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Abstract

The author finds a limit on the singularities that arise in geometric generic fibers of morphisms

between smooth varieties of positive characteristic by studying changes in embedding dimension

under inseparable field extensions. This result is then used in the context of the minimal model

program to rule out the existence of smooth varieties fibered by certain nonnormal del Pezzo

surfaces over bases of small dimension.
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1. Introduction

This paper investigates the singularities that arise in generic fibers of morphisms

between smooth varieties in positive characteristic. In characteristic 0, any

morphism between smooth varieties admits a dense open locus of the base over

which all fibers are smooth. However, over fields of positive characteristic this

is no longer the case, as there exist morphisms between smooth varieties in

which every fiber is singular (that is, nonsmooth over its base field). A simple

example, occurring over an arbitrary field k of characteristic 2 (respectively 3), is

the morphism f :A2
k → A

1
k given by (x, y) 7→ x2 + y3. The fiber of f over any

point t0 ∈ A
1
k is the planar curve defined by the equation x2 + y3 − t0 = 0, which

clearly has a cuspidal singularity at the geometric point (
√

t0, 0) (respectively

(0, 3
√

t0)).

This phenomenon is more than just pathology, rather it is a feature of positive

characteristic geometry that arises naturally when attempting to study a class of
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smooth varieties via morphisms to other varieties. One instance of this occurs

in Mumford and Bombieri’s classification of fibrations in characteristic p > 0,

within the context of the Enriques classification of surfaces (cf. [1, 2]). As

the above example illustrates, when p = 2 or 3 there exist smooth surfaces

fibered in cuspidal curves of arithmetic genus 1 (also known as quasielliptic

fibrations).

Main results. Nonsmooth points in the generic fiber of a morphism lie under

those in the geometric generic fiber, an algebraically closed field extension of the

generic fiber, at which the stalk of the structure sheaf fails to be a regular local

ring (cf. Definition 2.3). To measure this failure, it is useful to recall the following

definition.

DEFINITION 1.1. The difference by which the embedding dimension

(cf. Section 2) at a (possibly nonclosed) point z of a scheme Z exceeds the

codimension of that point is called the embedding codimension of z in Z ,

ecodimZ (z) := edim(OZ ,z) − dim(OZ ,z).

Clearly the embedding codimension of z ∈ Z is nonnegative, and equals zero

if and only if OZ ,z is a regular local ring, so we see that it does provide some

measure of the singularity at z. The main result of this paper is the following

bound on the embedding codimension of points in the geometric generic fiber of

a morphism between smooth varieties, which thus limits the possible singularities

that arise.

THEOREM 1.2. Let f : X → S be a morphism between smooth varieties over a

perfect field k. Then the generic fiber Xξ is a regular variety over the function field

of S, κ := κ(ξ), and any point x̄ in the geometric generic fiber X ξ := Xξ ×κ κ̄

satisfies

ecodimX ξ
(x̄) 6 dim(S). (1.3)

REMARK 1.4. The bound on embedding codimension asserted in Theorem 1.2 is

immediate for special fibers. This is because the geometric fiber X s := Xs ×κ(s) k̄

over any closed point s ∈ S embeds via a closed immersion into the smooth

variety X := X ×k k̄, so it follows that edimX s
(x̄) 6 edimX (x̄) for all x̄ ∈ X s , and

consequently that

ecodimX s
(x̄) = edimX s

(x̄) − dim(OX s ,x̄
)

6 edimX (x̄) − dim(OX s ,x̄
)
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= dim(OX ,x̄) − dim(OX s ,x̄
)

= dim(X) − dim(X s)

6 dim(S).

The content of the theorem is that this inequality, which easily holds for all special

fibers, also holds for the generic fiber.

Main application. Our primary application of the above theorem is in the

setting of the minimal model program, where one studies a higher-dimensional

variety via its morphisms to simpler varieties. A primary goal in the program is to

construct, from a given variety X , a minimal model by contracting each extremal

curve C ⊆ X that pairs negatively with the canonical divisor in X . If the curve C

is sufficiently mobile in X , then this contraction morphism may not be birational,

and instead may be a fibration by Fano schemes.

