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Abstract

We study the label complexity of pool-based
active learning in the agnostic PAC model.
Specifically, we derive general bounds on the
number of label requests made by the A2 al-
gorithm proposed by Balcan, Beygelzimer &
Langford (Balcan et al., 2006). This repre-
sents the first nontrivial general-purpose up-
per bound on label complexity in the agnostic
PAC model.

1. Introduction

In active learning, a learning algorithm is given access
to a large pool of unlabeled examples, and is allowed to
request the label of any particular example from that
pool. The objective is to learn an accurate classifier
while requesting as few labels as possible. This con-
trasts with passive (semi)supervised learning, where
the examples to be labeled are chosen randomly. In
comparison, active learning can often significantly de-
crease the work load of human annotators by more
carefully selecting which examples from the unlabeled
pool should be labeled. This is of particular interest for
learning tasks where unlabeled examples are available
in abundance, but labeled examples require significant
effort to obtain.

In the passive learning literature, there are well-known
bounds on the number of training examples necessary
and sufficient to learn a near-optimal classifier with
high probability (i.e., the sample complexity) (Vapnik,
1998; Blumer et al., 1989; Kulkarni, 1989; Benedek
& Itai, 1988; Long, 1995). This quantity depends
largely on the VC dimension of the concept space being
learned (in a distribution-independent analysis) or the
metric entropy (in a distribution-dependent analysis).
However, significantly less is presently known about
the analogous quantity for active learning: namely, the
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label complezity, or number of label requests that are
necessary and sufficient to learn. This knowledge gap
is especially marked in the agnostic learning setting,
where class labels can be noisy, and we have no as-
sumption about the amount or type of noise. Building
a thorough understanding of label complexity, along
with the quantities on which it depends, seems essen-
tial to fully exploit the potential of active learning.

In the present paper, we study the label complexity by
way of bounding the number of label requests made by
arecently proposed active learning algorithm, A? (Bal-
can et al., 2006), which provably learns in the agnostic
PAC model. The bound we find for this algorithm
depends critically on a particular quantity, which we
call the disagreement coefficient, depending on the con-
cept space and example distribution. This quantity is
often simple to calculate or bound for many concept
spaces. Although we find that the bound we derive is
not always tight for the label complexity, it represents
a significant step forward, since it is the first nontriv-
ial general-purpose bound on label complexity in the
agnostic PAC model.

The rest of the paper is organized as follows. In Sec-
tion 2, we briefly review some of the related literature,
to place the present work in context. In Section 3, we
continue with the introduction of definitions and nota-
tion. Section 4 discusses a variety of simple examples
to help build intuition. Moving on in Section 5, we
state and prove the main result of this paper: an up-
per bound on the number of label requests made by
A2, based on the disagreement coefficient. Following
this, in Section 6, we prove a lower bound for A2 with
the same basic dependence on disagreement coefficient.
We conclude in Section 7 with some open problems.

2. Background

The recent literature on the label complexity of active
learning has been bringing us steadily closer to un-
derstanding the nature of this problem. Within that
literature, there is a mix of positive and negative re-
sults, as well as a wealth of open problems.
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While studying the noise-free (realizable) setting, Das-
gupta defines a quantity p called the splitting index
(Dasgupta, 2005). p is dependent on the concept
space, data distribution, and a (new) parameter 7 he
defines, as well as the target function itself. It essen-
tially quantifies how easy it is to reduce the diameter
of the concept space. He finds that under the assump-
tion that there is no noise, roughly O(%) label requests

are sufficient (where d is VC dimension), and Q(%)
are necessary for learning (for respectively appropri-
ate 7 values). Thus, it appears that something like
splitting index may be an important quantity to con-
sider when bounding the label complexity. However,
at present the only published analysis using splitting
index is restricted to the noise-free (realizable) case.
Additionally, one can construct simple examples where
the splitting index is O(1) (for 7 = O(€?)), but agnos-
tic learning requires €2 (%) label requests (even when
the noise rate is zero). See Appendix A for an example
of this. Thus, agnostic active learning seems to be a
fundamentally more difficult problem than realizable
active learning.

In studying the possibility of active learning in the
presence of arbitrary classification noise, Balcan,
Beygelzimer, & Langford propose the A? algorithm
(Balcan et al., 2006). The strategy behind A? is to
induce confidence intervals for the error rates of all
concepts, and remove any concepts whose estimated
error rate is larger than the smallest estimate to a sta-
tistically significant extent. This guarantees that with
high probability we do not remove the best classifier
in the concept space. The key observation that some-
times leads to improvements over passive learning is
that, since we are only interested in comparing the er-
ror estimates, we do not need to request the label of
any example whose label is not in dispute among the
remaining classifiers. Balcan et al. analyze the number
of label requests A% makes for some example concept
spaces and distributions (notably linear separators un-
der the uniform distribution on the unit sphere). How-
ever, other than fallback guarantees, they do not derive
a general bound on the number of label requests, ap-
plicable to any concept space and distribution. This
is the focus of the present paper.

In addition to the above results, there are a number
of known lower bounds, than which there cannot be a
learning algorithm guarateeing a number of label re-
quests smaller. In particular, Kulkarni proves that,
even if we allow arbitrary binary-valued queries and
there is no noise, any algorithm that learns to accu-
racy 1 — e can guarantee no better than 2(log N (2¢))
queries (Kulkarni et al., 1993), where N (2¢) is the size
of a minimal 2e-cover (defined below). Another known

lower bound is due to Kaaridinen, who proves that in
agnostic active learning, for most nontrivial concept
spaces and distributions, if the noise rate is v, then
any algorithm that with probability 1 — § outputs a
classifier with error at most v + € can guarantee no

better than (16’—2 1og%) label requests (Kéaridinen,

2006). In particular, these lower bounds imply that
we can reasonably expect even the tightest general up-
per bounds on the label complexity to have some term
related to log N (¢) and some term related to Z—Z log 3.

3. Notation and Definitions

Let X be an instance space, comprising all possi-
ble examples we may ever encounter. C is a set of
measurable functions h : X — {-1,1}, known as
the concept space. Dxy is any probability distri-
bution on X x {—1,1}. In the active learning set-
ting, we draw (X,Y) ~ Dxy, but the Y value is
hidden from the learning algorithm until requested.
For convenience, we will abuse notation by saying
X ~ D, where D is the marginal distribution of
Dxy over X; we then say the learning algorithm (op-
tionally) requests the label Y of X (which was im-
plicitly sampled at the same time as X); we may
sometimes denote this label Y by Oracle(X). For
any h € C and distribution D" over X x {—1,1},
let erp/(h) = Prix,yy~p {M(X) # Y}, and for S =
{(.%‘1, yl)? (x27 y2)7 B (‘Tmu ym)} € (‘X X {_17 1})m7
ers(h) = L3 |h(z;) — y;|/2. When D' = Dxy
(the distribution we are learning with respect to), we
abbreviate this by er(h) = erp,, (h). The noise rate,
denoted v, is defined as v = infpecer(h). Our objec-
tive in agnostic active learning is to, with probability
> 1—4, output a classifier h with er(h) < v+e without
making many label requests.

Let pp(+,-) be the pseudo-metric on C induced by D,
s.t. Vh,h' € C,pp(h,h') = Prx.p{h(X) # W(X)}.
An e-cover of C with respect to D is any set V' C C such
that Vh € C,3h" € V : pp(h,h') < e. We additionally
let N(e) denote the size of a minimal e-cover of C with

respect to D. It is known that N(e) < 2 (2 1n %)d,
where d is the VC dimension of C (Haussler, 1992).
To focus on learnable cases, we assume d < 0.

Definition 1. For a set V C C, define the region of
disagreement

DIS(V) = {LL‘ S X|3h1,h2 eV: hl(:v) 75 hg(,@)}

Definition 2. The disagreement rate A(V) of a set
V C C is defined as

A(V) = Pryp{X € DIS(V)}.
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Definition 3. For he C, r > 0, let

B(h,r) ={h" € C: pp(h',h) <r}

and define the disagreement rate at radius r

A, = sup A(B(h,T)).
heC
Definition 4. The disagreement coeflicient is the in-
fimum value of § > 0 such that Vr > v +¢,

A, < 0r.

The disagreement coeflicient plays a critical role in the
bounds of the following sections, which are increasing
in this #. Roughly speaking, it quantifies how quickly
the region of disagreement can grow as a function of
the radius of the version space.

4. Examples

The canonical example of the potential improvements
in label complexity of active over passive learning is
the thresholds concept space. Specifically, consider the
concept space of thresholds ¢, on the interval [0, 1] (for

€ [0,1]), such that t,(z) = +1 iff z > z. Further-
more, suppose D is uniform on [0,1]. In this case, it
is clear that the disagreement coefficient is at most 2,
since the region of disagreement of B(t,, ) is roughly
{z € [0,1] : |x — z| < r}. That is, since the disagree-
ment region grows at rate 1 in two disjoint directions
as r increases, the disagreement coefficient 6 = 2.

