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ABSTRACT

A classification scheme is created to map the synoptic-scale (large scale) atmospheric state to distribu-

tions of local-scale cloud properties. This mapping is accomplished by a neural network that classifies 17

months of synoptic-scale initial conditions from the rapid update cycle forecast model into 25 different

states. The corresponding data from a vertically pointing millimeter-wavelength cloud radar (from the

Atmospheric Radiation Measurement Program Southern Great Plains site at Lamont, Oklahoma) are

sorted into these 25 states, producing vertical profiles of cloud occurrence. The temporal stability and

distinctiveness of these 25 profiles are analyzed using a bootstrap resampling technique.

A stable-state-based mapping from synoptic-scale model fields to local-scale cloud properties could be

useful in three ways. First, such a mapping may improve the understanding of differences in cloud properties

between output from global climate models and observations by providing a physical context. Second, this

mapping could be used to identify the cause of errors in the modeled distribution of clouds—whether the

cause is a difference in state occurrence (the type of synoptic activity) or the misrepresentation of clouds for

a particular state. Third, robust mappings could form the basis of a new statistical cloud parameterization.

1. Introduction

Clouds are of tremendous importance to climate be-

cause of their direct effect on the earth radiation budget

and because of their important role in global energy

and water cycles. Limitations in the ability of global

climate models (GCMs) to predict clouds create signifi-

cant uncertainties in predicting and understanding cli-

mate. Clouds are among the largest source of uncer-

tainty in GCM simulations (e.g., Cess et al. 1990; Potter

and Cess 2004). Predicting clouds in GCMs is difficult

for a variety of reasons, many of which arise because

GCMs have horizontal grid spacings of many tens to

hundreds of kilometers, whereas many of the processes

responsible for the formation and dissipation of clouds

occur on much smaller scales. These subgrid-scale pro-

cesses cannot be explicitly resolved, meaning that cloud

occurrence and cloud microphysical properties (e.g.,

hydrometeor type and size) must be parameterized or

predicted from the larger-scale fields that the GCM can

resolve. This parameterization is usually accomplished

using semiempirical relationships, which are difficult to

evaluate.

At present, most comparisons of model output and

observational data average or aggregate the observa-

tions to put them on the same large spatial scale as the

model. For ground-based measurements, this process

generally requires making approximations that are dif-

ficult to quantify (e.g., assuming that temporal averag-

ing of local-scale time series observations is equivalent

to spatial averaging over the model grid cell). More-

over, whereas a numerical weather prediction (NWP)

model predicts specific weather events, GCMs predict

climate. Thus, whether a GCM accurately predicts the

cloud field on 10 August over Ohio cannot be ad-

dressed directly. Rather, observations must be aggre-

gated over some period of time and over some hori-
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zontal distance to determine the degree to which the

predicted clouds match the observed clouds. If a differ-

ence exists, it is difficult to determine the source of the

problem (i.e., what physical processes or situations are

not sufficiently represented by the parameterization) or

to determine a corrective action (i.e., how to alter the

parameterization).

In this paper we investigate using a classification

scheme based on fields resolved by GCMs and NWP

models as a means to map the large-scale (synoptic

scale) atmospheric state to distributions of local-scale

cloud properties. The idea of weather typing or dividing

observed weather into states or weather regimes is not

new, but has been used extensively in meteorology

[e.g., see discussion in Zivkovic and Louis (1992) and

Michelangeli et al. (1995)]. Weather typing has been

used as a tool to evaluate GCMs and NWP models (e.g.,

Hewitson and Crane 1992, 1996; Tennant 2003), includ-

ing cloud properties (e.g., Norris and Weaver 2001; Ja-

kob and Tselioudis 2003; Jakob et al. 2005). In particu-

lar, Jakob et al. (2005) exposed shortcomings in the

40-yr European Centre for Medium-Range Weather

Forecasts (ECMWF) Re-Analysis (ERA-40) data in

the Tropics by examining model data as a function of

cloud regime. These model shortcomings were not ap-

parent from annually averaged values.

In this analysis, we aggregate local-scale properties of

clouds according to the synoptic-scale state. Specifi-

cally, we examine vertical mean profiles of cloud occur-

rence obtained from a vertically pointing millimeter-

wavelength cloud radar operated by the U.S. Depart-

ment of Energy (DOE) Atmospheric Radiation

Measurement (ARM) Program at its primary Southern

Great Plains site near Lamont, Oklahoma. The mean

profile of cloud occurrence is the relative frequency

that clouds (or precipitation) are detected by the radar

over a fixed period of time and at a given altitude above

ground level. We analyze these vertical profiles to as-

sess whether these states are temporally stable and dis-

tinct in a statistically meaningful way.

A stable state or class-based map could be of great

utility in the analysis of GCM predicted cloud proper-

ties. By aggregating and comparing model output with

observations according to the atmospheric state, a

physical context is provided from which to understand

any differences between the model output and obser-

vations, as well as to separate differences (in the total

distribution) that are caused by having different

weather regimes (or synoptic-scale activity) rather than

problems in the representation of clouds for a particu-

lar regime. Furthermore, if stable mappings can be es-

tablished, it could form the basis of future model pa-

rameterizations, a point to be addressed further at the

end of this article.

Section 2 of this paper describes the classification

scheme developed in this study, including a brief de-

scription of the NWP and cloud-radar datasets. Section

3 provides an overview of the meteorology of the at-

mospheric states produced by the objective classifica-

tion scheme and comments on the profiles of cloud

occurrence derived from the radar data. Section 4 pre-

sents a detailed description of a moving-blocks boot-

strap difference test for the similarity of profiles of

cloud occurrence with height. Section 5 evaluates both

the stability and the distinctiveness of the radar profiles

for each atmospheric state using the bootstrap differ-

ence test. Although this paper concentrates on testing

the similarity of the mean profiles of cloud occurrence

with height, the bootstrap technique described here

could be expanded to include other statistics and other

kinds of atmospheric data. Section 6 discusses further

testing and expansion of the technique we hope to un-

dertake in the near future.

