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A Born-WKBJ inversion method for acoustic reflection data 

Robert W. Clayton* and Robert H. StoltS 

ABSTRACT 

Density and bulk modulus variations in an acoustic earth 
are separately recoverable from standard reflection surveys 
by utilizing the amplitude-versus-offset information present 
in the observed wave fields. Both earth structure and a vari- 
able background velocity can be accounted for by combining 
the Born and WKBJ approximations, in a “before stack” 
migration with two output sections, one for density varia- 
tions and the other for bulk modulus variations. 

For the inversion, the medium is considered to be com- 
posed of a known low-spatial frequency variation (the back- 
ground) plus an unknown high-spatial frequency variation 
in bulk modulus and density (the reflectivity). The division 
between the background and the reflectivity depends upon 
the frequency content of the source. 

For constant background parameters, computations are 
done in the Fourier domain, where the first part of the 
algorithm includes a frequency shift identical to that in an 
F-K migration. The modulus and density variations are then 
determined by observing in a least-squares sense amplitude 
versus offset wavenumber. 

For a spatially variable background, WKBJ Green’s 
operators that model the direct wave in a medium with a 
smoothly varying background are used. A downward con- 
tinuation with these operators removes the effects of variable 
velocity from the problem, and, consequently, the re- 
mainder of the inversion essentially proceeds as if the back- 
ground were constant. If the background is strictly depth 
dependent, the inversion can be expressed in closed form. 

The method neglects multiples and surface waves and it is 
restricted to precritical reflections. Density is distinguishable 
from bulk modulus only if a sufficient range of precritical 
incident angles is present in the data. 

INTRODUCTION 

In seismic reflection data, there are basically two sources of 
information about the subsurface: traveltimes and amplitudes. 
Traveltimes of the various wavefronts in the wave field generally 
provide information about the low-spatial frequency components 
(the background) of the medium parameters. Amplitudes of the 
wavefronts, on the other hand, are most sensitive to the high-spatial 

frequency components (the reflectivity). The two types of informa- 
tion sample different aspects of the medium. The amplitude varia- 
tions here are used to determine fine-scale variations in the density 
and modulus, and it will be assumed that the background can be 
determined by independent means. The field experiment necessary 
to provide data for the method is a “standard” (or perhaps slightly 
superstandard) reflection survey with multiple offset coverage. 

Our basic approach is similar to that of Cohen and Bleistein 
(1977, 1979), Phinney and Frazer (1978), and Raz (1981). We 
use a Born approximation of the Lippmann-Schwinger equation 
to develop a forward equation relating the surface data to a 
scattering potential. The scattering potential is an operator which 
depends upon the medium parameters and essentially represents 
the reflectivity of the medium. The details of this approach are 
outlined in the second section of the paper. 

The use of the Born approximation will entail several assump- 
tions about the nature of the medium and the wave phenomena 
to be modeled. First, the Born approximation is limited to primary 
subcritical reflections only. Also, since it is based on a perturba- 
tion of the true medium about the background variations, it is 
necessary to be able to construct accurate solutions for the back- 
ground variations. We use the WKBJ solutions for the back- 
gtound (as discussed in the third section). 

The remaining sections of the paper deal with the inverse prob- 
lem. In the fourth section, an inversion scheme is presented for 
the case when the background variations are assumed constant. 
In this case, the problem may be cast in the Fourier domain where 

the observed wave field can be algebraically related to variations 
in the medium parameters. 

The inverse problem in a laterally varying medium is treated 
in the fifth section. It is shown that a “before stack” migration 
of the data essentially removes the effects of the variable back- 
ground, and the remainder of the inversion proceeds as in the 
constant background case. A special case of this, where the back- 
ground variation is strictly depth dependent, is given in the final 
section. This case is of interest because the WKBJ Green’s opera- 
tors are analytical. 

We will assume the source used in the experiment is band- 
limited. This usually causes problems with inversion methods 
because at some point in the inversion scheme, the source has to be 
deconvolved. This, of course, can only be successfully done 
within a limited passband, and attempts to invert data outside this 
passband will usually cause instabilities. We will bypass this prob- 
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FIG. 1. A schematic interpretation of the Born series is shown. The 
left panel shows the first two terms in the Born series (the Born 
approximation). It contains a single scattering point, and hence 
models only the effects of the direct wave and primary reflections. 
The total response at the receiver xg due to the source at x, is 
the integration of the scattering point over all points in the subsur- 
face. The addition of another term in the series adds another 
scattering point as shown in the center panel. This term accounts 
for first-order transmission effects. The right panel shows the next 
term, which includes the effects of first-order multiples. 

lem by only reconstructing the parameter variations within a 
limited spatial frequency range. 

We will also assume that the sources and receivers used in our 
experiment have no spatial extension (i.e., they are “points”) 
and are of infinite aperture (that is, for a given source, receivers 
cover the whole of the earth’s surface, and vice versa). This, of 
course, does not conform to current practice, and we acknowledge 
that some more analysis is required to establish the correspondence 
between our experiment and that actually performed. 

Finally, we assume that the amplitude information in the data is 
retained. Since we are not attempting here to unite the rapid earth 
parameter variations with the slow ones, it is not necessary to 
know the absolute amplitude of the data. However, if we are to 
sort density from modulus variations, we must know accurately 
how amplitude varies with offset and, perhaps less accurately, 
how it varies with time

THE FORWARD SCATTERING EQUATION 

In this section we derive the Lippmann-Schwinger equation for 
acoustic problems. The Born approximation of this equation will 
lead to a simple relationship between the observed data and the 
scattering potential. 

