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Abstract. This paper shows that the/-level of an arrangement of hyperplanes in E ~ 
has at most (i~ ~-1-1) local minima. This bound follows from ideas previously 
used to prove bounds on (<k)-sets. Using linear programming duality, the Upper 
Bound Theorem is obtained as a corollary, giving yet another proof of this celebrated 
bound on the number of vertices of a simple polytope in E d with n facets. 

1. Introduction 

We need some terminology for arrangements, similar to that in Edelsbrunner's 
text [3]. Let s~C(H) be a simple arrangement of a set H of n hyperplanes in E a. 
For h e H, let the upper half-space h § be the open half-space bounded by h that 
contains (oo, 0 . . . . .  0), and let the lower half-space h-  be the other open half-space 
bounded by h. Say that x e E a is above h e H if x e h +, and below h if x e h- .  The 
/-level of sO(H) is the boundary of the set of points that are below no more than 
i hyperplanes of H. Thus, for example, the 0-level of d ( H )  is the boundary of the 
convex polytope ~(H)  = N h~n(h § u h). The maximum number of vertices of d ( H )  
on its/-level is a combinatorial problem of long standing. While some results have 
long been known for d = 2 [4], and recently sharpened slightly [8], only relatively 
recently have nontrivial bounds been known for the general problem in higher 
dimensions. These results are stated in a dual form, concerning k-sets  of sets of 
points. One related result is that the maximum total number of vertices on all 
/-levels, for i < k, is l~)(nLd/2Jkfd/27), a (<  k)-set  bound [2]. 

Using similar techniques, Mulmuley then showed that the number of local 
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minima on levels i < k is O(ka), where a local minimum is the point of the/-level 
such that all points on the/-level in a neighborhood of the point have a larger x t 
coordinate. Call a local minimum on the/-level an i-minimum, or a (<  k)-minimum 
if i < k. An/ -minimum is a vertex, and so Mulmuley's result is a bound on a class 
of vertices of the/-level. Note that the 0-minimum of H is the solution x*(H) of 
the linear programming problem min{x~lx e ~(H)}. In addition to bounding the 
number of (<  k)-minima, Mulmuley showed some bounds on related quantities, 
and conjectured that the number of /-minima is O(i d- t) for every i [7-1. This 
conjecture is confirmed here by the bound (i~ d_- 1), proven in the next section 
using the same technique as for bounds on (<  k)-sets and (<  k)-minima. 

This /-minima bound is of course not new for i = 0 and i = 1, and it is not 
even new for i = n/2: using (projective or polar) duality, it is equivalent to the 
preliminary observation for d = 2 that forms the basis of a bound on the number 
of vertices on the n/2-1evel in E 2 [4]. Thus the contribution here is mostly one of 
observed connections and new proofs, and not new theorems. 

Section 3 uses ideas of linear programming duality to show that the bound on 
/-minima readily implies the celebrated Upper  Bound Theorem for convex poly- 
topes [6], [1]. Here we mean only the upper bound of that theorem, and do not 
characterize the polytopes for which the bound is tight. 

2. The Bound for / -Minima 

Some preliminary notation: for a set S, let (k s) denote the collection of subsets of 
S of size k, so 

We sometimes use the coordinatewise partial order on E a where x, y ~ E d have 
x > y i f x i > y i f o r i =  1 . . . . .  d. 

The bound for / -min ima follows from the following well-known properties of 
solutions of linear programming problems. 

Lemma 2.1. Any arrangement ~ (H)  has at most one O-minimum x*(H), and if it 
exists, there is B c H of size d with x*(B) = x*(H). 

Proof Omitted; the second statement follows from HeUy's theorem, as applied 
to the upper half-spaces of H and the half-spaces {xl < q}, for all q smaller than 
the first coordinate of x*(H). [] 

Call the set B promised by the lemma a basis b(H) of H. We can extend the 
notations ~(H),  x*(H), and b(H) to subsets of H in the obvious way; however, for 
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many  G ~_ H, the linear p rogramming  problem ~ ( G ) ,  of finding 

min{xl  Ix e ~(G)}, 

may be unbounded,  or have many  solutions, and even if x*(G) is unique, there 
may not be a unique basis b(G). To apply the lemma and bound /-minima, the 
definitions of x*(G) and b(G) are extended below to all G ~_ H, using lexicographic 
orders, such that  every G ~_ H has a unique basis. 

A point  x = (xl . . . . .  xa) is lexicographically (lex) smaller than point y = 
(Y l , . . . ,  Ya), written x -< y, if xi < Yi for the smallest i at which their coordinates  
differ. For  sufficiently small e > 0 we have x < y if and only if x .  b~ < y .  b~, where 
b~ = (1, e, e 2 . . . . .  ca- 1). 

