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A Borsuk–Ulam Equivalent that
Directly Implies Sperner’s Lemma

Kathryn L. Nyman and Francis Edward Su

Abstract. We show that Fan’s 1952 lemma on labelled triangulations of the n-sphere with

n + 1 labels is equivalent to the Borsuk–Ulam theorem. Moreover, unlike other Borsuk–Ulam

equivalents, we show that this lemma directly implies Sperner’s Lemma, so this proof may

be regarded as a combinatorial version of the fact that the Borsuk–Ulam theorem implies the

Brouwer fixed-point theorem, or that the Lusternik–Schnirelmann–Borsuk theorem implies

the KKM lemma.

1. INTRODUCTION. The Brouwer fixed-point theorem, the Knaster–Kuratowski–

Mazurkiewicz (KKM) lemma, and Sperner’s lemma are known to be equivalent.

Equally powerful, they form a triumvirate of theorems whose interconnections have

been exploited with great success in fixed point algorithms [15, 17] as well as in game

theory [1]. Similarly, the Borsuk–Ulam theorem, the Lusternik–Schnirelmann–Borsuk

(LSB) theorem, and Tucker’s lemma are another triumvirate of equivalent results. In

each of these triples, the first is a topological result, the second is a set-covering result,

and the third is a combinatorial result.

Moreover, these triples are related to each other. Since the Borsuk–Ulam theorem

implies the Brouwer fixed-point theorem, any theorem in the second triple must im-

ply any theorem in the first. It is an interesting question to find direct proofs of each

implication. For instance, a topological construction shows how a Brouwer fixed point

follows from Borsuk–Ulam antipodes [13], and with set-coverings, the LSB theorem

can be used to directly prove the KKM lemma [11]. But in the combinatorial domain,

we are unaware of a direct proof that Tucker’s lemma implies Sperner’s lemma.

In this article, we show that another combinatorial lemma, Fan’s N + 1 Lemma,

may be a more natural combinatorial analogue to the Borsuk–Ulam theorem, and

therefore more worthy to sit in the Borsuk–Ulam triumvirate than Tucker’s lemma. In

particular, in Section 3 we show that Fan’s N + 1 Lemma is equivalent to the Borsuk–

Ulam theorem, and in Section 4 we exhibit a direct proof that it implies Sperner’s

lemma (see Figure 1).

2. BACKGROUND. We first review these theorems. Let 6n be a polyhedral version

of the n-sphere, the set of all points in R
n+1 of distance 1 from the origin in the L1

norm:

6n = {(x1, . . . , xn+1) :
∑

|xi | = 1}.

In R
3, 62 is just the boundary of the octahedron. As with the octahedron, note that 6n

is naturally subdivided into orthants; we will study labelled triangulations of 6n that

refine the orthant subdivision. A triangulation is a subdivision by simplices that either

meet face-to-face or not at all. Each simplex is the affine hull of its vertices; these are

the vertices of the triangulation. A triangulation of 6n is symmetric if, when σ is a

simplex of the triangulation, then −σ is a simplex as well.

http://dx.doi.org/10.4169/amer.math.monthly.120.04.346
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Figure 1. Connections between the topological, set-covering, and combinatorial results.

Define an m-labelling to be a function ℓ that assigns to each vertex v one of 2m

possible integers: {±1, ±2, . . . ,±m}. A symmetric triangulation of 6n has an anti-

symmetric labelling if ℓ(−v) = −ℓ(v) for all vertices v. A labelling has a complemen-

tary edge if some adjacent pair of vertices has labels that sum to zero, e.g., {+i, −i}.
Call a simplex alternating if its vertex labels are distinct in magnitude and alternate

signs, when arranged in order of increasing value. So the labels have the form

{k1, −k2, k3, . . .} or {−k1, k2, −k3, . . .}

when 1 ≤ k1 < k2 < k3 < · · · . The first kind is called positive alternating and the

second is negative alternating, based on the sign of k1. For instance, a triangle labelled

{−1, +3, −7} would be negative alternating, and an edge labelled {+2, −3} would be

positive alternating.

