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Weprove a structure theorem for relative coarse spacemorphisms from smoothDeligne–

Mumford stacks, showing that each such map can be decomposed in terms of root stack

and canonical stack morphisms. We explain how our result can be understood locally

in terms of pseudo-reflections. Lastly, we give an application to equivariant K-theory,

give several examples illustrating our result, and pose some related questions.

1 Introduction

The main result of this article shows that if X is a smooth Deligne-Mumford stack,

then every relative coarse space map X → Y can be expressed in terms of two

simple procedures applied iteratively: canonical stack constructions and root stack con-

structions. We state the main theorem after briefly recalling these two stack-theoretic

constructions.

If k is a field, then a k-scheme U is said to have tame quotient singularities if

it is étale locally a quotient of a smooth variety by a finite group of order relatively

prime to the characteristic of k. Vistoli showed in [17] that for any such scheme, there

is a canonical smooth tame Deligne–Mumford stack Ucan and coarse space morphism
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6470 A. Geraschenko and M. Satriano

Ucan → U which is an isomorphism over the smooth locus Usm. We say a Deligne–

Mumford stack Y has tame quotient singularities if there is an étale coverU → Y, where

U is a scheme with tame quotient singularities. As with schemes, there is a canonical

smooth Deligne–Mumford stack Ycan and relative coarse space map Ycan → Y. Such a

map is called a canonical stack morphism, and satisfies a universal property described

in the next section.

The second stack-theoretic constructionwemake use of is root stackmorphisms,

which were introduced independently in [2, 5]. Given an effective Cartier divisor C on a

stackZ andapositive integern, the root stack n
√

C/Z → Z is universal amongmorphisms

for which C pulls back to n times a Cartier divisor.

Theorem 1. Let π : X → Y be a relative coarse space map, where X is a smooth

separated tame Deligne–Mumford stack of finite type over a field k with trivial generic

stabilizer. Let D ⊆ Y be the ramification divisor of π , with irreducibile components

Di and ramification degrees ei. Let
√

D/Ycan denote the root stack of Ycan with order ei

along Di. (Since Ycan → Y is an isomorphism away from codimension 2, it induces a

bijection between divisors on Y and divisors on Ycan. We are slightly abusing notation

by conflating the two.)

Then
√

D/Ycan has tame quotient singularities and π factors as follows:

X ∼=
√

D/Ycan
can

→
√

D/Ycan → Ycan → Y.

Moreover, if D is a Cartier divisor on Y (so that
√

D/Y is defined), then
√

D/Y has tame

quotient singularities and π factors as follows:

X ∼=
√

D/Y
can

→
√

D/Y → Y. �

Remark 2. For X with non-trivial generic stabilizer, Theorem 1 can be combined with

[3, Theorem A.1], which shows that X is a Gerbe over a smooth stack with trivial generic

stabilizer. �

Remark 3. In the statement of Theorem 1, there are several ways one can construct
√

D/Ycan. For example, it can be constructed as an iterated sequence of root stacks along

the irreducible components em
√

Dm/ . . . e1
√

D1/Ycan. Alternatively, if say e1 = e2, one can

combine the two steps of rooting along D1 and D2 into a single step e1
√

(D1 ∪ D2)/X can. As

noted in the last paragraph of [10, Section 1.3b], these two stacks are not isomorphic.

However, the proof of Theorem 1 shows that both have tame quotient singularities and

their canonical stacks are isomorphic. �
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A Bottom Up Characterization 6471

Remark 4. The proof we present can be applied if k is an arbitrary regular excellent

base, but wework over a field for clarity. See [16] for the construction of canonical stacks

in this case. The remainder of the proof applies directly. �

For every point y of a separated Deligne–Mumford stack Y, there is a linear

action of a finite group G acting on a vector space V and an isomorphism between an

étale neighborhood of y ∈ Y and an étale neighborhood of 0 ∈ [V/G]. It is therefore

reasonable to ask for a local description of Theorem 1 in terms of the representation

theory of the G-action on V .

