendix. This also happens in

Dekkers and de Haan (1993).

We are going to turn the asymptoti
 se
ond moment of 
̂

n;2

(k) � 
 into

something we 
an handle adaptively, the �rst step is to repla
e the unknown


 in the formula by an alternative estimator for 
. The alternative estimator

is


̂

n;3

(k) :=

q

M

(2)

n

(k)=2 + 1�

2

3

(1�

M

(1)

n

(k)M

(2)

n

(k)

M

(3)

n

(k)

)

�1

:

The following theorem is the analogue of theorem 3.1 for the aymptoti
 se
-

ond moment of 
̂

n;2

(k)� 
̂

n;3

(k).

Theorem 3.2. Assume the 
onditions of Theorem 3.1. Determine

�

k

0

=

�

k

0

(n) su
h that the asymptoti
 se
ond moment of 
̂

n;2

(k)�
̂

n;3

(k) is minimal.

Then

�

k

0

(n)=fn(

�

V

2

(
)

�

b

2

(
; �)

)

1

1�2�

�

(s

�

(

1

n

))

�1

g ! 1

as n!1, where

�

V

2

(
) =

(

1

4

(


2

+ 1) if 
 > 0;

1

4

(1�
)

2

(1�8
+48


2

�154


3

+263


4

�222


5

+72


6

)

(1�2
) (1�3
) (1�4
) (1�5
) (1�6
)

if 
 < 0
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and

�

b(
; �) =

8

>

>

<

>

>

:

�


(1��)+�

2 (1��)

3

if 
 > 0;

1�2
�

p

(1�
) (1�2
)

(1�
) (1�2
)

if � < 
 < 0;

1

2

�� (1�
)

2

(1�
��) (1�2
��) (1�3
��)

if 
 < �:

In order to show the 
onvergen
e of mean squared error, we 
onsider the

following quantity


̂

n;4

(k) := (
̂

n;2

(k)� 
̂

n;3

(k))1(j
̂

n;2

(k)� 
̂

n;3

(k)j � k

Æ�1=2

);

where Æ > 0. Then we have

Theorem 3.3. Assume the 
onditions of Theorem 3.1. Suppose � < 0. De-

termine

�

k

0;1

=

�

k

0;1

(n) su
h that Ef(
̂

n;4

(k))

2

g is minimal. Then as n!1

�

k

0;1

(n)=

�

k

0

(n)! 1:

Hen
e

�

k

0;1

(n)=fn(

�

V

2

(
)

�

b

2

(
; �)

)

1

1�2�

�

(s

�

(

1

n

))

�1

g ! 1:

Remark 3.3. Note that Theorem 3.3 holds for any Æ > 0 in the de�nition of


̂

n;4

(k). Thus, in our simulation study, we use 
̂

n;2

(k) � 
̂

n;3

(k) instead of


̂

n;4

(k).

Next we are going to introdu
e the bootstrap pro
edure. One takes

n

1

independent drawings from the empiri
al distribution fun
tion of X

n

:=

fX

1

; � � � ; X

n

g. This results in observations X

�

1

; � � � ; X

�

n

1

. We form the order

statisti
s X

�

n

1

;1

� � � � � X

�

n

1

;n

1

and de�ne

M

(j)�

n

1

(k) :=

1

k

k

X

i=1

(logX

�

n

1

;n

1

�i+1

� logX

�

n

1

;n

1

�k

1

)

j

for k < n

1

and j = 1; 2; 3: Next de�ne


̂

�

n

1

;2

(k) := M

(1)�

n

1

(k) + 1�

1

2

(1�

(M

(1)�

n

1

(k))

2

M

(2)�

n

1

(k)

)

�1

and


̂

�

n

1

;3

(k) :=

q

M

(2)�

n

1

(k)=2 + 1�

2

3

(1�

M

(1)�

n

1

(k)M

(2)�

n

1

(k)

M

(3)�

n

1

(k)

)

�1

:
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By bootstrapping we 
an now estimate

Q(n

1

; k) := Ef(
̂

�

n

1

;4

(k))

2

jX

n

g

with


̂

�

n;4

(k) := (
̂

�

n;2

(k)� 
̂

�

n;3

)1(j
̂

�

n;2

(k)� 
̂

�

n;3

(k)j � k

Æ�1=2

)

as well as we wish.

Now we want to 
onne
t the asymptoti
 behavior of arg infQ with the


orresponding quantity for the asymptoti
 expe
tation as 
onsidered in e.g.

Theorem 3.1.

Theorem 3.4. Suppose the 
onditions of Theorem 3.1 hold and n

1

= O(n

1��

)

for some 0 < � < 1=2. The random quantity

�

k

�

0;1

(n

1

) is de�ned as follows:

�

k

�

0;1

(n

1

) := arg inf

k

Ef(
̂

�

n

1

;4

(k))

2

jX

n

g:

Then

�

k

�

0;1

(n

1

)=fn

1

(

�

V

2

(
)

�

b

2

(
; �)

)

1

1�2�

�

(s

�

(

1

n

1

))

�1

g ! 1

in probability.

We now use the known quantity

�

k

�

0;1

to estimate k

0

(n) and do this via

�

k

0

(n).

Corollary 3.1. Suppose the 
onditions of Theorem 3.4 hold and A

0

(t) = 
t

�

�

with 
 6= 0 and �

�

< 0. Then

�

k

0

(n)=f

�

k

�

0;1

(n

1

)(

n

n

1

)

�2�

�

1�2�

�

g ! 1

in probability.

Remark 3.4. Sin
e A

0

in Theorem 3.1 is a regularly varying fun
tion, the

extra requirement means that the slowly varying fun
tion is in fa
t a 
onstant.

Next we get rid of the fa
tor (n=n

1

)

�2�

�

1�2�

�

. We do this via an independent

se
ond bootstrap pro
edure with bootstrap sample size n

2

.

Theorem 3.5. Suppose the 
onditions of Corollary 3.1 hold and n

2

= (n

1

)

2

=n.

Let

�

k

�

0;1

(n

2

) := arg inf

k

Ef(
̂

�

n

2

;4

(k))

2

jX

n

g:

Then

�

k

0

(n)=f(

�

k

�

0;1

(n

1

))

2

=

�

k

�

0;1

(n

2

)g ! 1 in probability.
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Corollary 3.2. Under the 
onditions of Theorem 3.5,

k

0

(n)=f

(

�

k

�

0;1

(n

1

))

2

�

k

�

0;1

(n

2

)

(

V

2

(
)

�

b

2

(
; �)

�

V

2

(
)b

2

(
; �)

)

1

1�2�

�

g ! 1 in probability.

Corollary 3.3. Suppose the 
onditions of Theorem 3.5 hold. De�ne

^

k

0

(n) :=

(

�

k

�

0;1

(n

1

))

2

�

k

�

0;1

(n

2

)

�

V

2

(
̂

n

)

�

b

2

(
̂

n

; �̂

n

)

�

V

2

(
̂

n

) b

2

(
̂

n

; �̂

n

)

�

1

1�2�̂

n

with

�

k

�

0;1

(n

1

) and

�

k

�

0;1

(n

2

) as de�ned in Theorem 3.4 and Theorem 3.5 respe
-

tively and with 
̂

n

any 
onsistent estimator of 
 (for instan
e 
̂

n;2

(k) with

k = k(n) any sequen
e with k ! 1; k=n ! 0), �̂

n

any 
onsistent estimator

for �

�

, for instan
e

�̂

n

:=

log

�

k

�

0;1

(n

1

)

�2 logn

1

+ 2 log

�

k

�

0;1

(n

1

)

:

Then

^

k

0

(n)=k

0

(n)! 1 in probability;

hen
e the asymptoti
 se
ond moment of 
̂

n;2

(

^

k

0

(n))�
 is asymptoti
ally equal

to the asymptoti
 se
ond moment of 
̂

n;2

(k

0

(n))� 
.

4 Main results for Pi
kands' estimator

Throughout this se
tion we assume that F is in the di�erentiable domain of

attra
tion of G




(notation: F 2 D

dif

(G




)), i.e., F is di�erentiable in a left

neighborhood of x

1

:= supfx : F (x) < 1g and there exist a

n

> 0 and b

n

2 R

su
h that

lim

n!1

�

�x

[F

n

(a

n

x+ b

n

)℄ = G

0




(x) (4.1)

lo
ally uniformly for all x 2 R. This is mainly done for 
onvenien
e. In fa
t

not mu
h is lost of the general 
ase and the 
omputations are more simple.