Fan’s N + 1 Lemma. Let T be a symmetric triangulation of 6n with an (n + 1)-

labelling that is anti-symmetric and has no complementary edge. Then T has a positive

alternating n-simplex.

Thus, if the boundary of an octahedron (e.g., see Figure 7) has a triangulation anti-

symmetrically labelled by {±1, ±2, ±3} and no complementary edges, then it must

have a {+1, −2, +3} triangle.

We call this Fan’s N + 1 Lemma because Fan’s original lemma [4] is more gen-

eral; it says that for any m-labelling with the same hypotheses, there are an odd num-

ber of positive alternating n-simplices and an equal number of negative alternating

n-simplices. And as [9] shows, the result holds for more general triangulations of

Sn with a constructive proof. When m = n + 1, an m-labelling has only one kind

of positive alternating simplex—namely, the simplex with labels of every magnitude:

{1, −2, +3, . . . , (−1)n(n + 1)}.
Note that if an anti-symmetric m-labelling has no complementary edge, then

m ≥ n + 1, because alternating simplices must have n + 1 different label values

(apart from sign). Since an n-labelling is an (n + 1)-labelling with one label missing,

then as noted by Fan [4], the contrapositive of Fan’s N + 1 Lemma yields Tucker’s

lemma as a corollary.

Tucker’s Lemma. Let T be a symmetric triangulation of 6n with an n-labelling that

is anti-symmetric. Then T has a complementary edge. See Figure 2.
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+2

–2

+1

–1

Figure 2. A complementary edge is guaranteed by Tucker’s lemma when the polyhedral 2-sphere has a sym-

metric triangulation with an anti-symmetric 2-labelling.

Tucker’s lemma [6, 16] was originally proposed as a combinatorial equivalent of the

Borsuk–Ulam theorem [2], though it has found other applications as well (e.g., [10]).

Borsuk–Ulam Theorem. Let h : Sn → R
n be a continuous function such that

h(−x) = −h(x) for all x ∈ Sn . Then there exists w ∈ Sn such that h(w) = 0.

A set covering result due to Lusternik–Schnirelman–Borsuk [2, 7] is also equivalent

to the Borsuk–Ulam theorem.

LSB Theorem. Let C1, . . . , Cn+1 be a collection of closed sets that cover Sn . Then at

least one of the sets must contain a pair of antipodal points.

These theorems (Fan, Tucker, Borsuk–Ulam, LSB) concern topological or polyhe-

dral n-spheres. The next three theorems concern topological and polyhedral n-balls.

Let Bn denote an n-ball, the set of all points within unit distance of the origin in R
n .

A polyhedral version of an n-ball is an n-simplex, which is more naturally described

by its embedding in R
n+1:

1n = {(x1, . . . , xn+1) : xi ≥ 0,
∑

xi = 1}.

It is homeomorphic to an n-ball. For any v = (v1, . . . , vn+1) ∈ 1n , let

Z(v) = {i : vi 6= 0}

be the set of indices of coordinates of v that are nonzero. Thus in 12, Z((0, 1, 0)) =
{2} and Z((.3, 0, .7)) = {1, 3}. Suppose T is a triangulation of 1n . A Sperner-labelling

ℓ assigns to each vertex v a label from {1, . . . , n + 1} such that

ℓ(v) ∈ Z(v). (1)

This forces each main vertex of 1n to have a different label (the index of its one

nonzero coordinate), and any vertex on a face of 1n can only be labelled by one of the

main vertices that span that face. Call an n-simplex in the triangulation fully-labelled

if its vertices have distinct labels (and therefore all labels {1, . . . , n + 1}).
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Figure 3. (a) LSB: a pair of antipodal points contained in one of two closed sets that cover S1. (b) Borsuk–

Ulam: Given a continuous, anti-symmetric function from S1 to R, there is a point mapped to 0. (c) Fan’s

N + 1: an antisymmetric 2-labelling of 61 with no complementary edge must have a positive alternating edge

(shaded).

Sperner’s Lemma. Any Sperner-labelled triangulation of 1n must have a fully-

labelled n-simplex.

In fact, there are an odd number of such simplices [12]. An exposition and appli-

cations may be found in [14]. Sperner’s lemma provides the simplest route to proving

this famous theorem of Brouwer [3].