2. Classification technique and dataset description

Several approaches have been developed to create

atmospheric classification schemes. These approaches

include principal component analysis (PCA; e.g.,

Hewitson and Crane 1992; Hewitson 1994), clustering

of PCA components (e.g., Kalkstein et al. 1987, 1990;

Zivkovic and Louis 1992; Ye et al. 1995; Michelangeli et

al. 1995; Romero et al. 1998), discriminant function

analysis (e.g., Kalkstein et al. 1996, 1998), fuzzy logic

(e.g., Bardossy et al. 1995; Ozelkan et al. 1998), and

neural networks (e.g., Hewitson and Crane 1996).

In this investigation, we use a simple competitive (or

self-organizing) neural network (e.g., Kohonen 1995;

Haykin 1998) to objectively identify patterns in 17

months of analysis data from an NWP model starting

from December 1996. Analysis data are the inputs used

to initialize NWP-model forecasts and are obtained

through a data-assimilation process that combines

model first-guess fields with observations. In this study,

we used analysis data from the rapid update cycle

(RUC) model, which is run operationally at the Na-

tional Centers for Environmental Prediction (Benjamin

et al. 1991, 1996, 2004a,b). The RUC data were stored

in a convenient form over an approximately 600-km by

600-km region (14 � 12 grid points) centered over the

U.S. DOE ARM site in Lamont, Oklahoma, and was

readily available through the ARM archive (www.

arm.gov). Over this 17-month period, the archive is rea-

sonably complete with RUC analysis data missing for

approximately 5% of the total time (in small chunks
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ranging from 3 h to as much as a couple of days). In the

future, we hope to examine more than 17 months of

RUC data, as well as other NWP datasets.

The neural network used in this analysis classifies the

atmosphere as belonging to one of 25 possible states,

given 6888 input variables (i.e., geopotential height,

relative humidity, temperature, and wind at eight pre-

determined pressure levels, as well as the surface pres-

sure, at all 12 � 14 grid points). The output of the

neural-network classifier consists of a set of 25 synop-

tic-scale patterns (state definitions) and a state number

(from 1 to 25) that indicates the state each input pattern

most closely resembles. Generating the 25 synoptic-

scale patterns each time the neural-network classifier is

used is generally not necessary, rather, once a set is

established, it can be used to classify data that were not

used in the original training set. Although the number

25 was chosen based on intuition, it appears to be more

states than are actually needed, as we will discuss in

section 5.

To assess whether our identified atmospheric states

might be used to map local-scale cloud observations to

the synoptic scale, data from the cloud radar (for the

same 17-month period) were used to determine the 3-h

probability of occurrence of clouds as a function of

height for each of the 25 atmospheric states. The choice

of a 3-h period was guided by the RUC analysis dataset,

which was available once every 3 h. Our analysis was

accomplished using a personal computer and, to reduce

computational time, we used 35 vertical levels from the

radar data, ranging from 285 to 15 585 m. The mean

vertical profile of cloud occurrence for each state is

shown in Fig. 1.

3. Meteorology of the 25 atmospheric states

In this section, the 25 synoptic patterns obtained

from the neural-network classifier are briefly discussed.

The synoptic patterns define the atmospheric state. For

example, state 10 (Fig. 2) is characterized by northwest-

erly winds and cold temperatures at 1000 hPa (upper

right panel), southwesterly flow with 30%–60% relative

humidity (RH) at 500 hPa (middle left and lower left

panels), and dry (RH � 50%) upper levels (lower right

panels). In this section, we introduce the 25 states, de-

scribing them both by their characteristic synoptic-scale

patterns (e.g., Fig. 2) and their vertical profiles of prob-

ability of cloudiness (Fig. 1). The synoptic patterns of

the 25 states are not shown in this paper for brevity, but

a short description of each state is provided in Table 1,

and is described further in this section. To facilitate

their description, we discuss the states either by the

surface-wind direction over the domain (i.e., south,

southeast, east, northwest, north, calm) or by a charac-

teristic mesoscale feature within the domain (i.e., cold

or stationary front, dryline).

a. South and southeast

States 1, 2, 3, and 14 have surface southerlies over the

domain (principally Kansas, Oklahoma, and northern

Texas). States 1 and 3 occur in the warm season, with

among the hottest surface temperatures of all 25 states.

These states typically feature the advection of warm

and moist air from the Gulf of Mexico northward

through the Plains. State 1 is associated with strong

surface southerlies and relatively zonal 500-hPa flow,

whereas state 3 is associated with weaker surface south-

erlies and a weaker 500-hPa flow. States 2 and 14, on

the other hand, occur during the cool season. Both are

associated with 500-hPa west-northwesterly flow. Of

the two, state 14 has cooler surface temperatures and is

associated with a cyclone to the west of the domain. All

four states with surface southerlies have a typical gra-

dient in moisture that is moist to the south and dry to

the north, except state 3, which has more of an east–

west gradient (moist to the east).

States 6, 18, and 20 possess surface southeasterlies

and bear remarkable similarity to each other in the

surface and 500-hPa height and moisture fields. The

500-hPa flow is typically from the west. The character-

istic that distinguishes among these three states is the

near-surface temperature (Table 1). State 6 typically

occurs during the summer with 1000-hPa temperatures

about 24°C, state 18 typically occurs during the spring

with 1000-hPa temperatures about 18°C, and state 20

typically occurs during the cool season with 1000-hPa

temperatures 6°–16°C.

Six of these states (e.g., 1, 2, 3, 14, 18, and 20) exhibit

similar vertical profiles of probability of cloudiness,

possessing a maximum near 10 km (Fig. 1). Such a

maximum around tropopause height probably indicates

the presence of jet stream cirrus clouds and anvils as-

sociated with nearby thunderstorms, which can occur

with the moist southerly winds and westerly flow aloft.