The di�erentiable domains of attra
tion were introdu
ed by Pi
kands (1986).

Clearly F 2 D

dif

(G




) implies F 2 D(G




) for the same normalizing 
onstants

a

n

and b

n

. De�ne U(t) := (1=(1� F ))

�

(t). The following proposition 
har-

a
terizes the di�erentiable domain of attra
tion of G




.

Proposition 1. F 2 D

dif

(G




) for some 
 2 R if and only if U(t) is di�eren-

tiable for all suÆ
iently large t and U

0

(t) 2 RV


�1

.

8



Proof. See Pi
kands (1986).

In order to get the limit distribution fun
tion of estimator 
̂

n;�

(k) we have

to require some kind of se
ond order 
ondition. Be
ause of Proposition 1 it is

quite natural to assume that there is a positive fun
tion A

�

(t)(! 0 as t!1)

su
h that

lim

t!1

U

0

(tx)

U

0

(t)

� x


�1

A

�

(t)

exists for every x > 0. In order to avoid trivialities we also assume that the

limit fun
tion is not a multiple of x


�1

. Then the limit fun
tion must be of

the form 


0

x


�1

x

�

�1

�

for 
onstants � � 0 and 


0

6= 0 (see Theorem 1.9 of Geluk

and de Haan (1987) or Lemma 3.2.1 of Bingham et al. (1987); (x

0

� 1)=0 is

de�ned as log x). We 
an and will subsume the 
onstant 


0

in the fun
tion

A

�

. So suppose there is a fun
tion A with lim

t!1

A(t) = 0 and not 
hanging

sigh near in�nity, su
h that

lim

t!1

U

0

(tx)

U

0

(t)

� x


�1

A(t)

= x


�1

x

�

� 1

�

(4.2)

for all x > 0. The fun
tion jAj is then regularly varying with index �(notation :

jAj 2 RV

�

). It 
an be proved (see Pereira(1993) or de Haan and Stadtm�uller(1996))

that (3.2) is equivalent to

lim

t!1

U(tx) � U(t)� tU

0

(t)

x




�1




tU

0

(t)A(t)

= h


;�

(x) :=

1

�

[

x


+�

� 1


 + �

�

x




� 1




℄: (4.3)

First we determine the theoreti
ally optimal value k

0

(n) asymptoti
ally.

Theorem 4.1. Assume F 2 D

dif

(G




) and (4.3) holds for A(t) = 
t

�

with


 6= 0 and � < 0. Determine k

0

= k

0

(n) su
h that the asymptoti
 se
ond

moment of 
̂

n;�

(k)� 
 is minimal. Then

k

0

(n)=f(

(�

�1

� 1)(1 + �

�2
�1

)

�2�


2

(

1��

�

�

)

2

(

�

�
��

�1


+�

)

2

�

�2�

)

1

1�2�

n

�2�

1�2�

g ! 1

as n!1:

Next we 
ompute the optimum with 
 repla
ed by 
̂

n;�

(k�

2

):

Theorem 4.2. Assume F 2 D

dif

(G




) and (4.3) holds for A(t) = 
t

�

with


 6= 0 and � < 0. Determine

�

k

0

=

�

k

0

(n) su
h that the asymptoti
 se
ond

moment of 
̂

n;�

(k)� 
̂

n;�

(k�

2

) is minimal. Then

�

k

0

(n)=f(

(�

�1

� 1)(1 + �

�2
�1

)(1 + �

�2

)

�2�


2

(

1��

�

�

)

2

(

�

�
��

�1


+�

)

2

�

�2�

(1� �

�2�

)

2

)

1

1�2�

n

�2�

1�2�

g ! 1

as n!1:
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Corollary 4.1. Assume F 2 D

dif

(G




) and (4.3) holds for A(t) = 
t

�

with


 6= 0 and � < 0. Determine k

0

(n) su
h that the asymptoti
 se
ond moment

of 
̂

n;�

(k)� 
 is minimal and

�

k

0

(n) su
h that the asymptoti
 se
ond moment

of 
̂

n;�

(k)� 
̂

n;�

(k�

2

) is minimal. Then

�

k

0

(n)

k

0

(n)

! (

1 + �

�2

(1� �

�2�

)

2

)

1

1�2�

as n!1:

In order to show the 
onvergen
e of mean squared error, we 
onsider the

following quantity

�


n;�

(k) := (
̂

n;�

(k)� 
̂

n;�

2

(k�

2

))1(j
̂

n;�

(k)� 
̂

n;�

2

(k�

2

)j � k

Æ�1=2

);

where Æ > 0. Then we have

Theorem 4.3. Assume F 2 D

dif

(G




) and (4.3) holds for A(t) = 
t

�

with


 6= 0 and � < 0. Determine

�

k

0;1

=

�

k

0;1

(n) su
h that Ef(�


n;�

(k))

2

g is mini-

mal. Then as n!1

�

k

0;1

(n)=

�

k

0

(n)! 1:

As in Se
tion 3, we draw resamples X

�

n

1

= fX

�

1

; � � � ; X

�

n

1

g from X

n

=

fX

1

; � � � ; X

n

g with repla
ement. Let n

1

< n and X

�

n

1

;1

� � � � � X

�

n

1

;n

1

denote the order statisti
s of X

�

n

1

and de�ne


̂

�

n

1

;�

(k

1

) := (� log �)

�1

log

X

�

n

1

;n

1

�[k

1

�

2

℄

�X

�

n

1

;n

1

�[k

1

�℄

X

�

n

1

;n

1

�[k

1

�℄

�X

�

n

1

;n

1

�k

1

:

Then we propose to use the following bootstrap estimate of the mean square

error

Ef(�


�

n

1

;�

(k

1

))

2

jX

n

g:

We 
an prove

Theorem 4.4. Assume F 2 D

dif

(G




) and (4.3) holds for A(t) = 
t

�

with


 6= 0 and � < 0. Let n

1

= O(n

1��

) for some � 2 (0; 1). Determine k

�

1;0

(n

1

)

su
h that Ef(�


�

n

1

;�

(k))

2

jX

n

g is minimal. Then

k

�

1;0

(n

1

)=f(

(�

�1

� 1)(1 + �

�2
�1

)(1 + �

�2

)

�2�


2

(

1��

�

�

)

2

(

�

�
��

�1


+�

)

2

�

�2�

(1� �

�2�

)

2

)

1

1�2�

n

�2�

1�2�

1

g

p

! 1

as n!1:
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Finally we 
onne
t k

0

(n) with k

�

1;0

and k

�

2;0

asymptoti
ally.

Theorem 4.5. Assume F 2 D

dif

(G




) and (3.3) holds for A(t) = 
t

�

(� < 0).

Let n

1

= O(n

1��

) for some � 2 (0; 1=2) and n

2

= (n

1

)

2

=n. Determine

k

�

i;0

(n

i

) su
h that Ef(�


�

n

i

;�

(k

i

))

2

jX

n

g is minimal (i = 1; 2). De�ne f

�

(�) =

(

1+�

�2

(1��

�2�

)

2

)

1

1�2�

: Then

(k

�

1;0

)

2

k

�

2;0

f

�

(

log k

�

1;0

2(log k

�

1;0

�log n

1

)

)

=k

0

(n)

p

! 1

as n!1:

So as before we get an estimator for k

0

(n) whi
h leads to an estimator

for � whi
h has asymptoti
ally the lowest mean squared error.

5 Proofs

We shall give some lemmas �rst.

Lemma 5.1. Let Y

1

; � � � ; Y

n

be i.i.d. random variables with 
ommon distri-

bution fun
tion 1� x

�1

(x > 1) and Y

n;1

� � � � � Y

n;n

be the order statisti
s.

