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A Bound on the Geometric Genus of Projective Varieties.

JOE HARRIS

0. - Introduction.

The genus of a plane curve C is readily calculated in terms of its degree
and singularities by any one of a number of elementary means. The genus
of a curve in Pn is not so easily described: smooth curves of a given degree
in Pn may have many different genera. One question we may reasonably
hope to answer, however, is to determine the greatest possible genus of an
irreducible, non-degenerate curve of degree d in Pn; this problem was solved
in 1889 by Castelnuovo (3), (4) (5), who went on to give a complete geometric
description of those curves which achieved his bound. In this paper, we

will answer the analogous question for varieties of arbitrary dimension:
what is the greatest possible geometric genus of an irreducible, nondegenerate
variety of dimension k and degree d in pn,

We begin in section 1 by recounting Castelnuovo’s argument; a more
detailed version of the argument may be found in (3) and in (4). In section 2
we use the standard adjunction sequence to relate the forms of top degree
on a variety to those on its hyperplane section, and, working back to the
curve case, derive a bound on the geometric genus. We do not have at this
point any assurance that the bound is sharp, but we draw some conclusions
about varieties which achieve the bound, called Castelnuovo varieties, if

they exist. In particular, we see that any Castelnuovo variety of dimension I
lies on a (k + I)-fold of minimal degree n - 15 in Pn ; and section 3 is ac-
cordingly devoted to a description of these varieties, classically known as
rational normal scrolls and discussed in (1) and (2).

We return in section 4 to consideration of Castelnuovo varieties. We

are now able to determine their divisor classes on the minimal varieties con-

taining them, and as a consequence to show they exist. Finally in section 5
we deduce some consequences on the geometry of Castelnuovo varieties.

Pervenuto alla Redazione il 18 Dicembre 1979.
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1. - Castelnuovo’s bound for the genus of a space curve.

The genus of a plane curve C c P2 of degree d is, by any one of several
elementary arguments, equal to (d-1)(d-2)/2 if C is smooth, strictly
less if C is singular. The genus of a curve in Pn, of course, is not so easily
described: there are smooth curves C of a given degree d in Pn having many
different genera. One question we may reasonably expect to answer, how-
ever, is to determine the greatest possible genus of an irreducible, non-
degenerate curve of given degree in Pn. Castelnuovo in 1889 answered this
question, and in addition described in some detail the geometry of curves
having maximal genus. In the following, we will first give Castelnuovo’s
argument for curves, and then go on to consider analogous questions for
higher-dimensional varieties.

Castelnuovo, in his argument, considers not only the linear system
)0c(l)) I on a curve C c Prt, but the general series IOo(l)l. His approach is
to bound from below the successive differences h°( C, oC(l)) - h°( C, 0 0(l-1))
and hence the dimensions h°(C, l9C(l)) ; when 1 is large enough to ensure
h1 ( C, 0(l)) - 0 he applies Riemann-Roch to obtain an upper bound on the
genus of C. The mainspring of his argument is the following lemma, of
which only the first assertion is necessary to deduce the bound on g(C) :

LEMMA. Any set jT of d &#x3E; kn + 1 points in P- in general position (i.e.,
no n -f- 1 linearly dependent) imposes a-t least nk + 1 conditions on the linear
system I Op,,(k) o f hypers1lrfaces of degree k in Pn ; and if d &#x3E; kn + 1 (2n + 2

if k = 2), then r imposes exactly nk -f- 1 conditions on IOpn(k)I I if and only
if T lies on a rationat normal curve in Pn.

PROOF. The first statement is easy. To show that jT imposes kn + 1
conditions on hypersurfaces of degree k, we have to choose kn + 1 points
fpi} of r, and then for any one of these points pi exhibit a hypersurface of
degree k containing the remaining nk points but not p i . This is immediate:

given any subset lpil of nk + 1 points of T and one point pi among them,
we can group the remaining nk into k sets {Qii}i=l,...,n of n apiece ; the sum
k 

z H, i of the hyperplanes H i = r il , ... , q in will then be a hypersurface of
i=l

degree k, by the general position hypothesis not containing pi.
The second statement is more subtle. We first reduce to the case k = 2,

arguing that a set _T’ of d &#x3E; kn + 1 points in general position which impose
only nk + 1 conditions on IOpn(k)1 I must impose only 2n + 1 conditions
on quadrics, as follows: Assume that T imposes only nk + 1 condition on
Il’)Pn(k) I; ; since no subset of nk + 1 or more points of 1-’ can impose fewer
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than nk +1 conditions on IOpn(k)l, it follows that any hypersurface of
degree k in Pn containing any nk + 1 points of r contains all of r. Now,
if Q c Pn is any quadric containing 2k + 1 points pl, ... , P2k+1 of r, q E r
any other point, then q must lie on Q : choosing any k - 2 disjoint sets of
points {p iI, ..., Pinj from the remaining points of T, the hypersurface Q +
+ HI + ... + Hk,2 consisting of Q plus the hyperplanes Hi = p,,, ..., Pin by
hypothesis contains q, and since by general position q 0 Hi, it follows that
.q E Q. We see then that T can impose only 2n + 1 conditions on [ Opn(2) I.

Castelnuovo’s proof of the lemma now runs as follows: labelling the points
of r p1, ... , pd, let Vi be the (n - 2)-plane in Pn spanned by the points
pi , ... , p i , Pn, and let fVi(A)Ia be the pencil of hyperplanes containing Vi.
Similarly, let Y c Pn be the (n - 2)-plane spanned by the points
P-+l I ... I P2n-1, and {V(Â)} the pencil of hyperplanes through V. For each

index a = 2n, 2n + 1, ..., d, let A’ be such that

and likewise let ÅlX be such that

by general position, of course, PtX rt V, Vi for « &#x3E; 2n, so ÂfX and Ai. are uniquely
determined, and the values (I£) are distinct for each i. Let

be the unique isomorphism such that

and consider the hypersurfaces

Qi is a quadric: for any line L c pn, ggi defines an automorphism of .L by

the points of intersection of L with Qi being just the fixed points of this
automorphism. Q contains the subspaces TT and Yi, and hence the points
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PI’ ...,Pi, ...,Pn,Pn+l’ ."’P2n-l of jT; in addition, by the choice of Ti,