Brouwer Fixed-Point Theorem. For any continuous function f : Bn → Bn , there

exists a point x ∈ Bn such that f (x) = x.

Knaster–Kuratowski–Mazurkiewicz [5] provided the original link between the

Brouwer theorem and Sperner’s lemma.

KKM Lemma. Let C1, . . . , Cn be a collection of closed sets that cover 1n such that

for each I ⊆ [n + 1], the face spanned by the set {ei |i ∈ I } is covered by {Ci |i ∈ I }.
Then ∩n

i=1Ci is nonempty.

1 2

3

C1 C2

C3

1

3

11

2
2

2

3

3

2

(a) (b) (c)

Figure 4. (a) KKM: these sets have a non-empty intersection. (b) Brouwer: the stirred coffee has a point that

is in the same place as before the stirring. (c) Sperner: there’s an odd number of 123-triangles.

3. EQUIVALENCE OF FAN’S N + 1 LEMMA AND THE BORSUK–ULAM

THEOREM. As discussed earlier, Fan’s general lemma with m-labellings [4] im-

plies the Borsuk–Ulam Theorem through Tucker’s lemma. Here we show that Fan’s

N + 1 Lemma is equivalent to the Borsuk–Ulam theorem.

Theorem 1. Fan’s N + 1 Lemma is equivalent to the Borsuk–Ulam Theorem.
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Proof. We first show that the Borsuk–Ulam Theorem implies Fan’s N + 1 Lemma.

Let T be a symmetric triangulation of 6n with an anti-symmetric (n + 1)-labelling

L , in which there are no complementary edges. Let wi ∈ R
n+1 be the point with i th

coordinate n and other coordinates −1:

wi = (−1, . . . ,−1, n, −1, . . . − 1).

Let W+ = {w1, . . . , wn+1} and W− = {−w1, . . . ,−wn+1}. The set W = W+ ∪ W−

comprises 2n + 2 points that lie on the n-dimensional hyperplane: H = {(x1, . . . ,

xn+1) :
∑n+1

i=1 xi = 0}.

w3 = (–1, –1, 2)

w2 = (–1, 2, –1)w1 = ( 2, –1, –1)

–w3

–w1–w2

(0, 0, 0)

Figure 5. For n = 2, the points w1, w2, w3 and −w1, −w2, −w3 in the hyperplane H . The shaded region

indicates the image under h of a positive alternating 2-simplex, which maps to a simplex containing all the

positive wi (and the origin).

Define a continuous map h : 6n → H as follows. For each v ∈ T , let

h(v) =

{

wL(v) if L(v) is odd

−wL(v) if L(v) is even,
(2)

where w−i = −wi in case L(v) < 0. Extend h linearly to each simplex of T . Since L

is an anti-symmetric labelling, we see h(−x) = −h(x) for all x ∈ 6n . Therefore, by

Borsuk–Ulam there is a z ∈ 6n such that h(z) = 0.

Thus z is in some n-simplex σ such that h(σ ) contains the origin. The images of

the vertices of σ form a set K = {h(v) : v ∈ σ, v ∈ T }, a subset of W of size n + 1

or smaller (if there are repeated labels). Since there are no complementary edges in T ,

the set K contains no pair {w j , −w j }. Then K = {w j } j∈B ∪ {−w j } j∈B′ , where B and

B ′ are disjoint subsets of {1, . . . , n + 1}.
Now consider the sum of vectors in K :

v̂ =
∑

j∈B

w j −
∑

j∈B′

w j .

Note that the dot products wi · wi = n(n + 1) for all i ∈ [n + 1], and wi · w j =
−(n + 1) for all j 6= i . So, for i ∈ B, the dot product

wi · v̂ = n(n + 1) − (|B| − 1)(n + 1) + |B ′|(n + 1)

= (n + 1)(n + 1 − |B| + |B ′|),
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which is positive unless |B| = n + 1 and |B ′| = 0, i.e., K = W+. And for i ∈ B ′,

−wi · v̂ = |B|(n + 1) + n(n + 1) − (|B ′| − 1)(n + 1)

= (n + 1)(|B| − |B ′| + n + 1),

which is positive unless |B ′| = n + 1 and |B| = 0, i.e., K = W−. Since the convex

hull of K contains the origin, it cannot be the case that all vectors in K have a positive

dot product with v̂. So either K = W+ or K = W− (and indeed, in these cases, K ’s

convex hull contains the origin).