Assume k !1, k=n! 0. Then

(i) Y

n;n�k

=

n

k

! 1 in probability

(ii) De�ne

8

>

<

>

:

P

n

:=

1

k

P

k

i=1

(Y

n;n�i+1

=Y

n;n�k

)




�

�1




�

�

1

1�


�

Q

n

:=

1

k

P

k

i=1

(

(Y

n;n�i+1

=Y

n;n�k

)




�

�1




�

)

2

�

2

(1�


�

)(1�2


�

)

R

n

:=

1

k

P

k

i=1

(

(Y

n;n�i+1

=Y

n;n�k

)




�

�1




�

)

3

�

6

(1�


�

)(1�2


�

)(1�3


�

)

:

We have

p

k(P

n

; Q

n

; R

n

) 
onverges in distribution to (P;Q;R), say, whi
h is

normally distributed with mean ve
tor zero and 
ovarian
e matrix

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

EP

2

=

1

(1�


�

)

2

(1�2


�

)

EQ

2

=

4(5�11


�

)

(1�


�

)

2

(1�2


�

)

2

(1�3


�

)(1�4


�

)

ER

2

=

36(19�105


�

+146


2

�

)

(1�


�

)

2

(1�2


�

)

2

(1�3


�

)

2

(1�4


�

)(1�5


�

)(1�6


�

)

E(PQ) =

4

(1�


�

)

2

(1�2


�

)(1�3


�

)

E(PR) =

18

(1�


�

)

2

(1�2


�

)(1�3


�

)(1�4


�

)

E(QR) =

12(9�21


�

)

(1�


�

)

2

(1�2


�

)

2

(1�3


�

)(1�4


�

)(1�5


�

)

11



Moreover,

8

<

:

k EP

2

n

! EP

2

k EQ

2

n

! EQ

2

k ER

2

n

! ER

2

:

(iii) De�ne for j = 1; 2; 3

d

(j)

n

:=

1

k

k

X

i=1

j H(Y

n;n�i+1

=Y

n;n�k

) (

(Y

n;n�i+1

=Y

n;n�k

)




�

� 1




�

)

j�1

Then by the law of large numbers

d

(j)

n

p

! d

j

=

Z

1

1

j H(y) (

y




�

� 1




�

)

j�1

dy

y

2

; j = 1; 2; 3

or expli
itly

d

1

=

1

(1� 


�

)(1� �� 


�

)

;

d

2

=

2(3� 2�� 4


�

)

(1� 


�

)(1� 2


�

)(1� �� 


�

)(1� �� 2


�

)

and

d

3

=

18


2

�

� 22


�

+ 15� 


�

+ 3�

2

� 8� + 6

(1� 


�

) (1� 2


�

) (1� 3


�

) (1� �� 


�

) (1� �� 2


�

) (1� �� 3


�

):

Proof. Similar to the proof of Theorem 3.4 of Dekkers et al. (1989) by writing

(P

n

; Q

n

; R

n

) as a sum of i.i.d. random ve
tors.

The following is an extension of a result by Drees (1998).

Lemma 5.2. Let f be a measurable fun
tion. Suppose there exist a real

parameter � and fun
tions a

1

(t) > 0 and A

1

(t)! 0 su
h that for all x > 0

lim

t!1

f(tx)�f(t)

a

1

(t)

�

x

�

�1

�

A

1

(t)

= H

1

(x)

where

H

1

(x) =

1

�

[

x

�+�

� 1

� + �

�

x

�

� 1

�

℄ (� � 0):

Then for any � > 0 there exists t

0

> 0 su
h that for all t � t

0

, tx � t

0

,

j

f(tx)�f(t)

a

1

(t)

�

x

�

�1

�

A

1

(t)

�H

1

(x)j � �[1 + x

�

+ 2x

�+�

e

�j log xj

℄:
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Proof. Suppose � 6= 0. Then from relation (2.2) of Theorem 1 of de Haan

and Stadm�uller (1996), we have

(tx)

��

a

1

(tx)� t

��

a

1

(t)

t

��

a

1

(t)A

1

(t)

!

x

�

� 1

�

:

Hen
e

f(tx)�a

1

(tx)=��(f(t)�a

1

(t)=�)

a

1

(t)A

1

(t)=�

=

f(tx)�f(t)�a

1

(t)

x

�

�1

�

a

1

(t)A

1

(t)=�

�x

�

(tx)

��

a

1

(tx)�t

��

a

1

(t)

t

��

a

1

(t)A

1

(t)

! �H

1

(x)� x

�

x

�

�1

�

= �

x

�+�

�1

�+�

:

Similar to the proof of Lemma 2.2 of de Haan and Peng (1997), we get

jx

�

(tx)

��

a

1

(tx)�t

��

a

1

(t)

t

��

a

1

(t)A

1

(t)=�

� x

�

x

�

�1

�

j

� x

�

�[1 + x

�

e

�j log xj

℄

and

j

f(tx)�a

1

(tx)=��(f(t)�a

1

(t)=�)

a

1

(t)A

1

(t)=�

+

x

�+�

�1

�+�

j

� �[1 + x

�+�

e

�j log xj

℄:

Hen
e

j

f(tx)�f(t)

a

1

(t)

�

x

�

�1

�

A

1

(t)

�H

1

(x)j

= j

f(tx)�a

1

(tx)=��(f(t)�a

1

(t)=�)

a

1

(t)A

1

(t)

+

x

�+�

�1

�(�+�)

+x

�

(tx)

��

a

1

(tx)=��t

��

a

1

(t)=�

t

��

a

1

(t)A

1

(t)

� x

�

x

�

�1

��

j

�

�

j�j

[1 + x

�

+ 2x

�+�

e

�j log xj

℄:

Suppose � = 0 and � < 0. Then from the proof of Theorem 2 (iii) of de

Haan and Stadtm�uller (1996) we have a

1

(t) ! 


0

2 (0;1) and




0

�a

1

(t)

a

1

(t)A

1

(t)

!

�1=�. Hen
e

f(tx)� 


0

log(tx)� (f(t)� 


0

log t)

a

1

(t)A(t)

!

1

�

x

�

� 1

�

:

The rest of proof for � = 0 and � < 0 is similar to the 
ase � 6= 0.

Suppose � = � = 0. Write

g(t) := f(t)�

1

t

Z

t

0

f(s) ds

13



whi
h implies

f(t) = g(t) +

Z

t

0

g(s)

s

ds

(see Corollary 1.2.1 of de Haan (1970)). From Omey and Willekens (1988)

we have

g(tx)� g(t)

a

1

(t)A

1

(t)

! log x:

Note that

f(tx)�f(t)�a

1

(t) log x

a

1

(t)A

1

(t)

=

g(tx)�g(t)

a

1

(t)A

1

(t)

+

R

x

1

g(ts)�a

1

(t)

sa

1

(t)A

1

(t)

ds:

Hen
e

g(tx)� a

1

(t)

a

1

(t)A

1

(t)

! log x� 1:

Furthermore

g(t)� a

1

(t)

a

1

(t)A

1

(t)

! �1:

Using Proposition 1.19.4 of Geluk and de Haan (1987), we 
an easily see the

lemma holds. Thus we 
omplete the proof.

Let F

n

denote the empiri
al distribution fun
tion of X

n

and U

n

= (

1

1�F

n

)

�

.

Lemma 5.3. If (3.1) and (3.2) hold and n

1

= O(n

1��

0

) for some �

0

2 (0; 1).

Then for any 0 < � < 1 there exists t

0

> 0 su
h that for all t

0

� t �

n

1

(logn

1

)

2

and t

0

� tx � n

1

(logn

1

)

2

j

logU

n

(tx)�logU

n

(t)

a(t)=U(t)

�

x




�

�1




�

A(t)

�H(x)j

� [

p

tx log n

n

+ �℄d(


�

; �)x

�

e

�j log xj

+[

p

t logn

n

+ �℄d(


�

; �)

+�[1 + x




�

+ 2x




�

+�

e

�j log xj

℄

+

d(


�

;�)

jA(t)j

log n

n

[

p

tx+

p

t℄ a.s.

(5.1)

where d(


�

; �) > 0 is a 
onstant whi
h only depends on 


�

and �.
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Proof. Let G

n

denote the empiri
al distribution fun
tion of n independent,

uniformly distributed random variables. As n is large enough and n

1

=

O(n

1��

0

), we have

1=2 � sup

t�n

1

(log n

1

)

2

jtG

�

n

(

1

t

)j � 2 a.s. (5.2)

and

sup

t�2

j

p

t(G

n

(

1

t

)�

1

t

)j �

logn

p

n

a.s.

(see equations (10) and (17) of Chapter 10.5 of Shora
k and Wellner (1986)).

Hen
e

sup

4�t�n

1

(log n

1

)

2

s

1

G

�

n

(

1

t

)

jG

n

(G

�

n

(

1

t

))�G

�

n

(

1

t

)j �

logn

p

n

a.s.