The derivation starts with the linear isotropic acoustic wave 
equation 

LP= 
( 

$+v.b P=O, 
P > 

where P is the pressure field, K is the bulk modulus, and p is the 
density. For development of the equivalent theory based on the 
elastic wave equation, see Clayton (1981). Associated with the 
wave operator L is the Green’s operator or resolvent, which we 
formally define as’ (Taylor, 1972, p. 129) 

G = -L-l, (2) 

There are actually many Green’s operators that satisfy equation 
(2). They are distinguished from one another by the manner in 

‘To express an operator in the abstract, we use a symbol without argu- 
ments (e.g., G) to represent the entire set of values the operator can assume. 
To perform calculations, we need to look at the individual elements of the 
set, which will be represented by the symbol with arguments [e.g., 
t&V fs Ix,, z,; w)] where the left set of coordinates is the observa- 
tion pomt (xg, zg), the right set is the source point (x,, z,), and w is 
the frequency. 

which the inverse of L is evaluated. If we replace -w2 in equa- 
tion (1) with (-iw + E)~ and consider L to be a function of the 

variable E, then we can define two independent Green’s operators 

Gf = lim z 
s J- II L(E) ’ 

and 

G- = lim 2. 
E t n L(E) 

(4) 

The exploding Green’s operator G ’ projects a wavefront a positive 
distance from the source point as time increases. The imploding 
Green’s operator G- moves the wavefront a negative distance as 
time increases, or equivalently, if we keep distances positive, then 
G- projects backward in time

We will employ free-space Green’s operators. If the problem 
has external boundary conditions such as a free surface, then the 
Green’s operators should satisfy them. For acoustic problems, 
this can usually be accomplished by a linear combination of the 
free-space Green’s operators. 

In general, we cannot analytically determine the Green’s opera- 
tor for arbitrary variations in p and K. Instead, solutions are usu- 
ally cast as a perturbation about a simpler problem for which 
analytic solutions are available, or at least can be easily computed. 
We will perturb about a reference problem for which the wave 
operator is 

L,= $+o.&, 
( r Pr 1 

where K, and p,. are the reference bulk modulus and density, 
respectively. The reference density and bulk modulus will be 
chosen to be the slow variations (the background) in the true 
density and bulk modulus. By slowly varying, we mean that the 
scale length of the variations is much greater than the wavelength 
of the waves under consideration. 

To relate G and G, (the Green’s operator for L,), we employ 
the simple identity 

A = B + B(ZY’ - A-l)A 

and associate G with A and G, with B. Hence, if we define 
V = L - L,, then 

G=G,+G,VG. (‘4 

Equation (6) is the Lippmann-Schwinger equation for G, and V is 
termed the scattering potential. It is valid for any choice of G, 
that satisfies the same external boundary conditions as G. 

As written, equation (6) is implicit in G, but it can be solved 
formally. 

G = (Z - G,V)~‘G,. (7) 

The Born series is an expansion of the right-hand side of equation 
(7) in powers of the operator VG,. 

G = G, 2 (VG#. 
i= 0 (8) 

The convergence properties of this series are discussed in Taylor 
(1972, p. 146) and Newton (1966, chapters 9-10). The Born 
approximation of the Lippmann-Schwinger equation is the first 
two terms of the series 

G = G, + G,VG,. (9) 

In this section we are constructing a model for the observed data, 
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so it is appropriate to use the exploding Green’s operators (G’ 
and CT). 

In Figure 1 the Born series and the Born approximation are 
represented in terms of Feynman diagrams. According to this 
figure, if the source and receiver are above the scattering points, 
then the Born approximation models only the direct wave and pri- 
mary reflections, while the next two terms include the effects of 
transmission and first-order multiples. 

inverse problem of finding al and u2 from measurements of 
D on the surface. 

The suitability of the Born approximation depends upon how 
well the reference Green’s operator models the direct wave between 
any two points in the medium. If it is a good approximation, then 
the higher order terms have the interpretation given in Figure 1. 
Thus it is clear what physical effects we are neglecting by omitting 
the higher order terms. If the reference Green’s operator is a poor 
approximation to the direct wave, then the higher order terms con- 
tain corrections for the direct wave. In this case the series is very 
inefficient to sum up, and the suitability of the Born approximation 
is doubtful. 

For acoustic problems, the scattering potential is simply the 
difference of the wave operators in equations (1) and (5) 

,“=“2(=J+v-(;-;)v. (10) 

For convenience, we will introduce the dimensionless medium 
parameters 

(11) 

where a1 represents the spatial variations in bulk modulus relative 
to the reference modulus, and a2 represents the variations in 
density. For the remainder of the paper, we will consider al and 
a2 as the medium variations and not worry about reconstructing 
the actual modulus and density variations from them. With these 
definitions the scattering potential becomes 

V(x, 2) = w “?+v .a2v, (12) 
r Pr 

The presence of derivatives in equation (12) represents a departure 
from basic scattering theory, in which V is a simple function of 
the spatial variables rather than a differential operator. As it turns 
out, however, the structure of V will not greatly complicate the 
problem. 