State 6 has a near-constant probability of clouds at all-

tropospheric levels (Fig. 1), suggesting low- and

midlevel clouds also tend to be present.

b. East

States 4, 5, 17, and 24 have surface easterlies. State 4

is a hot and humid summer state underneath a 500-hPa

ridge. State 4 has more moisture at upper and mid lev-

els relative to the other dominant summertime states 1

and 3 (which is also reflected in the cloud occurrence

profiles in Fig. 1). States 5 and 17 both possess south-
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FIG. 1. Vertical profile of the fraction of time a cloud was observed at each radar level (blue solid line) for each of the 25 states. The

radar level is on the vertical axis and is given in meters above ground level. The top of each subplot lists the state number and the

number of 3-h time blocks in which the atmosphere was classified as being in that state. The solid black line on the right side of each

panel signifies the radar levels that can be used in a comparison for that state (i.e., passes the sample size tests; see section 4c).
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FIG. 2. Synoptic fields for atmospheric state 10. (upper left) The 1000-hPa dewpoint (°C, colored) and 1000-hPa geopotential height

(m, black lines). Arrows indicate wind direction and speed. (middle left) Surface pressure anomaly (hPa, colored) with 500-hPa

geopotential height (m, black lines) and wind. The surface pressure anomaly is the difference from the 17-month mean value. (lower

left) 500-hPa fractional relative humidity (colored) with 500-hPa geopotential height (m, black lines) and wind; (upper right) 1000-hPa

temperature (°C, colored) with 1000-hPa geopotential height (m, black lines) and wind; (middle right) 875-hPa temperature (°C,

colored) with 875-hPa geopotential height (m, black lines) and wind; (lower right) 375-hPa fractional relative humidity (colored) with

375-hPa geopotential height (m, black lines) and wind.
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westerlies at 500 hPa, although state 5 is much warmer

than 17 (23°C versus 5°–15°C at 1000 hPa, respec-

tively). State 17 is relatively moist within the tropo-

sphere and exhibits near-constant probability of clouds

with height (Fig. 1), suggesting deep ascending air as-

sociated with a warm front, consistent with the near-

surface easterlies. State 24 exhibits a 1000-hPa tem-

perature intermediate to the other states (�17°C), has

500-hPa westerlies, and is quite dry at all levels. The

dryness is consistent with the small probability of

clouds with height (Fig. 1).

c. Northwest and north

States 10, 11, 13, and 25 exhibit surface northwesterly

flow, and states 7, 12, 15, 16, and 19 exhibit surface

northerly or north-northeasterly flow. Such flow pat-

terns typically occur after the passage of an equator-

ward-moving cold or arctic front (e.g., Mecikalski and

Tilley 1992; Colle and Mass 1995; Schultz et al. 1998;

Schultz 2004) or an eastward-moving cold front origi-

nating from the Pacific (e.g., Hobbs et al. 1996; Neiman

and Wakimoto 1999).

The northwesterly states all occur during the cold

season with the coldest 1000-hPa temperatures around

or less than 5°C. The primary distinguishing factor be-

tween the four northwesterly states is the 500-hPa flow:

confluent southwesterly (state 10), westerly (state 11),

north-northwesterly (state 13), or northwesterly (state

25).

On the other hand, the northerly states are distin-

guished primarily by near-surface temperature. State 7

occurs during the warm season when equatorward-

moving fronts occasionally bring warm, dry air to re-

lieve the Southern Plains’ summer heat and humidity

(often colloquially referred to as cool fronts). States 12

and 19 exhibit among the coldest 1000-hPa tempera-

tures (as low as 2°C), whereas states 15 and 16 exhibit

1000-hPa temperatures around 10°C (Table 1). The

principal distinction between states 12 and 19 is that

TABLE 1. Summary of the 25 atmospheric states: state number, months in which they occur, number of 3-h time blocks in dataset,

1000-hPa winds (temperature/dewpoint, both in °C), 500-hPa winds and relative humidity, and synoptic features (e.g., fronts, drylines)

and relationship to clouds from Fig. 1. Ranges are given when large gradients exist across the domain.

State Months No. 1000 hPa 500 hPa

Notes on synoptic features

and clouds

1 May–October 169 South (32/20) West, 40%

2 October–May 168 South (15–21/6) West-northwest, 30%

3 June–October 153 South (33/22) Weak, 35%

4 July–September 113 East (30/19–24) West, 30%–60% South side of jet

5 May–October 235 East (23/14–23) Southwest, 30%–50% Return flow of moisture

6 June–September 106 Southeast (24/22) West, 30%–50%

7 May–October 206 North (23/17) Northwest, 20% Cool front, clear skies

8 October–June 175 Calm (15/4–10) Northwest, 15% Clear skies

9 November–May 77 Calm (5–12/–2) West-northwest, 25%

10 October–April 133 Northwest (5/–3 to 3) Southwest, confluent

20%–60%

Shallow postfrontal clouds

11 October–May 171 Northwest (2/–3 to �10) West, 30% Clear skies

12 October–April 130 North-northeast (2/0 to �10) West-southwest, 55%

13 October–April 130 Northwest (5/0 to �5) North-northwest, 25%

14 November–May 282 South west–west (5–15/–2 to 3) Northwest, 30%–50% Lee cyclone

15 October–April 122 North, confluent (10/2–9) Southeast, 60%–80% Cutoff low, surface cyclone,

abundant clouds within

troposphere

16 November–April 66 North (10/2–9) West-southwest, 50%

17 October–April 176 East (5–15/2–12) Southwest, 60% Warm front, abundant clouds

within troposphere

18 March–June 85 Southeast (18/12–18) West, 40%–60% Lee cyclone southwest

19 December–March 75 North-northeast (2–12/–5 to 10) Southwest, confluent, 30% Shallow postfrontal clouds

20 October–May 141 Southeast (6–16/–3 to 5) West-southwest, 30%–50% Lee trough southwest, high clouds

21 October–May 126 South, confluent (13–23/7–14) Southwest, 20%–45% Dryline, high clouds

22 October–May 123 South, confluent (13–22/9–16) South-southwest, 35%–65% Dryline

23 October–May 142 South–northwest confluent

(8–23/2–11)

West-southwest, 30%–50% Southwest–northeast-oriented

cold/stationary front

24 October–May 170 East (12–22/3–10) West-northwest, 35%

25 October–May 120 Northwest (2–11/–2) Northwest, 20%–60%
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state 12 is much more moist than state 19 at 500 hPa

(RH is about 55% versus 30%, respectively; Table 1).