Therefore for all 4 � t � n

1

(logn

1

)

2

jtG

�

n

(

1

t

)� 1j �

2

p

t logn

p

n

a.s. (5.3)

Now we use Lemma 5.2, (5.2), (5.3),

jy




� 1j � j
j(2


�1

_ 2

�
+1

)jy � 1j for 1=2 � y � 2

and U

n

d

= U(

t

tG

�

n

(

1

t

)

): It follows that for any � 2 (0; 1) there exists t

0

> 4 su
h
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that for all t

0

� t � n

1

(logn

1

)

2

and t

0

� tx � n

1

(logn

1

)

2

j

logU

n

(tx)�logU

n

(t)

a(t)=U(t)

�

x




�

�1




�

A(t)

�H(x)j

d

= j

logU(

tx

txG

�

n

(

1

tx

)

)�logU(tx)�

a(tx)

U(tx)

(txG

�

n

(

1

tx

))

�


�

�1




�

A(tx)a(tx)=U(tx)

A(tx)a(tx)=U(tx)

A(t)a(t)=U(t)

�

logU(

t

tG

�

n

(

1

t

)

)�logU(t)�

a(t)

U(t)

(tG

�

n

(

1

t

))

�


�

�1




�

A(t)a(t)=U(t)

+

logU(tx)�logU(t)�

a(t)

U(t)

x




�

�1




�

A(t)a(t)=U(t)

�H(x)

+

a(tx)

U(tx)

(txG

�

n

(

1

tx

))

�


�

�1




�

A(t)a(t)=U(t)

�

(tG

�

n

(

1

t

))

�


�

�1




�

A(t)

j

� fjH(

1

txG

�

n

(

1

tx

)

)j+ �[1 + (txG

�

n

(

1

tx

))

�


�

+2(txG

�

n

(

1

tx

))

�


�

+�

e

�j log(txG

�

n

(

1

tx

))j

℄g(1 + �)x

�

e

�j log xj

+jH(

1

tG

�

n

(

1

t

)

)j+ �[1 + (tG

�

n

(

1

t

))

�


�

+2(tG

�

n

(

1

t

))

�


�

+�

e

�j log(tG

�

n

(

1

t

))j

℄

+�[1 + x




�

+ 2x




�

+�

e

�j log xj

℄

+(1 + �)j

(txG

�

n

(

1

tx

))

�


�

�1




�

A(t)

j+ j

(tG

�

n

(

1

t

))

�


�

�1




�

A(t)

j a.s.

� [d(


�

; �)

p

tx log n

p

n

+ �d(


�

; �)℄x

�

e

� log xj

+d(


�

; �)

p

t log n

p

n

+ �d(


�

; �)

+�[1 + x




�

+ 2x




�

+�

e

�j log xj

℄

+

d(


�

;�)

jA(t)j

p

tx logn

p

n

+

d(


�

;�)

jA(t)j

p

t log n

p

n

a.s.

where d(


�

; �) > 0 is a 
onstant only depending on 


�

and �: The lemma

follows.

Proof of Theorem 3.1. A full proof of a somewhat restri
ted 
ase has been

given in Dekkers and de Haan (1993). We shall give a sket
h of the proof.

By Lemma 5.2, for any � > 0 there exists t

0

> 0 su
h that for all t � t

0

,

tx � t

0

j

logU(tx)�logU(t)

a(t)=U(t)

�

x




�

�1




�

A(t)

�H(x)j � �[1 + x




�

+ 2x




�

+�

e

�j log xj

℄:

Applying this relation with t repla
ed by Y

n;n�k

and x by Y

n;n�i

=Y

n;n�k

,

adding the inequalities for i = 0; 1; � � � ; k � 1 and dividing by k we get

M

(1)

n

(k)

a(Y

n;n�k

)=U(Y

n;n�k

)

�

1

1�


�

+ P

n

+ A(Y

n;n�k

)

1

k

P

k

i=1

H(Y

n;n�i+1

=Y

n;n�k

)

+�A(Y

n;n�k

)

1

k

P

k

i=1

f1 + (Y

n;n�i+1

=Y

n;n�k

)




�

+2(Y

n;n�i+1

=Y

n;n�k

)




�

+�

e

�j log(Y

n;n�i+1

=Y

n;n�k

)j

g
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Note that fY

n;n�i+1

=Y

n;n�k

g

k

i=1

d

= fY

0

i

g

k

i=1

with Y

0

1

; � � � ; Y

0

k

i.i.d. with 
ommon

distribution fun
tion 1� 1=x (x > 1). We apply the law of large numbers

to the third and fourth terms. Also note that

k

n

Y

n;n�k

! 1 in probability,

so that sin
e jAj is regularly varying, we have (A(n=k))

�1

A(Y

n;n�k

) ! 1 in

probability. As a result

M

(1)

n

(k)

a(Y

n;n�k

)=U(Y

n;n�k

)

=

1

1� 


�

+ P

n

+ A(n=k) d

1

+ o

p

(A(n=k)):

Hen
e

(M

(1)

n

(k))

2

a

2

(Y

n;n�k

)=U

2

(Y

n;n�k

)

=

1

(1�


�

)

2

+

2P

n

1�


�

+

2A(n=k) d

1

1�


�

+ o

p

(A(n=k)):

Similarly

M

(2)

n

(k)

a

2

(Y

n;n�k

)=U

2

(Y

n;n�k

)

=

2

(1�


�

)(1�2


�

)

+Q

n

+ A(n=k) d

2

+ o

p

(A(n=k)):

Combining these expansions we get


̂

n;2

(k)� 


= M

(1)

n

(k)� 


+

+

M

(2)

n

(k)�2(M

(1)

n

(k))

2

2M

(2)

n

(k)�2(M

(1)

n

(k))

2

� 


�

= (


+

+

a(Y

n;n�k

)

U(Y

n;n�k

)

� 


+

)[

1

1�


�

+ P

n

+ d

1

A(n=k)℄� 


+

+

(1�


�

)

2

(1�2


�

)

2

f(1� 2


�

)Q

n

� 4P

n

+ (d

2

� 2


�

d

2

� 4d

1

)A(n=k)g

+o

p

(A(n=k))

= (

a(Y

n;n�k

)

U(Y

n;n�k

)

� 


+

)

1

1�


�

+ (

a(Y

n;n�k

)

U(Y

n;n�k

)

� 


+

)[P

n

+ d

1

A(n=k)℄

+

(1�


�

)

2

(1�2


�

)

2

f(

2


+

(1�


�

)

2

(1�2


�

)

� 4)P

n

+ (1� 2


�

)Q

n

+(d

2

� 2


�

d

2

� 4d

1

+

2


+

(1�


�

)

2

(1�2


�

)

d

1

)A(n=k)g+ o

p

(A(n=k)):

From the proof of Lemma 5.2 and Theorem 2, part (iii) of de Haan and

Stadtm�uller (1996) we 
an prove

a(t)

U(t)

� 


+

A(t)

=

8

>

>

<

>

>

:

a(t)

U(t)

�


A(t)

!




�

if 
 > 0

a(t)

U(t)

=jA(t)j ! 1 if � < 
 � 0

a(t)

U(t)

=A(t)! 0 if 
 < �:

Consequently, by Lemma 5.1, we have that the asymptoti
 se
ond moment

of 
̂

n;2

(k)� 
 equals

(V

2

(
)=k + b

2

(
; �)A

2

0

(n=k))

= (V

2

(
)r=n+ b

2

(
; �)A

2

0

(r))
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with r := n=k. One obtains the minimum with respe
t to r by using (3.6)

and equating the derivative to zero (for details see Dekkers and de Haan

(1993)). Sin
e we have assumed in the derivation that k(n) is an interme-

diate sequen
e, we still have to show that the resulting k

0

(n) is really the

optimum. But it is easy to see that for any k(n) with k(n)=k

0

(n)! 0 or 1

the asymptoti
 se
ond moment of 
̂

n;2

(k) � 
 is of large order as long as

k(n)!1 and k(n)=n! 0 (n!1). In order to stay within these bounds,

one 
an add the extra restri
tion logn � k(n) � n= logn in the optimization

pro
edure. The theorem follows.