As a second example, consider the disagreement coef-
ficient for intervals on [0,1]. As before, let X = [0, 1]
and D be uniform, but this time C is the set of in-
tervals I}, such that for z € [0,1], Ijpp(z) = +1
iff © € [a,b] (for a,b € [0,1], a < b). In contrast to
thresholds, the space of intervals serves as a canonical
example of situations where active learning does not
help compared to passive learning. This fact clearly
shows itself in the disagreement coefficient, which is
U+E here, since A, = 1 for all r > v + €. To see this,
note that the set B(Ij g, ) contains all concepts of
the form Ij,,). Note that is the largest possible
value for 6.

u+e

An interesting extension of the intervals example is
the space of p-intervals, or all intervals I, ;) such that
b—a>pe ((v+e€)/2,1/8). These spaces span the
range of difficulty, with active learning becoming easier
as p increaseb This is reflected in the 6 value, since
here # = 5~. When r < 2p, every interval in B(I[a B> 7)
has its 1ower and upper boundaries within r of a and
b, respectively; thus, A, < 4r. However, when r > 2p,
every interval of width p is in B(Ij ), 1), so A, = 1.

As an example that takes a (small) step closer to realis-
tic learning scenarios, consider the following theorem.

Theorem 1. If X is the surface of the origin-centered
unit sphere in R% for d > 2, C is the space of ho-
mogeneous linear separators', and D is the uniform
distribution on X, then the disagreement coefficient 6
satisfies

lnlin{ﬁ\/g,L} Sﬁgmin{wﬂ, L }
4 v+e v+e

Proof. First we represent the concepts in C as weight
vectors w € R¢ in the usual way. For wi,ws €
C, by examining the projection of D onto the sub-
space spanned by {w1,ws}, we see that pp(wy,ws) =
w. Thus, for any w € C and r < 1/2,
B(w,r) = {w' : w-w > cos(nr)}. Since the deci-
sion boundary corresponding to w’ is orthogonal to
the vector w’, some simple trigonometry gives us that

DIS(B(w,r)) ={z € X : |z - w| < sin(nr)}.

Letting A(n, R) = 2”7;/(25%1 denote the surface area
3

of the radius-R sphere in R”, we can express the dis-

agreement rate at radius r as

1 sin(rwr)
— _ 22
A, A(d 0 ‘/_SW(M)A(d 1,vV/1—=x )dm

T (%) /S’Ln(ﬂ”l") o 422

= 1—2%) ? dx (%)
\/_F (dT) —sin(wr) ( )
d

<#2527’L(7ﬂ")

VAl (434)
<Vd = 2sin(7r) < Vdrr.

For the lower bound, note that Ay, = 1 s0 6 >

min {2, U%FE} and thus we need only consider v + € <

<. Supposing v+ € < r < 5, note that (x) is at least
>4 —= / 1 — IQ)
S’Ln(ﬂ”l")
>y /= / \/je_d ' dx
sin(rwr)

5 {; \/Esm(m)} > imin{l,ﬂ\/gr} O

[SI%

dx

Given knowledge of the disagreement coeflicient for C
under D, the following lemma allows us to extend this
to a bound for any D’ A-close to D. The proof is
straightforward, and left as an exercise.

'Homogeneous linear separators are those that pass
through the origin.
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Output: classifier h € C

A

g—1+1
If A(V;) < $A(V,)
k—k4+1; ji—1

S; — {(z,Oracle(x)) : x € S}}
Return h = argminpey, UB(S;, h, ")

Input: concept space C, accuracy parameter € € (0,1), confidence parameter § € (0,1)

Let 2 =log, (& (dIng +In£))log, 2, and let &' = 6/n

0. Vo<—C,S«—a,i<0,j1—0,k1

1. While A(V;) (mingey, UB(S;, b, 6") — minpey, LB(S;, h, ")) > €
Vigr < {h evV;: LB(Si,h,(S/) < minpey; UB(SZ',}L/,(S/)}

3
4
5
6. S/« Rejection sample 2¢=7* samples = from D satisfying x € DIS(V;)
7
8.

Figure 1. The A? algorithm.

Lemma 1. Suppose D’ is such that, AN € (0,1] s.t.
for all measurable sets A C X, A\D(A) < D'(4) <
1D(A). If A 0,AL, and 0" are the disagreement rates

at radius v and disagreement coefficients for D and D’
respectively, then AAy, < Al < %AT/)\, and thus

1
2
Aegygxﬁ.

5. Upper Bounds for the A? Algorithm

To prove bounds on the label complexity, we will ad-
ditionally need to use some known results on finite
sample rates of uniform convergence.

Definition 5. Let d be the VC dimension of C. For
meN, and S € (X x {—1,1})™, define

1 In4 +dln 2
G(m,8) = — + iL%gii

UB(S, h,d) = min{ers(h) + G(|S],9), 1},
LB(S, h,d) = max{ers(h) — G(|S],4),0}.

By convention, G(0,0) = 1. The following lemma is
due to Vapnik (Vapnik, 1998).

Lemma 2. For any distribution D; over X x {—1,1},
and any m € N, with probability at least 1 — & over the
draw of S ~ D™, every h € C satisfies

lers(h) —erp,(h)| < G(m,d).

In particular, this means
erp, (h) — 2G(|S|,8) < LB(S,h,d) <
erp,(h) <UB(S,h,d) < erp,(h) +2G(]S|,9).

Furthermore, for v > 0, if m > & (2dln% + In %),
then G(m,d) < 7.

2

We use a (somewhat simplified) version of the A? algo-
rithm, presented by Balcan et. al (Balcan et al., 2006).
The algorithm is given in Figure 1.

The motivation behind the A2 algorithm is to maintain
a set of concepts V; that we are confident contains any
concepts with minimal error rate. If we can guarantee
with statistical significance that a concept h; € V; has
error rate worse than another concept hy € V;, then
we can safely remove the concept hy since it is subop-
timal. To achieve such a statistical guarantee, the al-
gorithm employs two-sided confidence intervals on the
error rates of each classifier in the concept space; how-
ever, since we are only interested in the relative differ-
ences between error rates, on each iteration we obtain
this confidence interval for the error rate when D is re-
stricted to the region of disagreement DIS(V;). This
restriction to the region of disagreement is the primary
source of any improvements A? achieves over passive
learning. We measure the progress of the algorithm
by the reduction in the disagreement rate A(V;); the
key question in studying the number of label requests
is bounding the number of random labeled examples
from the region of disagreement that are sufficient to
remove enough concepts from V; to significantly reduce
the measure of the region of disagreement.

Theorem 2. If 0 is the disagreement coefficient for
C, then with probability at least 1 — 6, given the inputs
C, €, and 8, A2 outputs h € C with er(ﬁ) <v+e, and
the number of label requests made by A2 is at most

2 1 1 1
0 (92 (”—2 + 1) (dlog = +log —) log—) :
€ € 1) €

Proof. Let k be the value of k£ and ¢ be the value
of ¢ when the algorithm halts. By convention, let
Jet1 = ¢+ 1. Let v = maxpey,(UB(Si, h,8') —
LB(S;,h,d")). Since having 7; < e would break
the loop at step 1, Lemma 2 implies we always



A Bound on the Label Complexity of Agnostic Active Learning

have |S;] < 18 (2dIn2 +1In %), and thus ¢ < (k +
1)log, (£ (2dIn2 +1In4)). A(V;) < e also suffices
to break from the loop, so k < log, % Thus, ¢« <
n. Lemma 2 and a union bound imply that, with
probability > 1 — 4, for every i and every h € C,
lers, (k) — erp,(h)| < G(]Si|,d"), where D; is the con-
ditional distribution of Dxy given that X € DIS(V;).
For the remainder of this proof, we assume that these
inequalities hold for all such S; and h € C. In par-
ticular, this means we never remove the best classi-
fier from V;. Additionally, Vhi, he € V; we must have
A(V;)(erp, (h1) — erp,(h2)) = er(h1) — er(hsz). Com-
bined with the nature of the halting criterion, this im-

plies that er(h) < v + ¢, as desired.

The rest of the proof bounds the number of label
requests made by A?. Let h* € V; be such that
er(h*) < v+e. We consider two cases: large and small
A(V;). Informally, when A(V;) is relatively large, the
concepts far from A* are responsible for most of the
disagreements, and since these must have relatively
large error rates, we need only a few examples to re-
move them. On the other hand, when A(V;) is small,
the halting condition is easy to satisfy.

