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Abstract. We show that global positive solutions of the initial-boundary value
problem for ut = Δu + up are bounded, provided that p > 1 is subcritical.
Our bound depends only on sup norm of the initial data and is useful to classify
initial data by the asymptotic behavior of the solutions as time tends to infinity.

1. Introduction

We consider the initial boundary value problem on Ω for a semilinear heat equation

ut-Δu-up = 0, (1)

with the Dirichlet boundary condition

M(X, ί) = 0 on dΩ, (2)

and initial data

M(X,0) = M O 0C)^0 in/2. (3)

Here Ω is a smoothly bounded domain in IRΛ and p > 1. By the maximum principle
and (3) the solution ι/( , t) is positive in Ω for t > 0 (unless uo(x) = 0); therefore the
term up is well-defined for every p. The asymptotic behaviour of global solutions
u(-,t) as f->oo has been studied by many authors; see for example [1,4,5]. To
classify initial data by the asymptotic behavior of the corresponding solutions, it is
important to study whether global solutions satisfy a priori bounds for all time. In
[5] Ni, Sacks and Tavantzis proved an a priori bound assuming that Ω is convex
and p < 1 + 2/n. This was improved by Cazenave and Lions in [1]; they showed for a
general domain Ω that a global solution is bounded in Ω x (ί0, oo) for every t0 > 0,
provided that n/2 <(p + ί)/(p - 1) (equivalently, p < (n + 2)/(n - 2) or n ̂  2). For
p < 1 + 12/(3n — 4) or n = 1, their bound depends explicitly on norm of the initial
data. However, if n > 1 and p = 1 + 12/(3n - 4), the dependence of their bound on
the initial data is unclear.

Our main goal in this paper is to remove this technical restriction on p. We shall
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show that every global solution satisfies on a priori bound depending only on a
norm of the initial data, provided only that nβ<(p + \)/(p— 1). To avoid later
confusion, by a "solution" of (1 -3) in Ω x [0, T] we shall always mean a continuous
function in Ω x [0, T) which is smooth enough for each term appearing (1) to be
continuous in Ω x (0, T).

Main Theorem. Let nβ < (p + l)/(p - 1). Suppose that u(x, t) is the solution of(l -3) in
Ω x [0, oo) with uoeC(Ω). Then there is a constant M depending only on sup{t/0(x);
xeΩ) such that w(x, t)^M for xεΩ, t ^ 0.

As a simple application we obtain the closedness of the set of initial data which
gives global existence. To be precise, we denote

K = {woeC; global solution of (1-3) exists with ι/(χ,0) = uo(x)}.

Corollary. For nβ < (p + l)/(p - 1), the set K is closed in C.
Since C\K is not empty [1,4,5,6], it is well-known that the Corollary provides

"threshold" initial data u0GdKr\K whose ω-limit set consists of nontrivial
equilibrium solutions of (1-2). We note that this gives a dynamical way to construct
a nontrivial equilibrium solution of (1-2). If Ω is star-shaped and nβ ^ (p + 1)/
(p-1), it is well known that there is no solution of (1-2) other than zero. We
conclude that the restriction on p in the Main Theorem is optimal.

To prove the Main Theorem we combine energy identities [1] with a scaling
argument previously used by Gidas and Spruck [2] for elliptic equations. Our
method works for all p, nβ<{p+ l)/(p— 1). Although we discuss only a special
nonlinear term, the argument extends to a more general class of nonlinearity as will
be briefly explained in Sect. 3.

In Sect. 2 we formulate and prove a lemma crucial to our method, and in Sect. 3
we prove the Main Theorem and its Corollary. As a by-product of the lemma we
shall prove in Sect. 4 that the energy blows up if the solution blows up in finite time
provided that nβ < (p + l)/(p - 1).

2. A Priori Estimates

We shall derive a sup norm bound for solutions assuming boundedness of an
integral norm.

Lemma. Let u be a solution of (1-3) in Q = Ω x [0, T). Suppose that u satisfies the
estimate

)\\ut\
2dxdt<N<oo, (4)

0 Ω

and that for given to>0

sup u is attained in Ω x(t0, T). (5)
Ω

Then there is a constant A independent ofu, u0 and T (depending on N and t0) such that

u(x, ή^A in Q.
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Our proof appeals to scaling and argues by contradiction, following the ideas
introduced by Gidas and Spruck [2] for elliptic equations. Most of the argument is
parallel to [2] except that we use parabolic theory and (4). However since the proof is
by contradiction, we give not only the major part (the use of (4)) but also the outline
of the whole proof.

Although we discuss only a special nonlinear term, the same proof works if one
replaces up by any f(u) with the property that

0 < lim f{z)/zp <ao (6)
z-+ + oo

for some p such that n/2 < (p + l)/(p — 1).