Q i contains P2n, P2n+l and p2n+2. Q, i thus passes through at least 2n + 1

points of T, and so contains .T; this in turn implies that

for all oc &#x3E; 2n, and not just the three values a = 2n, 2n + 1 and 2n + 2.
Now, for each Â, the hyperplanes ivi(A)li=l,...,n meet transversely in a

single point: any line contained inn vi(A) would necessarily meet every
I 

_____

(n - 2)-plane Vi, and hence lie in the hyperplane W = pl, ..., pn; this would
imply that for some i =A j and A,

But then the quadric

would consist of the hyperplane W plus another hyperplane W’ containing
pl, 2... 2 Pi2 ..., 7 Pj7 ..., pn, P2- P2n+l and p2n+2--contrary to the hypothesis
that no hyperplane in Pn contains more than n of the points of h. The locus

is thus an irreducible rational curve; it has degree n, since the hyperplane W
meets it transversely in exactly the n points pi, ..., Pn and so is a rational
curve. By construction, moreover, it contains the points pi, ... , pn and pa
for a &#x3E;2n. We see, then, that we can put a rational normal curve through
all but any n - 1 points of T-but since T’ contains at least 2n + 3 points
and a rational normal curve in Pn is determined by any n + 3 points on it,
this means that I’ lies on a rational normal curve.

Note finally that since a quadric in Pn meeting a rational normal curve
in Pn in 2n + 1 points contains it, the linear system )3p(2)j of quadrics
passing through T is exactly the linear system IJD(2)1 of quadrics containing
the rational normal curve D containing 7’; and that, since D is cut out by
quadrics, D is exactly the base locus of the linear system of quadrics
through 1. Q.E.D. for lemma.

Now let C c Pn be a nondegenerate, irreducible curve of degree d, and
let r = H. 0 be a generic hyperplane section of C. We have then the

LEMMA. The points of .T’ are in general position.
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PROOF. We first note that the monodromy action on T is the full sym-
metric group Sd . This follows from an induction: in case n = 2, we observe
that projection of C from any point pi E .r expresses C as a (d -1)-sheeted
cover of P1, and so the monodromy in the pencil of lines through p alone
acts transitively on 1-’ - {p,}. The full monodromy on T is thus twice tran-
sitive but any subgroup of Sd which is twice transitive and contains a

simple transposition contains all transpositions and so must be all of S,.
We see from this by induction that for general n, the monodromy in the
linear system hyperplanes through any point p is the full symmetric group
on r - {p}, and hence, since the monodromy is always transitive, the full
monodromy group is S(j. Now let

be the incidence correspondence

I projects onto P3* as an everywhere finite -sheeted branched cover;
x 

*
since by the above the monodromy acts transitively on the sheets of I - pn*, 7
I is irreducible.

Let Jc7 be given by

J is a closed subvariety of I, and since C is nondegenerate, J # I ; thus J
cannot surject onto Pn* and the lemma is proved. Q.E.D.

Now, by our first lemma the points of T = H. C impose at least

l(n -1 ) -E- 1 conditions on the linear system of hypersurfaces of degree I
in Pn, for 1  M = [(d - 1)/(n - 1)]; a fortiori, they impose at least

1(m +1) +1 conditions on the complete linear system 10,(I) I on C. We
see then that

for l  M; of course for I &#x3E; if the points of 1-’ all impose independent condi-
tions on IOo(l)1 l and we have
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Adding up these inequalities, then, we have

For large k, of course, the linear system lo,(-ilf + k) I will be nonspecial,
and so we can apply Riemann-Roch :

to obtain

this is our bound on the genus g(C).
Now, we may note that if the genus of a curve C c Pn realizes this bound,

then equality must hold in each of the inequalitities above. This means in

particular that ho( C, Oc(2)) = 3n, so that C must lie on ool(n+l)(n+2)-an-l =
= ool(n-l)(n-2)-1 quadrics ; and that the points of a generic hyperplane
T = H . C of C impose only 2n - 1 conditions on quadrics, and so lie on a
rational normal curve D. Inasmuch as no quadric containing C may be
reducible, it follows that the complete system 1 Jo(2) I of quadrics in Pn
containing C cuts out on H the complete system IJD(2)1. The base locus

of IJo(2)1 thus intersects H in D ; so that the intersection of the quadrics
containing C c Pn is a surface of degree n - 1. We have, then, that

The genus of an irreducible, nondegenerate curve C c Pn of degree d is
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,and an y curve which achieves this bound lines on a surface of degree n - 1
in Pn cut out by the quadrics through C.

As an application of Castelnuovo’s bound, we may give an inequality
on the geometric genus pg(V) and k-fold self-intersection c1( V) of the ca-
nonical bundle of a variety V of dimension k whose canonical series is bi-
rationally very ample. Let n = pg( TT ) -1, and V c Pn the canonical variety
of V ; let C = Pn-k+l. V be a generic (n - k + 1 )-plane section of V. C is

then an irreducible, nondegenerate curve in Pn-k+l, of degree (-1)kC1(V)k;
and by successive applications of the adjuntion formula we have

so the genus of C is (k - (- I)ke,(V)k) /2 -f- 1. Applying Castelnuovo’s bound
to C, then, we see that

so that

We will see in the fourth section that in fact this inequality is sharp, i.e.,
for all numbers n,&#x3E; k there exist varieties V of dimension k, with pg( V) =
== n + 1 and

2. - A bound on the geometric genus of proj ective varieties.

V’Ve ask now in general the question that has been asked and answered
for curves: what is the greatest possible geometric genus of an irreducible,
nondegenerate variety V of dimension k and degree d in pn,

The terms of this question require some clarification, inasmuch as we
will not be restricting ourselves to smooth varieties only. Explicitly, given
any variety F c Pn we can find a resolution of V -that is, a smooth abstract
variety 9 mapping holomorphically and birationally to V. We take the
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geometric genus pg(V) to be the number hO(V, Q) = hk(V, O,) of holomorphic
forms of top degree on 17; inasmuch as this is a birational invariant it does
not depend on the choice of a resolution. In what follows, we will be working
primarily with 17, but will maintain the terminology of projective geometry:
a «hyperplane section of Tj » will be the pullback of hyperplane in P- via
the map F ’&#x3E; V, O00FF(l) = n*Opn(l) the corresponding sheaf. Likewise, an
m-plane section «prn(1 V » of V will be the intersection on 9 of n - m ele-
ments of the linear system I Oý(l) I; note that since ] 0,(1 ) has no base points,
by Bertini the generic m-plane section of 17 will be smooth.