Theorem 5 (Local description of Theorem 1). Suppose X = [V/G] and Y = V/G, where

V is a vector space over k on which an abstract finite group G acts linearly and faith-

fully. Let H ⊆ G be the subgroup generated by pseudoreflections of V , and H ′ ⊆ H

be its commutator subgroup. Then the factorization of the coarse space morphism in

Theorem 1 is

X ∼=
√

D/Ycancan ��

‖

√
D/Ycan ��

‖

Ycan ��

‖

Y

‖

[V/G] �� [(V/H ′)/(G/H ′)] �� [(V/H)/(G/H)] �� V/G.

Remark 6. The proof of Theorem 5 shows that for a quotient stack X = [U/G], the ram-

ification divisor of the map [U/G] → U/G is the image of the pseudoreflection divisors,

and the ramification degrees are the orders of the pseudoreflections. �

As a consequence of Theorem 1, we see that if X is a smooth separated tame

Deligne–Mumford stack of finite type over k with trivial generic stabilizer, it can be

recovered from its coarse space X and the orders of the stabilizers of codimension 1

points. The exact group structures of stabilizers of codimension 1 points, as well as

the stabilizer groups of higher codimension points, are then completely determined. We

show in Example 1 that this characterization of DM stacks does not hold if we drop the

smoothness or separateness hypotheses.

This bottom-up perspective has already seen a couple of applications. It played

a central role in the authors’ work addressing a question posed by William Fulton [11]

concerning whether or not a variety with quotient singularities can be globally written

as the quotient of a smooth variety by a finite group. It has also been used as motivation

for a conjecture in Gromov–Witten theory [15, 1.1].
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6472 A. Geraschenko and M. Satriano

Finally, we mention that our result has the following additional application

in equivariant K-theory. In [8, Theorem 5.1], Dhillon and Kobyzev compute KG(X) as a

direct sumofK(X) and certain pieces coming from the ramification divisors of the coarse

space map [X/G] → X/G; here X is smooth and G is a finite group. Their result relies

on having a description of [X/G] in terms of its coarse space, which they obtain under

certain assumptions [8, 4.5]. Since Theorem 1 gives such a description unconditionally,

we obtain a mild generalization of their result.

Corollary 7. The isomorphism of [8, Theorem 5.1] computing equivariant K-theory

KG(X) holds under weaker hypotheses: it is not necessary to assume that the inertia

is generated in codimension 1 or that the stabilizers are abelian. �

2 Background and preliminary results

Webegin by recalling the definition of the ramification locus, branch locus, and ramifica-

tion indices. Let X and Y be locally Noetherian Deligne–Mumford stacks and f : X → Y

a morphism that is locally of finite presentation. Since �1
X/Y

is coherent, its support is

a closed substack. We define the ramification locus of f to be this closed substack with

its reduced structure and define the branch locus of f to be the image of the ramifica-

tion locus with its reduced structure. If f takes codimension 1 points to codimension 1

points (as is the case for relative coarse space maps), and D is a divisorial component

of the ramification locus, then we define the ramification index eD as follows. Choose

an étale cover U → Y and an étale cover V of U ×Y X , let v ∈ V be a point map-

ping to the generic point of D, and let u be its image under the map V → U . Then

we define eD to be the ramification index ev/u of v over u, that is, OU ,u → OV ,v is a

local morphism of discrete valuation rings and we define eD to be the integer e such

that muOV ,v = m
e
v where mu and mv are the maximal ideals of OU ,u and OV ,v , respec-

tively. The ramification index eD is well-defined since any two choices of (U ,V ,v,u)

and (U ′,V ′,v ′,u′) can be refined to a common covering; hence we can assume there is a

commutative diagram

V ′
p

��

��

V

��

U ′
q

�� U ,
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A Bottom Up Characterization 6473

where p and q are étale coverings, p(v ′) = v, and q(u′) = u. Since ramification

indices multiply in towers and étale maps have trivial ramification index, we see

ev′/u′ = ev′/u′eu′/u = ev′/u = ev′/vev/u = ev/u.

The first stack-theoretic construction we employ is that of canonical stacks. If X

is a finite type algebraic space, then [17, 2.9 and the proof of 2.8] shows X has tame quo-

tient singularities if and only ifX is the coarse space of a smooth tameDeligne–Mumford

stack. Moreover, in this case there is a smooth tame Deligne–Mumford stack X can with

coarse space X such that the coarse space morphism X can → X is an isomorphism away

from codimension 2. We refer to X can as the canonical stack over X .