Proof of Theorem 3.2. First we develop an asymptoti
 expansion for the al-

ternative estimator 
̂

n;3

(k). By the same arguments as in the proof of Theo-

rem 3.1 we may show

M

(3)

n

(k)

a

3

(Y

n;n�k

)=U

3

(Y

n;n�k

)

=

6

(1�


�

)(1�2


�

)(1�3


�

)

+R

n

+ d

3

A(n=k) + o

p

(A(n=k))

and

M

(1)

n

(k)M

(2)

n

(k)

a

3

(Y

n;n�k

)=U

3

(Y

n;n�k

)

=

2

(1�


�

)

2

(1�2


�

)

+

2P

n

(1�


�

)(1�2


�

)

+

Q

n

1�


�

+(

2d

1

(1�


�

)(1�2


�

)

+

d

2

1�


�

)A(n=k) + o

p

(A(n=k)):
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Hen
e


̂

n;3

(k)� 


=

q

M

(2)

n

(k)=2� 


+

+

M

(3)

n

(k)�3M

(1)

n

(k)M

(2)

n

(k)

3M

(3)

n

(k)�3M

(1)

n

(k)M

(2)

n

(k)

� 


�

=

a(Y

n;n�k

)

U(Y

n;n�k

)

q

1

(1�


�

)(1�2


�

)

+

Q

n

2

+

d

2

2

A(n=k)� 


+

+

(1�


�

)

2

(1�2


�

)(1�3


�

)

12

f�

6

1�2


�

P

n

� 3Q

n

+ (1� 3


�

)R

n

+((1� 3


�

)d

3

�

6

1�2


�

d

1

� 3d

2

)A(n=k)g+ o

p

(A(n=k))

= (


+

+

a(Y

n;n�k

)

U(Y

n;n�k

)

� 


+

)f

1

p

(1�


�

)(1�2


�

)

+

p

(1�


�

)(1�2


�

)

4

Q

n

+

p

(1�


�

)(1�2


�

)

4

d

2

A(n=k)g � 


+

+

(1�


�

)

2

(1�2


�

)(1�3


�

)

12

f�

6

1�2


�

P

n

� 3Q

n

+ (1� 3


�

)R

n

+((1� 3


�

)d

3

�

6

1�2


�

d

1

� 3d

2

)A(n=k)g+ o

p

(A(n=k))

= (

a(Y

n;n�k

)

U(Y

n;n�k

)

� 


+

)

1

p

(1�


�

)(1�2


�

)

+(

a(Y

n;n�k

)

U(Y

n;n�k

)

� 


+

)[

p

(1�


�

)(1�2


�

)

4

Q

n

+

p

(1�


�

)(1�2


�

)

4

d

2

A(n=k)℄

+

(1�


�

)

2

(1�2


�

)(1�3


�

)

12

f�

6

1�2


�

P

n

+ (

3


+

p

(1�


�

)(1�2


�

)

(1�


�

)

2

(1�2


�

)(1�3


�

)

� 3)Q

n

+(1� 3


�

)R

n

+ [(1� 3


�

)d

3

�

6

1�2


�

d

1

� 3d

2

+

3


+

p

(1�


�

)(1�2


�

)

(1�


�

)

2

(1�2


�

)(1�3


�

)

d

2

℄A(n=k)g+ o

p

(A(n=k)):

Combining the above expansion with the expansion of 
̂

n;2

(k)�
 in the proof

of Theorem 3.1, we have


̂

n;2

(k)� 
̂

n;3

(k)

= (

a(Y

n;n�k

)

U(Y

n;n�k

)

� 


+

)(

1

1�


�

�

1

p

(1�


�

)(1�2


�

)

)

+(

a(Y

n;n�k

)

U(Y

n;n�k

)

� 


+

)(P

n

+ d

1

A(n=k)�

p

(1�


�

)(1�2


�

)

4

Q

n

�

p

(1�


�

)(1�2


�

)

4

d

2

A(n=k))

+

(1�


�

)

2

(1�2


�

)(1�3


�

)

12

f[

12


+

(1�


�

)

2

(1�2


�

)(1�3


�

)

�

24

1�3


�

+

6

1�2


�

℄P

n

+[

6(1�2


�

)

1�3


�

�

3


+

p

(1�


�

)(1�2


�

)

(1�


�

)

2

(1�2


�

)(1�3


�

)

+ 3℄Q

n

� (1� 3


�

)R

n

+[

6(1�2


�

)

1�3


�

d

2

�

24

1�3


�

d

1

+

12


+

(1�


�

)

2

(1�2


�

)(1�3


�

)

d

1

� (1� 3


�

)d

3

+

6

1�2


�

d

1

+ 3d

2

�

3


+

p

(1�


�

)(1�2


�

)

(1�


�

)

2

(1�2


�

)(1�3


�

)

d

2

℄A(n=k)g+ o

p

(A(n=k)):

The rest of proof is similar to the proof of Theorem 3.1.
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Proof of Theorem 3.3. Let

E

(1)

n

:=

n

! : all of jP

n

j; j

k

n

Y

n;n�k

� 1j; jd

(1)

n

� d

1

j and

jD

(1)

n

�D

(1)

j are less than or equal to k

Æ

0

�1=2

o

for some Æ

0

2 (0; 1=2), where

D

(1)

n

:= �

1

k

k�1

X

i=0

�

1 + (Y

n;n�i

=Y

n;n�k

)




�

+ 2(Y

n;n�i

=Y

n;n�k

)




�

+�+�

	

and

D

(1)

:= �

Z

1

1

(1 + x




�

+ x




�

+�+�

)x

�2

dx:

Now take � and t

0

as in the proof of Theorem 3.1. Then, provided

n

k

(1 �

k

Æ

0

�1=2

) � t

0

, we have Y

n;n�k

� t

0

on E

(1)

n

. Also, sin
e A is regularly varying

we have

jA(Y

n;n�k

)� A(n=k)j < 2�A(n=k)

on E

(1)

n

. Using these two fa
ts and the inequalities in the beginning of the

proof of Theorem 3.1, we �nd

�

�

�

M

(1)

n

(k)

a(Y

n;n�k

)=U(Y

n;n�k

)

�

1

1� 


�

� P

n

� A(n=k)d

1

�

�

�

< �A(n=k)

on the set E

(1)

n

: so we have o(A(n=k)) instead of o

p

(A(n=k)). De�ning sets

E

(2)

n

and E

(3)

n

related to the behavior of M

(2)

n

and M

(3)

n

we get similar in-

equalities for those.

De�ne

E

n

:= E

(1)

n

\ E

(2)

n

\ E

(3)

n

:

Using the mentioned inequalities and the fa
t that the 
onditions for the

set E

n

imply that P

n

, Q

n

, R

n

and A are surely small, we 
an also repla
e

o

p

(A(n=k)) by o(A(n=k)) in the expansions given for 
̂

n;2

(k) and 
̂

n;3

(k) in

the proof of Theorems 3.1 and 3.2 as long as we stay inside E

n

.

Moreover the inequality j

k

n

Y

n;n�k

� 1j � k

Æ

0

�1=2

guarantees that we 
an

repla
e

a(Y

n;n�k

)

U(Y

n;n�k

)

� 


+

by

a(n=k)

U(n=k)

� 


+
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(
f. the limit relation for �


+

+a(t)=U(t) in the proof of Theorem 3.1). Hen
e

as in the proofs of Theorems 3.1 and 3.2 we �nd

Ef
̂

2

n;4

1(E

n

)g

(

�

V

2

(
)=k +

�

b

2

(
; �)A

2

0

(n=k))

! 1:

Next we show that the 
ontribution of the set E




n

to the expe
tation may

be negle
ted. For example by the de�nition of 
̂

n;4

Ef
̂

2

n;4

1(jP

n

j > k

Æ

0

�1=2

)g � k

2Æ�1

PrfjP

n

j > k

Æ

0

�1=2

g

and by Bennett's inequality (
f. Petrov, 1975, Ch. III, x5) we 
an show

PrfjP

n

j > k

Æ

0

�1=2

g � k

��

eventually for any � > 0. Hen
e

Ef
̂

2

n;4

1(jP

n

j > k

Æ

0

�1=2

)g

(

�

V

2

(
)=k +

�

b

2

(
; �)A

2

0

(n=k))

! 0; n!1:

The reasoning in 
ase any of the other 
onditions of the set E

n

is violated

is exa
tly the same (the inequality Prfj

n

k

Y

n;n�k

� 1j > k

Æ

0

�1=2

g � k

��


an

be obtained by translating the inequality for

k

n

Y

n;n�k

into one for its inverse

1

k

P

n

i=1

1fY

i

>

n

k

xg and then applying Bennets inequality). This 
ompletes

the proof of Theorem 3.3.