The observations of the wave field response are made on the 
horizontal surface (z, = zg = 0). In the following we will 
take the earth to be two-dimensional (2-D), making occasional 
note of the (straightforward) extensions to three-dimensions (3-D). 
In the 2-D problem, the response is a function of the receiver 
location xg , the source location x,, and frequency. It is con- 
venient to define the data wave field D as D = (G - G,) S(u), 
where S(w) is the Fourier transform of the source time function. 
Thus, D is the total recorded wave field minus the direct wave 
from the source to the receiver. Using the Born approximation, 
the relationship between the data field and the scattering potential is 

D(x,, x,, w) 

= &’ 
I I 

dz’G:(x,, 0 IX’, z’; w)V(x’, z’; o) . 

* G: (x’, z’ 1 x,, 0; w)S(o). (13) 

Equation (13) is a forward equation in the sense that given the 
parameter variations al and ua, the observed data wave field 
can be computed. Henceforth, we will be concerned with the 

WKBJ SOLUTIONS FOR THE DIRECT WAVE 

The suitability of the Born approximation depends upon how 
well the reference Green’s operator models the direct wave in the 
medium. Since the effects of reflections, transmissions, and 
multipathing are best handled by the Born series itself (Stolt and 
Jacobs, 1980), we can ignore these effects when constructing the 
reference Green’s operator. This makes the solution for the direct 
wave a candidate for the WKBJ approximation. 

To find the 2-D Green’s operators for the reference problem 
L,G: = -6(x - x,)6(z - z,). they are cast as an asymptotic 
expansion of the form2 (Yedlin, 1981) 

G: (x, z ( x,, 2, ; 4 

- .4,(x, z 1 x,, z,) 
= ?HF) [w e(x, z I xs, z,,l c . (14) 

n=O (io)” 

Under the WKBJ approximation, we retain only the first term in 
the expansion. Hence, 

G:(x, z lx,, z,; w) 

= +Hf [w 0(x, z ( x,, z,)]Ao(x, z ( x,, z,). (1% 

As (x, z) -+ (xs, z,), we require that G: approach the con- 
stant background form, Thus 0 (x, z ) x,, z,) + vxf + z”,/ 

v,(x,, ZA and AO~, z I x,, --A + pr(xs, z,)/4i. Applying 
the reference wave operator L,. to equation (15), the following 
equations are generated for 0 and A0 by matching powers of w: 

and 

V&J-& Ao=ZIV+.VAo. 
! 

(17) 
Pr r Pr 

The first equation is the Eikonal equation, and its solution for 8 
governs the traveltime of the wavefronts. The solution for A0 
from the second equation (the transport equation) determines the 
amplitudes of the wavefronts. The higher order terms in the ex- 
pansion correct for the low-frequency behavior of the solution. 
The WKBJ solutions will be accurate if the wavelength of the 
waves is considerably shorter than the scale length of the variations 
in the medium. This is the motivation for choosing the back- 
ground parameters to be slowly varying. 

For a constant parameter medium, the Green’s operators have a 
simple analytical form which is given in the next section. For the 
slightly more general case of a depth variable background, the 
Green’s operators are 

G;(x, z 1 x,, z,; 4 

where 

q(z)=_ ~ d 1 _ evm 
v,(z) co2 (19) 

‘H&” is the Hankel function of the first kind, and HA” is the Hankel 
function of the second kind. 
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Equation (18) points out that the WKBJ solution is not valid near 
turning points [q (2) = 01. 

For a laterally variable background, the WKBJ solutions must 
be obtained numerically. The straightforward construction of GF 
using equations (15), (16), and (17) is certainly possible. How- 
ever, finite-difference solutions of one-way wave equations 
(Claerbout, 1976; Clayton and Engquist, 1980) may provide a 
better approach if the tendency of current formulations to over- 
look amplitude effects is corrected or compensated for. 

CONSTANT BACKGROUND INVERSION 

An inversion method is presented for the case when the reference 
parameters K, and pr are assumed to be constant. The solution 
in this case is simple because the WKBJ Green’s operators have 
an exact analytical form. The resulting inversion will contain a 
frequency shift which is identical to F-K migration on “un- 
stacked” data (Stolt, 1978). 

The first step is to Fourier transform3 the data wave field 
[equation (13)] over xg and x,. 

D(kg, k,, Co) = L 
2,Tl I I 

dr, &,e?kgxgD(xg, x,, m)eiksxs 

= 
I I 

ds’ dz’G;(k,, 0 1 x’, z’; co) . 

. V(x’, z’; m)G:(x’, z’ 1 k,, 0; w)S(w).(ZO) 

In the 2-D problem (line sources and receivers), xg, x,, kg, and 
k, are scalars. If we consider them to be two-component vectors 
and adjust the occasional factor of 2~, then the equations that 
follow will hold for the 3-D problem, too. 

For constant background parameters, the Green’s operators in 
equation (20) have the analytical expressions 

G: (kg, 0 1 x’, z’ ; o) = ip, 
e-i(kgx’-qglz’l) 

v% 2qg 
(21) 

and 

G:(n', z’ ) k,, 0; w) = ‘Pr 
ei(k,~‘+q,lz’l) 

where 

qg = w 
“, 

In the expressions for qg and qs, we have intentionally factored 
an w outside the square roots to indicate that qg, qs, and o 
have the same sign. 

We will now use the fact that the Green’s operators look very 
much like the kernel of a Fourier transform to obtain a simple 
equation relating the data field to the scattering potential. Sub- 
stituting equations (21) and (22) into equation (20), we have 

31n this paper Fourier transforms over source coordinates have the opposite 
sense to those over receiver coordinates. Also, rather than define a new 
symbol to express the Fourier transform of a quantity, we use the same 
symbol with a different argument. Thus, 

G(k,, 0 1 x’, 2’; co) = -!-- 1 d~~e-‘~s~sG(x,, 
6 

0 1 x’, 2’; co), 

and 

G(x’, z’ ( k,, 0; W) = 1 
6 

dr,G(x’, z’ 1 x,, 0; co)eiksXs. 

