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ABSTRACT:  Olefin hydroboration reactions provide efficient 
access to synthetically versatile and easily-handled organobo-
ronic esters.  In this study we demonstrate that the commercially 
available organoborane reagent 9-borabicyclo[3.3.1]nonane 
(H-B-9-BBN) can serve as a catalyst for the sequential double 
hydroboration of alkynes using pinacolborane. This strategy, 
which is effective for a wide range of terminal alkynes, is pred-
icated upon a key C(sp3)-B / B-H transborylation reaction.  
Transition-state thermodynamic parameters and 10-boron-iso-
topic labeling experiments are indicative of an σ-bond metath-
esis exchange pathway. 

Many organoborane (H-B) species undergo olefin hydrobora-
tion reactions under ambient conditions.1,2 However, dioxabo-
rolane derivatives [i.e HB(OR)2] such as pinacolborane 
(HBpin) or catecholborane (HBcat) do not,3 and require the use 
of a catalyst to enable reactivity.4,5 A wide variety of catalysts 
and initiators has been reported to perform olefin hydroboration 
reactions with HBpin as the functional reagent, including tran-
sition metals5 and main group species,6 amongst others.7 Of the 
many methods developed, borane-catalyzed alkyne hydrobora-
tion has emerged as a simple and powerful strategy for the for-
mation of (E)-alkenylboronic esters (Scheme 1, a).8 As such, 
this approach has been used in the construction of several natu-
ral products and pharmacologically active compounds.9  

We recently investigated the HBCy2-catalyzed reaction re-
ported by Hoshi to find that the key turnover limiting trans-
borylation step, C(sp2)-B / B-H (exchange of boron groups), had 
a barrier of ΔG‡

exp = 20.3 kcal mol-1 (Scheme 1, a).10 Fontaine 
similarly demonstrated heteroarene C(sp2)-B / B-H exchange as 
a key step for catalytic C-H bond borylation, and determined a 
transborylation barrier of ΔG‡

calc(273K) = 14.2 kcal mol-1 (Scheme 
1, b).11 While C(sp2)-B / B-H exchange has been synthetically 
used and studied, examples of extension to C(sp3)-B / B-H 
transborylation have not been reported.12 In the case of the  

Scheme 1. Applications of transborylation 

 

Hoshi-hydroboration, alkyne diborylation was found to inhibit 
catalysis and C(sp3)-B / B-H transborylation was not ob-
served.10 Likewise, Fontaine’s heteroarene hydroboration was 
proposed to proceed by ligand-exchange (O-B / B-H metathe-
sis, ΔG‡

calc = 23.7 kcal mol-1) rather than C(sp3)-B / B-H trans-
borylation, suggesting that exchange at alkyl C(sp3)-B bonds 
proceeds by ligand redistribution and not boron-boron trans-
borylation. 13  



 

We questioned whether careful choice of borane structure could 
be used to overcome the energetic barrier to C(sp3)-B / B-H 
transborylation and therefore provide a mechanism for the bo-
rane-catalyzed double hydroboration of alkynes, a transfor-
mation currently limited to metal-catalyzed processes.14-16 The 
gem-diboryl alkane products are a class of synthetically versa-
tile, stable alkyl boronic ester building blocks capable of diverse 
downstream functionalization.16,17 Our strategy aimed to use an 
organoborane catalyst in combination with HBpin as the turno-
ver reagent to access these products. Borane-catalyzed alkyne 
hydroboration to give an intermediate (E)-alkenyl pinacol bo-
ronic ester would be followed by a second borane-catalyzed hy-
droboration passing through an intermediate mixed gem-diboryl 
species (Bpin/B-9-BBN). Conversion of this intermediate to the 
product gem-diboryl alkane (Bpin/Bpin) would be key in estab-
lishing the mechanism of catalyst turnover. 

Our investigations began by assessing the reactivity of a series 
of commonly used borane sources as potential catalysts for the 
sequential double hydroboration of alkynes. Using HBCy2, [H-
B-9-BBN]2, H3B•THF and H3B•DMS as the boron catalyst and 
HBpin as the turnover reagent, reactivity towards phenylacety-
lene 1a was assessed and reaction conditions optimized 
(Scheme 2, a). Of the potential borane catalysts tested, commer-
cially available [H-B-9-BBN]2 gave the greatest activity in 
achieving the borane-catalyzed formation of the gem-diboryl al-
kane product 2a (Scheme 2, a, see also supporting information). 
However, the question of which mechanistic scenario was op-
erating, ligand redistribution or C(sp3)-B / B-H transborylation, 
remained.   

In order to confirm the mechanism of catalyst turnover, a series 
of isotopic labelling experiments were conducted (Scheme 2, b-
e). Use of DBpin gave deuterium incorporation at the benzylic 
position (d2-2a), however at a level surpassing that expected 
given the hydride content of the catalyst (Scheme 2, b, 60% ex-
pected vs. 75% observed). This was explained by the observable 
hydrogen isotope exchange reaction between [H-B-9-BBN]2 
and DBpin, to give [D-B-9-BBN]2 (Scheme 2, c). Use of mono-
deutero alkyne d1-1i, under the standard reaction conditions, 
showed no deuterium migration from the terminal carbon 
(Scheme 2, d). The key question of ligand redistribution (9-
BBN → pinacol) vs. C(sp3)-B / B-H transborylation in the key 
catalyst turnover step was established using 10B-enriched 
H10Bpin (Scheme 2, e).10 The gem-diboryl alkane 10B2-2a was 
obtained with high 10B-incorportation (93%), demonstrating 
that the boron from the catalyst is not incorporated into the 
product and thus indicating that catalyst turnover was C(sp3)-B 
/ B-H transborylation.  