Proof. We first introduce a parabolic scaled function. Our proof is by contradiction.
Suppose the Lemma were false. Then there would exist a sequence of functions

uk(x, t) satisfying (1-4) with T = Tk > 0 and a sequence of points (xk, tk\ tk > t0 such
that

Mk = sup {uk(x, t); xeΩ, ίe(0, Tk)} = uk{xk,tk)^co as k-^co.

Since Ω is compact, we may assume that xk-^xo0eΩ as fc-*oo, by choosing
subsequences. Let λh be a sequence of positive numbers such that

Since Mk -> oo, evidently λk -• 0. We now define the scaled function

vk(y,s) = λ2

k'
{p-l)uk{xk + λky9 tk + λ2

ks).

Clearly,

ι*(0,0)=l, (7)

and

Vk(y9s) ^ 1, where vk is defined. (8)

Following [2] we divide the situation into two cases depending on whether x^ eΩ or

Casel. XooGίλ (i) (Domain of definition ofvk). Let Q(r) be a parabolic cylinder with
radius r in 1R"+1,

n + \ \y\<r9 - r 2 < 5 ^ 0 } .

Let Id denote the minimum of 2 ̂ /t0 and the distance of χω and dΩ. Since χk -• x^,
we see vk(y, s) is defined in Q(d/λk) for sufficiently large k.

(ii) (The equation for vk). Because (1) is invariant under our scaling,^ solves

vks ~ Δyvk - v£ = 0 in Q(d/λk).

(iii) (Convergence of υk) We apply parabolic II regularity theory [3] to get
uniform bounds in some Sobolev space from (8). More precisely for any given R such
that Q(R) c Q{d/λk), {vk} is bounded in W2

P

Λ(Q(R)) for any q > n. As is usual, we can
find a subsequence (still denoted vk) which converges uniformly to some function
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v ^ 0 in any Q(R) and υ is defined in U" x (— oo,0). We may assume, taking yet
another subsequence if necessary that vks converges weakly to vs in L2(Q(R)).

(iv) (The equation for v). Combining (ii) and (iii) shows that v solves

vs-Δyv-vp = 0 in Un x ( - oo,0).

From (7) we see also

u(0,0)=l.

(v) (vs = 0). This is the only step we use (4). A simple manipulation shows that

M \vks\
2dyds = λσ

k J j \ukt\
2dxdt,

Q(d/λk) tk-d2\x_Xkl<d

with σ = — n -f 2 + 4/(p — 1). Applying (4), we get

ί ί \vks\
2dyds^λσ

kN^0 as /c->oo,
Q(R)

since n/2 < (p + 1 )/(p — 1) is equivalent to σ > 0. This yields DS = 0 in Q(R) because vks

converges weakly in I}(Q{R)) to vs and the norm is lower semicontinuous under
weak convergence. Since R is arbitrary, so vs vanishes identically in Un x (— oo,0).

(vi) (Application of a Liouville theorem). Since vs = 0, v ̂  0 solves

9 - 0 in IT.

A Liouville theorem [2] asserts that there are no nontrivial solutions when n/2 <
(P + !)/(/>- 1)» and SOI Ξ O . This contradicts the fact that v(0,0)=\. Hence case 1
cannot occur.

Case 2. x^edΩ. In what follows we number the steps to correspond to those of Case
1. (O) (Coordinate change). We may assume the boundary dΩ is contained in the
hyperplane {x" = 0} by taking a local coordinate x = (xί

i...,x
n) around xm.

Unfortunately, because of the coordinate change the equation we must now discuss
is a uniformly parabolic equation with smooth variable coefficients

ut - Eifl\x)^.u ΣtbXxA
dχιdxJ dxι

We may assume that aij(0) = δij.
(i) Let dk be the distance from χk to dΩ. We see, at least for large fc, that vk is

defined in Q(δ/λk) n{yn> — djλk] for some δ > 0.

(ii) The equation for υk is slightly more complicated because of (O),

vks - Σija

ij(λky + χk)^-jΌk - λiΣpKλtf + xJ-j-iVt-υζ = 0.

(iii) This time we should use parabolic Π theory up to the boundary [3] to the
equation in (ii). In particular, we get |Vι;fc| is uniformly bounded in Q(R)n{y" >
-djλk}. Since t;fc(0,0)= 1 by (7) and ϋk = 0 o n {/ = 0} we get dk/λk^B>0. If
\\m sup djλk = oo, after a choice of subsequence the situation is reduced to case 1

k
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suitably modified for variable coefficient Eq. (cf. [2]). We may therefore assume dj
λk^c>0. Applying parabolic LP theory up to the boundary yields that a
subsequence (still denoted υk) converges to v as in (iii) of case 1, except that we should
replace Q(R) by Q(R) n {/ > - c + ε} for arbitrary ε > 0 and R > 0. Note that v = 0
on { / = -c] and y(0,0) = l.