In positive characteristic, Kollár demonstrated the existence of these

contraction morphisms on smooth 3-folds X , extending a result of Mori from

characteristic 0 (cf. [5, 9]). Furthermore, he gives a detailed classification of

the geometry of the possible contractions f : X → X ′ in the case where f is

birational (that is, when X ′ is a 3-fold). If X ′ is a surface then f is simply a

conic bundle, but if X ′ is a curve then f is a fibration by del Pezzo surface

schemes, and Kollár remarks that the geometry here could potentially be rather

complicated. He raises the question of whether the geometric generic fibers of

such f can be nonnormal (cf. [5, Remark 1.2]) and if so, could the generic fiber

Y of a del Pezzo surface fibration satisfy H 1(Y,OY ) 6= 0 (cf. [6, Remark 5.7.1]).

Over a perfect field, all normal del Pezzo surfaces Y satisfy H 1(Y,OY ) = 0

by a result of Hidaka and Watanabe (cf. [4, Corollary 2.5]), although in all

positive characteristics p > 0, Reid exhibits nonnormal del Pezzo surfaces Y

with H 1(Y,OY ) 6= 0 (cf. [10, Section 4.4]).

The author recently constructed two projective morphisms f : X → S between

smooth varieties of characteristic 2 whose generic fibers are regular del Pezzo

surfaces Y with h1(Y,OY ) = 1 (cf. [7]). In one example, X is a 5-fold

(it is actually possible to create a similar example with X a 4-fold, the details

of which shall be included in a forthcoming paper) and the geometric generic

fiber is integral but nonnormal. In the other example, X is a 6-fold and the

geometric generic fiber is nonreduced. It remains an open question whether del

Pezzo surfaces Y with H 1(Y,OY ) 6= 0 can arise as the generic fiber of a morphism

from a smooth 3-fold to a curve, but it follows from the main result of this

paper that, at least in characteristics greater than 3, such geometry is not

possible.
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COROLLARY 1.5. Let f : X → C be a surjective morphism between a smooth

3-fold X and a curve C over a perfect field of characteristic p > 3. If the generic

fiber Y is a del Pezzo surface (that is, if ω−1
Y is ample), then H 1(Y,OY ) = 0.

Connections to the literature. Our main theorem is related to one result by

Schröer (cf. [12, Corollary 2.4]) which asserts that, in the case of a proper fibration

f : X → S, inequality (1.3) is strict if x ∈ X ξ is the generic point.

THEOREM 1.6 (Schröer). Let f : X → S be a proper morphism between integral

normal algebraic k-schemes of positive dimension satisfying f∗(OX ) = OS ,

and let ξ ∈ S denote the generic point. Then the geometric generic embedding

dimension of Xξ (that is, the embedding codimension of the generic point of X ξ )

is strictly less than dim(S).

In the same work, Schröer observes that a k-scheme X is geometrically reduced

(that is, X k̄ is reduced) if and only if the base change Xk1/p of X by the height-

one field extension k ⊆ k1/p is reduced. The analogous property for geometric

regularity is a well-known result of EGA (cf. [3, Theorem IV.0.22.5.8]). We refine

that result by proving the following proposition.

PROPOSITION 1.7. Let k denote a field of characteristic p > 0 and let x ∈ X

denote a point in a k-variety X. If x ′ ∈ Xk1/p and x (∞) ∈ Xk1/p∞ denote the

preimages of x under the natural bijections Xk1/p∞ → Xk1/p → X, then

edimX
k1/p

(x ′) = edimX
k1/p∞ (x (∞)).

2. Regularity and smoothness

We briefly recall the definitions of the notions of regularity and smoothness.

DEFINITION 2.1. The embedding dimension of a locally Noetherian scheme X at

a point x ∈ X is the embedding dimension of the local ring OX,x at the maximal

ideal mx , that is, the dimension of the Zariski cotangent space over the residue

field κ(x) := OX,x/mx ,

edimX (x) = edim(OX,x) = dimκ(x) mx/m
2
x .

DEFINITION 2.2. A scheme X is regular if it is locally Noetherian and for all

x ∈ X , the local ring OX,x is a regular local ring (that is, the embedding dimension

of OX,x is equal to its Krull dimension).
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DEFINITION 2.3. A scheme X is smooth over a field k if it is locally of finite type

and geometrically regular over k (that is, X ×k k̄ is regular).

REMARK 2.4. Any smooth scheme is regular, and any regular scheme is locally

integral. Therefore, any connected, separated scheme of finite type over k that is

smooth over k (or regular) is automatically a variety over k, which in this paper

refers to an integral, separated scheme of finite type over k.

Over a perfect field, the notions of regularity and smoothness are equivalent.