If K = W+, then (2) shows the original simplex σ has labels {1, −2, . . . ,

(−1)n(n + 1)}. If K = W−, then (2) and anti-symmetry of L shows that −σ has

these labels. In either case we find a positive alternating simplex, as desired.

Now we show Fan’s N + 1 Lemma implies the Borsuk–Ulam Theorem. Let

h : 6n → R
n be a continuous function such that h(−x) = −h(x) for all x ∈ 6n .

Assume, by way of contradiction, that there is no point z ∈ 6n such that

h(z) = 0. If h(x) = (x ′
1, . . . , x ′

n), let ĥ : 6n → R
n+1 be the function defined by

ĥ(x) = (x ′
1, . . . , x ′

n, −
∑n

i=1 x ′
i ). So ĥ maps 6n to the hyperplane H and preserves

continuity and anti-symmetry. Furthermore, there is no point z such that ĥ(z) = 0.

Let T be a symmetric triangulation of 6n , and let the set W be as above. We wish

to construct a labelling L on the vertices of T that is anti-symmetric.

For v ∈ T , define L(v) to be the index i such that wi is closest to ĥ(v) in R
n+1. Note

that i ∈ {±1, . . . ,±(n + 1)}. In the case of ties, choose the index with the smallest

absolute value. This is well-defined because ĥ(v) is never 0, and no nonzero point can

be equidistant from wi and w−i = −wi . That L is anti-symmetric follows from noting

that ĥ is anti-symmetric, so ĥ(v) is closest to wi if and only if ĥ(−v) is closest to w−i .

Therefore, by Fan’s N + 1 Lemma, there exists either a complementary edge

(+i, −i), for some i , or an alternating simplex with labels {1, −2, . . . , (−1)n(n + 1)}.
By taking finer and finer triangulations, and by the compactness of the 6n , there exists

a convergent subsequence of shrinking positive alternating simplices or a convergent

subsequence of shorter complementary edges involving the same index i . This gives a

limit point which, by the continuity of ĥ, is either equidistant from both wi and −wi ,

or is equidistant from all points in {w1, −w2, w3, . . . , (−1)nwn+1}. But the only point

with this property is 0. Thus, the limit point z must satisfy ĥ(z) = 0 and therefore,

h(z) = 0.

4. FAN’S N + 1 LEMMA IMPLIES SPERNER’S LEMMA. Now we establish

how Fan’s N + 1 Lemma will indeed prove Sperner’s lemma by a direct construction,

so it is the “right” combinatorial result to sit in the Borsuk–Ulam triumvirate. Prescott

[8] established this implication in dimension two by a different method.

Theorem 2. Fan’s N + 1 Lemma implies Sperner’s lemma.

Proof. Consider a triangulation S of 1n with a Sperner-labelling ℓ. We first extend

S to a triangulation T of 6n by reflecting copies of S to the other orthants of 6n .

Let G = {±1}n+1 denote the group of symmetries of 6n generated by reflections that

flip the sign of selected coordinates; then the action of g = (g1, . . . , gn+1) ∈ G on

v = (v1, . . . , vn+1) ∈ 6n produces gv = (g1v1, . . . , gn+1vn+1) ∈ 6n . So g reflects v

in all coordinates i for which gi = −1. Note that g = (1, 1, . . . , 1) is the identity in

G. The idea of this construction is illustrated in Figure 6.
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Figure 6. The actions of G on 6n , as shown by their effects on Mr. Smiley.

Similarly, if σ is a simplex in S spanned by a set of vertices V , we define gσ to be

the simplex spanned by the vertices in gV = {gv : v ∈ V }. Let T be the collection of

simplices {gσ : σ ∈ S and g ∈ G}. Then T is a triangulation of 6n , since the reflection

method ensures that simplices of T meet face-to-face along reflected facets of S.