(iv) The equation for v is the same as (iv) of case 1, even though step (ii) is different
(cf. [2]). Using aij(0) = δij(0) and (iii), we get

vt-Δυ-vp = 0 in {yeUn;yn> -c) x(-oo,0).

(v) This step is the same as case 1 with the necessary changes of the domain of
integration.

(vi) Since vs = 0, v ̂  0 solves

Δv + υp = 0 in {yn> -c},

with v = 0 on {y" = — c). Applying the Liouville theorem in a half space [2] yields
IJΞO, which contradicts the fact that t<0,0) = 1. We thus have contradiction in both
cases which completes the proof.

3. Proof of Main Results

Energy estimates, and the Lemma, lead easily to the main theorem. Although the
argument is known [1], we outline it for the reader's convenience.

Proof of the Main Theorem. We may assume u0 is not identically zero. We first note
that there are constants B, t' > 0 depending only on sup u0 such that

Ω

sup suptφc,τ)^β, $\Vu\2(xj')dx^B. (9)

The first inequality is easy to prove. The second one follows from the regularizing
property of parabolicity, which is well known (cf. [7]).

We next recall energy identities. Multiplying (1) with u and ut and integrating
over Ω yields

(10)

and

J \ut\2dx= ——E[u]9 (11)
Ω at

where E is the "energy," defined by

E[u\ =\J \Vu\2dx -§up+1dx. (12)
Ω p + l β

Identity (11) says that the energy should decrease. This together with (10) shows
that E[u\ (t) ̂  0 for t > 0, since otherwise the solution must blow up in finite time.
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Integrating (11) over (t\ T) gives

t' Ω

by (9). Now by the Lemma, any solution in Ω x [t\ T) which attains its maximum
outside Ω x [t\ 2t') is bounded from above by a constant depending only on B and t'
(independent of T). By (9), a solution which takes its maximum inside Ω x [t\ 2tf) is
dominated by B. Hence in any case

tφc, ί j g M i n f l x [t\ oo),

where M > B depends only on sup u0. Of course u ^ B in Ω x [0, ί') by (9), which
completes the proof of the Main Theorem.

Remark. The nonlinear term up in (1) may be replaced the more general one f(u)
satisfying (6) and following conditions which are given in [1].

(a) f(z) = —mz + g(z) and g(z) is a nonnegative C1 real-valued function on z ^ 0.
(b) m> — λί where λλ is the first eigenvalue of - A in H\(Ω\
(c) There is a constant <5 > 0 such that

Remark. In [1] Cazenave and Lions obtain global a priori bounds provided that
1 < p < 1 -f 12/(3n — 4) or n = 1. They do so by interpolating between estimates of
\\\ut\

2dxdt and J(J|Vu\2dx)2dt to bound supJWdx for some q > 1. Unfortunately,
this approach fails if p ^ 1 + 12/(3/t —4) and n ̂  2. Instead, for larger p they prove
that a global solution is bounded by using that

ίί1\ut\
2dxdt

is small if T is large. It seems that such an argument cannot give a bound depending
only on a norm of the initial data.

Proof of Corollary. Let Um0 be a sequence in K such that um0^>u0 in C. The Main
Theorem implies that the solution um of (1-3) with um{x, 0) = um0(x) satisfies the
estimate um ^ Min Q independent of m This gives a uniform bound for the solution
with initial data u0, which prevents the blow up in finite time. Therefore u0 e K, which
completes the proof.

4. A Remark on Blow Up

It is well known that there are examples of initial data uoeK, i.e., that solutions of
(1-3) can blow up in finite time. For such u0 there is a time 7^ < oo such that u is the
solution of (1-3) in Ω x [0, TJ and that supβw-> oo as t-+ T*. It is interesting to
study what other quantities blow up at T* (cf. [6]). As an application of the Lemma
we claim the energy E defined by (12) blows up at T*.

Corollary to Lemma. If the solution u of (1-3) blows up at time 7^ < oo, then the
energy E[u] (ί) -• - oo as t^>T* provided that n/2 <(p+ l)/(p - 1).
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Proof If not, (11) yields that for fixed t\ 0 < t' < T < T*,

J J | f |
t' Ω

where C is independent of T. If sup u(x, t) -> oo as £-•!*, then the Lemma is

contradicted. Therefore E[u\ (t) -» — oo as t -> T*.
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