 

 

 

 

 

 

 

Scheme 2. Reaction conditions and mechanistic studies  



 

Table 1. Scope of borane-catalyzed double hydroboration.a 

 

aReaction conditions:  alkyne (1a-ac), HBpin (3 equiv.), [H-B-9-BBN]2 (20 mol%), neat, 120°C, 20 h. bHBpin (4 equiv.) were used. Re-
ported yields are isolated (see supporting information).



 

Having found efficient reaction conditions and developed a 
mechanistic understanding, we assessed the generality of this 
strategy by application to a diverse scope of alkynes (Table 1). 
The gram-scale reaction of phenylacetylene 1a with HBpin 
gave gem-diboryl alkane 2a in high yield (6.4 g, 92%), without 
the formation of any observable minor regioisomers or mono-
boryl products, as can be formed in metal-catalysed double hy-
droboration reactions.14a,f Extension to para-, meta- and ortho-
substituted phenylacetylene derivatives 1b-e generated the cor-
responding gem-diboryl compounds 2b-e in excellent yields. 
Phenylacetylene derivatives bearing both electron-donating- 1f-

g and electron-withdrawing substituents 1h-j were tolerated and 
gave the expected boronic esters 2f-j in good to excellent yields. 
Examples containing basic nitrogen units such as 4-ethynyl-
N,N-dimethylaniline 1g reacted efficiently, while unprotected 
aniline derivative 1k was ‘protected’ in situ by HBpin (4 equiv. 
instead of 3 equiv.)18 to give the gem-diboryl alkane 2k in ex-
cellent yield. However, application to ester 1m gave only a low 
yield of gem-diboryl alkane 2m due to concomitant ester reduc-
tion. Importantly the methodology was applicable to examples 
beyond aryl-alkyne derivatives, including a range of alkyl-al-
kynes 1n-ad, and alkynes derived from pharmaceuticals; di-
prenorphine 1aa, propofol 1ab and monobenzone 1ac and from 
a saccharide 1ad. 

Considering the observed reactivity, and that understood from 
C(sp2)-B / B-H transborylation, a catalytic cycle could be pro-
posed (Scheme 3, a). Firstly, [H-B-9-BBN]2 dimer dissociation 
gives the reactive monomeric H-B-9-BBN that undergoes al-
kyne hydroboration to give (E)-alkenyl-B-9-BBN 5.19 Subse-
quent C(sp2)-B / B-H transborylation generates (E)-alkenyl bo-
ronic ester 6 with concurrent regeneration of H-B-9-BBN, both 
of which react again to give mixed gem-diboryl intermediate 7. 
A final, key, C(sp3)-B / B-H transborylation gives the product 
gem-diboryl alkane 2a and regenerates the catalyst (H-B-9-
BBN). 

Further investigation of the successfully demonstrated C(sp3)-
B / B-H transborylation relied on the formation and isolation of 
the mixed gem-diboryl alkane 7 (Bpin/B-9-BBN) intermediate 
which was observed during catalysis. Reaction of phenylacety-
lene 1a with [H-B-9-BBN]2 in excess HBpin as the reaction sol-
vent at ambient temperature gave the mixed gem-diboryl inter-
mediate 7 in multi-gram quantity, which could be characterized 
by X-ray crystallography (Scheme 3, b). Eyring analysis of the 
reaction between the mixed gem-diboryl alkane 7 and HBpin 
over 70 °C - 120 °C gave the thermodynamic parameters; ΔG‡ 

= 28 (3) kcal mol-1, ΔH‡ = 17 (3) kcal mol-1 and ΔS‡ = −36 (8) 
eu (Scheme 3, c, and see supporting information).20 It is notable 
that the free energy value obtained for this C(sp3)-B / B-H trans-
borylation is significantly higher than those observed and cal-
culated for C(sp2)-B / B-H transborylation, and in line with the 
thermal barrier to productive catalysis.10,13 Additionally, the 
large negative entropy term suggests a highly ordered transi-
tion-state structure, with significant loss of vibrational and ro-
tational freedom; typical of σ-bond metathesis pathways.21  

Scheme 3. Proposed mechanism and transborylation 

thermodynamics 

 

In summary, we have discovered a double hydroboration-trans-
borylation sequence for the borane-catalyzed formation of gem-
diboryl alkanes. This strategy is a synthetically useful method-
ology which exploits a fundamental C(sp3)-B / B-H transboryla-
tion from a secondary alkyl-B-9-BBN intermediate. Mechanis-
tic studies demonstrated a boron-boron exchange with a large, 
negative, entropy value which is indicative of a σ-bond metath-
esis pathway in the key C(sp3)-B / B-H transborylation step. 
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