Proof of Theorem 3.4. Given X

n

:= fX

1

; � � � ; X

n

g, we have

M

(1)�

n

1

(k

1

)

d

=

1

k

1

k

1

X

i=1

logU

n

(Y

n

1

;n

1

�i+1

)� logU

n

(Y

n

1

;n

1

�k

1

)

with fY

n

1

;i

g

n

1

i=1

the order statisti
s from a distribution fun
tion 1�1=x (x >

1) and independent of X

n

. By the same arguments as in the proof of Theorem

3.1 using Lemma 5.3 instead of Lemma 5.2 we get

M

(1)�

n

1

(k

1

)

a(Y

n

1

;n

1

�k

1

)=U(Y

n

1

;n

1

�k

1

)

=

1

1�


�

+ P

n

1

+

A(n

1

=k

1

)

(1�


�

)(���


�

)

+ o

p

(A(n

1

=k

1

)) +O

p

(

p

n

1

=k

1

log n

p

n

):

Note that

p

n

1

=k

1

log n

p

n

= o(1=

p

k

1

), so that the last term 
an be absorbed

into the se
ond one. The expansion for M

(1)�

n

1

(k

1

) is the same as for M

(1)

n

1

(k

1

)
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given X

n

. Similarly forM

(2)�

n

1

(k

1

) andM

(3)�

n

1

(k

1

). So the result of Theorem 3.1

holds with k

0

repla
ed by

k

�

0;1

(n

1

) := arg inf

k

as. Ef(
̂

�

n

1

;2

(k))

2

jX

n

g:

and n by n

1

. A similar analogue holds to the results of Theorem 3.2. Finally

in a way analoguous to what was done in Theorem 3.3 we 
an repla
e as. E

by the non-asymptoti
 expe
tation. Hen
e the 
on
lusion.

Proof of Corollary 3.1. Note that lim

t!1

t

�


a(t)=U(t) is a positive 
onstant

in the 
ase � < 
 < 0 (see de Haan and Stadtm�uller (1993)). Thus A

0

(t) �




0

t

�

�

whi
h implies

s

�

(1=t) � (�2


2

0

�

�

)

1

1�2�

�

t

1

1�2�

�

:

The Corollary easily follows from Theorems 3.4 and 3.5.

Proof of Theorem 3.5. This follows by 
ombining the results of Corollary 3.1

for

�

k

�

0;1

(n

1

) and

�

k

�

0;1

(n

2

).

Proof of Corollary 3.2. It easily follows from Theorems 3.1, 3.2 and 3.5.

Proof of Corollary 3.3. We 
an use the result of Corollary 3.2 and we only

have to prove that �̂

n

is a 
onsistent estimator of �

�

. By Theorem 3.4 the

sequen
e

�

k

�

0;1

(n

1

) is asymptoti
 to 


1

n

�2�

�

1�2�

�

1

. Hen
e

log

�

k

�

0;1

(n

1

)= logn

1

!

�2�

�

1� 2�

�

in probability. This gives the 
onsisten
y.

Lemma 5.4. If F 2 D

dif

(G




), then (4.1) holds for a

n

= nU

0

(n) and b

n

=

U(n) and for any k !1, k=n! 0 and � 2 (0; 1℄, the sto
hasti
 pro
ess

W

n;k

(�) :=

p

k

X

n;n�[k�℄

� U(

n

k�

)

n

k

U

0

(

n

k

)


onverges (in the sense of 
onvergen
e of all �nite marginal distributions) to

a Gaussian pro
ess w(�) whi
h has mean zero and 
ovarian
e stru
ture

Cov(w(�

1

); w(�

2

)) = �

�


1

�

�
�1

2

; 0 < �

1

� �

2

� 1:

Proof. See Theorem 2.3 of Cooil (1985).
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Lemma 5.5. If (4.3) holds and n

1

= O(n

1��

0

) for some �

0

2 (0; 1). Then

for any 0 < � < 1 there exists t

0

> 0 su
h that for all t

0

� t � n

1

(logn

1

)

2

and t

0

� tx � n

1

(logn

1

)

2

j

U

n

(tx)�U

n

(t)

a(t)

�

x




�1




A(t)

� h


;�

(x)j

� [

p

tx log n

n

+ �℄D(
; �)x


+�

e

�j log xj

+[

p

t log n

n

+ �℄D(
; �)

+�[1 + x




+ 2x


+�

e

�j log xj

℄

+

D(
;�)

jA(t)j

p

t logn

n

[

p

x + 1℄ a.s.

(5.4)

where D(
; �) > 0 is a 
onstant whi
h only depends on 
 and �.

Proof. Similar to the proof of Lemma 5.3.

Proof of Theorem 4.1. By Lemma 5.4 we have

p

k(
̂

n;�

(k)� 
)

=

p

k(

1

� log �

log

X

n;n�[k�

2

℄

�X

n;n�[k�℄

X

n;n�[k�℄

�X

n;n�k

� 
)

=

p

k

� log �

log(1 + �




X

n;n�[k�

2

℄

�X

n;n�[k�℄

X

n;n�[k�℄

�X

n;n�k

� 1)

d

=

p

k

� log �

X

n;n�[k�

2

℄

�X

n;n�[k�℄

��

�


(X

n;n�[k�℄

�X

n;n�k

)

�

�


(X

n;n�[k�℄

�X

n;n�k

)

(1 + o

p

(1))

= [

p

k

� log �

X

n;n�[k�℄

�U(

n

k�

2

)�(1+�

�


)(X

n;n�[k�℄

�U(

n

k�

))+�

�


(X

n;n�k

�U(

n

k

))

�

�


(X

n;n�[k�℄

�X

n;n�k

)

+

p

k

� log �

U(

n

k�

2

)�(1+�

�


)U(

n

k�

)+�

�


U(

n

k

)

�

�


(X

n;n�[k�℄

�X

n;n�k

)

℄(1 + o

p

(1))

( note

X

n;n�[k�℄

�X

n;n�k

n

k

U

0

(

n

k

)

p

!

�

�


�1




)

d

= [

p

k

� log �

X

n;n�[k�

2

℄

�U(

n

k�

2

)�(1+�

�


)(X

n;n�[k�℄

�U(

n

k�

))+�

�


(X

n;n�k

�U(

n

k

))

n

k

U

0

(

n

k

)�

�


�

�


�1




+

p

k

� log �

U(

n

k�

2

)�(1+�

�


)U(

n

k�

)+�

�


U(

n

k

)

n

k

U

0

(

n

k

)�

�


�

�


�1




℄(1 + o

p

(1))

d

=

1

� log �

1

�

�


�

�


�1




(w(�

2

)� (1 + �

�


)w(�) + �

�


w(1)) + o

p

(1)

+

p

k

� log �

U(

n

k�

2

)�(1+�

�


)U(

n

k�

)+�

�


U(

n

k

)

n

k

U

0

(

n

k

)�

�


�

�


�1




(1 + o

p

(1));

thus the asymptoti
 varian
e of

p

k(
̂

n;�

(k)� 
) equals




2

(�

�1

� 1)(1 + �

�2
�1

)

(log �)

2

(�

�


� 1)

2

and the asymptoti
 bias of

p

k(
̂

n;�

(k)� 
) equals

p

kA(

n

k

)

�

��

� log �




�

�


� 1

1� �

�

�

�

�
��

� 1


 + �

:
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By A(t) = 
t

��

we get in a way similar to the proof of Theorem 3.1

k

0

(n)=f(

(�

�1

� 1)(1 + �

�2
�1

)

�2�


2

(

1��

�

�

)

2

(

�

�
��

�1


+�

)

2

�

�2�

)

1

1�2�

n

�2�

1�2�

g ! 1:

Proof of Theorem 4.2. By Lemma 5.4 we have

p

k(
̂

n;�

(k)� 
̂

n;�

(k�

2

))

=

p

k(
̂

n;�

(k)� 
)�

p

k(
̂

n;�

(k�

2

)� 
)

d

= [

p

k

� log �

X

n;n�[m�

2

℄

�U(

n

k�

2

)�(1+�

�


)(X

n;n�[k�℄

�U(

n

k�

))+�

�


(X

n;n�k

�U(

n

k

))

�

�


(X

n;�[k�℄

�X

n;n�k

)

+

p

k

log �

U(

n

k�

2

)�(1+�

�


)U(

n

k�

)+�

�


U(

n

k

)

�

�


(X

n;n�[k�℄

�X

n;n�k

)

�

p

k

� log �

X

n;n�[k�

4

℄

�U(

n

k�

4

)�(1+�

�


)(X

n;n�[k�

3

℄

�U(

n

k�

3

))+�

�


(X

n;n�[k�

2

℄

�U(

n

k�

2

))

�

�


(X

n;n�[k�

3

℄

�X

n;n�[k�

2

℄

)

�

p

k

� log �

U(

n

k�

3

)�(1+�

�


)U(

n

k�

2

)+�

�


U(

n

k�

2

)

�

�


(X

n;n�[k�

3

℄

�X

n;n�[k�

2

℄

)

℄(1 + o

p

(1))