We begin with the case where A(V;) is large. Specifi-
cally, let i’ = max{i < ¢ : A(V;) > 89(v +¢)}. (If no
such 4’ exists, we can skip this case). Then Vi < ¢/, let

A(V;
V9 =heV;:pp(h,h*) > Vi)
20
Since for h € Vi, pp(h,h*)/A(V;) < erp,(h) +

erp,(h*) < erp,(h) + Z55y, we have

1
v ¢ {hEVi:erDi(h) > - ”+_€}

K2

3
C {hEVi : erpi(h)—s— >erp,(h")+ = — 2 U+_6 }

1 1
C {h e V;:erp,(h) — 30 erp, (h*) + @}

Let V; denote the latter set. By Lemma 2, S; of
size O (QQ (d10g6‘ + log %)) suffices to guarantee ev-
ery h € V; has LB(S;, h,0") > UB(S;, h*,d’) in step 2.
V" C ¥ and AV \ Vi) < Aawn < LA(V), s0 in
particular, any value of k for whicﬁejgC < 4’ +1 satisfies
|Sj—1] =0 (6‘2 (d10g9 + log %))

To handle the remaining case, suppose
A(V;) < 80(v + €). In this case, S; of size
0] (92(1”2—;)2 (d log % + log %)) suffices to make
v < W, satisfying the halting condition.

Therefore, every k for which ji, > ¢ + 1 satisfies
2
1S, 1] =0 (02—(”:;) (dlog 1 +log %))

Since for k > 1, Efk:}(i,l) 1Si| < 2|8, 1], we have that

i IS = 0 (6255 (dlog L +1og £) ). Noting

that k = O(logl) and log 4 = O (dlogl +log3)
completes the proof. O

Note that we can get an easy improvement to the
bound by replacing C with an g$-cover of C, us-
ing bounds for a finite concept space instead of VC
bounds, and running the algorithm with accuracy pa-
rameter 5. This yields a similar, but sometimes much
tighter, label complexity bound of

2 N(e/2)log *
o) <92 (V_2+1> 1ogmlogl).
€ ) €

6. Lower Bounds for the A? Algorithm

In this section, we prove a lower bound on the worst-
case number of label requests made by A%. As men-
tioned in Section 2, there are known lower bounds

of Q (Z—Z log %) and 2 (log N(2¢)), than which no al-
gorithm can guarantee better (Kulkarni et al., 1993;
Kééridinen, 2006). However, this leaves open the ques-

tion of whether the 62 factor in the bound is necessary.
The following theorem shows that it is for A2.

Theorem 3. For any C and D, there exists an oracle
with v = 0 such that, if 0 is the disagreement coeffi-
cient, with probability 1—6, the version of A? presented
above makes a number of label requests at least

1
Q (6‘2 <dlog6‘+log 5)> .

Proof. The bound clearly holds if § = 0, so assume 6 >
0. By definition of disagreement coefficient, there is
some «g > 0 such that Vo € (0,a0), Ire € (¢,1],ha €
C such that A(B(ha,74)) > Ay, —a > 0ry —2a > 0.
For some such a, let Oracle(x) = ho(z) for all z € X.
Clearly v = 0. As before, we assume all bound eval-
uations in the algorithm are valid, which occurs with
probability > 1 — 4. Since LB(S;,ha,0’) = 0 and
UB(S;, ha,d") = G(]S;,8"), if A? halts without re-
moving any h € B(hy,7), then 3i : UB(S;, hqa, ') <

To
A(B(hea,ra)) < eraim < e On the other hand,

suppose A? removes some h € B(ha,To) before halt-
ing, and in particular suppose the first time this hap-
peuns is for some set S;. In this case, UB(S;, ha,d') <

er(h To
LB(Si,h,8') < erp,(h) < A(B(,fa;a)) < gles

In either case, by definition of G(|S;],d’), we must

have |S;| = <(9— 3—3)2 (dlog( - 2—3) +log %))

Since this is true for any such «, taking the limit as
a — 0 proves the bound. O
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Theorems 2 and 3 show that the variation in worst-case
number of label requests made by A2 for different C
and D is largely determined by the disagreement coef-
ficient (and VC dimension). Furthermore, they give us
a good estimate of the number of label requests made
by A%. One natural question to ask is whether Theo-
rem 2 is also tight for the label complexity of the learn-
ing problem. The following example indicates this is
not the case. In particular, this means that A2 can
sometimes be suboptimal.

Suppose X = [0,1]", and C is the space of axis-
aligned rectangles on X. That is, each h € C can
be expressed as n pairs ((a1,b1), (az,b2), ..., (an,bn)),
such that Vo € X, h(z) = 1 iff Vi,a; < a; < b;.
Furthermore, suppose D is the uniform distribution
on X. We see immediately that 6 = e-+w since
vr > 0,A, = 1. We will show the bound is not tight
for the case when v = 0.2 In this case, the bound value
is Q (& (nlog 2 +1log3)).

Theorem 4. When v = 0, the agnostic active learn-
ing label complexity of axis-aligned rectangles on [0, 1]™
with respect to the uniform distribution is at most

1 1
0] (nlog%—i—zlogg).

A proof sketch for Theorem 4 is included in Ap-
pendix B. This clearly shows that the bound based
on A? is sometimes not tight with respect to the true
label complexity of learning problems. Furthermore,
when e < L this problem has log N(e/2) > n, so
the improvements offered by learning with an §-cover
cannot reduce the slack by much here (see Lemma 3

in Appendix B).

7. Open Problems

Whether or not one can modify A2 in a general way
to improve this bound is an interesting open prob-
lem. One possible strategy would be to use Occam
bounds, and adaptively set the prior for each itera-
tion, while also maintaining several different types of
bounds simultaneously. However, it seems that in or-
der to obtain the dramatic improvements needed to
close the gap demonstrated by Theorem 4, we need a
more aggressive strategy than sampling randomly from
DIS(V;). For example, Balcan, Broder & Zhang (Bal-
can et al., 2007) present an algorithm for linear separa-

2In this particular case, the agnostic label complexity
with v = 0 is within constant factors of the realizable com-
plexity. However, in general, agnostic learning with v =0
is mot the same as realizable learning, since we are still in-
terested in algorithms that would tolerate noise if it were
present. See Appendix A for an interesting example.

tors which samples from a carefully chosen subregion
of DIS(V;). Though their analysis is for a restricted
noise model, we might hope a similar idea is possible
in the agnostic model. The end of Appendix A con-
tains another interesting example that highlights this
issue.

One important aspect of active learning that has not
been addressed here is the value of unlabeled examples.
Specifically, given an overabundance of unlabeled ex-
amples, can we use them to decrease the number of
label requests required, and by how much? The split-
ting index bounds of Dasgupta (Dasgupta, 2005) can
be used to study these types of questions in the noise-
free setting; however, we have yet to see a thorough
exploration of the topic for agnostic learning, where
the role of unlabeled examples appears fundamentally
different (at least in A?).
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A. Realizable vs. Agnostic with v =0

The following example indicates that agnostic active
learning with v = 0 is sometimes fundamentally more
difficult than realizable learning.

Let € < 1/4, N = |5 |. Let X = Z, and define D

such that, for z € X : 0 < 2 < N, D(x) = 15 and

D(-z) = =4,

In particular, note that 3¢ < D(—xz) < 4e and % <
D(x) < €2,

D gives zero probability elsewhere.

Define concept space C = {hq, ha,...}, where Vi,j €
{1,2,...}, h;(0) = —1 and

hi(_j) =
hi(j) =

20[i = j] — 1
20[j > i — 1.

Note that this creates a learning problem where infor-
mative examples exist (the z € {1,..., N} examples)
but are rare.

Theorem 5. For the learning problem described
above, the realizable active learning label complexity is
O (log %) .

Proof. By Chernoff and union bounds, drawing
(C] ( E% log 5_15) unlabeled examples suffices to guarantee,
with probability at least 1— ¢, we have at least one un-
labeled example of x, for all z € {1,2,..., N}; suppose
this happens. Suppose f € C is the target function.
If f ¢ {hi,ha,...,hn}, querying the label of x = N
suffices to show er(hyy1) = 0, so we output hpyi.
On the other hand, if we find f(N) = +1, we can
perform binary search among the {1,2,..., N} to find
the smallest ¢ > 0 such that f(i) = +1. In this case,
we must have h; = f, so we output h; after O(log N)
queries. O

Theorem 6. For the learning problem described
above, any agnostic active learning algorithm requires
Q (%) label requests, even if the oracle always agrees
with some f € C, (i.e., even if v =0).

Proof. Suppose A is a correct agnostic learning algo-
rithm. The idea of the proof is to assume A is guaran-
teed to make fewer than (1 — 20)N queries with prob-
ability > 1 — 0 when the target function is some par-
ticular f € C, and then show that by adding noise we
can force A to output a concept with error more than
e-worse than optimal with probability > §. Thus, ei-
ther A cannot guarantee fewer than (1 —26)N queries
for that particular f, or A is not a correct agnostic
learning algorithm.