These conventions may seen unnatural to some, but they are consistent with 
the treatment of D and G as linear operators. 

D(k,, k,, 
e-i(kgz'-qglz'I) 

2qg . 
ei(k,r’+q,lz’l) 

. V(x’, z’ ; w) 
2qs 

S(O). (24) 

We now assume that al(x, z) and az(x, z) are zero for 
z < 0. This will allow us to drop the absolute signs in equation 
(24) because V(x’, z’; w) will be zero for z’ < 0. Actually, re- 
moving the absolute signs will mean that any scatterers located 
above the datum plane z = 0 will only contribute to D in negative 
time This point is discussed further in the next section. Using the 
definition (12) of V and integrating equation (24) by parts yields 

e-i~(kg -k,)x’-(qg+q&‘l 

4$& . 

.I w2 
-ul(x’, z’) + (qgqs - k,k,bzb’> 2’) S(o). (25) 
..2 

L vr 
1 
_I 

The two integrals in equation (25) are recognizable as Fourier 
transforms over x’ and z’. Thus, 

- ks, -qg - qs) (26) 

1 

+ (qgqs - k,k,)c~z(k, - k,, -qg - qs) S(o). 1 
That is, the triple Fourier transform of D is a linear combination 
of the double Fourier transforms of al and u2. Counting vari- 
ables on both sides of equation (26) indicates the inverse problem 
is overdetermined. That is, there should be more than enough in- 
formation in D to solve for al and ~2. If V were a more 

general operator, things would have been different. V would then 
be a function of two sets of coordinates [V(n, z) -+ V(x, z 1 x’, 
z’)], and equation (26) would have the form 

2d 
D(k,, k,, W) = - - 

4qgqs 
V(k,, -qg I ks, qsb). (27) 

That is, the triple Fourier transform of D would then be propor- 
tional to the quadruple Fourier transform of V. Counting variables 
again, we see the problem is underdetermined, and consequently 
there would be no ‘way to calculatr V given D. 

The first step to solving for aI and u2 is to change to midpoint- 

offset coordinates. The midpoint wavenumber (k,) and the half- 
offset wavenumber (kh) are defined by4 

k,=k,-k, and kh=kg+k,. (28) 

In the space domain, these substitutions correspond to a midpoint 
(x,) and a half-offset (xh) defined as 

x +x 
X, 

=z and x,, = 
xg - XS 

2 2 
(29) 

Also, since al and u2 depend upon -(qg + qs), a new in- 
dependent variable (k,) is defined 

4These definitions of midpoint and offset wavenumber differ from those 
of other authors (c.f., Yilmaz and Claerbout, 1980), because we have 
used a conjugate rather than a symmetric relationship between source 
and receiver. This arises directly from the operator notation used in this 
paper. In the physical domain [equation (2911, the relations for midpoint 
and offset are the same with both approaches. 
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After a little algebra, equations (28) and (30) may be combined 
to obtain expressions for w, qs, and qg in terms of the new 
variables k,, kh, k,. 

w = - ++l + k$/k$)(l + k;/@) 

= w(k,, kh, k,), (31) 

qg = - $ (1 - k,kh/% 

and 

qs = - $ (1 + k,kh/e). (33) 

Combining equations (26), (31), (32), and (33), we obtain 

D(k,, kht kz) = -pr i&km h, k,)ai(k,, k,) S(w), 
i=l 1 

(34) 

where 

1 (@+k?J(ti++iJ 
Al@,, kh, k,) = 4 

k4 - k;k; L 

and 

1 (ti--kK)(@+k%) 
Az(k,, kh, k,) = 4 

k4-k;k; L 

(35) 

(36) 

In equation (34), it is understood that w obeys the functional re- 
lationship given in equation (3 1) which is identical to the frequency 
shift used in F-K migration [Stolt, 1978, equation (60)]. 

To invert equation (34), we start by deconvolving the source 
S(o). Thus we define 

-1 D&n, kh, w) 
D’(k,, kh, k,) = pr 

S(w) . 
(37) 

Since in general S(w) will be band-limited, this operation cannot 
be accomplished exactly without introducing instabilities. This 
is the point where Gel’fand-Levitan inverse methods (Ware and 
Aki, 1969; Jacobs and Stolt, 1980) have problems. To avoid the 
instabilities, we simply set D ’ to zero outside the frequency band- 
width of S(w), which means we will only be able to resolve the 
variations in nl and a2 within the passband 

~1 5 otk,, kh, k,) 5 ~2, (38) 

where w1 and oa are the lower and upper limits of the passband 
of S(w). In Figure 2 the region of resolution is illustrated for 
kh = 0. It is interesting to note that by increasing the ratio 
kh/k,, the circles in this figure will shrink in radius. Hence, it 
appears possible to partially fill in the low-frequency variations in 
the parameters by increasing the offset in the experiment. 