Now we extend the labelling ℓ on vertices of S to a labelling L on vertices of T by

reflection but with possible sign modifications. Define

L(gv) = gℓ(v) · (−1)ℓ(v)+1 · ℓ(v) (3)

for each v ∈ S. Notice that L(gv) and ℓ(v) have the same label value (but possibly

different signs). When g = (1, 1, . . . , 1), this defines L on S and the factor (−1)ℓ(v)+1

turns fully-labelled simplices into positive alternating simplices. When g is non-trivial,

L defines a labelling of vertices on reflected copies of S (see Figure 7).

x

y

z

3

–2

1

–2

–3

1

–3

1
2

1

2

3(1, –1, 1)σ

σ

(1, 1, –1)σ(1, –1, –1)σ

Figure 7. A positive alternating simplex σ in T arising from a fully-labelled simplex with labels {1, 2, 3} in S,

and reflected simplices gσ for g = (1, 1, −1), (1, −1, 1), and (1, −1, −1) with their L-labellings indicated.

We might worry that L is not well-defined where orthants meet. However, orthants

meet where gv = ĝv̂, for some g, ĝ ∈ G and some v, v̂ ∈ S. But then givi = ĝi v̂i
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for each i , which implies vi = v̂i since gi , ĝi = ±1. Then gi = ĝi when vi 6= 0, i.e.,

when i ∈ Z(v). But ℓ(v) ∈ Z(v) by (1), so that gℓ(v) = ĝℓ(v). It follows from (3) that

L(gv) = L(ĝv), so L is well-defined.

Now we show that L satisfies the conditions of Fan’s N + 1 Lemma. Antipodal

labels sum to zero by construction: The point antipodal to v is −v = ḡv, where ḡ =
(−1, −1, . . . ,−1), so that (3) gives L(−v) = −L(v). Also, we can show that L has no

complementary edges. Every edge in T is a reflected copy of some edge in S via some

g ∈ G, and the Sperner-labelling ℓ of S has no complementary edges (all labels are

positive). Then the rule (3) shows that for any choice of g, two vertices v, w ∈ S will

have identical ℓ-labels (ℓ(v) = ℓ(w)) if and only if their g-reflections have identical L-

labels as well (L(gv) = L(gw)). So L has no complementary edges, because ℓ did not.

Thus Fan’s N + 1 Lemma applies, so there exists a positive alternating n-simplex

in T . Since 1n is the only facet of 6n that contains the labels {1, −2, 3, . . . ,

(−1)n(n + 1)}, there must be a fully-labeled n-simplex in S.

In fact, as noted earlier, a stronger version of Fan’s N + 1 Lemma holds, whose

conclusion is that there are in fact an odd number of positive alternating n-simplices.

Then the above argument would demonstrate the stronger version of Sperner’s lemma,

which concludes that there are an odd number of fully-labelled n-simplices in S.
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An Easy Proof of the Divergence of the Harmonic Series Sum

The sum of the harmonic series, 1, 1/2, 1/3, diverges, even as the terms tend to

zero. Many proofs of this significant fact are available, such as the well-known

proof by N. Oreseme, and the more recent ones (see, for instance, [1, 2]). We

give another.

Let tn = 1 + 1/2 + · · · + 1/n, n = 1, 2, . . . We may note that

tk+m = tk + 1/(k + 1) + 1/(k + 2) + · · · + 1/(k + m) > tk + m/(k + m),

for a finite, fixed k, m/(k + m) → 1, as m → ∞. Therefore, we may con-

sider ǫ > 0, sufficiently small, and get an m such that p/(k + p) > 1 − ǫ, p =
m, m + 1, . . . So, tk+m − tk > 1 − ǫ. Fix ǫ. For such ǫ, we then consider tk+m ,

and get a finite r , such that tk+m+r − tk+m > 1 − ǫ. This may be continued so

that terms, with finite indices, are obtained, each of which exceeds the previous

term by at least 1 − ǫ. So there cannot exist any upper bound for the series

tn, n = 1, 2, . . . . Hence, the sum of the harmonic series diverges and cannot

have a limit.
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