Specifically, suppose that when the target function
f = hn41, with probability > 1—4 A returns an e-good
concept after making < ¢ < (1 — 2§)N label requests.
If A is successful, then whatever concept it outputs la-
bels all of {—1,—-2,...,—N} as —1. So in particular,
letting the random variable R = (Ry, Rz, ...) denote
the sequence of examples A requests the labels of when
Oracle agrees with hy 41, this implies that with prob-
ability at least 1 — 0, if Oracle(R;) = hyy1(R;) for
1 € {1,2,ldots,min{q, |R|}}, then A outputs a concept
labeling all of {—1,-2,...,—N} as —1.

Now suppose instead of Ay 41, we pick the target func-
tion f’ as follows. Let f’ be identical to hyy1 on

all of X' except a single z € {—1,-2,...,—N} where
f'(xz) = 41; the value of z for which this happens is
chosen uniformly at random from {—1,-2,...,—N}.

Note that f/ ¢ C. Also note that any concept in C
other than h_, is > e-worse than h_,.

Now consider the behavior of A when Oracle an-
swers queries with this f’ instead of hyy1. Let Q =
(Q1,Q2, . ..) denote the random sequence of examples
A queries the labels of when Oracle agrees with f’.
In particular, note that if R; # « for ¢ < min{q, |R|},
then @Q; = R; for ¢ < min{q, |Q|}.

E [Pr{A outputs h_,}]
<Er[Pro{di<q:R;=z}]+d<1-04.

By the probabilistic method, we have proven that
there exists some fixed oracle such that A fails with
probability > §. This contradicts the premise that A
is a correct agnostic learning algorithm. O

As an interesting aside, note that if we define C, =
{hi,ha,...,hn}, dependent on e, then the agnostic
label complexity is O (log %) when v = 0. This is be-
cause we can run the realizable learning algorithm to
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find f = h;, and then sample © (log %) labeled copies
of the example —i; by observing that they are all la-
beled +1, we effectively verify that h; is at most e-
worse than optimal. To make this a correct agnostic
algorithm, we can simply be prepared to run A? if any
of the © (log %) samples of —i are labeled —1 (which
they won’t be for v = 0). However, since the disagree-
ment coefficient § = © (%), Theorem 3 implies A% does
not achieve this improvement. See Appendix B for a
similar example.

B. Axis-Aligned Rectangles

Proof Sketch of Theorem 4. To keep things simple, we
omit the precise constants. Consider the following al-
gorithm.?

0. Sample © (% log %) labeled examples from Dxy
1. If none of them are positive,
return the “all negative” concept
Else let  be one of the positive examples
Fori=1,2,...,n
Rejection sample unlabeled set U; of size
e (% (log %)2) from the conditional of D given

Vi i,z —O (—nlog ) <X;<z;40 (—nlog )
5. Find b; = max{z : z € U;U{z}, Oracle(z) = +1}

by binary search in {z; : z € U; U {x}, z; > x;}
6. Find a; = min{z; : z € Y;U{z}, Oracle(z) = +1}

by binary search in {z; : z € U; U{a}, 2 < xi}

- W

7. Let b= (a1, b1), (2,b2), -, (@n, bn))
8. Sample © (6 log 5) labeled examples T from Dxy
9. If erp(h) > 0,

run A? from the start and return its output
10.Else return h

The correctness of the algorithm in the agnostic setting
is clear from examining the three ways to exit the al-
gorithm. First, any oracle with Prx..p{Oracle(X) =
+1} > e will, with probability > 1 — O(d) have a pos-
itive example in the initial © (% log %) sample. So if
the set has no positives, we can be confident the “all
negative” concept has error < e. If we return in step
9, we know from Theorem 2 that A? will, with proba-
bility 1 — O(d), output a concept with error < v + €.
The remaining possibility is to return in step 10. Any
h with er(h) > € will, with probability > 1 — O(6),
have erp(h) > 0 in step 9. So we can be confident the
h output in step 10 has er(h) <e

3To keep the algorithm simple, we make little attempt
to optimize the number of unlabeled examples. In partic-
ular, we could reduce |Uf;| by using a nonzero cutoff in step
9, and could increase the window size in step 4 by using a
noise-tolerant active threshold learner in steps 5 and 6.

To bound the number of label requests, note that the
two binary searches we perform for each i (steps 5
and 6) require only O (log|U;]) label requests each,
so the entire For loop uses only O (n log %) label re-
quests. We additionally have the two labeled sets
of size O (%log %), so if we do not return in step
9, the total number of label requests is at most
O (nlog & + Llog 1).

It only remains to show that when v = 0, we do not re-
turn in step 9. Let f = ((a1,b1), (az,b2), ..., (an,bn))
be a rectangle with er(f) = 0. Note that er(h) <
SO lai — as| + |bi — bs|. For each i, with probability

— O(6/n), none of the initial © (1 log }) examples w

has w; € [a;, a;+~]U[b; ("1085)
In particular, if we do not return in step 1, with prob-
ability 1 — O(9), Vj, z; € [a; +,b; —~]. Suppose this
happens. In particular, this means the oracle’s labels
for all z € U; are completely determined by whether
a; < z; < b;. We can essentially think of this as two
“threshold” learning problems for each i: one above
x; and one below x;. The binary searches find thresh-
old values consistent with each U;. In particular, by
standard passive sample complexity arguments, |U;] is
sufficient to guarantee with probability 1 — O(d/n),

7. 2 L

b = bil < O (s and Ja; - ail < o(nlogé).

Thus, with probability 1 — O(9), er( ) < O( )
6

Therefore, the probability h makes a mistake on T of
size O (Llog3) is at most O(8). Otherwise, we have

—7,bi], where y = O

err(h) =0 in step 9, so we return in step 10. O

Lemma 3. If C is the space of axis-aligned rectangles
on [0,1]™, and D is the uniform distribution, then for
€< L, logy, N(¢/2) > n.

Proof. Since N(e/2) is at least the size of any
e-separated set, we can prove this lower bound
by constructing an e-separated set of size 2.
In particular, consider the set of all rectan-
gles ((a1,b1), (az2,b2),..., (an,b,)) satsifying Vi,a; =

0,b; € {1 l } There are 2" such rectangles.

For any two distinct such rectan-
gles ((a1,b1), (a2,b2), ..., (an,by)) and
((a}, b)), (ah,bh), ..., (a), b)), there is at
least one ¢ such that b, # b;. So the re-
gion in which these two disagree contains
{reX me(1-21],Vj#iz€[0,1-21]},
which has measure (1 — %)n71 1>1se O
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Abstract. We study the label complexity of pool-based active learning
in the PAC model with noise. Taking inspiration from extant literature
on Exact learning with membership queries, we derive upper and lower
bounds on the label complexity in terms of generalizations of extended
teaching dimension. Among the contributions of this work is the first
nontrivial general upper bound on label complexity in the presence of
persistent classification noise.

1 Overview of Main Results

In supervised machine learning, it is becoming increasingly apparent that well-
designed interactive learning algorithms can provide valuable improvements over
passive algorithms in learning performance while reducing the amount of effort
required of a human annotator. In particular, there is presently much interest in
the pool-based active learning setting, in which a learner can request the label
of any example in a large pool of unlabeled examples. In this case, one crucial
quantity is the number of label requests required by a learning algorithm: the
label complexity. This quantity is sometimes significantly smaller than the sample
complexity of passive learning. A thorough theoretical understanding of these
improvements seems essential to fully exploit the potential of active learning.
In particular, active learning is formalized in the PAC model as follows. The
pool of m unlabeled examples are sampled i.i.d. according to some distribution
D. A binary label is assigned to each example by a (possibly randomized) oracle,
but is hidden from the learner unless it requests the label. The error rate of a
classifier h is defined as the probability of h disagreeing with the oracle on a
fresh example X ~ D. A learning algorithm outputs a classifier h from a concept
space C, and we refer to the infimum error rate over classifiers in C as the
noise rate, denoted v. For €,d,n € (0,1), we define the label complezity, denoted
#LQ(C,D,¢,6,n), as the smallest number ¢ such that there is an algorithm that
outputs a classifier h € C, and for sufficiently large m, for any oracle with v < 7,
with probability at least 1 — § over the sample and internal randomness, the
algorithm makes at most ¢ label requests and h has error rate at most v + ¢.!

1 Alternatively, if we know ¢ ahead of time, we can have the algorithm halt if it ever
tries to make more than ¢ queries. The analysis is nearly identical in either case.
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The careful reader will note that this definition does not require the algorithm
to be successful if v > 5, distinguishing this from the fully agnostic setting [1];
we discuss possible methods to bridge this gap in later sections.

Kulkarni [2] has shown that if there is no noise, and one is allowed arbitrary
binary valued queries, then O (log N(e)) < O (d log%) queries suffice to PAC
learn, where N (¢€) denotes the size of a minimal e-cover of C with respect to D,
and d is the VC dimension of C. This bound often has exponentially better de-
pendence on %, compared to the sample complexity of passive learning. However,
many binary valued queries are unnatural and difficult to answer in practice. One
of the driving motivations for research on the label complexity of active learning
is identifying, in a general way, which concept spaces and distributions allow us
to obtain this exponential improvement using only label requests for examples
in the unlabeled sample. A further question is whether such improvements can
be sustained in the presence of classification noise. In this paper, we investigate
these questions from the perspective of a general analysis.