To answer our question about the geometric genus jpc(V)y we consider
first a generic (n - k + I)-plane section C = V n Pn--k+1. The curve C is

nondegenerate and irreducible of degree d in Pn--k+I; accordingly, if we set

then by our previous argument

From Riemann-Boch on C, then, we see that

Since h° ( C, Ql c (- 1)) - 0 for I sufficiently large, then, it follows that
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Now let 8 be a generic (n - k + 2)-plane section of V containing C,
and consider the standard Poinear6 residue sequence tensored with 0,(- 1):

From the first three terms of the associated exact sequence in cohomology,
we have

and since h°(S, Qs2 (- 1)) = 0 for 1  0, it follows that

and in general

The procedure in general is just a repetition of this first step. If T is

a generic (n - k + 3)-plane section of $’ containing 8, then we have

similarly

hence

and in general
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Continuing in this fashion, we find that

and in particular,

where of course the binomial coefficient (:) = 0 when b &#x3E; a. This, then,

is our bound on the geolnetric genus of a variety ; we note as an immediate
consequence that

The geometric genus o f a variety of dimension k and degree d in Pn is zero
whenever

We will call varieties Yd c Pn of degree d:&#x3E;k(n - k) + 2 which achieve
our bound on p, Cacstelrcztovo varieties.

Our principal object for the remainder of this discussion will be to show
that Castelnuovo varieties exist, y and to describe their properties. To start

with, we consider by analogy with the curve case the linear system of qua-
drics containing such a variety; again, the central point is to show that

The points of a generic (n - k)-plane section of a Castelnuovo variety
Vk c Pn lie on a rational normal curve..

To see this, we observe that if V is Castelnuovo, then the generic hyper-
plane section D of V must satisfy

for all I  M - 1; hence the double hyperplane section D’ of V satisfies

for all Z c .lVl - 2 and so on; finally, we conclude that the generic
(n - k + 1 )-plane section C of V satisfies
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for alll:M-k+l. Assume for the moment that d-l=t=O(n-k).
Since M &#x3E; k, this gives us in particular

and

Applying Riemann-Roch, we have

i.e., the points of a hyperplane section T of C impose only M(n - k) + 1
conditions on the linear system 100(M)/. Since d &#x3E; X(n - k) + 12 this

tells that the points of T lie on a rational normal curve.
In fact, this last argument tells us something more: C and hence every

generic plane section of y" must be projectively normal, since otherwise
the points of a divisor Te 100(1)/ I would impose strictly more than

M(n - k ) -f - 1 conditions on I 0,(X) 1. Now, since V is projectively normal,
we see from the sequence

that

Let D = V’ H again be a hyperplane section of V and consider the sequence

obtained by restriction to H. Since h1(Pn, avp"(l)) = 0, ho(pn, Jv,pn(2»)
must surject onto h°(Pn-1, JD,pn-l(2)); that is, the linear system of quadrics.
containing V cuts out on H the complete system of quadrics containing D.
Reiterating, we see that the restriction of ]3v(2) ] to a generic Pn-k is the
complete system 13r(2)1 ] of quadrics containing the points of r= V. pn-k;
the base locus of this system-and hence the, 99 intersection of the base locus.
of 13v(2)1 with Pn-k+1 is thus a rational normal curve. It follows that base

locus of 13,(2)1 is a (k + I)-dimensional variety of (minimal) degree n - k
in Pn ; we have, then, that

A Cacsteln2covo variety V c Pn of dimension k lies on ac variety S of dimen-
sion k + 1 and degree n - k in Pn, cut out by the quadrics containing V .
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In case d -1 == 0 (n - k), the same argument works with indices shifted:
we have in this case M"&#x3E; k + 1, hence

so

and the argument proceeds as before.
Now, it is clear from the above that in order to study Castelnuovo va-

rieties further we must have a description of « minimal varieties &#x3E;&#x3E; X of

dimension k + 1 and degree n - k in Pn. We will give such a description
in the following section, y and then return to our discussion of Castelnuovo
varieties in section IV.

3. - Minimal varieties.

We will begin by constructing a class of ( k + 1 )-dimensional varieties
of degree n - k in P", as follows. Choose k + 1 complementary linear sub-
spaces {wipa’Cpn}i=l,...,k+l. Note that since the inverse images
Ca+1 c Cnl+" of the subspaces WicP" give a direct sum decomposition of
Cn+1, we must have

.

i.e.,

Let Bi c Wi be a rational normal curve, and choose isomorphisms

and consider the variety

swept out by the k-planes spanned by corresponding points of the curves Ej.
To see that the degree of S = Sal,...,ak+l is z a; = n - k, we use an induc-
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tion on k : assume the result for k’ k and any n, and let H c Pn be a generic
hyperplane containing the subspaces WI, ..., W; . H then intersects S tran-
sversely in the variety

and the ak+l k-planes

k

By induction, Sah...,ak has degree I ai, and so H.S-and hence S-has
lc+1 

 ’ 

i=l

degree, a i = n - k.
«=i

Note that the construction of the variety Sa,,...,ak+,, makes sense (of a
sort) when some of the integers ai are zero: if ai = 0, we simply take the
« curve n Ei to be the point Wi, the map ggi: Pi - E, the only one. It’s

not hard to see that, in case all the ai’s are positive, the variety Sah...,a1c+l
will be smooth, while if ai = 0 then SalJ...,a1c+1 will be the cone, with vertex
Wi, over the variety SalJ...,ât,...alC+l C Pn-1.

An alternative description of the varieties Sal,...,ak+l may be given as
follows: denote by H- Pi the hyperplane (i.e, point) bundle on P1, and
for any collection of k + 1 non-negative integers a i with I a = n - k, con-
sider the vector bundle

and the associated Pk-bundle P(E). A global section a c- F(E*) of the dual
bundle E* gz Hal 0 ... (D Hak+l gives a divisor (a = 0) on P(E); the divisors

{(a): ac--P(E*)} form a linear system of dimension

and we let SalJ...,ak+l be the image of P(E) under the map to Pn given by this
linear system. Note that the degree of Sau...,ak+l-that is, the (k + I)-fold
self-intersection of the divisors (o*)2013is just the number of points in Pl where
k + 1 generic section of E* fail to be linearly independent; this is of course

just the first chern class

of E*.