( note

X

n;n�[k�

3

℄

�X

n;n�[k�

2

℄

n

k

U

0

(

n

k

)

p

! �

�2


�

�


�1




)

d

=

1

� log �

1

�

�


�

�


�1




(w(�

2

)� (1 + �

�


)w(�) + �

�


w(1)) + o

p

(1)

+

p

k

� log �

U(

n

k�

2

)�(1+�

�


)U(

n

k�

)+�

�


U(

n

k

)

n

k

U

0

(

n

k

)�

�


�

�


�1




(1 + o

p

(1))

�

1

� log �

1

�

�3


�

�


�1




(w(�

4

)� (1 + �

�


)w(�

3

) + �

�


w(�

2

)) + o

p

(1)

�

p

k

� log �

U(

n

k�

4

)�(1+�

�


)U(

n

k�

3

)+�

�


U(

n

k�

2

)

n

k

U

0

(

n

k

)�

�3


�

�


�1




(1 + o

p

(1));

thus the asymptoti
 varian
e of

p

k(
̂

n;�

(k)� 
̂

n;�

(k�

2

)) equals




2

(1 + �

�2
�1

)(�

�1

� 1)(1 + �

�2

)

(log �)

2

(�

�


� 1)

2

and the asymptoti
 bias of

p

k(
̂

n;�

(k)� 
̂

n;�

(k�

2

)) equals

p

kA(

n

k

)

�

��

� log �

1� �

�

�

�

�
��

� 1


 + �




�

�


� 1

(1� �

�2�

):

By A(t) = 
t

��

we get in a way similar to the proof of Theorem 3.1

�

k

0

(n)=f(

(�

�1

� 1)(1 + �

�2
�1

)(1 + �

�2

)

�2�


2

(

1��

�

�

)

2

(

�

�
��

�1


+�

)

2

�

�2�

(1� �

�2�

)

2

)

1

1�2�

n

�2�

1�2�

g ! 1:
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Proof of Theorem 4.3. Similar to the proof Theorem 3.3.

Proof of Theorem 4.4. Similar to the proof of Theorem 3.4 by using Lemma 5.5

instead of Lemma 5.3.

Proof of Theorem 4.5. Similar to the proof of Corollary 3.3.

6 Simulations

The bootstrap pro
edure was tested on various distribution fun
tions in

a small simulation study: 200 samples of size 10.000 are generated from

ea
h distribution fun
tion. To ea
h sample the bootstrap method was ap-

plied, with � = 0:05, that is n

1

= 708 and n

2

= 502, and 200 boot-

strap samples. The distributions are Cau
hy, generalized Pareto distribution

(GPD) with 
 = 1=4 and 
 = �1=4, generalized extreme value distribu-

tion (GEV) with 
 = �1=4 and 
 = �3=2 and �nally the distribution with

U(t) = H


;�

(t) ,equation (3.2) with 
 = �1=4, � = �1=10 and � = �1 (to

have a distribution that allows a free 
hoi
e of �).

Figure 1 illustrates the results for the Cau
hy distribution: The bottom

graph shows the observed and theoreti
al mean squared error of the 
 esti-

mate as a fun
tion of k: the solid line represents the observed mean squared

error (i.e. the sample mean of the estimated (
̂

n;2

(k)� 
)

2

of the individual

simulated samples), and the dashed line the theoreti
al value 
al
ulated as

V

2

(
) + (A(n=k) b(
; �))

2

. The verti
al line indi
ates the sample mean of

the k

0

estimates. The two 
omponents of the MSE, bias and varian
e are

illustrated in the top and middle graphs. Table 1 summarizes the simulation

results. For ea
h parameter the table reports

� the theoreti
al value,

� statisti
s of the bootstrap estimates (sample mean, standard deviation

and MSE of the estimates produ
ed by the bootstrap pro
edure in the

individual samples)

� observed optimal k, and the sample mean and MSE of the 
 estimate

at this k.

The general 
on
lusion is that the bootstrap pro
edure gives reasonable es-

timates for the sample fra
tion to be used. It is reasonable in terms of the

MSE of the 
 estimate: for all but the last distribution the MSE of 
̂

n;2

(

^

k

0

)

is of the order of the MSE of the estimate at the observed optimal k.
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The se
ond order parameter � is only estimated 
orre
tly for the Cau
hy

distribution. The diÆ
ulty of estimating � has also been reported by others

(see [3℄) and is subje
t for further study.

For three of the distributions no theoreti
al values for k

0

has been given.

These distributions have � = 
, a situation ex
luded in theorems (3.1) and

(3.2). In this situation one 
annot de
ide whi
h part of the bias,

a(n=k)=U(n=k)

1

1� 


or A(n=k)

�

� 2(1� 
)

2

(1� 2
) d

1

+

(1� 
)

2

2

d

2

�

is dominant. Most standard distributions with negative 
 turn out to fall in

this 
ategory.

Clearly more work needs to be done: �rst of all the performan
e of the

� estimator and the 
 = � situation need 
lari�
ation. And of 
ourse the

e�e
ts of the number of bootstrap repli
ations and the size of the bootstrap

samples have to be studied.

7 Appli
ation

In the Neptune proje
t (see de Haan and de Ronde (1997) for a review) we

studied the joint distribution of extremes of wave-height, wave-period and

sea levels. The proje
t aimed at estimating failure probabilities of sea walls,

based on the joint distribution of the extremes of the variables. A small

dataset of 828 measurements 
overing 10 years at the Eierland station in

the North sea was available. As is 
lear from �gure 2, the wave height data

series does not behave very ni
ely, but it was what was available to us. The

diÆ
ulty in sele
ting a number of order statisti
s, makes the series a ni
e


andidate for the bootstrap pro
edure (at the time we de
ided that only 27

order statisti
s should be used for estimation resulting in 
̂

n;2

= 0).

We applied the bootstrap method in the following way: as in the simu-

lation experiment we used 200 bootstrap samples, resulting in an estimate

of the optimal k. In order to evaluate and improve the pre
ision of this es-

timate, the pro
edure was repeated with again 200 bootstrap samples, and

the estimates averaged, until the average had an estimated standard error

less then 2.

In �gure 2 both the optimal

^

k

0

= 259, estimated with � = 0:1 and the


orresponding 
̂

n;2

(259) = 0:06 are indi
ated. This value is reasonably in line

with 
 = 0, the value used in the Neptune proje
t.

The results for di�erent values of �, determining the size of the bootstrap

sample are shown in table 2. The optimal k is not very sensitive to �, but
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it de
reases with � only when � > 0:2, but those values 
orrespond to a very

small se
ond bootstrap size.

A Se
ond order 
onditions

The se
ond order relations in the Se
tions 3 and 4 are di�erent. The reason

for this stems from the expansion of the logarithms. Let us try to pro
eed

from one to the other. The domain of attra
tion 
ondition is

lim

t!1

U(tx) � U(t)

a(t)

=

x




� 1




for all x > 0: (A.1)

It follows, if U(1) > 0, that

lim

t!1

logU(tx)� logU(t)

a(t)=U(t)

=

x




�

� 1




�

: (A.2)

So far there are no 
ompli
ations. The natural se
ond order 
ondition related

to (A.1) is

lim

t!1

U(tx)�U(t)

a(t)

�

x




�1




A(t)

= H(x) (A.3)

for some fun
tion A (positive or negative) with A(t)! 0 (t!1). Now we

try to work towards a se
ond order 
ondition for logU . Starting from (A.3)

logU(tx)� logU(t)

= log(1 + (

U(tx)

U(t)

� 1))

=

U(tx)

U(t)

� 1�

1

2

(

U(tx)

U(t)

� 1)

2

+ � � �

So that (let us take 
 < 0 for example)

logU(tx)�logU(t)

a(t)=U(t)

�

x




�1




= (

U(tx)�U(t)

a(t)

�

x




�1




)�

U(t)

2a(t)

(

U(tx)

U(t)

� 1)

2

+ � � �

Now in some 
ases the �rst term is dominant (the "ni
e" situation), but in

other 
ases the se
ond term is dominant. And sometimes there is no relative

limit. The various 
ases are dealt with in the next Theorem and the Remark.