On the subject of learning through interaction, there is a rich literature con-
cerning the complexity of Exact learning with membership queries [3,4]. The
interested reader should consult the limpid survey by Angluin [4]. The essen-
tial distinction between that setting and the setting we are presently concerned
with is that, in Exact learning, the learning algorithm is required to identify the
oracle’s actual target function, rather than approximating it with high probabil-
ity; on the other hand, in the Exact setting there is no classification noise and
the algorithm can ask for the label of any example. In a sense, Exact learning
with membership queries is a limiting case of PAC active learning. As such, we
may hope to draw inspiration from the extant work on Exact learning when
formulating an analysis for the PAC setting.

To quantify #M Q(C), the worst-case number of membership queries required
for Exact learning with concept space C, Hegediis [3] defines a quantity called the
extended teaching dimension of C, based on the teaching dimension of Goldman
& Kearns [5]. Letting to denote this quantity, Hegediis proves that

max{to, log, |C[} < #MQ(C) < tolog, |C],

where the upper bound is achieved by a version of the Halving algorithm.
Inspired by these results, we generalize the extended teaching dimension to

the PAC setting, adding dependences on €, §, i, and D. Specifically, we define

two quantities, ¢ and £, both of which have t; as a limiting case. We show that

) (max{Z—j,f, 10gN(26)}> < #LQ(C,D,¢,6,m) < O ((Z—z—i—l) tlogN(e/Q))

where O hides factors logarithmic in %,%, and d. The upper bound is achieved

by an active learning algorithm inspired by the Halving algorithm, which uses
0 (d”j;) unlabeled examples. With these tools in hand, we analyze the label
complexity of axis-aligned rectangles with respect to product distributions, show-
ing improvements over known passive learning results in dependence on 7 when

positive examples are not too rare.
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The rest of the paper is organized as follows. In Section 2, we briefly survey
the related literature on the label complexity of active learning. This is followed
in Section 3 with the introduction of definitions and notation, and a brief dis-
cussion of known results for Exact learning in Section 4. In Section 5, we move
into results for the PAC setting, beginning with the noise-free case for simplicity.
Then, in Section 6, we describe the general setting, and prove an upper bound
on the label complexity of active learning with noise; to the author’s knowledge,
this is the first general result of its kind, and along with lower bounds on label
complexity presented in Section 7, represents the primary contribution of this
work. We continue in Section 8, with an application of these bounds to describe
the label complexity of axis-aligned rectangles with product distributions. We
conclude with some enticing open problems in Section 9.

2 Context and Related Work

The recent literature studying general label complexity can be coarsely parti-
tioned by the measure of progress used in the analysis. Specifically, there are at
least three distinct ways to measure the progress of an active learning algorithm:
diameter of the version space, measure of the region of disagreement, and size
of the version space. By the version space at a time during the algorithm exe-
cution, we mean the set of concepts in C that have not yet been ruled out as a
possible output. One approach to studying label complexity is to summarize in a
single quantity how easy it is to make progress in terms of one of these progress
metrics. This quantity, apart from itself being interesting, can then be used to
derive upper and lower bounds on the label complexity.

To study the ease of reducing the diameter of the version space in active learn-
ing, Dasgupta [6] defines a quantity p he calls the splitting indez. p is dependent
on C, D, ¢, and another parameter 7 he defines, as well as the oracle itself.
Dasgupta finds that when the noise rate is zero, roughly O(%) label requests

are sufficient, and Q(%) are necessary for learning (for respectively appropriate
7 values). However, Dasgupta’s analysis is restricted to the noise-free case, and
there are no known extensions addressing the noisy case.

In studying ways to enable active learning in the presence of noise, Balcan et
al. [1] propose the A2 algorithm. This algorithm is able to learn in the presence
of arbitrary classification noise. The strategy behind A? is to induce confidence
intervals for the differences of error rates of concepts in the version space. If
an estimated difference is statistically significant, the algorithm removes the
worst of the two concepts. The key observation is that, since the algorithm only
estimates error differences, there is no need to request the label of any example
that all remaining concepts agree on. Thus, the number of label requests made
by A? is largely controlled by how quickly the region of disagreement collapses
as the algorithm progresses. However, apart from fall-back guarantees and a few
special cases, there is presently no published general analysis of the number of
label requests made by A2, and no general index of how easy it is to reduce the
region of disagreement.
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The third progress metric is reduction in the size of the version space. If the
concept space is infinite, an €-cover of C can be substituted for C, for some
suitable €’.2 This paper presents the first general study of the ease of reducing
the size of the version space. The corresponding index summarizing the potential
for progress in this metric remains informative in the presence of noise, given
access to an upper bound on the noise rate.

In addition to the above studies, Kadridinen [7] presents an interesting anal-
ysis of active learning with various types of noise. Specifically, he proves that
under noise that is not persistent (in that requesting the same label twice may
yield different responses) and where the Bayes optimal classifier is in C, any
algorithm that is successful for the zero noise setting can be transformed into
a successful algorithm for the noisy setting with only a small increase in the
number of label requests. However, these positive results do not carry into our
present setting (arbitrary persistent classification noise). In fact, in addition to
these positive results, K&aridinen [7] presents negative results in the form of a
general lower bound on the label complexity of active learning with arbitrary
(persistent) classification noise. Specifically, he finds that for most nontrivial

distributions D, one can force any algorithm to make {2 (Z_Z) label requests.

3 Notation

We begin by introducing some notation. Let X be a set, called the instance
space, and F be a corresponding o-algebra. Let Dxy be a probability measure
on X' x{—1,1}. We use D to denote the marginal distribution of Dxy over X'. Cx
is the set of all F-measurable f : X — {—1,1}. C C Cx is a concept space on X,
and we use d to denote the VC dimension of C; to focus on nontrivial learning, we
assume d > 0. For any h,h' € Cx, define erp(h,h') = Prx.p {h(X) # h'(X)}.
IfU € Xx™, define eryy(h, h') = L3 ITh(z) # W (2)]3If L € (X x {-1,1})™,
define erg(h) = L Y eyec (@) # y]. For any h € Cg, define er(h) =
Prix,y)~Dxy 1R(X) # Y}. Define the noise rate v = infrcc er(h). An a-cover
of Cisany V C Cs.t. Vh e C, 30/ € V with erp(h,h') < .

Generally, in this setting data is sampled i.i.d. according to Dxy, but the
labels are hidden from the learner unless it asks the oracle for them individually.
In particular, requesting the same example’s label twice gives the same label both
times (though if the data sequence contains two identical examples, requesting

2 An alternative, but very similar progress metric is the size of an e-cover of the version
space. The author suspects the analysis presented in this paper can be extended to
describe that type of progress as well.

3 We overload the standard set-theoretic notation to also apply to sequences. In par-
ticular, }__.,, indicates a sum over entries of the sequence U (not necessarily all
distinct). Similarly, we use |U| to denote length of the sequence U, S C U to denote
a subsequence of U, S UU to denote concatenation of two sequences, and for any
particular z € U, U \ {z} indicates the subsequence of U with all entries except the
single occurrence of x that is implicitly referenced in the statement. It may help to
think of each instance x in a sample as having a unique identifier.
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both labels might give two different values). However, for notational simplicity,
we often abuse this notation by stating that X ~ D and later stating that
the algorithm requests the label of X, denoted Oracle(X); by this, we implicitly
mean that (X,Y) ~ Dxy, and the oracle reveals the value of Y upon request. In
particular, for U ~ D™, h € Cr, define ery(h) = L 3 I[h(z) # Oracle(z)].

Definition 1. For V C C with finite |V|, the majority vote concept hma; € Cx
is defined by hmq;(z) =1 iff {h € V : h(z) = 1}| > 1|V

Definition 2. For U € &A™, h € Cx, we overload notation to define the se-
quence of labels h(U) = {h(x)}zeu assigned to entries of U by h. For V C Cg,
VU] denotes any subset of V' such that Yh € V,[{h' € VU] : K (U) = h(U)}| = 1.
VU] represents the labelings of U realizable by V.

4 Extended Teaching Dimension

Definition 3. (Extended Teaching Dimension [3]) LetV C C, m > 0,U € X™.

Vf € Cr, XTD(f,V,U) = int{t| 3R CU : [{heV : h(R)=f(R)}| <1 A |R|<t}.
XTD(V,U) = sup XTD(f,V,U).
feCr

For a given f, we call any R C U such that [{h € V : h(R) = f(R)}| <1 a
specifying set for f on U with respect to V.4

The goal of Exact learning with membership queries is to ask for the labels
f(z) of individual examples z € X until the only concept in C consistent with the
observed labels is the target f € C. Hegediis [3] presents the following algorithm.