The difference between states 15 and 16 is that the

500-hPa flow has a closed circulation and is relatively

moist (RH 60%–80%) for state 15. In contrast, state 16

exhibits a relatively dry (RH about 50%), zonal 500-

hPa flow.

States 10, 12, 13, 15, 19, and 25 are similar in that they

have a maximum of cloud fraction in the lower tropo-

sphere (Fig. 1), all indicative of low-level postfrontal

cloudiness. In contrast, the westerly 500-hPa flows of

states 11 and 16 are associated with a relatively dry

troposphere, consistent with the small frequencies of

clouds observed for those states (Fig. 1).

d. Calm winds

States 8 and 9 are characterized by relatively weak

surface winds across the domain. Both states are simi-

lar, with dry 500-hPa northwesterly flow and no appre-

ciable cloudiness (Fig. 1). The principal difference ap-

pears to be the 1000-hPa temperature (about 15°C for

state 8 versus 5°–12°C for state 9).

e. Cold or stationary front

State 23 exhibits a surface cold or stationary front,

oriented southwest–northeast across the domain. Air is

more moist and warm to the southeast and more dry

and cool to the northwest, consistent with its tendency

to occur during cool season. See Schultz (2004, espe-

cially his Figs. 4b, d) for more discussion of state 23.

f. Dryline

States 21 and 22 are characteristic of periods where a

strong dryline is present. Both feature strong low-level

moisture gradients across northern Texas and Oklaho-

ma and southwesterly–westerly flow at 500 hPa. The

principal difference between states 21 and 22 appears to

be the amount of 500-hPa moisture; state 21 is dry (RH

20%–45%), whereas state 22 is more moist (RH 35%–

65%). The relatively dry air in state 21 inhibits cloud

development in the mid and lower troposphere relative

to that of state 22 (Fig. 1).

4. A bootstrap test for the similarity of profiles of

cloud occurrence with height

Given these 25 synoptic states, we would like to know

if the cloud-radar profiles of probability of cloudiness

associated with each state are temporally stable and

distinct in a statistically meaningful way. In this section,

we develop techniques to answer this question.

In the statistical analysis of atmospheric properties,

comparing datasets from different sources, either from

different times or locations, or comparing observational

data with model output is often desirable. Although

differences in some cases can be obvious and readily

understood based on physical reasoning, in other cases,

whether or not differences are statistically significant

may not be clear. Many of the standard statistical tests

of differences (e.g., the Student’s t test) assume that

data points are independent of each other and that the

underlying distribution of the sample is known. As with

the t test, these standard statistical tests are frequently

built upon asymptotic behavior and the Central Limit

Theorem to identify distributional properties of the sta-

tistic. These assumptions limit the applicability of such

tests to many remote sensing observations from the at-

mosphere (such as the radar data examined in this pa-

per) where both strong spatial and temporal correla-

tions exist, in addition to unknown (and likely non

Gaussian) underlying distributions. We account for the

spatial and temporal correlation in this analysis using a

moving-blocks bootstrap resampling approach (e.g.,

Efron and Tibshirani 1993; Wilks 1997).

The underlying principle of the bootstrap resampling

approach is that, given a sample X from a parent popu-

lation with an unknown distribution, statistics of inter-

est for the true parent population F can be calculated

by taking a series of resamples from X. The key is that

the resampling is done from the original sample with

replacement, thus imitating as closely as possible the

act of sampling from the parent population. For the

bootstrap approach to work, the original sample set X

must have a sufficient number of independent samples

to represent the true population F.

In the following section, we describe a bootstrap dif-

ference test that compares the probability of cloud oc-

currence at a single radar altitude (section 4a), extend

this basic technique to handle vectors (or profiles) of

radar observations (section 4b), and discuss further the

minimum number of independent samples needed to

undertake a comparison (section 4c).

a. Single-variable bootstrap difference test

Assume two vectors, Y of length ny and Z of length

nz. We want to know if the distributions of the data in

Y and Z are the same (or more formally stated, if they

come from a common parent population). We want to

formulate a hypothesis test to determine if a significant

difference exists between Y and Z.

In the bootstrap approach, given a sample of n data

values X � {x1, x2, x3, . . . xn} from an unknown parent

population F, a bootstrap resample X* of X is created

by randomly choosing n elements from X with replace-
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ment. With replacement means that after an element is

selected, it remains in X and can be chosen again. Es-

sentially, the sample X is treated as if it were the true

population F, and X* is then a new sample (or new

realization) drawn from it. A large number of bootstrap

resamples X* are taken, and a statistic of interest is

calculated for each resample. The distribution of a sta-

tistic from the many resamples can then be used to

create confidence intervals (e.g., the 95% confidence

interval) for that statistic.

In our application, xi is not a single value, but a vec-

tor of cloud fraction (where each element in the vector

is the cloud fraction at one radar layer) at each 3-h time

step (Fig. 3). By keeping all the elements of xi together,

the bootstrap technique maintains all spatial (i.e., ver-

tical) correlations, but not the temporal correlation in

the data. (Section 4b discusses how to apply a scalar

bootstrap technique to the vector of the radar data.) If

the time series of X is resampled to create many time

series of X*, we ignore any temporal correlation be-

tween xi and xi�1, effectively treating them as indepen-

dent samples.

To account for the temporal correlation, we use a

moving-blocks bootstrap approach. This approach is

similar to the original bootstrap in that it creates a set of

new samples X* from the original sample set X, but

instead of sampling elements from X with replacement,

the moving-blocks bootstrap approach samples blocks

of consecutive elements from X with replacement. Fig-

ure 3 illustrates this process. In this example, a series of

bootstrap samples with a fixed block size of 4 is created

from an original set of length 12. By choosing blocks of

elements, much of the temporal correlation in the time

series is preserved.

The bootstrap approach provides a good framework

for hypothesis testing. Taking a large number of boot-

strap resamples yields an approximate distribution of

what a test statistic should look like for the true popu-

lation, and we can reject the null hypothesis if the test

statistic for the original sample is, for example, outside

of the 95% confidence interval. In our application, we

take the null hypothesis to be that two different sets (of

cloud occurrence with height data) are from the same

underlying distribution (i.e., the two sets can be thought

of as two realizations from the same unknown popula-

tion). The remainder of this subsection describes a test

of this null hypothesis for a single radar layer, whereas

section 4b describes a modified test to account for all of

the radar layers.