Remark 1 (Universal property of canonical stacks [10, Theorem 4.6]). Suppose X is

a smooth Deligne–Mumford stack with coarse space morphism π : X → X which is an

isomorphism away from a locus of codimension at least 2. ThenX is universal (terminal)

among smooth Deligne–Mumford stacks with trivial generic stabilizer and a dominant

codimension-preserving morphism to X . �

This universal property is stable under base change by étale morphisms (or

any other codimension-preserving morphisms). That is, for U → X étale, X can ×X U

is the canonical stack over U . By descent, every algebraic stack Y with tame quotient

singularities has a canonical stack Ycan and a coarse space morphism π : Ycan → Y

which is an isomorphism away from a set of codimension at least 2.

The second stack-theoretic construction we employ is that of root stacks (see

[10, Section 1.3] for a brief introduction). Given an effective Cartier divisor C on a stack

Z and a positive integer n, the nth root of C, denoted n
√

C/Z, is the Z-stack which is

universal (terminal) among all Z-stacks for which C pulls back to n times another divi-

sor. Explicitly, the root stack is given by the Cartesian diagram below. Recall that C

defines amorphismZ → [A1/Gm] since [A1/Gm]parameterizes line bundleswith sections

(i.e., effective Cartier divisors).

n
√

C/Z ��

��

[A1/Gm]

ˆn
��

Z
C

�� [A1/Gm].

Here, the nth power map ˆn : [A1/Gm] → [A1/Gm] takes a line bundle with section (L, s)

to (L⊗n, s⊗n).
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6474 A. Geraschenko and M. Satriano

Lemma 2. Root stack morphisms and canonical stack morphisms have affine

diagonal. �

Proof. To check that root stack morphisms have affine diagonal, it is enough to show

that thenth powermap [A1/Gm] → [A1/Gm]has affine diagonal. Since this can be checked

smooth locally on the target, and [A1/µn] = A
1 ×[A1/Gm] [A1/Gm], the result follows.

We next consider canonical stack morphisms. If H is a finite group acting on an

affine variety U , then the coarse space map [U/H ] → U/H has affine diagonal. Since all

canonical stack morphisms have this form smooth locally on the target, they have affine

diagonal as well. �

Lemma 3. Suppose f : X → Y is a morphism of algebraic stacks, and Z → Y is a

surjective locally finite type morphism. Then f is representable if and only if fZ : X ×Y

Z → Z is representable. �

Proof. By [7, Corollary 2.2.7], a morphism is representable if and only if its geometric

fibers are algebraic spaces. Since Z → Y is locally finite type, the geometric fibers of f

and fZ are the same. �

Lemma 4. Let U be a separated finite type Deligne–Mumford stack such that every

irreducible component of U has trivial generic stabilizer. If U is étale over its coarse

space, then U is an algebraic space. �

Proof. It suffices to look étale locally on the coarse space of U . We can therefore assume

U = [V/K], where V is an algebraic space and K is the stabilizer of a geometric point

v of V by [1, Lemma 2.2.3 and its proof]. (In the proof of [1, Lemma 2.2.3], the group

Ŵ is the stabilizer of the x0.) Then the composition V → [V/K] → V/K is étale, so

K acts trivially on every jet space of v by the formal criterion for étaleness. On the

other hand, K acts faithfully on some jet space of v by the proof of [9, Proposition 4.4].

(The smoothness assumption in their result is not needed, and their hypothesis that no

non-identity component of the stabilizer group scheme dominate is equivalent to our

hypothesis that every irreducible component of U have trivial generic stabilizer.) Thus,

K is trivial, so U = V is an algebraic space. �

Corollary 5. Let U and Y be smooth separated tame Deligne–Mumford stacks. Suppose

g : U → Y is a birational quasi-finite morphism, and the ramification locus in U is of

codimension >1. Then g is representable and étale. �
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A Bottom Up Characterization 6475

Proof. By Lemma 3, we can replace Y by an étale cover, and so can assume Y = Y is

a scheme. Then U has trivial generic stabilizer and g factors through the coarse space

U of U .