Algorithm: MembHalving
Output: The target concept f € C

0.V «C
1. Repeat until |V] =1
2. Let Rynq; be the majority vote of V/

3 Let R C X be a minimal specifying set for h,,q; on X with respect to V'
4. Ask for the label f(x) of every x € R

5 Let V—{heV|Vx € R, f(z) = h(x)}

6. Return the remaining element of V/

Theorem 1. (Ezact Learning: Hegedis [3]). Letting #MQ(C) denote the Exact
learning query complexity of C with membership queries on any examples in X,
and to = XTD(C, X), then the following inequalities are valid if |C| > 2.

max{to,log, [C|} < #MQ(C) < tolog, [C|.
Furthermore, this upper bound is achieved by the MembHalving algorithm.®

4 We also overload all of these definitions in the obvious way for sets U C X.

5 By a slight alteration to choose queries in a particular greedy order, Hegediis is able
to reduce this upper bound to 2@# log, |C|. However, it is the simpler form of the
algorithm (presented here) that we draw inspiration from in the following sections.
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The upper bound of Theorem 1 is clear when we view MembHalving as a
version of the Halving algorithm [8]. That is, querying all examples in a specifying
set for h guarantees either i makes a mistake or we identify f. Thus, querying
a specifying set for hy,,,; guarantees that we at least halve the version space.

The following definitions represent natural extensions of XT'D to the PAC
setting. The relation of these quantities to the complexity of active learning is
our primary focus.

Definition 4. (XTD Growth Function) Form >0,V CC, § € [0,1],

XTD(V,D,m,8) = inf{t|Vf € Cr, Propn{XTD(f,VIU],U) >t} < 6}.
XTD(V,m)= sup XTDV[U],U).
Uexm

XTD(C,D,m,0d) plays an important role in distribution-dependent bounds on
the label complexity, while XT'D(C,m) plays an analogous role in distribution-
free bounds. Clearly 0 < XTD(C,D,m,d) < XTD(C,m) < m.

As a simple example, consider the space of thresholds on the line. That
is, suppose X = R and C = {hg : 0 € R hg(x) = +1iff ¢ > 0}. In this
case, XTD(C,m) = 2, since for any set U of m points, and any f € Cpg,
we can form a specifying set with the points min{z € U : f(z) = +1} and
max{x € U : f(x) = —1}, (if they exist).

5 The Complexity of Realizable Active Learning

Before discussing the general setting, we begin with realizable learning (n = 0),
because the analysis is quite simple, and clearly highlights the relationship to
the MembHalving algorithm. We handle noisy labels in the next section.

Based on Theorem 1, it should be clear that for m > {2 (% (d log% + log %)),
#LQ(C,D,¢,6,0) < XTD(C,m)dlog, <. Roughly speaking, this is achieved
by drawing m unlabeled examples ¢ and executing MembHalving with con-
cept space C[U] and instance space U. This gives a data-dependent bound of
XTD(ClU],U)log, |ClU]| < XTD(C,m)dlog, <. We can also obtain a related
distribution-dependent result as follows. Consider the following algorithm.

Algorithm: ActiveHalving

Input: V.C Cx, values ¢, € (0,1), U = {z1,22,...,Tm} € X™, constant n € N
Output: Concept heV

0. Leti« 0

1. Repeat

2. t— 1+ 1

3. Let Z/{i = {x1+n(i71)7 To24n(i—1)y--- 7$ni}

4. Let Rynq; be the majority vote of V/

5. Let R C U; be a minimal specifying set for hp,q; on U; w.r.t. VU]
6. Ask for the label f(x) of every x € R

7. Let V— {h e V|f(R) =h(R)}

8. If 3h € V s.t. hua;j(Us) = h(Uy), Return argming_y, ery (R, hunay)
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Theorem 2. Let m = [@l (ln %1)2—‘ , andn = E In M—‘. Let

t=XTD ((C, D,n, m). If N(6/(2m)) is the size of a minimal 5>--cover
25

of C, then

#LQ(C,D,¢,5,0) < tlog, N(§/(2m)) < O (idlog %) .

Proof. The bound is achieved by ActiveHalving(V ¢, d,U,n), where U ~ D™, and
V is a minimal %—cover of C. Let f € C have er(f)=0. Let f =argminycy er(h).
With probability > 1 — /2, f(U) = f(U). Suppose this happens. In each itera-
tion, if the condition in step 8 does not obtain, then either 3z € R : hpq;(x) #
f(:z:) or else V[i;] = {h} for some h € V such that 3z € U; : hynqj(z) # h(z) =
f(x). Either way, we must have eliminated at least half of V' in step 7, so the
condition in step 8 fails at most log, N(5/(2m)) < 2dlog, 242 — 1 times.

On the other hand, suppose the condition in step 8 obtains. This happens
only when hp,q;(U;) = f(Us). Pry, {67”1/{ hiajs [) = 0 A eryy(Romag, f) > 4} <

0 _ . By aunion bound, the probability that an himaj with ery(hmaj, f) >

12dlog,
€

i satlsﬁes the condition in step 8 on any iteration is at most %. If this does not
happen, then the i € V we return has ery (h, f) < ery(h, himaj)+erv(hmaj, f) <
ery(f, hmaj) + erv(hmaj, f) < §. By Chernoff and union bounds m is large
enough so that with probability at least 1 — 6, ery(h, f) < < s =erp (h,f) <e.
So with probability 56 , we return an h € C with erp(h f) <e.

On the issue of number of queries, each iteration queries a minimal specifying
set for hy,q; on a set of size n. The probability the size of this set is larger than t
for a particular set U; is at most W By a union bound, the probability

it is larger than £ on any iteration is at most . Thus, the total probability of
success (in learning and obtaining the query bound) is at least 1 — 4. O

Note that we can obtain a worst-case label bound for ActiveHalving by re-
placing ¢ above with X TD(C,n). Theorem 2 highlights the relationship to known
results in Exact learning with membership queries [3]. In particular, if C and X
are finite, and D has support everywhere on X, then as ¢ — 0 and § — 0, the
bound converges to XT'D(C, X)log, |C|, the upper bound in Theorem 1.

6 The Complexity of Active Learning with Noise

The following algorithm can be viewed as a noise-tolerant version of ActiveHalv-
ing. Significant care is needed to ensure we do not discard the best concept, and
that the final classifier is near-optimal. The main trick is to use subsamples of
size < ﬁ. Since the probability of such a subsample containing a noisy example
is small, the specifying sets for h;,,; will often be noise-free. Therefore, if h € V
is contradicted in many such specifying sets, we can be confident h is subopti-
mal. Likewise, if for a particular unqueried z, there are many such subsamples
containing « where h,,,; is not contradicted, and where there is a consistent h,
then more often than not, h(x) = h*(x), where h* = arg miny/cy er(h').
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Algorithm: Reduce AndLabel(V,U, €, §, 7))

Input: Finite V C Cxr, U = {21, 22,...,2m} € X™, values €,4,7 € (0,1].
Output: Concept h € V.

.Letw=[|U]/(BIn|V])]

et Vo —V, i 0

. Do

o

1
2
3 i—i+1

4 Let U = {T14u(i—1) To4u(i=1) -+ Tui}

5. Vi «— Reduce (Vi,l,L{i,ﬁ‘v‘,ﬁ—i—%)

6. Until [Vi| > 2[V; 4] or [Vi] < 1

7. Let U = {Tuit1, Tuiv2s - - -, Tuite}, Where £ = [12?2 In %—‘

8. L « Label (Vi-1,U, 5,7+ %)

9. Return h € V; having smallest erz(h), (orany h € V if V; = @)

Subroutine: Reduce(V,U, 6, 7))
Input: Finite V' C Cg, unlabeled sequence U, values 4,7 € (0, 1]
Output: Concept space V' C V

0. Let m = |, n = | 5], 7 = [397m2], 0 = &

1. Let hyuq; be the majority vote of V'

2. Forie{1,2,...,r}

3. Sample a subsequence S; of size n uniformly without replacement from U
4. Let R; be a minimal specifying set for hpq; in S; with respect to V[S,]
5. Ask for the label of every example in R;

6. Let V; be the concepts h € V s.t. h(R;) # Oracle(R;)

7. Let V be the set of h € V that appear in > 6 - r of the sets V;

8. Return V' =V \V

Subroutine: Label(V,U, 6, 7))

Input: Finite V' C Cx, unlabeled sequence U, values 6,% € (0, 1]

Output: Labeled sequence £

0. Let ¢ =[], n= | ok | k= [167£ m %]

1. Let Rypqj be the majority vote of V', and let £ — {}

2. Forie{1,2,...,k}

3. Sample a subsequence S; of size n uniformly without replacement from U
Let R; be a minimal specifying set for hyq; in S; with respect to V[S,]
For each z € R; not in L, request its label y, and let £ — LU {(z,y.)}
. Let % C U be the subsequence of examples we did not ask for the label of
.Foreachz eld

Let I, = {i:z € S; and 3h € V s.t. h(R;) = humaj(Ri) = Oracle(R;)}
9. For each i € I, let h; € V be s.t. h;(R;) = Oracle(R;)

10. Let y be the majority value of {h;(x) : i € I} (breaking ties arbitrarily)
11. Let £L— LU{(z,y)}

12.Return L

NSO
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Lemma 1. (Reduce) Suppose h* € V is a concept such that ery(h*) < < %
Let V' be the set returned by Reduce(V,U, ¢, 0,7). With probability at least 1 -6,
h* e V', and if ery(hmaj, h*) > 107 then |V'| < %|V|.