With the (partial) deconvolution of equation (37), the inverse 
problem reduces to 

D’(k,, kh, k,) = Z? Ai(k,, kh, kz)ai(km, k,). (39) 
i=l 

Since ai is independent of kh, the measurement of D’ at any 
two distinct values of kh will suffice to determine al and a2. In 
a standard reflection survey, however, D’ is usually determined 
at many values of kh, and therefore a more robust evaluation is 
possible. For example, a least-squares determination is given by 
the solution to the equation 

-%l 

,km ,kh) 

FIG. 2. The shaded ring shows the region of resolution of the bulk 
modulus and density variations. Here k,, k,, and kh are 
(respectively) the vertical, midpoint, and offset wavenumbers. 
The width and radius of the ring depend upon the passband Aw 
of the source time function. .& tKe ratid kh/k, -is increased, 
the radius of the ring shrinks. This corresponds in the physical 
domain to increasing the source-receiver offset relative to the 
depth to the reflector. 

In this equation, the summations are taken over kh with the re- 
striction that 

(41) 

The necessity for the restriction lies in the fact that the Born ap- 
proximation as used in this paper is not adequate in the evanescent 
zone. This restriction is sufficient to avoid both evanescent zones 
in equation (30), and to avoid turning points in both the up- and 
downgoing paths by keeping both qg and qs strictly negative 
in equations (32) and (33). In practice, the finite range of offsets 
attainable for a given experiment will likely impose a more severe 
restriction than equation (41). If the range of offsets is too small, 
the restrictions on usable kh may be so severe that al cannot be 
distinguished from a2. In this case the determinant of the matrix 
in equation (40) approaches zero. 

Thus far we have been concerned with the 2-D problem which 
has line sources and receivers. The full 3-D problem with point 
sources and receivers is only slightly different. In the usual seismic 
experiment, the data are recorded with (assumed) point sources 
and receivers, but along a line on the free surface. In the Appendix, 
results presented in this section are modified for this case. 

INVERSION WITH A VARIABLE BACKGROUND 

For a realistic earth model, we must assume that the background 
parameters will vary from one location to another. If we ignore 
this variation as we did in the previous section, then the inversion 
scheme will locate the parameter variations incorrectly. For- 
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tunately, if the background variations are known, their effects 
may be removed from the inversion problem by a downward 
continuation. This step is actually a “before stack” migration of 
data prior to the inversion. 

The migration is based on the representation integral over a 
closed surface S. If we assume that P is a solution to the wave 
equation L,P = -F, where F is a volume source and Gi are 
the_ Green’s operators associated with Lr. then the representation 
integral is5 

R-(x) = \ ds G;(x ) s)T(s)P(s), (42) 

where 

and n is the normal to the surface. The arrows in the definition 
of T(s) have the following meaning 

The imploding Green’s operator is used in equation (42) because, 
since it projects backward in time it is the proper operator to 
backtrack a wave to its point of origin. If we wanted to extrapolate 
waves away from their point of origin, then G: would replace 
GF in equation (42). Using the divergence theorem. we may 
convert R- to a volume integral 

R_(x) = P(x’) 

= dx'G;(x I x%5 -4,Pb'L 

where V is the volume bounded by S and x’ E V. Applying the 
fact that L,P = -F and L,G; = -I, R- is found to be 

I P(x) + r dx’G;(x 1 x’)F(x’) for x E V 

R-(x) = { “,v 

I Jv dx’GF(x 1 x’)F(x’) for x @! V. 
(43) 

If there are no sources inside the volume then R _ (x) is a representa- 
tion of P(x) inside the volume and zero outside. When sources 
are present, they contribute to both the inner and outer solutions. 

Equations (42) and (43) relate a volume integral to an integral 
over a closed surface containing the volume. To be useful for the 
seismic experiment, we will need an expression involving an 
integral over an open surface. 

Consider applying the representation to a field point outside the 
volume. The geometry is shown in Figure 3. The closed surface 
integral can be broken up into two line integrals, if we assume 
that the edges are sufficiently far away that their contribution is 
zero. Hence we can write, by equation (43), 

R-(x) = / ds,G;(xIso)T(so)P(so) 
‘SO 

‘The reader may interpret this and succeeding equations either as being in 
the frequency domain (in which case the w-dependence of most quantities 
has been suppressed) or as vector equations in the time domain (in which 
case there will be an implied convolution over time in most of the following 
equations). 

_ I ds,G; b 1 s,) T(s,)f’(s,) 
S* 

= Ro(x) - R,(x) = I 
dx’G;(x 1 x’)F(x’). (44) 

V 

Suppose that P has been generated by sources partly within V and 

partly beneath it (V’). That is, 

P(x) = j dx’G:(x 1 x’)F(x’) + 
J 
r dx’G:(x 1 x’)F(x’) 

V VC 

= Pu(x) + PL(X). (45) 

Note that the integral contains the exploding Green’s operators 
because we are constructing a model of the wave field. If we now 
take x to lie infinitesimally below the surface S,, then we can 
evaluate R, (x) to a very good approximation as 

R,(x) = PL(x). (46) 

To obtain this result, assume that PL is upgoing at S, since it 
was created by sources beneath S,, and similarly Pu is down- 
going at S,. For x close enough to S,, and for reasonable 
angles of propagation, the WKBJ Green’s operator GF (x 1 S,) 
can be thought of as a constant velocity Green’s operator. It is 
then easy to demonstrate that the surface integral R,(x) recreates 
the portion of P(x) which was upgoing at S,. The Green’s 
operator G; loses the downgoing part because Pu(x) reaches 
x after S,. 