We show that the induced map ḡ : U → Y is unramified in codimension 1. Let

u ∈ U be a point of codimension 1 and let y ∈ Y be its image in Y . Being the coarse

space of a smooth tame Deligne–Mumford stack, U has tame quotient singularities. In

particular, it is normal, and so OU ,u is a discrete valuation ring. If V → U is an étale

cover and v ∈ V is a point of codimension 1whichmaps tou, thenOV ,v is unramified over

OY ,y by hypothesis. Since ramification indices multiply in towers of discrete valuation

rings, we see that OU ,u is unramified over OY ,y as well.

Now we have that U is normal, Y is smooth, and ḡ is dominant and unramified

in codimension 1, so the purity of the branch locus theorem [14, Exposé X, Theorem 3.1]

shows that ḡ is étale. Similarly, V → Y is a map between two smooth varieties which

is dominant and unramified in codimension 1, so it is étale by purity. It follows that

g is étale. Since g and ḡ are étale, the coarse space map U → U is étale, and hence an

isomorphism by Lemma 4. This proves representability of g. �

Corollary 6. Let f : X → Y be a morphism of smooth separated tame Deligne–Mumford

stacks with trivial generic stabilizers. If f is unramified in codimension 1 and induces

an isomorphism of coarse spaces, then f is an isomorphism. �

Proof. Let π : Y → Y be the coarse space of Y. By assumption, the composition

π ◦ f : X → Y is a coarse space morphism. Since X and Y have trivial generic stabi-

lizers, these coarse space morphisms are birational, so f is birational. Since X and Y

are proper and quasi-finite overY [6, Theorem 1.1], f is proper and quasi-finite. Since f is

unramified in codimension 1, it is representable by Corollary 5. Zariski’s Main Theorem

[10, Theorem C.1] then shows that f is an isomorphism. �

3 Proof of Theorem 1

Replacing Y be an étale cover, we immediately reduce to the case where Y = X is a

scheme. By the universal property of canonical stacks (Remark 1), the coarse space

morphism π : X → X factors through the canonical stack. Since X can → X is an iso-

morphism away from codimension 2, we have that D is the ramification divisor of the

map π̃ : X → X can.

Let Di be the irreducible components of D and suppose π̃ is ramified over Di

with order ei. Let X̃ =
√

D/X can be obtained from X can by taking the eith root along
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6476 A. Geraschenko and M. Satriano

Di for all i. By the universal property of root stacks, we have an induced morphism

g : X → X̃ .

Each ei is relatively prime to the characteristic of k; indeed, this can be checked

étale locally onX , so wemay assumeX is a quotient of a smooth scheme by a finite group

G which stabilizes a point [1, Lemma 2.2.3 and its proof]. The ramification orders are

then orders of subgroups of G, which are relatively prime to the characteristic of k since

X is assumed to be tame. Since the ei are prime to the characteristic of k, X̃ is a tame

Deligne–Mumford stack. Since X̃ → X can ramifies with order ei over Di and ramification

orders multiply in towers of discrete valuation rings, we have that g is unramified in

codimension 1.

LetU ⊆ X can be the complement of the singular loci of theDi and the intersections

of the Di. The restriction of D to U is a smooth divisor, so the open substack X̃ ×Xcan U

of X̃ is a smooth Deligne–Mumford stack by [10, 1.3.b(3)]. By Corollary 6, g restricts to

an isomorphism of open substacks X ×Xcan U → X̃ ×Xcan U . These open substacks have

complements of codimension at least 2, so g is Stein (i.e., g∗OX
∼= OX̃ ).

By Lemma 2, X̃ → X has affine diagonal. As π : X → X is a coarse space mor-

phism of a tame stack, it is cohomologically affine [3, Theorem 3.2]. Since X is separated,

X is separated [6, Theorem 1.1], and so X has quasi-affine diagonal. By [4, Proposition

3.13], g : X → X̃ is cohomologically affine. As g is Stein and cohomologically affine, it is a

goodmoduli spacemorphism, so it is universal for maps to algebraic spaces [4, Theorem

6.6], so it is a relative coarse space morphism. (Technically, this is not a direct appli-

cation of [4, Theorem 6.6], as Alper’s result assumes X̃ is an algebraic space. However,

since algebraic spaces are sheaves in the smooth topology, this property may be checked

smooth locally on X̃ . Good moduli space morphisms are stable under base change by [4,

Proposition 4.7(i)], so we are reduced to the case when X̃ is an algebraic space.) Since

X is smooth and tame, it follows that X̃ has tame quotient singularities. Since g is an

isomorphism away from codimension 2, it is a canonical stack morphism by Remark 1.