Theorem A. Assume U(1) > 0 and there exist fun
tions a(t) > 0 and

A(t)! 0 su
h that

U(tx)�U(t)

a(t)

�

x




�1




A(t)

! H


;�

(x)

27



where

H


;�

(x) =

1

�

[

x


+�

� 1


 + �

�

x




� 1




℄ (� � 0):

Suppose that 
 6= �. Then

lim

t!1

a(t)

U(t)

� 


+

A(t)

= 
 2 [�1;1℄

where


 =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

0 if 
 < �





+�

if 
 > ��





+�

if 0 < 
 < �� and lim

t!1

(U(t)� a(t)=
) = 0

�1 if � < 
 � 0

�1 if 0 < 
 < �� and lim

t!1

(U(t)� a(t)=
) 6= 0

�1 if 
 = ��:

Furthermore

logU(tx)�logU(t)

a(t)=U(t)

�

x




�

�1




�

~

A(t)

! H




�

;�

0

(x)

where

~

A(t) =

8

<

:

A(t) if 
 = 0




+

�

a(t)

U(t)

if 
 = �1

�A(t)=(
 + �) if 
 = 
=(
 + �);

~

A(t) 2 RV

�

0

,

�

0

=

8

<

:

�
 if 0 < 
 � ��


 if � < 
 � 0

� if 
 < � or 
 > ��:

Remark A. Hen
e �

0

= 0 if 
 = 0.

Proof. Suppose that 
 6= 0. Then from the proof of Lemma 5.2 we have

U(tx)� a(tx)=
 � (U(t)� a(t)=
)

a(t)A(t)

! �

1




x


+�

� 1


 + �

:

If 
 + � > 0, then

U(t)� a(t)=


a(t)A(t)

! �

1


(
 + �)

:
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Hen
e

a(t)=U(t)� 


A(t)

=

a(t)


U(t)

a(t)=
 � U(t)

a(t)A(t)

! 
=(
 + �):

If 
 + � = 0, i.e., 
 = �� > 0, then

U(t)� a(t)=


a(t)A(t)

! �1:

Hen
e

a(t)=U(t)� 


A(t)

=

a(t)


U(t)

a(t)=
 � U(t)

a(t)A(t)

! �1:

If 
 + � < 0, then

(

U(t)� a(t)=
 ! 


0

2 (�1; 0) [ (0;1)

U(t)�a(t)=
�


0

a(t)A(t)

! �

1


(
+�)

:

For 
 + � < 0 and 
 > 0,i.e., 0 < 
 < ��, we have

a(t)=U(t)�


A(t)

=

a(t)


U(t)

(

a(t)=
�U(t)+


0

a(t)A(t)

�




0

a(t)A(t)

)

!

�

�1 if 


0

6= 0


=(
 + �) if 


0

= 0

:

For 
 + � < 0 and 
 < 0, i.e., 
 < 0, we ja(t)=(U(t)A(t))j 2 RV


��

: Hen
e

a(t)=(U(t)A(t))!

�

�1 if 
 � � > 0 & 
 < 0

0 if 
 � � < 0 & 
 < 0:

Suppose that 
 = 0 and � < 0. Then from the proof of Lemma 5.2

a(t)! 


1

2 (�1; 0) [ (0;1). Hen
e

a(t)=(U(t)A(t)) � 


1

=(U(1)A(t))! �1:

We have now proved the �rst part of the theorem.

Note that a(t)=U(t)! 


+

: For 
 � 0; we have

log

U(tx)

U(t)

= logf1 +

a(t)

U(t)

[

x




�

�1




�

+ A(t)H


;�

(x) + o(A(t))℄g

=

a(t)

U(t)

[

x




�

�1




�

+ A(t)H


;�

(x) + o(A(t))℄

�

1

2

(

a(t)

U(t)

)

2

[

x




�

�1




�

+ A(t)H


;�

(x) + o(A(t))℄

2

+ o((

a(t)

U(t)

)

2

);
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i.e.,

logU(tx)�logU(t)

a(t)=U(t)

�

x




�

�1




�

= A(t)H


;�

(x) + o(A(t))

�

a(t)

2U(t)

[(

x




�

�1




�

)

2

+ 2

x




�

�1




�

A(t)H


;�

(x) + o(A(t))℄ + o(

a(t)

U(t)

):

For 
 > 0, we have

x

�


U(tx)

U(t)

= x

�


+

a(t)

U(t)

1�x

�





+ x

�


a(t)

U(t)

[A(t)H


;�

(x) + o(A(t))℄

= 1 + (x

�


� 1)(1�

a(t)


U(t)

) + x

�


a(t)

U(t)

[A(t)H


;�

(x) + o(A(t))℄;

i.e.,

logU(tx)�logU(t)

a(t)=U(t)

� logx

= �(log x +

x

�


�1




)

U(t)

a(t)

(a(t)=U(t)� 
)

+x

�


A(t)H


;�

(x) + o(A(t)) + o(a(t)=U(t)� 
):

So the se
ond part of the theorem follows easily.

Remark B. It is not true that a se
ond order 
ondition for U always implies

a se
ond order 
ondition for logU : Let 
 = � and de�ne

U

0

(t) = t


�1

expf

Z

t

1

s


�1

(2 + sin(log log s)) dsg:

From the representation (2.5) of de Haan and Resni
k (1996) we �nd

U(tx)�U(t)

tU

0

(t)

�

x




�1




t




[2 + sin(log log t)℄

!

Z

x

1

u


�1

u

�


� 1

�


du:

Hen
e

a(t)=(U(t)A(t))

=

tU

0

(t)

U(t)t




[2+sin(log log t)℄

�

expf

R

1

1

s


�1

[2+sin(log log s)℄ ds

U(1)[2+sin(log log t)℄

whi
h does not have a limit.
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Table 1: Simulation study. Statisti
s of the bootstrap estimates 
ompared

to theoreti
al values and observed (empiri
al) estimates of k

0

, � and 
 (see

se
tion 6).

Bootstrap estimator observed

Parameter theoreti
al mean stdev MSE mean MSE

Cau
hy

k

0

1563.9 1354.3 667.62 1546

� -2 -1.9459 0.52107


(k

0

) 1 0.99828 0.091811 0.0084 1.0148 0.00166

GPD(1/4)

k

0

641.97 1140.3 632.26 587

� -0.25 -1.7416 0.48564


(k

0

) 0.25 0.28981 0.062448 0.0055 0.28548 0.0032

GPD(-1/4)

k

0

719.86 483.82 1403

� -0.25 -1.6816 0.40212


(k

0

) -0.25 -0.21809 0.053223 0.0038 -0.21945 0.0018

H

�1=4;�1=10

k

0

94.697 160.34 150.39 92

� -0.1 -0.95093 0.21389


(k

0

) -0.25 -0.12098 0.18311 0.0500 -0.12362 0.0286

H

�1=4;�1

k

0

325.54 215.94 347

� -0.25 -1.173 0.27012


(k

0

) -0.25 -0.22321 0.1224 0.0156 -0.22616 0.00401

GEV(-1/4)

k

0

746.38 441.34 1239

� -0.25 -1.7196 0.39267


(k

0

) -0.25 -0.24751 0.052803 0.0028 -0.25281 0.0010

GEV(-3/2)

k

0

957.98 3022.9 1012.2 1083

� -1 -3.1803 0.54967


(k

0

) -1.5 -1.8992 0.44293 0.3546 -1.5899 0.01641

33



Table 2: Wave height data (n = 828). The e�e
t of the bootstrap sample

size, determined by �, on the estimated �, optimal number of order statisti
s

^

k

0

and 
̂

n;2

(k

0

). See se
tion 7.

� n

1

n

2

�̂

^

k

0


̂

n;2

std.err

0.05 592 424 -5.3795 270 0.074693 0.061144

0.1 423 217 -4.9549 250.86 0.045954 0.063972

0.15 303 111 -4.5453 258.55 0.059485 0.063004

0.2 216 57 -4.4864 258.11 0.059485 0.058986

0.25 155 30 -3.9546 223.01 -0.0011046 0.070302

0.3 111 15 -3.2259 137.83 -0.22552 0.094392

34



Figure 1: The estimate 
̂

n;2

for the Cau
hy distribution: from top to bottom

the sample mean (i.e. the average of all simulations), the varian
e and the

mean squared error against the number of order statisti
s. The solid lines

represent the observed values and the dashed line the theoreti
al values. See

se
tion 6.
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Figure 2: Wave height 
. The top graph shows the 
̂

n;2

estimate as a fun
tion

of the number of order statisti
s k. The optimal k

0

and the 
̂

n;2

estimate

are indi
ated by the verti
al resp. horizontal lines. The inset enlarges the

graph for the top 100 order statisti
s. The other graphs show the bootstrap

estimates of Ef(
̂

n;2

�
̂

n;3

)

2

g as a fun
tion of k(n

1

) resp. k(n

2

) (200 bootstrap

repeats; � = 0:1). See se
tion 7.
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