48

To see that these descriptions of Sal,...,ak+l are the same, note that the
linear system 1((1)1 on P(E) cuts out on the image Ei in P(E) of each factor
H-a1 the complete linear system 10p.,.(a,)I, , and on the fibers of P(E) the
complete linear system lðpk(1)1: : The map given by 1{(1)1 thus sends each
curve Ei to a rational normal curve of degree ai in Pn, and the fibers of P(E)
to k-planes in Pn joining corresponding points of the curves Ei. The va-

rieties Salt...,ak+l are called rational normal scrolls.
We claim now that, with a couple of exceptions which we shall describe

later, all nondegenerate, irreducible (k + 1 )-dimensionaZ varieties of degree
n - k in Pn are rational normal scrolls. The argument consists of two steps.
We will first show that any irreducible nondegenerate (k + 1)-dimensional
variety Y c Pn of degree n - k-with two classes of exceptions-is swept
out by k-planes ; then that any such variety swept out by k-planes is in

fact a rational normal scroll.

For the first part, we start with a surface S c Pn of degree n -1. We
claim that nntess S is a smooth quadric in P3 of the Veronese sur f aee in P5,
through a generic point of S there passes exactly one line of S. To see this,
first note that any line 1 meeting S three times (not all at the same point)
lies in S: if it instead met S in isolated points, the image of ,S under pro-

jection from I would either be a nondegenerate irreducible surface of degree
c n - 4 in Pn-2 an impossibility-or a curve, in which case S is a cone
over some point of S r1 1, and hence I c S. In particular, if ,S is singular
at p, S must be a cone with vertex p ; in this case our assertion is clearly true.

Now let p be a generic point of S, and consider the linear system lj2(1)1 ]
of hyperplane sections of S tangent to S at p. These are generically non-
degenerate curves of degree n -1 in Pn-1, and being singular they must be
reducible; indeed, inasmuch as they are all connected, they must generically
consist of two rational normal curves meeting at the point p. (We see in

particular that, except when n = 3, there can be at most one line on S
through a smooth point of S). By cases, then,

i) if n = 3 or 4, then clearly one or both of the components of a
generic tangent hyperplane section of S will be lines;

ii) If n&#x3E;6, then T,,(S) must intersect S in a curve: otherwise, pro-
jection of S from TD(S) would yield an irreducible, nondegenerate surface
of degree  n - 5 in Pn-3. But S contains the line joining p to any point
q op c- T,(S) r) S; thus T,(S) n S is a line.

iii) If n = 5, the two components of a generic tangent hyperplane
section of S are both conics, and S meets T,(S) only at p, we let Zp denote
the family of conics on S containing p, P2* the space of hyperplanes in P5
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tangent to S at P, and consider the incidence correspondence

given by

I maps 2 - 1 onto P2*, and so has either 1 or 2 irreducible components,
each of dimension 2; on the other hand, the fibers of the projection nl: I - Zp
are all PI’s, so Zp has one or two 1-dimensional components depending on
whether I is irreducible or not. In fact, I must be irreducible: if I had tivo
components {C Â} and (C)) then every tangent hyperplane section of 8 would
contain one of each; so

But each family {OJ} and (C)) sweeps out S: so, given any curve C03BB in the
first family, we can choose a point q # p E 0. and find a curve 0’ through q.
C and C will then have a component in common, and so must be equal:
otherwise both would consist of a pair of lines, contrary to the hypothesis
that contains no lines through p. It follows that 8 contains irreducible

one-dimensional family Zp = {Gl} of conics through a generic point p E S ;
and hence altogether S contains an irreducible 2-dimensional family of

conics {OJ}. But now the conics {C,,l are all homologous, and hence linearly
equivalent since is rational; and so we see that S has a linear system of
dimension &#x3E;2 and self-intersection C¡ = 1. S must therefore be P2, the
curves 0. the images of the lines in P2, and S the Veronese surface.

Now we conclude from this that, with two exceptions, a (k + I)-fold
X c Pn of degree it - k contains a family of k-planes : let p E X be a generic
point of X, and let L,(X) be the variety swept out by the lines on X passing
through p. Let ll E Pn be a generic (n - k + I)-plane through the point p.
Inasmuch as p is generically chosen on X, the surface S = A r) X is a generic
(k -1)-fold hyperplane section of X, and hence a nondegenerate irreducible
surface of degree n - k in Pn-k-1. If we assume for the moment that it is

neither a smooth quadric in P3 or the Veronese surface in P5, then since p
is generic on S it follows from our description of minimal surfaces that there
is exactly one line on S through p, i.e., that 11 intersects Lp(X) in a single
line. Lp(X) is thus a k-plane, and hence X is swept out by k-planes.

Leaving aside for the moment our two exceptional cases-varieties X c pn
whose generic (n - k + 1 )-plane section is a quadric in P3 or a Veronese
surface-we now show that any variety X c Pn of degree n - k swept out

by oox k-planes is a rational normali scroll. We prove this by induction on k:
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it is clearly true for k = 0; given X as above, choose [n/(k -;- 1)] of the
k-planes of X, and consider the intersection D of S with a hyperplane H
containing those k-planes. D must contain exactly one component Do in-
tersecting each k-plane of X in a (k -1)-plane; all other components of D
are disjoint from a generic k-plane of .X and so are k-planes themselves.
We can thus write

Wl , ..., W,,, all k-planes. Clearly the degree of Do is n - k - m. Vve claim
that the span of Da is an (n - m -1 )-plane in Pn : having degree n - k - m
and dimension k, it cannot span more than an (n - m -I)-plane; if, on
the other hand, Do were contained in a Pn-m-2, we could simply choose
m + 1 points pl , ..., Pm+l of X lying on distinct k-plailes ’W’, 1 ... 9TV, M+2 of X
and lying off Do ; the hyperplane pn-m-2, PI’ ..., 7 p.+]L c Pn would then contain
the variety Do + -VV’ + + -W’ +, c X of degree n - k + 1 and so contain X.
Thus Do spans a Pn-nz-1; and being swept out by (7.: -1 )-planes, it is by in-
duction hypothesis of the form SaH...,ak C Pn---i. Let ac1 be the smallest of

the ai’s, and E1 the corresponding rational normal curve in Do; we have

Now each k-plane of X meets El in a point; we can accordingly choose a1
A--planes Wi ... Wal of X and find a hyperplane H’ c Pn containing W§ ... Wal
but not containing .L’1. As before, the divisor D’ = H . X will contain exactly
one component Do meeting each k-plane of X in a (k -1)-plane; and again D’
will be of the form Sbt,...,bk’ swept out by the (k -1)-planes spanned by coi-
responding points of k rational normal curves F1, ..., F,.. Note that in fact