This completes the proof that π factors as X ∼=
√

D/X cancan →
√

D/X can → X can → X .

If D ⊆ Y = X is Cartier, then this proof may be modified by replacing X can by X

and removing the singular locus of X from U . The modified proof shows that π factors

as X ∼=
√

D/X
can →

√
D/X → X .

4 Proof of Theorem 5

For a finite group K acting linearly on a vector space U , the coarse space mor-

phism [U/K] → U/K is a canonical stack morphism if and only if K acts without

pseudoreflections.
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A Bottom Up Characterization 6477

By the Chevalley–Shephard–Todd theorem, V/H is a vector space. Moreover,

G/H acts linearly on V/H without pseudoreflections. Therefore [(V/H)/(G/H)] → V/G

is a canonical stack morphism. This is the usual construction of the canonical stack.

The action of H ′ on V has no pseudoreflections since commutators act with

determinant 1, and pseudoreflections do not. Therefore [V/H ′] → V/H ′ is a canonical

stack morphism. Since (V/H ′) → [(V/H ′)/(G/H ′)] is an étale cover, and the prop-

erty of being a canonical stack morphism can be checked étale locally on the target,

[V/G] → [(V/H ′)/(G/H ′)] is also a canonical stack morphism.

It remains to show that [(V/H ′)/(G/H ′)] → [(V/H)/(G/H)] is a root stack mor-

phism. Since this is a propertywhich can be checked étale locally on the target, it suffices

to show that [(V/H ′)/(H/H ′)] → V/H is a root stack morphism.

For any pseudoreflection hyperplane W , let H · W be the set of H-translates of

W . For each hyperplane U in this orbit, choose a linear function ℓU which vanishes on

U , and let fH ·W =
∏

U∈H ·W ℓU . The vanishing locus of fH ·W is H-invariant, so H acts on fH ·W

by some character χH ·W of H .

Given a pseudoreflection r ∈ H , we can break H ·W up into r-orbits. We analyze

the contribution of each of these cycles to χH ·W (r). If a hyperplane U in H ·W is fixed by

r, then either r is a pseudoreflection through U (in which case r(ℓU ) = det(r)−1 · ℓU ) or

r is a pseudoreflection through a plane perpendicular to U (in which case r(ℓU ) = ℓU ).

Now consider the case where U is not fixed by r, letting Ui = ri(U). Since U is not fixed

by r, ℓU has non-zero components in bothW andW⊥, so {U0,U1, . . . ,Uord(r)−1} are distinct
hyperplanes. Since r(ℓUi) is a linear function vanishing on Ui+1, we have that r(ℓUi) =
ai · ℓUi+1

for some constant ai. We have that r acts on
∏ord(r)−1

i=0 ℓUi by
∏ord(r)−1

i=0 ai. On the

other hand, ℓUord(r)
= ℓU0 = rord(r)(ℓU0) = (

∏ord(r)−1

i=0 ai) · ℓUord(r)
, so

∏ord(r)−1

i=0 ai = 1. Summing

up, if r is a pseudoreflection through a hyperplane in H · W , then χH ·W (r) = det(r)−1;

otherwise χH ·W (r) = 1.

LetW1, …,Wk be H-orbit representatives (so every pseudoreflection hyperplane

is in the H-orbit of exactly one of the Wi), and r1, …, rk be primitive pseudoreflections

through the Wi, of orders e1, …, ek, respectively. Consider the map φ = χH ·W1
× · · · ×

χH ·Wk
: H → µe1

× · · · × µek
. By the description of χH ·Wi

from the previous paragraph,

φ sends ri to a generator of µei
, so it is surjective. Since H ′ is in the kernel of each

χH ·Wi
, it is in the kernel of φ. By construction, every pseudoreflection in H is conju-

gate to a power of ri for some i. Since H is generated by pseudoreflections and H/H ′ is

abelian, every element of H/H ′ is represented by an element of the form r
d1
1 · · · rdkk . Such

an element is in the kernel of φ is and only if it is trivial, so φ induces an isomorphism

H/H ′ → µe1
× · · · × µek

.
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6478 A. Geraschenko and M. Satriano