However, over imperfect fields (of positive characteristic), a scheme may be

regular but not smooth. We have already seen such an example: the generic fiber

of the morphism f :A2
k → A

1
k described in Section 1 is regular at all points but is

not smooth since a cuspidal singularity appears after an algebraic extension of the

function field k(t). It turns out that pretty much all examples of regular varieties

arise in this way—as generic fibers of morphisms between smooth varieties—and

therefore the study of the singularities appearing in the geometric generic fibers

of morphisms between smooth varieties reduces to the study of the singularities

appearing in the geometric (that is, algebraically closed) base changes of regular

varieties.

PROPOSITION 2.5. Let Y be a variety over a finitely generated field extension K

of a perfect field k. Y is regular if and only if there exists a morphism of smooth

k-varieties f : X → B so that K is the function field of B and Y is the generic

fiber of f .

Proof. See [11, Proposition 1.6].

Notice that if X is a regular variety that is not smooth over k, then there exists

a closed point x̄ ∈ X := X ×k k̄ sitting over some point x ∈ X such that

edimX (x̄) > dim(X) = dim(X)

= edimX (x).

In this way, the existence of regular but nonsmooth schemes is directly linked to

‘jumps’ in embedding dimension after a geometric extension of scalars k̄/k.

3. Jumps in embedding dimension

For any purely inseparable field extension k ′/k, the morphism of affine schemes

Spec k ′ → Spec k is a universal homeomorphism. In particular, any k-algebra R
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is local if and only if R ⊗k k ′ is so, which shows the following definition to be

well formed.

DEFINITION 3.1. Let R be a local, finite-type k-algebra and k ′/k a purely

inseparable field extension. We define the embedding jump of R over the

extension k ′/k to be the difference between the embedding dimensions

ejumpk′/k(R) := edim(R ⊗k k ′) − edim(R).

The embedding jump ejumpk′/k(x) of a finite-type k-scheme X at a point x ∈ X

is defined by ejumpk′/k(x) := ejumpk′/k(OX,x).

REMARK 3.2. We make two easy observations about embedding jumps:

(1) embedding jumps are nonnegative (cf. [3, 0.IV.22.5.2.1]);

(2) because R is of finite type, any purely inseparable field extension k ′/k admits

some finite subextension k ⊆ k ′′ for which ejumpk′/k(R) = ejumpk′′/k(R).

In the special case that X = Spec K = {x}, for a finite field extension K/k, the

embedding dimension edimX (x) is zero and so the embedding jump is simply the

embedding dimension of the Artin local ring K ⊗k k ′,

ejumpk′/k(x) = edim(K ⊗k k ′).

This quantity was studied by Schröer in [12, Proposition 2.1], where he proved

the following theorem, which implies the 0-dimensional case of our main result

(cf. Theorem 4.3).

PROPOSITION 3.3 (Schröer). Let K/k be an extension of fields of characteristic

p > 0, and let k ′/k be a field extension that contains k1/p. Then the embedding

dimension of K ⊗k k ′ equals that of K ⊗k k1/p, which also equals the difference

between the p-degree and the transcendence degree of the field extension K/k.

For the reader’s convenience, we now recall the definition of p-degree: The

sheaf of Kähler differentials ΩX/k on a variety X is a locally free OX -module of

rank equal to dim X if and only if X is smooth over k. In characteristic 0, the

transcendence degree of a finitely generated field extension K/k is equal to the

dimension of the K -vector space of Kähler differentials ΩK/k . In characteristic

p, this is no longer the case, suggesting that transcendence degree is perhaps not

best suited for discussions of smoothness.
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DEFINITION 3.4. Let K/k be an extension of fields of characteristic p > 0. The

p-degree of K/k is defined to be the dimension of the K -vector space ΩK/k .

REMARK 3.5. If K/k is an arbitrary extension of fields of characteristic p > 0,

then

p-deg(K/k) = p-deg(K/k(K p)),

where k(K p) denotes the subfield of K generated by k and K p. This is because

ΩK/k = ΩK/k(K p), which holds since d( f p) = p f p−1d f = 0 for all f ∈ K .

For a finitely generated extension K of a perfect field F, the notion of p-degree

and transcendence degree actually agree, due to the existence of a separating

transcendence basis (cf. [8, Theorems 26.2–3]).

PROPOSITION 3.6. If F is a perfect field and K is a finitely generated field

extension, then

p-deg(K/F) = tr. deg(K/F).