Proof. By a noisy example, in this context we mean any x € U for which h*(zx)

disagrees with the oracle’s label. Let n = {ﬁJ and r = {397 In % ] 0= 32270 By

a Chernoff bound, sampling r subsequences of size n, each without replacement
from U, guarantees with probability > 1 — g that at most 0r of the subsequences
contain any noisy examples. In particular, this would imply h* € V'.

Now suppose ery(hmaj, B*) > 107. For any particular subsampled sequence
S, ,PTSiNUn(Z/I) {hmaj(Sl-) = h*(Sl)} < (1 — 1077)” < 0.627. So the probability
there is some = € S; with hp,q;(2) ;é h*(x) is at least 0.373. By a Chernoff
bound, with probability at least 1 — 5, at least 40r of the r subsamples contain
some € U such that hp,q;(z) # h*(z).

By a union bound, the total probability the above two events succeed is at
least 1 — 4. Suppose this happens. Any sequence S; containing no noisy examples
but 3z € S; such that hpq;(x) # h*(x) necessarily has |V| > 1|V|. Since there
are at least 36r such subsamples S;, we have [V| > (36r-1|V| — 9r V1) / (26r) =
1|V, so that [V'| < 3|V|. O

Lemma 2. (Label) Let U € X*, ¢ > n. Suppose h* € V has ery(h*) <17 < 35.
Let hpq; be the majority vote of V', and suppose ery(hmaj, R*) < 127. Let L
be the sequence returned by Label(V,U, 6, 7). With probability at least 1 —§, for
every (z,y) € L, y is either the oracle’s label for x or y = h*(x). In any case,
Veel,|{y: (x,y) € L} =1.

Proof. As above, a noisy example is any x € U such that h*(x) disagrees with
the oracle. For any x we ask for the label of, the entry (z,y) € £ has y equal
to the oracle’s label, so the focus of the proof is on U. For each z € U, let
. ={i:2x eS8}, A={i: 32 € R;,h*(2') # Oracle(z’)}, and B = {i :
32" € Riyhamaj(2') # h*(2')}. Yo € U, if |I, N A| < |(I. \ B) \ A|, we have that
{i € I; : h*(R;) = hmaj(Ri) = Oracle(R;)}| > %|IAI| > 0. In particular, this
means the majority value of {h;(z) : i € I,,} is h*(z). The remainder of the proof
bounds the probability this fails to happen.

For & € U, for i € {1,2,...,k} let S;, of size n be sampled uniformly
without replacement from U \ {z}, A, = {i : 32’ € S; ., h*(2) # Oracle(z')},
and B, ={i: 32" € Siz, hina;(z')£h*(2')}.

737“{3:1067/{ |I. N A| > (I, \B)\A|}

<Y Pr{lLl < g} +Pr{iL 0l > S >y
TeU
Pr{(1\ Ba) \ Aol < YL A L] > 85} <€ [em ¥ 420738 ] <

The second inequality is due to Chernoff and Hoeffding bounds. ad
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Lemma 3. Suppose v = infpecer(h) <n andn+ %e < é Let V' be an §-cover
m . . +€/2 481n|V| _ 1

0= [asmE2m 2 = (39710 28I (410 V) + [1674 0 2], and t =
XTD (V, D, n, %) With probability > 1 — 9, ReduceAndLabel (V,L{, 5,6,m+ %)
makes at most ts label queries and returns a concept h with er(h) < v +e.
Proof. Let h* € V have er(h*) < v 4 §. Suppose the value of 7 is + when we
reach step 7. Clearly « <log, 3 [V| < 4In|V/|. Let hj,,; denote the majority vote
of V;. We proceed by bounding the probability that any of six specific events fail
to happen. The first event is

[Vie{1,2,...,c}, ery,(h*) <n+ €.

m 62
The probability this fails is < (4In [V|)e” [FR7T) 772 % < £ (by Chernoff and
union bounds). The next event we consider is

[Vie {1,2,...,c},h* € Vi and (if |V,| > 1) ery, (Rl h*) <10 (n+ 3¢)].

maj’
By Lemma 1 and a union bound, the previous event succeeds but this one fails
with probability < %. Next, note that the event

[Vi e{1,2,...,t},ery, (hiil h*) <10 (77 + %e) = erp (hiil h*) < 22—1 (77 + %e”

maj? maj?

fails with probability < (41n|V|)e~ Lsmivi)(1+ie)ss < Z. The fourth event is

lergg (Ripass B*) <12 (n+ 3€)].
By a Chernoff bound, the probability this fails when the previous three events
succeed is < e_ﬁ(""’%) < %. The fifth event is
lerg(h*) <er(h*)+ $ and Vh € V,_1,er(h) > er(h*) + § = erg(h) > erg(h*)].
By Chernoff and union bounds, the probability the previous events succeed but
2

this fails is < |V|€7ﬁ ez < 1%. Finally, consider the event

V(z,y) € L,y = h*(x) or y = Oracle(x)].
By Lemma 2, this fails when the other five succeed with probability < 1%. Thus
the probability all of these events succeed is > 1 — g. If they succeed, then any
h' € V, with er(h') > v4€ > er(h*)+§ has erp(h') > erg(h*) > mingey, erg(h).
Thus the h we return has er(h) < v +e.

In each call to Reduce, we ask for the labels of a minimal specifying set
for r = [397111 %‘VI] sequences of length n. For each, we make at most ¢
label requests with probability > 1 — %, so the probability any call to Reduce
makes more than ¢r label requests is < %I;W'
the labels of a minimal specifying set for < k = [167% In 376@} sequences of
length n. So we make at most tk queries in Label with probability > 1 — g—lz.

Thus, the total probability we make more than ¢(k + 4rIn|V|) = ts queries is

< %I;W' + % = %. The total probability either the query or error bound is

violated is at most §. O

. Similarly, in Label we request
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Theorem 3. Letn = {WJ , and let N be the size of a minimal 5-cover
of C. Let £ = [48752 10 22V | Let s = [(397In 282K (41n N)+ 1674 In 221,
andt = XTD (C,D,n, &).

) 2s

n? 1 1 d
#LQ(C,D,e,6,n) <ts=0|t| = +1)(dlog—+1log— ) [log— ] ).
€2 € 0 €6

Proof. 1t is known that N < 2 (2¢1n 4—:)d [9]. If n+ 2€ > 55, the bound exceeds
the passive sample complexity, so it clearly holds. Otherwise, the result follows

from Lemma 3 and the fact that XT'D (V,D,n,£) < XTD (C,D,n,<). O

Generally, if we do not know an upper bound 7 on the noise rate v, then we
can perform a guess-and-double procedure using a labeled validation set, which
grows to size at most O (”j;). See Section 9 for more discussion of this matter.

We can create a general algorithm, independent of D, by using unlabeled ex-
amples to (with probability > 1—0/2) construct the §-cover. It is possible to do
this while maintaining [V| < N’ =2 (¢ 1n %)d using O (% (dlog L +1log 3))
unlabeled examples. Thus, replacing ¢ in Theorem 3 with XT'D(C,n) and in-
creasing N to N’ gives an upper bound on the distribution-free label complexity.

7 Lower Bounds

In this section, we prove lower bounds on the label complexity.

Definition 5. (Fitended Partial Teaching Dimension) Let V. C C, m > 0,
§>0.YfeCr U e XM,

XPTD(f,V,U,5)=inf{t|3R CU : |{he€V : h(R)=f(R)}| < 6|V|+1 A |R|<t}.
XPTD(V,D,8) =inf{t|Vf € Cg, lim Pry~pr{XPTD(f,V,U,5) >t} =0}.

XPTD(V,m,5) = sup sup XPTD(f V[U],U,Y0).
feCrueximl

Theorem 4. Let € € [0,1/2), § € [0,1). For any 2e-separated set V- C C with
respect to D,

max{log[(1 —9)|V]|],XPTD(V,D,d)} < #LQ(C,D,¢,4,0).
If0 <0 < 1/16 and 0 < ¢/2 < n < 1/2, and there are hi,ha € C such that
erp(hi, ha) > 2(n+¢€), then

([ 1) 10g L < #LQ(C,D, ¢, s
€2 g5 = y 5 €, 777)

Also, the following distribution-free lower bound applies. If Vo € X, {z} € F°
then letting ® denote the set of all probability distributions on X, for any V C C,

XPTD(V,(1—¢)/e,8) < sup #LQ(C,D',¢,6,0).
D'eD

6 This condition is not necessary, but simplifies the proof.
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Proof. The log[(1 — §)|V]] lower bound is due to Kulkarni [2].