Although we want to know whether the data in Y

and Z come from a common parent population, no sta-

tistical test on a finite dataset can definitely prove this

statement. Rather, we assume they are the same, and

determine if this statement appears unlikely. Any two

finite samples (Y and Z) are unlikely to have precisely

the same mean values (�Y� and �Z�) even when they

derive from a common parent population. Conse-

quently, we examine if the difference in the mean (�Y�

� �Z�) is unlikely to be a result of having a finite sample

size. If the difference in the mean is unlikely, Y and Z

are probably not from the same parent population, and

we reject the null hypothesis. (That two different atmo-

spheric states will have the same mean probability of

cloud occurrence at some given altitude and yet come

from different parent populations is possible, however,

we will ultimately apply the test at many levels and it is

unlikely that two distinct states would have the same

mean cloud fraction at all levels.)

The test described here for a single radar layer fol-

lows Efron and Tibshirani (1993). The two sets, Y and

Z, are combined into a single set X, where X � Y ∪ Z,

and X has length n � ny � nz. Next, a large number nb

of bootstrap resamples Y* of length ny are taken from

X, and nb resamples Z* of length nz are also taken from

X. That is, each Y* has the same length as Y, but from

the total population X, and similarly for Z*. Typically,

nb is several thousand. To perform this resampling, we

randomly select an element xi from Z and take a block

of elements of some length L containing xi as an ele-

ment of the new sample. Leaving those elements in the

original sample (since we are resampling with replace-

ment), we repeat the process until the new sample is the

same length as the original sample of Y.

For each of the nb resample pair, the following sta-

tistic (standard difference) is calculated

d* �
z � y

� 	1�nz � 1�ny

, 
1�

FIG. 3. Diagram of moving-blocks bootstrap with replacement

[adapted from Wilks (1997)].
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where z � y is the difference of means between Y* and

Z* and

� � ��
i�1

nz


zi � z�2 � �
j�1

ny


yj � y�2

nz � ny � 2
�

1�2

,

which is the estimated standard deviation.

This process produces nb values of d*, forming a dis-

tribution of the test statistic from the bootstrap resam-

ples. This same difference statistic for the original

sample sets Y and Z, which we call d, can be calculated,

similarly. We can determine if d is an unlikely or ex-

treme value by comparing the value of d to the distri-

bution of d* and seeing where it falls in relation to the

95% confidence interval. If d falls outside of the 95%

interval, we reject the null hypothesis that the two sets

come from the same distribution. Figure 4 shows two

examples of comparing the distribution of d with d*:

one where d falls outside the 95% confidence interval,

so that we reject the null hypothesis and state that the

radar observations (at this one altitude) are likely from

different populations (Fig. 4c), and one where d falls

within the 95% confidence interval so we do not reject

the null hypothesis and claim the radar observations

may be from the same population (Fig. 4b).

A remaining issue is selecting the size of the block

length L. The block length needs to be large enough to

capture the temporal correlation structure of the time

series data. If too small a block length is used, the boot-

strap blocks are treated as being independently

sampled when in fact they are not, leading to the boot-

strap underestimating the variability in the distribution

of the d* statistic. In such a case, the test is permissive,

meaning the null hypothesis is rejected more often than

is warranted. The choice of block length is, in general,

an outstanding problem for most moving-block boot-

strap applications. Wilks (1997), for example, discusses

FIG. 4. (left) The mean radar profile of cloud occurrence for state 6 (blue line) and state 18 (red line). The two

states have similar mean cloud occurrence below about 6 km, but state 18 has more cloud between about 6 and 12

km. Is the difference in the mean cloud occurrence statistically significant? (right) The d statistic (red line) in

relation to the d* distribution (blue line) for two radar layers (the altitude of these layers is indicated by the dashed

black lines in the left panel). The short black lines mark the boundaries of the 95% confidence interval for the d*

distributions; (middle) (radar altitude � 6135 m) the difference in the cloud occurrence is not significant, whereas

(rightmost) (radar altitude � 8385 m) the difference test shows that the two states contain a different local-scale

cloud occurrence.
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several methods for determining an optimal block

length. These methods, however, all involve fitting a

first- or second-order autoregressive model to the time

series, neither of which fit our radar data well. We also

recognize that a single common block length will likely

not fit all the atmospheric data. The goal in dividing the

original radar data into a finite set of classes was to map

this data according to its synoptic regime. Different re-

gimes are likely to contain different scales of temporal

correlation leading to different nominal block lengths

for each state. Therefore, instead of choosing a fixed

block length, we use a block-selection method that ad-

justs to the correlation scale of the current data.

In our application, the original time series of radar

observations is broken into 25 disjoint time series, prior

to application of the bootstrap difference test (section

2). When the neural network classifies the RUC data

into different states, a set of contiguous elements in one

state represents observations, which may come from a

single synoptic event, so the data may well be corre-

lated. We expect most of the temporal correlation oc-

curs entirely within that pattern. Therefore, in the boot-

strap test, after randomly selecting xi from the com-

bined dataset X, we choose as our block length the

largest possible set of elements x such that all the ele-

ments are in the same class and are contiguous in time.

So, when making a bootstrap resample for state 21, for

example, we first randomly pick a point in our time

series of atmospheric states in which the atmosphere

was determined (by the classifier) to be most like state

21. We then see how many consecutive elements in time

(adjacent to the randomly chosen one) are also in state

21. All of these elements are then placed into the re-

sample. This is a conservative choice in the sense that

we are likely erring on the side of keeping more ele-

ments together than may be needed. This choice re-

duces the ability of the test to differentiate between our

radar profiles, but should also minimize false detec-

tions. In our analysis, we found the median contiguous

block length ranged from 1.5 to 6 (4.5 to 18 h) depend-

ing on the state, with the summer states generally hav-

ing the shorter block lengths.

b. Extension of the bootstrap technique to a vector

of observations

The bootstrap test described thus far can be applied

to the radar observations at any single altitude. How-

ever, we want a test that considers the entire vertical

cloud profile (all the radar layers) when deciding

whether or not to reject the null hypothesis. A simple

test, in principle, is to run the single-layer test, calcu-

lating a d and d* distribution for each radar layer. If d

is unlikely to have occurred in any layer, we could then

reject the null hypothesis and claim that Y and Z are

not the same because they are not the same for every

vector element. In practice, the difficulty with this ap-

proach is that there may be many vector elements in the

dataset (e.g., 35 levels in this case) so that a false posi-

tive (which we would expect to occur 5% of the time

using a 95% confidence interval) becomes likely in at

least a few of the elements almost all of the time. The

data are also spatially correlated, so we cannot treat the

results of the individual test as independent. Rather, we

need to consider all the layers simultaneously. We have

examined doing this in two ways.