4. A bound on embedding jumps

In this section we prove our main result, which asserts a bound on the

embedding jump at an arbitrary point of a regular variety in terms of the p-degree

and transcendence degree of the residue field at that point. We begin by proving

an essential lemma that bounds the jump in embedding dimension of a regular

local Noetherian ring by that of its residue field.

LEMMA 4.1. Let R be a local Noetherian ring, over a field k, with maximal ideal

m and residue field κ = R/m. If k ′/k is a purely inseparable field extension, then

ejumpk′/k(R) 6 edim(κ ⊗k k ′).

Proof. Denote by R′ the local ring R ⊗k k ′, by m
′ its maximal ideal, and by κ ′ its

residue field R′/m′. Consider the short exact sequence of κ ′-vector spaces,

0 → mR′/(mR′ ∩ m
′2) → m

′/m′2 → m
′/(mR′ + m

′2) → 0. (4.2)

As a κ ′-vector space, the dimension of the middle term is edim(R′), by definition.

We next consider the right-hand term, first noting the isomorphism

(m′/mR′) ⊗R′ κ ′ ∼= m
′/(mR′ + m

′2).
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Clearly m
′/mR′ is the maximal ideal of R′/mR′ ∼= κ ⊗k k ′. Since κ ′ is its residue

field, the κ ′-dimension of (m′/mR′) ⊗R′ κ ′ is equal to edim(κ ⊗k k ′), which

therefore equals the dimension of the right-hand term of (4.2).

To analyze the left-hand term of (4.2), observe that

mR′/mm
′ ∼= (m/m2) ⊗κ κ ′,

and therefore

dimκ ′(mR′/mm
′) = dimκ(m/m2) = edim(R).

Because of the natural inclusion, mm
′ ⊆ mR′ ∩ m

′2, we have the inequality

dimκ ′(mR′/(mR′ ∩ m
′2)) 6 dimκ ′(mR′/mm

′).

From the short exact sequence (4.2), it then follows that

edim(R′) = edim(κ ⊗k k ′) + dimκ ′(mR′/(mR′ ∩ m
′2))

6 edim(κ ⊗k k ′) + edim(R).

We now combine the lemma with a result of Schröer to prove our main theorem.

THEOREM 4.3. Let X be a regular k-variety. If k ′/k is a purely inseparable

extension, then for any x ∈ X with residue field κ(x), the embedding jump satisfies

ejumpk′/k(x) 6 p-deg(κ(x)/k) − tr.deg(κ(x)/k).

Proof. By Lemma 4.1, the jump in embedding dimensions is bounded by

ejumpk′/k(x) 6 edim(κ(x) ⊗k k ′).

Choose embeddings of k ′ and k1/p into the algebraic closure k̄, and let k ′′ ⊆ k

denote the subfield generated by k ′ and k1/p. By Remark 3.2, edim(κ(x) ⊗k k ′) 6

edim(κ(x)⊗k k ′′). Schröer’s result (Proposition 3.3) implies that edim(κ(x)⊗k k ′′)

equals edim(κ(x) ⊗k k1/p) and also equals the difference between the p-degree

and the transcendence degree of the extension κ(x)/k.

Our primary applications of the above result will be through the following

geometric consequence.

COROLLARY 4.4. Let f :X → B be a morphism of smooth varieties over a

perfect field F. The embedding dimension edimX (x̄) at any point x̄ ∈ X := X ×k k̄

satisfies

edimX (x̄) 6 edimX (x) + dim(B),

where x ∈ X denotes the point lying under x̄ ∈ X.
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Proof. By Theorem 4.3, ejumpk̄/k(x) 6 p-deg(κ(x)/k) − tr. deg(κ(x)/k), where

κ(x) denotes the residue field of x ∈ X . Clearly

p-deg(κ(x)/k) 6 p-deg(κ(x)/F) = tr. deg(κ(x)/F),

with the latter equality following from the perfection of F and Proposition 3.6.

Therefore,

edimX (x̄) − edimX (x) 6 tr. deg(κ(x)/F) − tr.deg(κ(x)/k)

= tr. deg(k/F)

= dim(B).

5. Regular del Pezzo surfaces

The primary motivation for this investigation was to determine which singular

del Pezzo surfaces can occur as the geometric generic fiber of the contraction of an

extremal curve class on a smooth 3-fold. Although we do not answer this question

definitively, the above results do rule out the nasty examples in characteristics

p > 3 of nonnormal del Pezzo surfaces X with H 1(X,OX ) 6= 0.