Do is the only component of D’ other than the planes W2. Any other com-
ponent of D’ would necessarily be a k-plane, and so meet E1; .H’ would then
meet El in a, + 1 points and so contain E1, contrary to hypothesis. We
thus have

in particular, Da is of degree n - k -a, and spans a pn-al-l. Finally, El is
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disjoint from Do again, if Do met EI H would contain a, +1 points of El
so each k-plane of S meets Do and E1 in a hyperplane and point disjoint
from one another; thus 8 may be described as the variety swept out by the
k-planes spanned by corresponding points of the rational normal curves

E1, Fl, ..., F1r,.
Lastly, we consider the two exceptional cases: varieties .X c P?2 whose

generic (n - k + I)-plane sections are smooth quadrics in P3-in case k =
= n - 2-or Veronese surfaces in P5, in case k = n - 4. In the former

case X is of course a quadric hypersurface of rank &#x3E; 4; for the latter, we
claim that

Any (n - 3)- f old X c Pn whose generic 5-plane section is a Veronese sur-
face, is a cone over a Veronese surface.

To see this, it is sufficient to show that X is singular: it will then follow
that X is a cone over a variety X’ C Pn-1 whose generic 5-plane section is a
Veronese surface, and hence by an induction a cone over the Veronese sur-
face. Now, suppose that X were smooth, 8 = X - P,5 a generic 5-plane section.
By the Lefschetz theorem on hyperplane sections, then, the map

induced by the inclusion S c X would be a surjection. But S I"-J P2, and
H,(S, Z) is thus generated by the class of a line in P2 that is, a conic curve
in S. It would follow then that every curve on X was homologous to an

integral multiple of a conic curve on X, and in particular that X contained
no lines. This is impossible: a generic singular 5-plane section of X will
consist of a minimal surface other than the Veronese, and so must con-
tain lines.

Summing up, then, we have seen that

An irreducible nondegenerate variety X o f dimension k + 1 and degree
n - k in Pn is either

i) a rational normal scroll ;

ii) a quadric of rank &#x3E; 4; or
iii) ac cone over a Veronese surface.

3’. - A note on degeneration of minimal varieties.

We have seen that, with two exceptions, the isomorphism classes of
irreducible nondegenerate varieties .X of dimension k + 1 and degree n - k
in Pn are described by sequences of integers Oa,a2 ... ak+1 with

! ai = n - k. We ask now a question about the relations among these
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varieties: when is the variety Sbl,...,bk+l a degeneration of the variety Sal,...,alc+l; ;
or, equivalently, if we denote by Cll± §(Pn) the Chow variety of degree n-k
(k + I)-folds in P’2 and by Calt...,ak+l the subvariety of those isomorphic to
Sal,...,ak+l’ when does °bl,...,bk+l lie in the closure of °a],...,ak+l  The answer

is that

bl,..., bx-3.1 2s a degeneration of SaH...,ak+l if and only if, when 2ve arrange the
indices so that at : a2 : ... : ah+1 and bl : ... : bk+l,

for all ex. 

The first step in proving this is to consider the automorphism group of
the variety P(E) = P(H- " (D ... (D H-ak+1), Now, inasmuch as projective
space Plc does not contain two disjoint divisors, it cannot map holomorph-
ically to P1; thus the only divisors isomorphic to Pk in the variety P(E)
are the fibers of the map P(E) -+ pI, and correspondingly any auto-

morphism of P(E) preserves these fibers. The automorphism group of P(E)
is thus an extension, by Aut (Pl) - PGL(2), of the subgroup G of auto-
morphisms of P(E) fixing each fiber; and G may be described as follows:
On each fiber P(E)t of P(E), let Y1, ..., Yk+1 be homogeneous coordinates
corresponding to the decomposition E* == Hat (f) ... (D Hak+l. If q : P(E) -+ P(E)
is any automorphism carrying P(E) t to itself for all t, the automorphism
of P(E)t induced by T is given by a matrix (orij(T)) (defined up to scalars),
where the entry O’ij(t) is a section of the bundle Hom (Hal, Haj) = Haj-ai-+ p1;
conversely, the generic collection of sections {O’H E HO(PI, 0(aj - ai))l defines
in this way an automorphism of P(E) preserving individual fibers.

The above description of Aut (P(E)) enables us to compute the dimen-
sion of Cal,",,ak+i . since the line bundle 0(l) on SaH...,ak+l  P(E)-being the
only line bundle on P(E) intersecting each fiber in a hyperplane and having
(k + 1)-fold self-intersection n - k-is preserved by any automorphism of
P(E), every automorphism of S c Pn is projective, and the dimension

But we have seen that



53

and hence

The main point of our description of Aut (P(E)), however is the following
observation: if for each a = 1, ..., k +1 we let Sex denote the image of the
sub-bundle H-a1 0 ... 0153 H- a, in S = P(H-al tB ... (D H-a’C+l) (that is, the inter-
section of S c Pn with the subspace spanned by the curves _E1, ..., Ea) then
we see from the above argument that the automorphisms of S act transitively
on S,, - S,,--,-or, to put it differently, if p E Sex - S«-i , then S may be realized
as the join of rational normali curves Ei of degree ai, with p E Eex.