With this result, equation (44) can be rewritten as 

Ro(x) = PL(x) + I 
dx' G; (x 1 x’)F(x’). (47) 

V 

To see what the volume integral in equation (47) really is, consider 
it in the time domain. Suppose that the source distribution F is 
concentrated at zero time Then, since G; = 0 for t > 0, the 
integral itself is zero for t > 0; i.c., sources above x contribute to 
the downward continued field Ro(x) only in negative time [and, 
in fact, are time reversals of their contribution Pu(x) to the true 
wave field P(X)]. The substance of equation (47) is that it is a 
prescription for downward continuation of P from the surface 
So to the point x. 

Now we generalize the representation to reflection data. The 
appropriate surface integral in this case is 

RP(x,)x,) = - 
I 

ds G,(x, 1 s)T(s) . 

S 

. 
I 

ds’D(s / s’)T(s’)G;(s’ 1 x,). (48) 
S 

Applying the divergence theorem twice, the expression can be 
converted to the volume integral 

R-(x, I x,) = - dx’G;(x, I x)(2-y. 

. D(x 1 “‘Hfir - ~)G’(x’ I x,1, (49) 

where x and x’ E V. For xg and x, below the volume, equation 
(49) reduces to 

R-(x, 1 x,) = 
I I 

dx dx’G,. (xg 1 x) . 
V V 

. L:D(x 1 x’)L:G; (x’ ( x,). 

Invoking the Born approximation for D [equation (13) with 
S(o) = 11, this becomes 
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FIG. 3. The left panel shows the closed contour (5) to be used in 
the representation of the response at x. The closed contour is then 
broken into two line integrals over Se and S, shown in the right 
panel. The contribution from the edges is assumed to be zero. In 
the text, it is shown that for positive time response at x can be 
related to a line integral of recorded data along So. 

R- bg I x,1 = I dxG; (xg I x)V(x)G;(x I x,). (50) 
V 

We can repeat the previous analysis [equations (44) to (47)] to 
construct a downward continuation operator from the surface 
integral (48). The analogous results are (provided xg and x, are 
infinitesimally below the surface 5,) 

(51) 

and 

Rcl(xs I x,1 = 

= 

I I dso ddG;(x, 1 so)T(so) . 
SO 

1 
SO 

. D(so d)%9GF (~6 1 x,) 

DL(x~ I x,1 + I dxG,(x, / x) . 

. V(x)G;(x 1 x,) (52) 

where DL is the reflection data from points below 5,. The 
volume integral involving G- VG- is zero in positive time Thus 
for t > 0, R, and R. are identical, and R. is a formula for down- 
ward continuation of the data field. The G- VG- term in Ro 
simply represents the well known fact in downward continuation 
that the response from reflectors above the datum plane is pushed 
into negative time This is because the downward continuation 
operator is unable to reflect the wave field. It can continue to a 
reflection point, but when continuing past a reflector, it extra- 
polates the waves instead of reflecting them, making them appear 
in negative time

The result obtained in equation (52) can be easily generalized 
to move the data wave field between any two planes. Tc move 
D from the depth z - F to the depth z, we have for t > 0 

DL(s,Is:)=j dsj ds’G-(s,)s)T(s). 
sz-E sz-E 

. D(s 1 s')T(s')G-(s' I s;). (53) 

We are now in a position to invert the data for the scattering 
potential. First we define the migrated wave field M at depth z to 
be the zero time component of the downward continued field. 

P,(X,, z)r,(x,, z)M(xg, x,, z) = lim 
t1o I 

&-i”t . 

. DLbg, z I .c,, 2; WI (54) 

= 
I do Ro&, z 1 x,, z; WI. 

Except for the retention of data at xg # x,, this corresponds 

closely with the usual definition of migration of unstacked data. 
The presence of pr and v, in our definition will simplify things 
later on. For now we just note that with this definition, the triple 
Fourier transform of M is dimensionless. 

We now use equation (53) to relate the data field in equation 
(54) to the data field a small distance (E) above. Writing this out 
for the 2-D case, we have 

. G;(x,, z 1 x;, z - E; o)T(x;, z - E) . 

. DL(x;, z .- E 1 x6, z - E)T(X;, z - E) . 

. G;(x;, Z - E ) X,, Z; W). (55) 

As time goes to zero, causality requires that the region of support 
for the x; and xl integrals shrink to a small region centered 
around the midpoint between xg and x,. Under the assumption 
of a smoothly varying background, G; and DL will assume 
in this region the constant parameter forms with the relevant param- 
eters being K,(x,, z) and p,.(x,, z). Substituting in the con- 
stant parameter Green’s operators from the previous section 
[equations (21) and (22)] and performing the T operator deriva- 
tives, we have 

PrvMb,, x8-7 d = ]dw(dk,j-dk; 

. DL(kg, z - E 1 k,, z - E; w) . 

. e”kgxg k,x,)e-M7g+9,~~ (56) 

Substituting in the constant parameter form for DL [equation 
(34) multiplied by e -L(r-E)(qg+q~J since the datum plane for DL is 
z - E], we have 

bM(Xg, xs, 4 = - Idco/dkgj-dk; 

. ei(kgxg-k,r,)e-iz(qg+9~) . 

. ai(kg - ks, -qg - qs)T (57) 

where coefficients Ai are defined in equations (35) and (36). 
Even though it is not explicitly mentioned in equation (57), 
coefficients Ai depend upon _Y,;, and z via the background 
modulus and density K,(x,, z) and pr(xm, z). 