PROPOSITION 5.1. Let X be a regular del Pezzo surface over a finitely generated

field extension k/F of a perfect field F of characteristic p and transcendence

degree tr. deg(k/F) = d. If d 6 1 then X is geometrically reduced. If p > d + 2

and X is geometrically reduced, then H 1(X,OX ) = 0.

Proof. If k is of transcendence degree at most 1 over the perfect field F, then X :=
X×k k̄ is reduced (cf. [12]). By the classification of normal del Pezzo surfaces over

an algebraically closed field (cf. [4]), the result is true if X is normal. This just

leaves the case where X is integral but nonnormal (and hence where d > 0). Such

examples were classified by Reid (cf. [10]). In particular, in characteristics p > 3,

the nonvanishing H 1(X ,OX ) 6= 0 is only possible when there exist points x̄ ∈ X

with edimX (x̄) = p (cf. [10, Section 4.4]). By Corollary 4.4, edimX (x̄) 6 d + 2

for all x̄ ∈ X , and therefore H 1(X ,OX ) = 0, which implies H 1(X,OX ) = 0.

6. Jumping is a height-one phenomenon

An extension of characteristic p fields L/K is said to be of height one if

L p ⊆ K . As a consequence of Theorem 4.3, we show that jumps in embedding

dimension are a strictly height-one phenomenon. As a corollary, we recover the

well-known result [3, Theorem IV.0.22.5.8] that asserts that geometric regularity
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may be checked over height-one field extensions. We set the following notation

for this section.

NOTATION 6.1. For an imperfect field k of characteristic p, an element t ∈ k\k p,

and a k-algebra R, set:

(1) kn := k( pn√
t); and

(2) Rn := R ⊗k kn .

LEMMA 6.2. Let R = K be a finitely generated field extension of an imperfect

field k of characteristic p. If t ∈ k\k p and m := max{k ∈ N : t ∈ K pk }, then for

all 0 < n 6 m, the ring

Rn
∼=

{

K [εn]/(ε pn

n ) : if 0 6 n 6 m

K ( pn√
t)[εn]/(ε pm

n ) : if m < n,

and the natural ring inclusion Rn−1 ⊆ Rn is given by

{

εn−1 7→ ε p
n : if 0 6 n 6 m

εn−1 7→ εn : if m < n.

In particular, the residue field of Rn equals K if and only if pn√
t ∈ K .

Proof. If 0 6 n 6 m, then pn√
t ∈ K and therefore Rn = K ⊗k k( pn√

t) is

isomorphic to the Artin local ring K [εn]/(ε pn

n ), where εn := pn√
t ⊗ 1 − 1 ⊗ pn√

t .

Moreover, it follows then that εn−1 = ε p
n . On the other hand, if m < n, then

pn√
t /∈ Rn−1. Moreover, since km ⊆ K , the result follows by composing the

following isomorphisms:

K ⊗k k(
pn√

t) ∼= (K ⊗k km) ⊗km
kn

∼= K [εm]/(ε pm

m ) ⊗km
km(

pn√
t)

∼= K (
pn√

t)[εm]/(ε pm

m ).

PROPOSITION 6.3. Let k be an imperfect field of characteristic p. If t ∈ k\k p

and R is a Noetherian local k-algebra, then for any n > 1,

ejumpk1/k(R) = ejumpkn/k(R).

Proof. First, assume we have proven the result in the base case n = 2. By applying

this to the field kn−2 and the Noetherian local kn−2-algebra Rn−2, it would follow
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that for any n > 2,

ejumpkn/kn−2
(Rn−2) = ejumpkn−1/kn−2

(Rn−2).

Using this equality, we derive the general result by observing

ejumpkn/k(R) = ejumpkn/kn−2
(Rn−2) + ejumpkn−2/k(R)

= ejumpkn−1/kn−2
(Rn−2) + ejumpkn−2/k(R)

= ejumpkn−1/k(R),

and then arguing inductively. Thus, it suffices to prove the result in the case n = 2.

Let n = 2 and note by Remark 3.2(1) and Theorem 4.3 that

0 6 ejumpk1/k(R) 6 ejumpk2/k(R) 6 1.

Equality follows immediately in the case ejumpk1/k(R) = 1, so we henceforth

assume ejumpk1/k(R) = 0. It easily follows that ejumpk2/k(R) = ejumpk2/k1
(R1),

and we finish the proof by showing that this quantity also is zero.