Let V/H = Spec(k[g1, . . . ,gn]). Then we claim that V/H ′ = Spec(k[g1, . . . ,gn, fH ·W1
,

. . . , fH ·Wk
]). Note first that each fH ·Wi

is H ′-invariant, since H acts on it by the charac-

ter χH ·Wi
, and H ′ is in the kernel of any character. To see that this is the full ring of

H ′-invariants, note that anyH ′-invariant function is a sum ofH/H ′-semi-invariant func-

tions, so it suffices to show that any H/H ′-semi-invariant function f is in this ring. If

each ri acts trivially on f , then f is H-invariant, so it is some polynomial combination of

the gj. If ri acts non-trivially on f , then f must vanish along Wi. Since f is H ′-invariant,

all the conjugates of ri must also act non-trivially on f , so f must vanish along all of

H · Wi, so it must be divisible by fH ·Wi
, and f /fH ·Wi

is H ′-invariant. By induction on the

degree of f , it is a polynomial in the gj and fH ·Wi
.

We therefore have an H/H ′-equivariant closed immersion of V/H ′ into A
n+k,

where µei
acts only on the (n+ i)th coordinate. The following diagram is Cartesian:

[
(V/H ′)

/
(H/H ′)

]
��

��

[
A
n+k /

(H/H ′)
]

��

V/H �� A
n+k/(H/H ′).

Since each µei
acts on only one coordinate of A

n+k, the right vertical arrow is a

root stack morphism ramified to order ei along the (n + i)th coordinate hyperplane. It

follows that the left arrow is a root stackmorphism ramified to order ei along the divisor

which is the image of H ·Wi.

5 Examples, counterexamples, and questions

We noted in the introduction that as a consequence of Theorem 1, every smooth sep-

arated Deligne–Mumford stack is determined by its coarse space and the orders of its

codimension 1 stabilizers. We begin this section by showing that this is not true if we

drop the smoothness or separateness hypothesis, even if the exact group structure of

the stabilizers is specified.

Example 1 (Different stacks with the same coarse space and stabilizers). Wework over

a field k with char(k) �= 2.

(1) (Smooth separated stack) Consider the action of Z/2 on A
1 given by x �→ −x.

The quotient X = [A1/(Z/2)] is a smooth separated Deligne–Mumford stack

with trivial generic stabilizer. Its coarse space is X = A
1 (with coordinate

x2) and it has a single Z/2 stabilizer at the origin.
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(2) (Singular separated stack) Consider the singular Deligne–Mumford stack X

given by the quotient of the axes in A
2 by the Z/2-action (x,y) �→ (y,x). The

coarse space of X is also A
1 (with coordinate x + y) and the stabilizer at the

origin is Z/2.

(3) (Smooth non-separated stack) Let G be the non-separated affine line. We

can think of G as a group scheme over A
1 via the natural map G → A

1. The

stack BG has coarse space A
1 and a stabilizer of Z/2 at the origin. BG is

a smooth Deligne–Mumford stack with trivial generic stabilizer, but is not

separated (its diagonal isn’t separated, so not proper). Note also that the

map BG → A
1 is a coarse space morphism (i.e., it is a universal map from BG

to an algebraic space, and is bijective on geometric points), but not a good

moduli space morphism since it is not cohomologically affine. �

In the next example, we illustrate Theorem 1 with X = [An/Sn].

Example 2. Consider the stack X = [An/Sn], where the Sn-action permutes the coor-

dinates, over a field whose characteristic is prime to n! The coarse space is X = A
n,

with coordinates given by the elementary symmetric functions. The Sn-action is gener-

ated by pseudoreflections corresponding to transpositions; since all transpositions are

in the same conjugacy class as (1 2), the ramification locus of the coarse space map

X → X is given by (x1 − x2) ∩ k[x1, . . . ,xn]Sn , which is generated by the discriminant

� :=
∏

i−j(xi − xj)
2, and the order of ramification is 2 (see Remark 6). The ramification

divisor D ⊆ X is given by expressing � in terms of the elementary symmetric functions.

Up to sign, this is given by the resultant of f and f ′, where f (x) = xn−e1xn−1+· · ·+(−1)nen

is the polynomial with the elementary symmetric functions as coefficients.