Equation (57) looks suspiciously like a Fourier transform, and 
indeed we can put it in that form. Changing integration variables 
in equation (57) from (0, k,, k,) to (k,, k,, kh) as in 
equations (28) and (30) yields 

M(xm, xh, z) = - j-&, j-&h ; lzi er(kmxm+khrh+kzz). 

i=l V, 

With forms (35) and (36) for Al and AZ, plus the relation 

121 =:~~~~A1(kg,k],qg,qS) (59) 

obtained by differentiating equation (31), we have 
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where 

e~(k,X,+k/,Xh+k,r~ _ 

. iii1 ai@,, k,)B,(k,, kh> k,), 

and 

if - kh2 
&t(km, kh, k,) = Bl(k,, k/a, k,) e + kh2 

(60) 

(61) 

Note that B1 and B2 do not depend upon the spatial coordinates. 
Equation (60) is in fact a 3-D Fourier inverse transform over k,, 

kh, and k,. Taking the Fourier transform of both sides, we 
arrive at the final result 

M(k,, kh, k,) = 5 ai&,, k,)Bi(k,, kh> k,). (63) 
i=l 

Thus, just as in the constant background case, the 3-D Fourier 
transform of the migrated field is a linear combination (with known 
coefficients) of the 2-D Fourier transforms of al and a2. Pro- 
vided a sufficient range of kh (or kh/k, = tan +, where + is 
angle of incidence) exists in the data, equation (63) is solvable 
for al and u2. 

INVERSION WITH A DEPTH VARIABLE BACKGROUND 

In this section we consider a special case of the previous section 
in which the background parameters are allowed to vary only in 
the depth direction. The WKBJ Green’s operators in this case are 
analytic, and, consequently, explicit formulas can be derived for 
the inverse problem. 

For a depth variable medium, the WKBJ Green’s operators are 
given by equation (18). With these we can form the Born-WKBJ 
approximation of the data field 

In the derivation of this equation, the derivatives of qg and qs 
were neglected in comparison to the derivatives of the phase terms. 
Note that as z + 0, the downward continued field Ro approaches 
the data field D, as it must. According to equation (66), downward 
continuation is achieved in the vertically varying case by multiply- 
ing the data by the phase factor 

[ 1 
z 

exp -i h kg + qg) I 
0 1 

and adjusting the amplitude of the data. The phase factor is that 
used in the Gazdag phase-shift migration method (Gazdag, 1978). 

By equation (54), migration is achieved by integrating the down- 
ward continued field R. over all frequencies and dividing by 
p,.v,. Formally, 

1 
M(k,, k,, ~1 = 

4g (0) 9s (0) 

v,(z) P,(O) qg(z)qs(z) . 
-i i,l dz'(qg + Y,) 

.e D(k,, 0 1 k,, 0). (67) 

According to equation (63), the Fourier transform over z of this 
quantitjr is a-!inear combination of the double Fourier transforms 
of the desired quantities a 1 and uz. 

In the Appendix, necessary modifications are given to incor- 
porate point sources and receivers into the above solution. 

CONCLUSIONS 

An inversion scheme has been presented to determine the rapid 
variations in bulk modulus and density from the amplitude versus 
offset information present in a seismic reflection survey. The 
procedure consists of two steps. 

First, a before stack migration of the data is performed with 
WKBJ Green’s operators for an assumed slowly varying back- 
ground variation in the medium parameters. The migration 
essentially removes the effects of the background from the in- 
version by transforming the recorded wave field from the time

i Jydz’[u,Cz~l t qs(Z’)l 

D(k,, zg = 0 1 k,, z, = 0; co) = 
-fb(O) 

j 

z dz e -. 

8~%g(O)qs(O) 0 d/4&? (4 4s (4 

al(kg - ks, 2) + [q,(zh,(z) - k,k,]az(k, - k,, z) 1 (64) 

where qg and qs are the same as in equation (23) except that 
now the velocity is a function of z. 

Equation (52) for the downward continued field R. can be 
evaluated explicitly in this case. Fourier transforms over the 
lateral coordinates yield 

RON,, z 1 k,, 4 = - I(, dsG;(k,, z 1 s) . T(s) j ds’ 
s 

. D(s 1 s’)T(s’)G; (~‘1 k,, z). (65) 

In this expression we have set the continuation depths for both 
the sources and receivers equal to z. To evaluate this expression, 
we need only substitute the explicit form (18) for each G; and do 
the derivatives in each T. The result is 

,7 
P,(Z) 

ROW,, z 1 k,, 4 = - 
qg(0)qs(O) 

P,(O) 

e -iJ;dz’(% + 4s) 

qg(z)q,(z) 

domain to the depth domain. For a constant background, this step 
is similar to F-K migration. For a depth variable background, a 
phase shift migration is used. For a laterally variable background, 
the WKBJ Green’s operators have to be constructed numerically. 

The second step is to determine the parameter variation from 
the migrated data. It is shown that the triple Fourier transform of 
the migrated data is a linear combination (with known coefficients) 
of the double Fourier transform of the bulk modulus and density 
variations. Thus, a simple least-squares solution can be used to 
invert the data. 

ACKNOWLEDGMENT 

We would like to thank the sponsors of the Stanford Exploration 
project for their support. 



Born-WKBJ Inversion Method for Reflection Data 1567 

REFERENCES 

Claerbout, J. F., 1976, Fundamentals of geophysical data processing: 
New York, McGraw-Hill Book Co., Inc. 

Clayton, R. W., 1981, Wavefield inversion methods for refraction and 
reflection data: Ph.D. thesis, Stanford Univ. 

Clayton, R. W., and Engquist, B., 1980, Absorbing boundary conditions 
for wave-equation migration: Geophysics, v. 45, p. 895-904. 