Let K , K1, and K2 be the residue fields of R, R1, and R2, respectively, and

denote by m, m1, and m2 the corresponding maximal ideals. Clearly there are

inclusions K ⊆ K1 ⊆ K2. As K1 is a quotient of K ⊗k k1 and K2 is a quotient of

K1 ⊗k1
k2, it follows that [K1 : K ], [K2 : K1] ∈ {1, p}. Moreover, [K1 : K ] = p

if and only if K1 = K ⊗k k1, that is, if and only if m1 = mR1, and similarly,

[K2 : K1] = p if and only if m2 = m1 R2. We shall conclude the proof by analyzing

separately the following cases.

Case: [K2 : K1] = p. As noted above, this holds only if m2 = m1 R2. It follows

that ejumpk2/k1
(R1) = 0.

Case: [K1 : K ] = p. Since K1 is the residue field of K ⊗k k1 and K1 6= K ,

Lemma 6.2 implies that p
√

t /∈ K and hence p2√
t /∈ K . This means that K2,

which contains p2√
t and is at most a p2-dimensional vector space over K , must

be precisely K2 = K ( p2√
t) with [K2 : K1] = p. It follows that m2 = m1 R2, and

hence that ejumpk2/k1
(R1) = 0.

Case: [K1 : K ] = [K2 : K1] = 1. Since K = K2 is the residue field of K ⊗k k2,

Lemma 6.2 implies that p2√
t ∈ K . Another application of Lemma 6.2 yields the

isomorphisms

K ⊗k k1
∼= R1/m ∼= K [ε1]/(ε p

1 ), (6.4)

K ⊗k k2
∼= R2/m ∼= K [ε2]/(ε p2

2 ), (6.5)

where the natural inclusion R1/m → R2/m is given by ε1 7→ ε
p

2 . Choosing f ∈ m2

to be any lift of ε2, it follows that f p ∈ m1 is a lift of ε1. Therefore m2 = mR2+( f )
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and m1 = mR1 + ( f p). Notice that f p /∈ m
2
1 and so by Nakayama’s lemma, it

is included in some minimal set of generators f p, x2, x3, . . . , xm for the R1-ideal

m1. Furthermore, we may choose these generators so that x2, . . . , xm ∈ mR1. Here

m = edim(R1) = edim(R), since ejumpk1/k(R) = 0. As ideals in R2, we have

( f, x2, . . . , xm) = ( f ) + ( f p, x2, . . . , xm)

= ( f ) + m1 R2

= ( f ) + ( f p) + mR2

= m2.

Therefore edim(R) 6 edim(R2) 6 m = edim(R), and hence ejumpk2/k

(R) = 0.

COROLLARY 6.6. Let R be a local Noetherian k-algebra. If K/k is a purely

inseparable field extension and K ′ := K ∩ k1/p, then

ejumpK/k(R) = ejumpK ′/k(R).

Proof. Since R is Noetherian, we may assume that K is finitely generated, so that

K = k( pn1
√

t1, . . . ,
pnr
√

tr ) for certain ti ∈ k\k p. It follows by inducting on r and

applying Proposition 6.3 that ejumpK/k(R) = ejumpK ′/k(R), where K ′ := k( p
√

t1,

. . . , p
√

tr ) = K ∩ k1/p.

We recover, as a further corollary, the following result (cf. [3, Theorem

IV.0.22.5.8]).

THEOREM 6.7 (EGA). Let X be a regular variety over a field k. X is smooth over

k if and only if X ×k k1/p is a regular variety over k1/p.

Proof. Let R = OX,x , for an arbitrary point x ∈ X . It follows from Corollary 6.6

that ejumpk1/p∞
/k(R) = ejumpk1/p/k(R). Since k̄/k1/p∞

is a separable field

extension, R ⊗k k̄ is regular if and only if R ⊗k k1/p∞
is regular. The result then

follows from the observation that for any field extension k ′/k and regular local

ring R, the base change R ⊗k k ′ is regular if and only if ejumpk′/k(R) = 0.

7. Future directions

We leave an open question for future research.

QUESTION 7.1. Does there exist a regular del Pezzo surface X with H 1(X,

OX ) 6= 0 over a field of transcendence degree 1 over a perfect field?
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By Proposition 5.1, if an example does exist, it occurs in characteristic 2 or 3.

The author has constructed examples in characteristic 2 of regular del Pezzo

surfaces X with H 1(X,OX ) 6= 0 over fields of transcendence degree at least

3 (cf. [7]) and shall describe a similar example over a field of transcendence

degree 2 in a forthcoming paper.
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