We are now prepared to degenerate minimal varieties. As a first step,
we will show that

To do this, we consider in general the projection of the variety 8al,...,ak+l c pn
from a point p lying on the rational normal curve E, c S into a hyperplane.
Under this map, all the curves Ej, j =/-- 1, are mapped into rational normal
curves Ei of degree ai ; Ei, on the other hand, is mapped to a rational normal
curve Ei of degree -1. The k-planes spanned by corresponding points
of the curves .Ei are, with the exception of the one passing through p, map-
ped to k-planes joining the curves {Ri}. The k-plane through p is collapsed
to a (k -1)-plane, with the exceptional divisor of the projection taking its
place; we recognize the image as the variety Sal,...,at-I, ...,ak+l. Finally,
since any point p c- Si - Si-, may be considered a point of EZ we see that
the image of under projection from a point p E Si - Si_1 is the variety

., - 1,..:,ak+l *
This gives us explicitly our primary degeneration: let

let y(t) be an arc in Si with y(O) c- Si-,, y(t) 0 Si-., for t =A 0, and let

Pn c jpM+i be a hyperplane disjoint from the arc y. If St is the image of S
under projection from y(t) to Pn, then, the varieties {St} form a family with
St r-...J Sa,...,ak+l for t 0 0, and So r-...J Salt...,at-l-l,ai+l,...,ak+l.
We claim now that by a sequence of these primary degenerations, we

ol

can degenerate a variety into a variety Sbl,..., b,+,, whenever I ai &#x3E;
t==i
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for all a. This is fairly clear: a priori we have a,, &#x3E; bi ; for a, &#x3E; bl, 7

degenerate SaH...,ak+l to Sal-l,a2+1,...,ak+l and re-order the indices if necessary.
This preserves the inequalities and reduces a1 - bl, so after a few steps
we have a1 = b,; continuing in this way we arrive at Sbl,...,bk+1.

To prove the converse, we first have to establish one point: that ito

plane V of dimension less than in Pn meets every k-plane of a

variety S = Sal:...,ak+l in an (« -1 )-ptane. This may be seen by induction:

projecting from a point of V n S gives a plane in pn-l meeting

every k-plane of a variety Sa1,...,ai-l,...,ak+l in an (a -1)-plane. It follows

also-in case a«+1 &#x3E; aa that the linear spacn of Sa is the unique ( z ai + a -1 ) -
plane in pn meeting every k-plane of S in an (a -1 )-plane : if any such

-plane contained a point p of SCX+l - Sa, projection from p

onto a hyperplane would yield a plane meeting every k-plane

of a variety Salt...,alX,alX+l-l,...,ak+l in an (0153 -1)-plane. NOMT, if we have a fa-

mily of varieties St with rS’t -v Sal,.",ak+1 for t * 0, So  Sblt...,bk+l’ alX+l&#x3E; alX,

then the limiting position of the
CI a

plane meeting every k-plane of the variety So in an (x20131)-

plane ; this shows that Finally, y it follows that

for all a : if ao were the first number of which this inequality

failed to hold, we would have a«+i = aa and i hence

and so on until we arrive at

A note : the degeneration of the surface = Sa,b into the surface S.-l,,+,
may be performed geometrically as follows. Let Ei be the rational normal
curves of degree a and b on S, CPi: Pl-*Ei the isomorphisms used in the
construction of S. If we take a generic hyperplane H containing only a - 1
lines of S, the residual intersection of H with S will be a rational normal
curve B2’ of degree b + 1, meeting Ei once at a point p. Every line on S
will meet E’ 2 once, and so S may be realized as the union of lines joining cor-
responding points of E1 and .E2 (or, more precisely, the closure of the union
Df lines joining points q =;6=p EEl with corresponding points of E2.) Now,
let fE,(A)},acl be a family of rational normal curves lying in the span
Wl ^- Pa and passing through p degenerating to the sum of a rational normal
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curve Ei - E1(O) of degree a -1 and a line l; let

be a family of maps with ’(p)) = p. (Explicitly y if with suitable co-
ordinates t on P1 and on Wx ^J Pa, we have

we may take

and E,(A) the image lpA(PI); E,(O) will be the image lpO(Pl) plus the line
1[02...7 0, pi, p,ll.) Let

for A 0 01 then, S(A) will be isomorphic to Sa,6 while S(0) will be the sur-
face 8a-l,b+l obtained by joining the curves jE’i and E2 , the line split off as
-E7i(A) degenerates to Ei appearing as a fiber of the ruled surface s(0).

All degenerations of varieties may be seen from this: to degenerate
’s - 8ah...,ak+l into )Sai,...,ai-,-l,ai+l,...,ak+ll we realize S as the join of the

surface 8at-l,at with the variety 8ah...,at-hai+l;...,ak+l and, holding the latter
fixed, degenerate the former into Sa,-.- 1, a, + 1 - ·

Note finally that since every family JE,--&#x3E;Pl}ic,4 of vector bundles of

rank k + 1 and chern class - n + k on Pl generates a family of varieties 8 t
of minimal degree; and conversely any family of such varieties 8t lifts to
a family of vector bundles, , the result applies as well to degeneration of
vector bundles of fixed chern class on Pl.

4. - Castelnuovo varieties.

We now wish to consider each of the types of minimal varieties con-
structed in the last section, and show that they do indeed contain Castel-
nuovo varieties.

We start with a rational normal scroll S = 8ah...,ak+l. ·
The group of divisors on S is freely generated by the hyperplane section H

and a k-plane W c S; we first compute

LEMMA. The canonical class Ks is
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PROOF. We start with the case k =1, that is, with a ruled surface
S == . The intersection pairing in S is given by

if we write

then we can solve the equations

and

to find that a=-2, fl= n-3.
Now, if S is any minimal variety of the form Sal,...,ak+l’ the hyperplane

section S’ = S. H of S is likewise; moreover the divisors H and TV on S
restrict to .H and W respectively on S’. By adjunction,

but by an induction hypothesis

and it follows that Ks=-(k + 1 ) H + (n - k - 2) TV.
We claim next that

A Cagtelnuovo variety Vk c S of degree d must have class either (M + 1 ) .g -
-(n-k-1-e) W or M.H + W (in case c = 0), where M = [(d-1) j(n-k)]
and e = d-1-M(n-k).

PROOF. We may a priori write

for some a. Let C be a generic (n - k + 1 )-plane section of V, T the cor-

responding (n - k + 1 )-plane section of S. We have seen that if V is
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Castelnuovo,

But now we have

so

and

where e = d -1- M(n - k). Moreover, , since q(T) = 0, the Poinear6 residue
map

is onto, and a fortiori the map

is. Thus we must have

Let us restrict ourselves for the moment to the case e #0, that is, d -1 =fi
# 0 (n - k). We see immediately that a must be non-negative: otherwise
the divisor D = aH + (e-1-a(n-k))W would have negative inter-

section number with the fiber W of T, and so could not be effective. On
the other hand, if a were strictly positive, .D would have negative intersection
with the smaller rational normal curve El = H - a2 W on T r-.J Saltaa; indeed,
we would have then

and correspondingly h°(D)  e unless al = 0 in which case h°(D) = e.