The first approach follows from Wilks (1997) and

uses a method of summing the test statistics across all

the radar layers. As shown before, the d statistic (for

the original sample) and d* statistic (for each of the nb

bootstrap resamples) are calculated for each radar

layer. From the layer values, one then calculates a glob-

al statistic k,

k � �
i

| di | 
original data�

k*j � �
i

| d*ij | 
resampled data�, 
2�

where i ranges over the 35 radar levels, and j ranges

over the nb bootstrap resamples. We then compare k to

the distribution of k* and reject the null hypothesis if k

is an extreme value falling outside the 95% confidence

interval of the distribution. We refer to this test as the

sum-of-absolute-values multivariate test.

The second test we evaluated creates a similar global

statistic, but based on counting the number of single

layer tests where d is unlikely at the 5% level. That is,

k � number of radar layers where d is 5% or less likely,

and

k*j � number of radar layers where d*j is 5% or

less likely, 
3�

where j ranges over the nb bootstrap resamples. Similar

to the first test, we compare k to the distribution of all

k*j and reject the null hypothesis if k falls outside the

95% confidence interval. We will refer to this as the

number-of-unlikely-radar-layers multivariate test.

For both of the above tests, we also calculate a sig-

nificance level, or p value, for each comparison by com-

paring k with k*. The p value is the percent of bootstrap

resamples that are as extreme as, or more extreme than,

the original sample. We reject the null hypothesis if the

calculated p value is less than 0.05.

To evaluate these two multivariate tests, we first ex-

amined what happens when we compare a given set of

2822 J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S VOLUME 63



radar profiles against themselves. For this basic test, we

randomly divided the radar data in each state into two

disjoint subsets of as close to equal size as possible and

ran the comparison, testing the two halves against each

other. Since the two sets we are testing are drawn from

a single parent population, we expect to be unable to

reject the null hypothesis that the sets are distinct. For

both multivariate tests, the p values for each of the 25

states comparisons are above the 0.05 threshold (Fig.

5). Thus, our two tests are unable to distinguish be-

tween the two halves of each state. [We ran this test

several times (not shown), randomly dividing the data

in each state into two halves each time, and found that,

as one might expect, we did occasionally generate one

or two false detections (states where we reject the hy-

pothesis at the 5% level, even though we know the data

come from a common parent population).]

While the results are similar between the two tests,

the p values are quite different. For the sum-of-

absolute-values test (Fig. 5a), the p values are fairly

evenly distributed throughout the range from about 0.1

to 1. Few of the tests have a p value close to one, even

though the two profiles come from the same parent

population. In the number-of-unlikely-radar-layers

multivariate test (Fig. 5b); on the other hand, almost all

the p values have a value of 1.0, with a handful of points

having low values. This occurs because, in the number-

of-unlikely-radar-layers test, most of the k* resamples

have zero layers, which appear unlikely at the 5% level,

a few resamples (typically 5%–20%) have 1 layer un-

likely at the 5% level, and fewer yet with two or more

unlikely layers, such that the distribution of k* � num-

ber-of-unlikely-radar-layers is very sharply peaked at

zero. Thus, whenever we find k � 0 (not having any

layers unlikely at the 5% level in the original samples)

this leads to a p value of 1. When it happens that k � 1

or k � 2 (by random chance in this case), the p value is

far from 1 (Fig. 5b).

c. Sample-size constraint

In general, a requirement of the bootstrap resam-

pling approach is that the initial sample must represent

the underlying population. If the initial sample is too

small, the parent population is not likely to be repre-

sented accurately by the resampling. Such undersam-

pling can result in the bootstrap either underestimating

or overestimating the variability in the distribution of

the d* statistic. Underestimating leads to a test that is

permissive (i.e., rejecting the null hypothesis when it

should not) and overestimating the variability leads to a

test that is too stringent (i.e., not rejecting the null when

it should). Hypothesis tests used on a small sample size

tend to be unable to detect many real differences be-

cause the variance due to sampling will tend to be large.

In general, if the null hypothesis cannot be rejected we

must make sure to identify those cases where real dif-

ferences are unlikely to be detected based on the

sample size before we claim the data are from the same

or similar parent populations.

It is not the actual number of samples that needs to

be considered, but rather the number of independent

data points, sometimes called the effective sample size.

Using a difference test similar to the one described in

this paper, Wilks (1997) suggests a minimum effective

sample size of 10, where the effective sample size, ne, is

estimated using

FIG. 5. Test of each state vs itself (a) using k � sum-of-absolute-

values multivariate test; (b) using k � number-of-unlikely-radar-

layers multivariate test. All the p values are above the 0.05 thresh-

old, so we are unable to claim that any of the states are divided

into distinct halves.
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ne ≅ n
1 � �1

1 � �1

, 
4�

and 
1 is the lag-1 autocorrelation coefficient of the

time series.

In our application of this methodology, we found that

this constraint was not completely sufficient because we

found cases where a set consisting primarily of data

points of value zero and only a few cloud detections

(nonzero values) will pass this sample-size test. The

variance of the data is not sufficiently well estimated in

this circumstance to use the hypothesis test. Thus, we

also required the dataset to have more than 10 nonzero

elements.