We broaden the definition of local min imum to include vertices that  have 
lexicographically minimal (lexmin) coordinates in a ne ighborhood on the/- level .  
Thus for G c H, if the associated linear p rogramming  prob lem .s has a 
bounded solution, then x*(G) exists and is unique. Note  that  a basis b(G) yielding 
x*(G) also exists. 

Extend the definition of x*(G) to the unbounded case as follows: choose a 
sufficiently small value K so that  all vertices v of d ( H )  have all coordinates larger 
than K. Define x*(G) as the lexmin point in ~(G)  with all coordinates  no smaller 
than K. 

With these definitions, all G _~ H have a 0-minimum x*(G), which is the same 
as the initial definition when Le~(G) has a unique vertex with min imum xl 
coordinate. It remains to extend the notion of basis b(G) appropriately.  Here again 
lexicography is useful. 

Given a set S of integers {il 1 < i < n), the lexicographic order on (k s) is as 
follows: for A, B �9 (ks), order A and B so that  A = {al . . . . .  ak} and al < a2 < ""  < ak 
and similarly order  B = {bl . . . . .  bk}. Now A -< B if and only if a i < bi at the 
smallest index i at which they differ. 

We impose a lexicographic order on (d z) by number ing the hyperplanes of H 
arbitrarily from 1 to n and then saying A, B �9 (~) have A ~( B if and only if the 
associated sets of numbers  A' and B' have A' -< B'. 

To  define the basis b(G) for G c H, let b(G) denote the lexmin B �9 (d ~) SO that  
_x*(B) = x*(G). Note  that  some of the hyperplanes determining _x*(G) may  be of 
the form x~ > K, if ~ ( G )  is unbounded and x*(G) does not exist; they are replaced 
in b(G) by the smal les t -numbered elements of  G that  are not above _x*(G). 

An/ -bas i s  is defined as follows. For  B �9 (an), note that  b(B) = B, and define 

I B - { h � 9  {h})~  B}. 

That  is, an element hj �9 I v is either above x*(B), or there is s o m e  h k ~. B with j < k 
and 

x__*(Bk{hk} w {h j}) = _x*(B), 

so a lexicographically smaller subset with the same min imum can be obtained. If 
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I B has i members ,  call B an/-basis .  Note  that  eve ry / -min imum has a corresponding 
/-basis. We count  t h e / - m i n i m a  by count ing the/ -bases .  

Let gi(H) denote  the number  of i -minima of H, and let g'~(H) denote  the number  
of / -bases .  We have the following theorem. 

Theorem 2.2. I f  M(H) is an arrangement of n hyperplanes in E d, then 

i + d -  1)  
g,(H) < g;(H) = d - 1 " 

Proof, As discussed above,  e a c h / - m i n i m u m  of eY(H) has a corresponding/-basis ,  
and each/ -bas is  determines at  most  one / -min imum,  so gi(H) < g'~(H) and it suffices 
to count  the /-bases. Consider  a r a n d o m  R e (H), where d < r < n. Here  each 
element of (n) is equally likely. Any subset has exactly one basis. On the other 
hand, we can express the expected number  of  bases of  R as 

~, Prob{B c R, R c_ H\ I . } ,  

since B ~ (ha) is the basis of R if and only if B c R and no elements of I B appear  
in R. If  B is an /-basis, the number  of subsets R ~ (n) with b(R) = B is (" - i -  v - d d),  

since B must  be in R, and the remaining r - d choices of elements of  R must  be 
f rom H \ B \ I  B. Therefore the probabi l i ty  that  /-basis B is the basis of R is 
(. ~- i ] a)/(~), and we have 

n - i - d )  

r - d  1 = ~ ~ g',(H) (1) 
O < i < n - d  

for d _< r _ n. This equat ion is a special case of  L e m m a  2.1 of  [2]. Since the matrix 
corresponding to this system of n - d § 1 linear equat ions in n - d + 1 unknowns 
can be rearranged to be t r iangular  with positive diagonal  elements, the system 
can be solved, and the reader  can verify that  the solution is (i ~ ~ ~ 1). []  

This bound  for gi(H) is not  very good for large i; for example,  there is at  most 
one (n - t0-minimum, while there are (] S ~) (n - to-bases. However ,  it is easy to 
show that  a set B of d hyperplanes  yields a min imum point  x if and only if x is a 
m a x i m u m  point  in ~h~B(h-w h). Hence g,(H)= g,-d-i(H), and we have the 
following theorem. 