Finally, the case a &#x3E; 0, a, = 0 can be eliminated out of hand: in this case,

C - (M + 1 + a ) H + (d - (M + 1 + a) (n - k)) W would have negative in-
tersection number with Ei , and so contain El as a component. The argu-
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ment in case d == 1 (n - k) is the same: here we must have

which is satisfied if and only if a = 0 or -1.
Let us now check that an irreducible divisor

on S, whose singularities impose no adjoint conditions, does indeed achieve
our bound on p9 : We note first that since is rational, HO(S, Qk+l) =
== H’(S Qkll) = 0 and so the Poinear6 residue map

is an isomorphism. Thus

Now, to compute this number, we consider first sections of the line bundle
(M - k)H on the variety 8 = P(E ) - P( H‘ ai Q+ ... -;- H- ax+1 ) . Such a sec-

tion a gives, on each fiber P(E) of the bundle P(E) -7 P", a polynomial of
degree M - k. If as before we take Y1, ... , Yk+I to be homogeneous co-
ordinates on the fiber P(E)t t corresponding to the decomposition P(E): =

and write

then, the coefficients O’i1,...,ik+1 (t) are sections of the bundle

conversely, y any collection of sections
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gives a section of 0,((Ilf - k) H). In other words, we have an isomorphism

Similarly, a section of (M - k) H - e TV is given by a section of

(M - k) H vanishing identically on chosen fibers Ptt(E), ... , P(E)te, in turn
given by a collection of coefficient functions

where all o-j vanish at tl, ..., te-i.e., by a collection of sections

We have, then,

so V does indeed achieve the bound.

It remains to check that we can actually find, in the divisor class

laH - bW/ I on a suitably chosen S = SaH...,ak+l (a&#x3E;k + 1, bn - k -1),
irreducible divisors whose singularities impose no adjoint conditions. For

this purpose we will take S = Sal,...,akH the « generic » minimal variety, i.e.,

Again, if we let Y1... Yk+1 be homogeneous co-ordinates on each fiber of
S ro..J P(E) corresponding to the decomposition E* = Hal@ ... @ HQk+1, then
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a section of laH - BIVI is given by a polynomial

where the coefficient functions

Now, for any multi-index I = il, ..., i,+, such that

the value of the corresponding coefficient function a., may be prescribed
at any given value t; thus the system laH - bW/ cuts out on each k-plane
P(E)t of S "’--’ P(E) the subsystem of 10p,(a)l I generated by monomials Y’
satisfying (*) above. In particular, in case

-as will occur most often, inasmuch as a &#x3E; k + I and b  n - k - 1-we
see that the system laH - bW/ has no base points on S. By Bertini, then,
the generic element of I aH - b 1,V I will be smooth and hence irreducible:

writing a reducible element V of aH - bW as a sum V = V’ + V" we see
that V’ will intersect V’ in codimension 1.

In case a[(n - k)l(k + 1)]  b, the linear system will have base locus
(though as we shall see, if a[(n - k)l(k + 1)]:&#x3E;b - m, the generic element
of laH - bWI ] is still smooth) : since the coefficient of any monomial having
fewer than b - a[(n- k)/(k + 1)] factors among Yk-m+2, ..., 7 Yk+l must be
zero, the generic divisor V E laH - bWl will have multiplicity b - a.

- [(n - k)l(k + 1)] along the locus Yk-m = ... == Y14, = 0 in S, that is, the
subvariety Sk-m+l spanned by the curves E1, ..., E,v_m+1. We consider in
this case the blow-up S of S along the subvariety Sk-m+l (note that the case
m = 1 concerns us only if either [(n - k)j(k + 1)] = 0-that is, n - k = 1
and we are dealing with a hypersurface-or a = k + 1-in which case our
bound is zero). In the fiber F,!2t pm-l of the exceptional divisor F of

the blow-up 9 - S over a point pES’, the proper transform of a divisors
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VE laH -bW ( given by

is given, in terms of homogeneous co-ordinates

The proper transform la-n*H-bn*TV-(b-a[(nHk)l(k + 1)])Fl ( of the

linear system JaH - bWl thus cuts out on each fiber Fngz n-i(p) gz P»i-i
of the exceptional divisor the complete system O.F p(b - [(n - k)l(k + 1)]);
and so has no base points on S. It follows that the proper transform f7 of
the generic element V of JaH- bWl is smooth (and hence, as before, irre-
ducible), and we may use the Poincare residue formula on 9 to compute
p9 ( Y ) = pg(9). We have

and

so

But b c n - k -1, and since a&#x3E;k + 17

so we have

Thus

which, by our calculation, achieves the bound on pg .
Finally, we wish to check the two exceptional cases: quadric hyper-

surfaces and cones over the Veronese surface. As for quadrics, a quadric
of rank 4 or less (that is, a cone over a quadric in P3) is of the form 81,1,0,...,0’ 1
S2, o, o,..., o and so covered by our first computation.
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Consider now a quadric Q of rank r &#x3E; 5 in Pn. The desingularization Q
of Q-obtained by taking the proper transform of Q in the blow-up Pn of Pn
along the vertex Pn-r of Q-is a Pn-r-1-bundle over a smooth quadric Q’
of dimension r - 2 : in fact, since r - 2 =3, by Lefschetz the second coho-
mology H2(Q’) is generated by the class H of a hyperplane section, and

where

the ap Q -&#x3E; Q c Pn being given by the dual of the tautological bundle on
P(E), i.e., by the linear system

The group of divisors on Q has two generators: the inverse image H’ of a
hyperplane section of Q’ (this is the proper transform of the intersection

of Q with a hyperplane containing the vertex of Q) and the hyperplane class.
The difference H - IT is just the exceptional divisor F of the blow-up
Q - Q, that is, the image in P(E) of the sub-bundle C QQ ... 0+ C c E ; in fact
it is the basis H and I’ we will use.