We apply these constraints to the combined dataset

X, rather than individually to the two sets being com-

pared (Y and Z). This approach permits comparing

situations where a given layer may be void of clouds in

set Y, but has more than a sufficient number of samples

for that layer in set Z. If the minimum sample-size con-

straint were applied to the individual sets first, then any

region with few clouds in either set would not be com-

pared, even though the lack of cloud in one set com-

pared with a high cloud fraction in another set may

itself be very meaningful.

We stress that the estimated value of ne is not being

used in the difference test, but only as a measure of

when it is safe to apply the bootstrap difference test. In

the results presented in this paper, we opted to use an

effective sample size threshold of 10 as suggested by

Wilks. In general, we found that comparisons with data

with an effective sample size below 10 have little re-

solving power, meaning that data with seemingly large

differences in the mean value do not cause the hypoth-

esis to be rejected (because with such a small number of

samples large deviations between the means are likely).

We will discuss one such example in the next section.

5. Stability and distinctiveness of the atmospheric

states

In order for the 25 synoptic-scale states to serve as a

map to local-scale cloud properties, the distribution of

the local-scale variables must be statistically stationary.

Thus, for a given state, the local-scale cloud properties

should be the same regardless of the year in which that

state occurs. To evaluate the temporal stability of cloud

occurrence for our identified states, we compared the

radar profiles in two wintertime periods using the boot-

strap test described in section 4. For each state, we took

all the data elements from winter 1996–97 (1 December

1996 to 1 March 1997) and compared them to the ele-

ments from winter 1997–98 (1 December 1997 to

1 March 1998). Figure 6 shows 25 plots (one for each

state) of the probability of cloud occurrence versus

height during winter of 1996–97 (solid line) and winter

1997–98 (dashed line). The legend for each atmospheric

state shows the percentage of each winter that was oc-

cupied by that state. For example, state 14 occurred

7.14% of the time in winter 1996–97 but 17.88% of the

time in winter 1997–98 (Fig. 6). Some states do not

occur in winter (i.e., states 3, 4, 5, 6, 7, and 18). Inter-

annual variability can be significant. Specifically, a La

Niña occurred during winter 1996–97, whereas an El

Niño occurred during winter 1997–98. Such large-scale

circulation changes are known to affect the local

weather, for example, favoring more cold-frontal pas-

sages in the south-central United States (e.g., Schultz et

al. 1998). The considerable interannual variability ob-

served in many cloud properties hampers comparing

GCM climate predictions with observations and is the

motivation behind this research.

Many of the states show similar profiles of cloudiness

between the two winters (e.g., states 11, 15, 17, and 25),

while other appear quite different (e.g., states 10, 12, 16,

19, and 20). Most of the states showing poor agreement

are composed of a small number of members. For ex-

ample, state 12 is only occupied 0.73% of the time dur-

ing winter 1997–98 and state 19 is only occupied 1.04%

of the time during winter 1996–97.

Using the moving-blocks bootstrap difference test for

the means, we can examine the similarity of the cloud

profiles for these two seasons. Our null hypothesis is

that the two profiles are the same (or rather from a

common distribution) and we test the mean value with

height to determine if this is unlikely. If the cloud oc-

currence profiles are not different, this suggests that we

may have obtained a useful map from the large-scale

resolved variables to the small-scale cloud properties.

Subsequently, this state would be useful to compare

GCM output and observational data.

Figure 6 shows that, at the 5% level of significance,

only in state 10 can we reject the hypothesis that the

profiles are the same. The p values shown in Fig. 6 are

based on the sum-of-absolute-values multivariate test.

We also found that only in state 10 can we reject the

hypothesis using the number-of-unlikely-radar-layers

multivariate test, although the p value differs as one

would expect (not shown).

Of the states that are occupied during the winter,

several (states 8, 12, 16, 19, and 24) have insufficient

data to make a comparison at any radar altitudes. That

is, these states do not pass the minimum sample-size

criteria discussed in the previous section at any altitude.

Several states (9, 20, 21, and 22) have sufficient data to

make a good comparison at only at a limited number of
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FIG. 6. Vertical profile of the fraction of time a cloud was observed at each radar level for each of the 25 states during winter 1996–97

(red line) and winter 1997–98 (blue dashed line). The legend shows the percentage of each winter occupied by that state. The p values

for the comparisons between the two winters are also listed. The solid black line on the right side of each panel signifies the radar levels

that can be used in a comparison for that state (i.e., passes the sample size tests in section 4c).
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altitudes (as denoted by the solid black line on the right

side of each plot). Specifically, for state 22, winter 1996–

97 has greater cloud occurrence below 5 km than winter

1997–98. However, no comparisons are done at radar

altitudes below 5 km (for the purpose of calculating the

p value shown in Fig. 6) because the number of inde-

pendent samples in this region is estimated to be less

than 10. Using Eq. (4) these altitude bins are estimated

to have between 5 and 9 independent samples. How-

ever, lowering our threshold for the minimum number

of independent samples does not change the result sig-

nificantly, with the p value changing from 0.756 to 0.5.

As discussed in section 4, comparisons with a small

number of independent samples have little ability to

determine if a difference is significant.

Of the states that are well occupied (10, 11, 13, 14, 15,

17, and 23), only in state 10 does the difference in the

radar profiles between the two winters appear signifi-

cant. We stress that finding well populated and stable

mappings from the large-scale synoptic patterns to the

local-scale cloud properties will be useful for compari-

sons of model output with observed data, even if less

than 100% of all atmospheric conditions can be

mapped successfully.

For all of the well-occupied states, we compared the

average atmospheric state variables (e.g., geopotential

heights, winds, and temperatures) for the two winters

against the state definitions created by the neural-

network classifier. We found the average values for

both winters to be similar to the state definition for all

of the states, except state 10. For state 10, the averages

for winter 1997–98 (not shown) were very close to those

of the state definition (Fig. 2), but the averages for

winter 1996–97 (Fig. 7) were quite different from the

state definition (Fig. 2). Although the fields of wind and

pressure for winter 1996–97 were similar to the state

definition, winter 1996–97 featured higher 500-hPa

relative humidity (lower left panel), higher surface

pressure (middle left panel), and lower 1000-hPa dew-

point temperatures (upper left panel) than the state

definition. The higher 500-hPa relative humidity in win-

ter 1996–97 was associated with more midlevel cloudi-

ness (Fig. 6).