Cohen, J. K., and Bleistein, N., 1977, An inverse method for determining 
small variations in propagation speed: SIAM J. of Appl. Math., v. 32, 
p. 784-799. 

- 1979, Velocity inversion procedure for acoustic waves: Geo- 
physics, v. 44, lx iO77-iO8-7. 

Gazdae. J., 1978. Wave equation migration with the phase shift method: 
GeoFhysics, V. 43, p, lj42-1351.- 

Jacobs, A., and Stolt, R., 1980, Seismic inversion in a layered medium- 
The Gelfand-Levitan algorithm: Submitted to Geophysics. 

Newton, R. G., 1966, Scattering theory of waves and particles: New York, 
McGraw-Hill Book Co., Inc. 

Phinney, R. A., and Frazer, L. N., 1978, On the theory of seismic 
imaging by Fourier transform: Presented at the 48th Annual International 
SEG Meeting, October 3 1, in San Francisco. 

Raz, S., 1981, Three-dimensional velocity profile inversion from finite- 
offset scattering data: Geophysics, v. 46, p. 837-842. 

Stolt, R. H., 1978, Migration by Fourier transform: Geophysics, v. 43, 
p. 23-48. 

Stolt, R. H., and Jacobs, A., 1980, An approach to the inverse seismic 
problem: Submitted to Geophysics. 

Taylor, J. R., 1972, Scattering theory: New York, John Wiley and Sons, 
Inc. 

Ware, J. A., and Aki, K., 1969, Continuous and discrete inverse scatter- 
ing problems in a stratified elastic medium, I: Plane waves at normal 
incidence: J. Acoust. Sot. Am., v. 45, p. 911-921. 

Yedlin, M., 1981, Uniform asymptotic representation of the Green’s func- 
tion for the 2-D acoustic problem: to be submitted. 

Yilmaz O., and Claerbout, J., 1980, Prestack partial migration: Geo- 
physics, v. 45, p. 1753-1779. 

APPENDIX 
INCORPORATING POINT SOURCES AND RECEIVERS IN THE 

TWO-DIMENSIONAL SOLUTION 

The solutions given in the text are for a 2-D medium. However, 
it is trivial to modify the solutions for the full 3-D case. For 
example, the 3-D equivalent of the constant background equation 
(26) is 

-1 p: [6.? 
-- 

-Q 4qq’ L”“r 
a& - k,, ky - k;, -q -4’) 

+ (qq’ - k,k, - kyk;)uz(kg - k,, k, - k;, -q -4’) S(o), 1 
where 

In this equation primed variables refer to the source location, while 
unprimed variables refer to the receiver location. 

The seismic experiment is usually conducted along a line (say, 
y = y ’ = 0), and the medium parameters are assumed to be 
invariant in the y-direction. In this case the ai have the form (in 
the wavenumber space) 

ai(k, - k,, k, - k;, -q -9’) 
+ ai&, - k,, -q -q’)S(k, - k;). (A-2j 

To restrict the 3-D problem to one that can be handled by the 2-D 
algorithm outlined in the text, we start by inverse transforming 
over k, and k; and evaluating the data field along y = y’ = 0. 

Nk,, 0 1 k,, 0; w) = j- dk, j- dk;D(k,, k, 1 k,, k;; 4.13) 

The integral over k; can be evaluated trivially because of the 
form of ai in equation (A-2). 

D(k,, 0 I k,, 0; w) = j- dk,D(k,, ky 1 k,, k,; WI. (A-4) 

To remove the remaining integral over k,, we express the 
CZi as- a Fourier transform 0vkT 2. That~ is, 

ai(k, - k,, -q -4’) = 
I 

dz eCi@+q’)*ui(kg - k,, z). (A-5) 

Substituting equation (A-5) into equation (A-4) and interchang- 
ing the order of integration, we have 

D(k,, 0 ( k,, 0; W) = 1 dz i j dk,Ai(k,, k,, k,, q. q’) * 
i=l 

. ai(kg 
_ k,, z)e-i(q+q’)z, 

(‘4-6) 

where the Ai are the 3-D analogs of the factors defined by equa- 
tions (35) and (36). If we assume the Ai are slowly varying 
compared to the exponential, then we can evaluate the k, integral 
by stationary phase. To do this, q + q’ is expanded about the point 
where its derivative with respect to k, is zero, which in this case 
is the point k, = 0. Thus, 

q + q’ = k, + k$:, 

where k, is given by equation (30), and Pi = -k,/q,q,. 

In the last expression qg and qs are the 2-D vertical wave- 
numbers defined by equation (23). 

Using the standard stationary phase formulas, equation (A-4) 
may be expressed as 

D(kg, 0 1 k,, 0; O) = i Airii, 
i=l 

(A-7) 

where the tii are scaled versions of the ai used in the text 

Ui(X, z) 
cii(X, z) = ~ 

G ’ 
(A-8) 

and the factors A;~ are related to the Ai of equations (35) and 

(36) by 

& = J YAi. 
z 

(A-9) 

The result is, of course, subject to the approximations used in 
the stationary phase evaluation of the ky integral. However, 
since most seismic data are far-field, we expect the approximation 
to be reasonably accurate. 

For the vertically varying medium, a similar argument leads to 
a modification of the multiplicative factor in the downward con- 
tinuation algorithm. We obtain 

Ro(k,> z 1 L 4 

The rest of the inversion proceeds as before. 
The modification required to adapt the laterally varying algorithm 

to point sources and receivers will be left as an exercise for the 
reader. 