To find the canonical bundle IT- let Pn be the blow-up of Pn along the
vertex TT ^J Pn-r of Q. Then

Now, let T7 be a smooth divisor on Q; if the degree of the image V of P’
in Pn is d, we may write 

-

so

i.e., as long as b  l’ - 3, the canonical series on 9 is simply cut out by hyper-

surfaces of degree d/2 - n + 1 in Pn. There are such hyper-
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surfaces ; and since any such hypersurface contains V if and only if it con-

tains Q, of them pass through V. The geometric genus of V

is thus

which equals our bound. Thus we see that the generic complete intersection
of Q with a hypersurface passing r - 3 or fewer times through the vertex of Q
is a Castelnuovo variety.

Lastly, we consider divisors on a cone ,S c Pn over the Veronese surface.
Again, the desingularization 9 of such a cone 8 is obtained by blowing up
the vertex of the cone once; again, /§ is a Pn-5-bundle over P2. Letting Hpn
be the hyperplane class on P2, we see that

where

again, the map 8 4 S c Pn is given by the dual of the tautological bundle
on P(E). The divisors on 9 are generated by two classes: the hyperplane
section of S, and the inverse image L of a line in P2, that is, one half the
proper transform of a hyperplane section of S containing the vertex. (Note
that the proper transforms in 8 of complete intersections with 8 have index 2
in the group of divisors on 9, being the subgroup generated by Hand 2L.)

To compute the canonical class Ks of S, we may argue as follows: the
divisor L on S -* P- is a variety 82,0,0,...,0’ , spanning an (n - 3 )-plane ; the
class of .L restricted to L ^J S2,o,...,o is the class W of an (n - 5)-plane
in 82,0,...,0. Now we have seen that
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so

Now suppose 9 is an irreducible divisor whose image V = a(F) in Pn
has degree d. Inasmuch as H has degree 4 and L degree 2 in pn, we can
then write

Note that both coefficients must be non-negative; otherwise would
contain the exceptional divisor of the blow-up a: 9-&#x3E; S as a component.
Following the same argument as in the main case, we see that

Now, in case d is divisible by 4 and we take a = d/4-that is, take V to be
the complete intersection of S with a hypersurface-this achieves one bound;
for a  d/4 it falls short. On the other hand, for d == 2 mod 4, this number
achieves the bound only when a = (d + 2)/4-which is not the class of an
irreducible divisor ong. Thus, a divisor V on 8 is a Castelnuovo variety
if and only if it is a complete intersection of S with a hypersurface not pas-
sing through the vertex of S, whose singularities impose no adjoint conditions.
Since the linear system all on /§ has no base points, such divisors clearly exist.

To sum up, then,

The greatest possible geometric genus pg(V) of a nondegenerate irreducible
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variety V c Pn of dimension k and degree d is

where M = (d -1 ) /(n - k), s = d -1- M(n - k). A variety which achieves
this bound is either

i) residual to n - k -1- 8 k-planes in the complete intersection of a
rational normal scroll S with a hypersurface of degree M -f- 1, for any d, n and k;

i’) homologous on S to a k-plane plus a complete intersection of S
with a hypersurface of degree m;

ii) the complete intersection of a quadric Q c Pn of rank r&#x3E; 5 with a

hypersurface passing r - 3 times or fewer through the vertex of Q, in case
k = n - 2 ; or .

iii) the complete intersection of a cone S over the Veronese surface in P5
with a hypersurface not containing the vertex of the case S, in case k = n - 4.

Finally, we can now see that our inequality on p9( TT ) and Ci ( Y) for a
variety V of dimension k whose canonical bundle is birationally very ample
is sharp ; for any n and k we may take a generic divisor

on a minimal surface Sal,...,akH C Pn.

5. - Some properties of Castelnuovo varieties.

To conclude, we wish to list a few properties of Castelnuovo varieties,
for the most part clear from our description of Castelnuovo varieties as

divisors on minimal varieties.

The first observation is that

The generic hyperplane section of a Castelnuovo variety V is again a Castel-
nuovo variety.

This is easy: if V sits on a rational normal scroll then we have seen

that V has class

and that the singularities of V impose no adjoint conditions; the generic
hyperplane section Y’ - y’JT then sits on the minimal variety S= S-H,
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again has class V’- (J-1 + 1) H + ((I - (M + 1) (n - k)) -W on S’, and its

singularities impose no adjoint conditions. Likewise, if V’ is the complete
intersection of a quadric Q of rank r with a hypersurface passing no more
than r - 3 times through the vertex of Q, then so is V’ == V’ H; and if V
is the complete intersection of a cone X over a Veronese surface with a
hypersurface not containing the vertex of X, then V’ is as well.

In particular, we see that the generic (n - k + 1 )-plane section of a
Castelnuovo variety V is a Castelnuovo curve C; as we saw in section 1,
C must be arithmetically normal and so

A Castelnuovo variety V is arithmetically normal.

We note that we may expect a Castelnuovo variety Y c S = SalJ...,a1c+l
to contain a number of subvarieties which are also Castelnuovo : in addition

to the hyperplane sections of V, the intersection of V with any of the sub-
varieties Sa,,L,...,a,. C S are Castelnuovo if they are not too singular, and of
course the intersection of V with the k-planes of S are hypersurfaces in Pk,
trivially Castelnuovo varieties.

Next, we observe that since the linear system IOs(V)1 of a Castelnuovo
variety V on the minimal variety containing it (or, more properly, on the
blow-up of S along the base locus of 10,(V)I, as described in the previous
section) has no base locus and positive (k + 1)-fold self-intersection,

Accordingly, y from the sequence

we see that

On the other hand, since we know that the sequence

(VI = V’J? the generic hyperplane section of V) is exact on global sections
for l&#x3E;l, it follows by an induction that
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Finally, in case V is smooth, we have the following characterization:

A smooth variety V"k c Pn is Cacstelnzcovo if and only if its generic hyper-
plane seetion V’ = V. His.

PROOF. Suppose V’ is Castelnuovo. We go back to the sequences

we note first that the coboundary inap

is injective: in case k &#x3E; 2, this is true simply because
if k = 2, the map is dual to the restriction map

which is surjective since V’ is arithmetically normal. We see that

HI(V, S2k v (_ 1)) surjects onto Hi( V, S2k v (_ I + 1)) for all 1; since V is smooth,
however, I Hi( V, Q$(- 1)) = 0 for 1 « 0 and so .Hx( TT, 17k v (1)) = 0 VI. It fol-

lows then that

and hence

so TT is Castelnuovo.
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