This example shows an important limitation of using

an objective classifier to create the state definitions: a

given state may be too broad and encompass too wide

a range of conditions. On the other hand, this example

also shows the value of examining the local-scale data

(not used in the classification process) to identify when

this occurs, a point to be discussed further in section 6.

To examine how well the neural network separated

the atmosphere into distinct states with distinct cloud

profiles, we compared the profiles of cloud occurrence

for each state (Fig. 1) to that of every other state, again

using the bootstrap test. The set of p values for all these

comparisons are summarized in Fig. 8 for the two mul-

tivariate tests. For a majority of the state-to-state pro-

file comparisons, the p value falls below the 0.05 sig-

nificance level (green boxes). Thus, we can reject the

null hypothesis and claim the states are pairwise dis-

tinct.

For each multivariate test, about 40–45 comparisons

had large p values (red boxes), so we are unable to

reject the suggested null for these comparisons, sug-

gesting these states may not be distinct from one an-

other. In about 10–15 more comparisons the p values

fall slightly above the 0.05 cutoff (yellow boxes). Not

surprisingly, many of the state-to-state comparisons

that suggest the states are not distinct involve those

states with the fewest points. These comparisons sug-

gest that, although the neural network did a reasonable

job in identifying states containing distinct atmospheric

conditions, some states may be too narrowly defined, at

least in the context of the 17 months of data analyzed.

6. Conclusions and future plans

In this paper, an evaluation of objectively identified

atmospheric states obtained from NWP large-scale at-

mospheric fields was presented. The evaluation was

based on aggregating profiles of cloud occurrence, ob-

tained from the U.S. DOE ARM program cloud radar

in Lamont, Oklahoma, as a function of an objectively

determined set of atmospheric states. These profiles

were examined for stability and distinctiveness using a

bootstrap resampling comparison test.

The bootstrap comparison technique was drawn

largely from Wilks (1997). The most significant depar-

tures from Wilks are that 1) we follow Efron and Tib-

shirani (1993) in combining the initial datasets into a

single combined set from which to create the bootstrap

resamples, 2) we apply two minimum sample-size con-

straints to the data on a vector-element by vector-

element basis, 3) we use a conservative block-selection

method that adapts to the temporal correlation struc-

ture of the dataset, and 4) we examine a number-of-

unlikely-layers multivariate test. Combining the

datasets prior to resampling effectively maximizes the

number of available samples, which was an important

consideration in our application because many of the

sample sets contained few points. Problems could occur

with this approach if the two datasets are in fact drawn

from a different population, if one of the initial datasets

is much larger than the other and the overrepresented

population is substantially more or less variable than

the underrepresented population. In general, it may be
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worth testing the individual sets and combining them

only when the number of effective independent

samples appears low. For the data in this paper, we

found no significant differences existed between the

combined and noncombined approaches when both

sets did have a sufficient number of samples, but where

one set had many more samples than the other.

The stability of the atmospheric states was examined

FIG. 7. Same as Fig. 2 but only for winter 1996–97. Winter 1996–97 shows similar wind and pressure patterns to those in Fig. 2, but

features (lower left) higher 500-hPa relative humidity, (middle left) higher surface pressure anomaly, and (upper left) lower 1000-hPa

dewpoint temperature.
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FIG. 8. A summary of the results of each state-to-state comparison. The null hypothesis is rejected for p values less than 0.05, implying

that the radar profiles are likely to be distinct, (top) using k � sum-of-absolute-values multivariate test and (bottom) using k �

number-of-unlikely-radar-layers multivariate test.
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by comparing the radar profiles obtained during winter

of 1996–97 with those from 1997–98. For these two win-

ters, of states that had sufficient data, only one state

was shown to have a statistically significant change in its

profile of cloud occurrence. This result suggests that

large-scale atmospheric fields of the type produced by

NWP models and GCMs can be mapped in a stable and

statistically meaningful way to distributions of local-

scale observations of cloud properties, at least much of

the time. Such a mapping could be of great utility in the

analysis of GCM-predicted cloud properties. Although

the results shown are extremely encouraging, more

months of data than the 17 analyzed here need to be

evaluated. Such an evaluation could also benefit signifi-

cantly from analyzing other local-scale observables

(e.g., cloud water content or particle size).

One of the difficulties faced by all objective classifi-

cation schemes is how to determine the optimal number

of classes. We are currently studying how best to com-

bine or divide (e.g., in the case of state 10) the states

based on the bootstrap test. In a more general sense, we

are proposing an approach whereby one intentionally

chooses too many classes, and then allows the local-

scale data (which is not used in the classification) to

drive the determination of what is or is not a useful

class. In a similar manner, the bootstrap comparison of

the local-scale data could be used as a mechanism to

compare the various classification techniques, as well as

to examine the influence of different inputs on the neu-

ral-network classifier.

In this paper, we initially chose 25 states. After com-

paring all the state profiles to each other (Fig. 8), some

of the profiles were not statistically distinct. In retro-

spect, a longer time series was probably needed. Based

on our initial results, we speculate that 10 to 15 states

are required to represent the cool season adequately.

This dataset did not permit us to test the temporal sta-

bility of the warm season states, and hope to test such

in the near future. We expect that summer states will be

stable but also recognize that these will be fewer in

number and will have more inherent variability (at least

in terms of cloud occurrence).

Finally, we speculate that a large-scale classification

and associated map to local-scale cloud properties

could form the basis for future GCM cloud parameter-

izations, if a sufficient “library” of cloud properties

were available. We envision this process would work by

having a custom large-scale classification associated

with every GCM grid cell. When a given synoptic-scale

pattern was encountered, the library or distribution of

cloud properties profiles (and heating rates) for that

location would be consulted and a possible cloud real-

ization selected. In the near future, we hope to apply

this classification technique to many years of model

output from a novel GCM that contains an embedded

high-resolution cloud-resolving model (e.g., Khairout-

dinov and Randall 2001; Randall et al. 2003). This

GCM may prove capable of providing both the large-

scale atmospheric fields and library of cloud properties

needed to create a statistical parameterization.
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