Theorem 2.3. For any simple arrangement ~ ( H )  of n hyperplanes in E d, the number 

of i-minima ffi(H) satisfies 

g, man{(' l)} 
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3. The Upper Bound Theorem 

The g-Vector of a Polytope. Suppose ~ is a simple d-polytope with at most n 
facets, and is the set of points {xeEalAx  < b}, where A is an n x d matrix, x and 
b are column n-vectors, and b > 0. Since all entries of b are nonnegative, the origin 
is in ~ .  We also write the inequalities as ajx < b~, for j = 1 . . . . .  n. Suppose w is 
an admissible row n-vector for ~ ,  meaning that wv ~ wv' for any two distinct 
vertices v and v' of ~.  Orient the edges of the ~ in the direction of increasing w 
(upward) and let gi(~) denote the number of vertices with outdegree i, so that i of 
their incident edges point up. If fk(~) is the number of k-faces of ~ ,  then 

i 

since each k-face F has a unique bottom vertex v, with all k edges in F incident 
to v pointing up. To bound the quantities fk(~) it is enough to bound gi(~). (The 
above condenses the discussion in Brondsted's text of McMullen's proof of the 
Upper Bound Theorem [6], [1].) 

The LP-Dual Arrangement. The linear programming problem 

max{wxlx ~ ~}  

has the dual problem 

min{ybl y e ~'},  

where 

~ ' =  { y ~ E n [ y ~ : , y > _ _ 0 } ,  

and 

: = {yEE~[yA = w} 

is an (n - d)-flat. Letting d' = n - d, the d'-polytope ~ '  is one cell in the arrange- 
ment ~ ( H )  induced by the collection H of n hyperplanes h j -  {y[yj = 0}, 
j - - 1  . . . . .  n, restricted to ~ .  (Note that while the previous section discussed 
arrangements in E ~, here we consider one in a d'-flat.) We can define local minima 
for this arrangement where we seek minima of yb. We have the following lemma. 
It is standard [5, Section 8.2], but for completeness a proof appears below 
(neglecting some issues of degeneracy). 

Lemma 3.1. There is a one-to-one correspondence between i-minima of sff(H) and 
vertices of ~ with outdegree i, and so gi(~) = gi(H). 
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Proof If v is a vertex of ~ ,  then v is the solution of Av =/~, a subsystem of d 
rows of A x  < b. Suppose v' ~ ~ has zero coordinates for all but those correspond- 
ing to the rows giving A. Thus v' is a vertex of d (H) :  it is the intersection of d' 
hyperplanes of H with ~ .  The nonzero coordinates of v' are determined by 
o 'A  = W. 

First observe that v' is a local minimum x*(G) for G = {h~[v)= 0}: note that 
if y~o~,  so y A = w ,  then y b - w x = y b - y A x = y ( b - A x ) .  Thus v ' b - w v =  
v'(b - Av) = 0 since v~ = 0 if and only i fajv ~ O. (So v' and v has the same objective 
function values in the dual linear programming problems.) On the other hand, if 
yA = w and yj > 0 when v) = 0, we have yb - wv = y(b - Av) >_ 0 since b - Av > 0 
and air = bj when v) # 0. Thus i fy  ~ ~'(G), then yb > v'b. Note that the inequality 
is strict if yj > 0 for some j with a jr < bj. 

Next to show that if v has outdegree i, then v' is an/ -minimum. Since v) < 0 if 
and only if v' is below hi, we need to show that a coordinate v) ~ 0 corresponds 
to an oriented edge (v, q) where w v -  wq = w ( v -  q) has the same sign as v). 
Suppose (v, q) is an edge of ~ .  Then ,4v =/~ > Aq, with one strict inequality 
a jr = bj > ajq, and with equality for the other rows of A. This implies that 
w(v -- q) = v'A(v - q) = v)aj(v - q), and since aj(v - q) > O, v) and w(v - q) have 
the same sign. [] 

We have the Upper Bound Theorem, missing the proof that the given bound 
is tight for dual neighborly polytopes. 

Theorem 3.2. The number of k-faces of  a simple polytope in E d with n facets is at 
most 

( k )  { ( i + n - d - 1 )  ( n - i - l l )  t min , . 
�9 n - d - 1  n - d  

Proof The bound follows by applying the previous lemma, (2), and Theorem 2.3. 
[] 

4. Concluding Remarks 

It  is curious that the ( <  k)-set bounds of [2] both rely on the Upper  Bound 
Theorem and are proven using an argument like the proof  of Lemma 2.2. Perhaps 
some more direct argument for them exists. 
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