Since the action of Sn onA
n is the sum of the trivial and standard representations

of Sn, the features of this example are all present if one restricts to the vanishing locus

of e1 = x1 + · · · + xn, the first elementary symmetric function. In this case, the coarse

space of [An−1/Sn] is A
n−1 = Speck[e2, . . . , en], the ramification divisor is given by the

discriminant of f (x) = xn + e2x
n−2 + · · · + (−1)nen, and the ramification order is 2. �

Example 3 (Square root of the cuspidal cubic). In this example,we construct the smooth

stack X with coarse space A
2 = SpecC[a,b] so that the ramification divisor is the

cuspidal cubic D = V(a3 − b2) with ramification order 2. The coarse space is already

smooth, so it is equal to its canonical stack. The square root of the cuspidal cubic is√
D/A2 = [Y/(Z/2)], where Y = SpecC[a,b, t]/(b3 −a2 − t2) is the A2-singularity, and Z/2

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
rn

/a
rtic

le
/2

0
1
7
/2

1
/6

4
6
9
/3

0
6
1
0
9
3
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



6480 A. Geraschenko and M. Satriano

acts as t �→ −t. The canonical stack of Y is Y can = [(SpecC[x,y])/(Z/3)] where the Z/3-

action is given by (x,y) �→ (ζx, ζ 2y) with ζ a third root of unity. The relation between

the x,y coordinates and the a,b, t coordinates is x3 = a+ ti, y3 = a− ti, and xy = b. We

see that the Z/2-action on Y fixes xy and swaps x3 and y3. It therefore lifts to an action

on A
2 swapping x and y. Together with the Z/3-action, this lifted Z/2-action generates

an action of S3 on A
2. This S3-action is the unique two-dimensional irreducible repre-

sentation. We therefore see that X = [Y/(Z/2)]can = [Y can/(Z/2)] = [A2/S3]. This is the

n = 3 case of Example 2. �

Remark 4. The above example can be done over R instead of over C, but since R has no

primitive cube root of unity, the stabilizer of the origin is (Z/2) ⋉ µ3, a twisted version

of S3. To get a stabilizer of S3, one would square root the cuspidal cubic given by the

discriminant � = 4a3 − 27b2. �

Example 5 (Reducible ramification divisor without simple normal crossings). Let k be

a fieldwith primitive fourth roots of unity andwith char(k) �= 2. ConsiderD ⊆ A
2 defined

by y(x2−y) = 0. Then
√
D/A2 = [Y/(Z/2)]where Y = Speck[x,y, t]/(y2−x2y+t2) and Z/2

acts as t �→ −t. Letting z = y− 1
2
x2, we see that the defining equation of Y is 1

4
x4 = z2+t2.

After a further change of coordinates u = 2(z + ti) and v = 2(z − ti), we see that Y is

the A3-singularity defined by the equation x4 = uv. In these coordinates, the Z/2-action

on Y fixes x and swaps u and v. Since Y is the A3-singularity, Y
can = [A2/(Z/4)] where

Z/4 acts on A
2 by (a,b) �→ (ia,−ib). The relation between the a,b coordinates and the

x,u,v coordinates is given by x = ab, u = a4, and v = b4. The Z/2-action on Y lifts

to A
2 by swapping a and b. With the action of Z/4, this generates an action of the

dihedral group D8, and so
√
D/A2

can = [A2/D8]. This argument generalizes to show that√
V(y(xn − y))/A2

can = [A2/D4n]. �

Example 6 (Singular coarse space). Let X = Speck[a,b, c]/(ab − cm) be the Am−1-

singularity and let D ⊆ X be a Weil divisor which generates the class group of X . The

canonical stack is X can = [Spec(k[x,y])/µm] where the action is ζ · (x,y) = (ζx, ζ−1y),

with (a,b, c) = (xm,ym,xy). D lifts to the divisor [V(x)/µm]. The root stack n
√

D/X can is

then

n

√
[V(x)/µm]

/
[Speck[x,y]/µm] = [ n

√
V(x)/Speck[x,y]/µm]

=
[
[Spec(k[x,y, t]/(x − tn))/µn]/µm

]
,
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where µn acts as ζ · (x,y, t) = (x,y, ζ t). This stack is the quotient [Spec(k[y, t])/µmn],
where the action is ζ · (y, t) = (ζ−1y, ζmt). �

Given a smooth separated Deligne–Mumford stack X with trivial generic stabi-

lizer, we can associate to it the tuple (X ,Di, ei), where X is its coarse space, the Di are the

irreducible components of the ramification divisor of the coarse space map π : X → X ,

and ei is ramification degree of π over Di. Although our main result shows that X is

characterized by (X ,Di, ei), we now show that not every tuple (X ,Di, ei) arises in this

manner.

Example 7 (Not every tuple (X ,Di, ei) arises). Consider the cone D = V(xy + z2) in

X = A
3. Taking the square root ofX alongD yields a stack X̃ with a singularity of the form

xy+z2 = t2. This is isomorphic to the toric singularity xy = uv (with (u,v) = (t+z, t−z)),

which is not a finite quotient singularity (and hence has no canonical Deligne–Mumford

stack). It follows from Theorem 1 that there is no smooth separated Deligne–Mumford

stack X with trivial generic stabilizer and coarse space X whose coarse space morphism

X → X is ramified over D with degree 2. �

In light of this example, we ask:

Question 1. Which tuples (X ,Di, ei) arise in the manner described above? That is, given

an algebraic space X with tame quotient singularities, a reduced Weil divisor D on

X with irreducible components Di, and integers ei ≥ 2, is there a smooth separated

Deligne–Mumford stack X with a coarse space morphism X → X ramified over Di with

degree ei? �

Remark 8. It suffices to answer Question 1 formally locally: which singularity types

and ramification orders can arise for the quotient of a vector space V by a faithful linear

action a finite group G? By Remark 6, the ramification divisors are the images of the

hyperplanes of pseudoreflections, and the ramification degrees are the orders of the

pseudoreflections. �

Example 9 (Even if (X ,Di, ei) arises, (X ,Di,nei) may not). Let D ⊆ A
2
C
be the cuspidal

cubic x3 − y2 = 0. The root stack n
√
D/X has a unique singularity, which is of the form

x3 −y2 = zn. For n = 2, 3, 4, 5, this is a singularity of type A2, D4, E6, and E8, respectively,

(see e.g., [13, Section 4.2] for descriptions of these singularities). (It is immediate that x3−
y2 = zn is theA2, E6, and E8 singularity forn = 2, 4, 5, respectively. To see that x3−y2 = z3
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6482 A. Geraschenko and M. Satriano

is theD4-singularity, make the coordinate change (u,v) = ( 3
√
4/7(x+z), 6

√
4/189 1

2
(z−x)).)

In general, for n ≥ 6, the singularity x3 − y2 = zn is not a quotient singularity; for

6 ≤ n ≤ 11, this singularity is elliptic [13, Exercise 18, Chapter 4]. Thus, (A2,D,n) arises

as the coarse space and ramification divisor of a smooth separated Deligne–Mumford

stack for n ≤ 5, but in general not for n ≥ 6. �

Given the above example, we pose the following question.

Question 2. If X has tame quotient singularities and D ⊆ X is an irreducible divi-

sor which does not have simple normal crossings, does (X ,D,n) fail to arise for all

sufficiently large n? �

Finally, we mention that the tameness assumption in Theorem 1 is needed. The

following example is due to David Zureick-Brown.

Example 10 (Tameness assumption is necessary). Let k be an algebraically closed field

of characteristic p and consider the Artin–Schreier curve φ : C → P
1 corresponding to

the field extension k(C) = k(x)[y]/(yp −y− f (x)) of k(x). Since k(C) is a Galois extension

of k(x) with Galois group Z/p, we know that φ is a generic Z/p-torsor. Specifically,

the action of λ ∈ Z/p is given by (x,y) �→ (x,y + λ) and one checks that φ is totally

ramified over ∞ and is a Z/p-torsor over A
1. Thus, taking the stack quotient, we obtain

a smooth separated non-tame Deligne–Mumford stack X = [C/(Z/p)] and coarse space

map π : X → P
1 which is an isomorphism over A

1. Regardless of f , the stack X has a

single Z/p-stabilizer over ∞; however different choices of f can yield non-isomorphic

X , and in fact C of different genus. So, we see that if we drop the tameness assumption

in the statement of Theorem 1, then the ramification divisor and degrees of ramification

are not enough to recover X . �
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