We prove the X PTD(V,D,d) lower bound by the probabilistic method as
follows. If §|V| + 1 > |V, the bound is trivially true, so assume |V |+ 1 < |V|
(and in particular, |V| < o). Let m > 0, ¢ = XPTD(V,D,d). By definition
of t, 3f" € Cx such that lim, o Pry~p{XPTD(f',V,U,5) > i} > 0. By
the Dominated Convergence Theorem and Kolmogorov’s Zero-One Law, this
implies limy, oo Pry~pn{XPTD(f',V,U,5) > t} = 1. Since this probability is
nonincreasing in n, this means Prypm{XPTD(f',V,U,5) > t} = 1. Suppose
A is a learning algorithm. For 4 € &A™, f € Cg, define random quantities
Ryy €U and hy; € C, denoting the examples queried and classifier returned
by A, respectively, when the oracle answers consistent with f and the input
unlabeled sequence is U ~ D™. If we sample f uniformly at random from V,

Ef [,PTlffyRu,fﬁhu,f {erp(f, hz,{yf) >eV |R1,{7f| > f}]
> Priury sy A (Bug) = f'(Rug) Nerp(fhuf) > €V [Ry 5| > t}

> Ey inf Pri{f(R)=f'(R) ANerp(h, f) > e}] > 4.
heC,RCU:|R|<t
Therefore, there must be some fixed target f € C such that the probability that
erp(f, hu,s) > € or |Ry ¢| > XPTD(V,D,¢) is > §, proving the lower bound.
Kaaridinen [7] proves a distribution-free version of the 2 ((Z—j + 1) log %)
bound, and also mentions its extendibility to the distribution-dependent set-
ting. Since the distribution-dependent claim and proof thereof are only im-
plicit in that reference, for completeness we present a brief proof here. Let
A = {z : hi(x) # ha(x)}. Suppose h* is chosen from {hi,he} by an ad-
versary. Given D, we construct a distribution Dxy with the following prop-
erty’. VA € F,Prix,y)~pxylY = (X)X € AN A} = %—I— m, and
Prix,y)~pxy 1Y = h1(X)|X € A\A} = 1. Any concept h € C with er(h) < n+e
has Pr{h(X) = h*(X)|h1(X) # h2(X)} > 1. Since this probability can be es-
timated to arbitrary precision with arbitrarily high probability using unlabeled
examples, we have a reduction to active learning from the task of determining
with probability > 1 —§ whether hy or ho is h*. Examining the latter task, since
every subset of A in F yields the same conditional distribution, any optimal
strategy is based on samples from this distribution. It is known (e.g., [10,11])
that this requires expected number of samples at least

(1—86) log g5
1 € 1 €
8Dk (3t e 13— 205ey)

where Dgr(p||q) = plog £ + (1 — p)log %.
We prove the XPTD(V, (1 — €)/e,6) bound as follows. Let n = 1=<. For

S € X"l let Dg be the uniform distribution on the entries of S. Let f” =
argmaxsec, X PTD(f,V[S],S,0), and define ¢/ = XPTD(f",V[S],S,0). Let

7 Although this proof relies on stochasticity of the oracle, with additional assumptions
on D and A similar to K&&riainen’s [7], a similar result holds for deterministic oracles.
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m > 0. Let Ry, y and hy s be defined as above, for U ~ DE. As above, we use
the probabilistic method, this time by sampling the target function f uniformly
from V[S].

Es [Pru.ry ;s {€rps(hug, [) > €V [Ryp| > "}
> But [Py ru s hues 1 (Rug) = " (Rutg) N (S) # F(S) V [Rug| 2 1"}
> min_ Prp{f(R)=f"(R) AR(S) # f(5)} > 6.

~ h€C,RCS:|R|<t”

Taking the supremum over S € X" completes the proof. O

8 Example: Axis-Aligned Rectangles

As an application, we analyze axis-aligned rectangles, when D is a product den-
sity. An axis-aligned rectangle in R™ is defined by a sequence {(a;, b;)}?, such
that a; < b;, and the examples labeled +1 are {z € X : Vi,a; < x < b;}.
Throughout this section, we assume F is the standard Borel o-algebra on R™.

Lemma 4. (Balanced Axis-Aligned Rectangles) If D is a product distribution
on R™ with continuous CDF, and C is the set of azis-aligned rectangles such
that Vh € C,Prx.p{h(X) = +1} > A, then

2
XTD(C,D,m,6) <O (”7 log %) .
Proof. If G; is the CDF of X for X ~ D, then G;(Xj;) is uniform in (0,1), and for
any h € C, the function h/(z) = h({min{y : z; = Gi(y)}}1~,) (for x € (0,1)™) is
an axis-aligned rectangle. This mapping of the problem into (0, 1)" is equivalent
to the original, so for the rest of this proof, we assume D is uniform on (0, 1)™.
If m is smaller than the bound, the result clearly holds, so assume m > 2n +

47" (ln %" + 2nIn 2nm’ ) Our first step is to discretize the concept space. Let .S be

5
the set of concepts h such that the region {x : h(x) = +1} is specified by the inte-

rior of some rectangle {(a;, b;)}?, with a;,b; € {0, 2n‘in2 , 2%‘:”2 yeers {2”?2—‘271‘;”2 },
a; < b;. By a union bound, with probability > 1—§/2 over the draw of U ~ D™,
Ve,y € U, Vi € {1,2,...,n}, |a; — yi| > ﬁ. In particular, this would im-
ply there are valid choices of S[U] and C[U] so that C[/] C S[U]. As such,
XTD(C,D,m,8) < XTD(SNC,D,m,3/2).

Let f € Cr. If Prx~p {f(X)=+1} < 2, then with probability > 1—4/2,

for each h € S N C, there is some x within the first % In @ examples in U s.t.

h(z) = +1 # f(z). Thus Prypm {XTD(f, (CNS)U,U) > LI @} <5/2.
For any set of examples R, let CLOS(R) be the smallest axis-aligned rect-

angle h € S that labels all of R as +1. This is known as the closure of R.

Additionally, let A C R be a smallest set such that CLOS(A) = CLOS(R).

This is known as a minimal spanning set of R. Clearly |A| < 2n, since the
extreme points in each direction form a spanning set.
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Let h € S be such that Prxp{h(X) = +1} > 3. L(et‘){(ai, b;)}™, define the

rectangle. Let (%) be the example in U/ with largest x, ~ component such that

a:z(-ai) <a;andVj #i,a; < xgai) < bj, or if no such example exists, #(*) is defined
as the x € U with smallest z;. Let 2(*) be defined similarly, except having the
Z(-bi) Ebi) > b;, and again Vj # i,a; < xgbi) <b;. If
no such example exists, then #(*?) is defined as the = € U with largest x;. Let
Apu C U be the subsequence of all examples « € U such that Ji € {1,2,...,n}
with :Cl(-ai) <z <a;orb <z < :vl(-bi). The surface volume of each face of the
rectangle is at least A/2. By a union bound over the 2n faces of the rectangle,
with probability at least 1 — §/(4]S]), [Apu| < 221n 8"7‘5‘. With probability
> 1—6/4, this is satisfied for every h € S with Pry.p{h(X) = +1} > 3.

Now suppose f € Cg satisfies Prxp{f(X) =41} > 2 LetU; ={z €U :
f(x) = +1}, heros = CLOSUL). If any © € U \ Uy has heos(x) = +1, we can
form a specifying set for f on U with respect to S[i] using a minimal spanning
set for Uy along with this x. If there is no such z, then heos(U) = f(U), and we
use a minimal specifying set for h¢j,s. With probability > 1—4§/4, for every h € S
such that Prxp{h(X) = +1} < 3, there is some = € U, such that h(z) = —1.
If this happens, since heos € S, this implies Prxop{heos(X) = +1} > % In
this case, for a specifying set, we use Ay, ., 4 along with a minimal spanning set

for Uy So Prypm {XTD(f, (CNS)ULU) > 2n+ 42 1n 8"‘5‘} < §/2. Noting

smallest z;"’ component with z

B

2n
that |S| < (%) completes the proof. O

Note that we can obtain an estimate p of p = Pr(x y)upy, {Y = +1} that,
with probability > 1 — §/2, satisfies p/2 < p < 2p, using at most O (% log p—lé)

labeled examples (by guess-and-halve). Since clearly Prx.p{h*(X) = +1} >
p — 1, we can take A = (p/2) — n, giving the following oracle-dependent bound.

Theorem 5. If D is as in Lemma 4 and C is the set of all axis-aligned rectan-
gles, then if p=Prix y)ypxy 1Y = +1} > 40, we can, with probability > 1 -4,
find an h € C with er(h) < v + € without the number of label requests exceeding

(o= (51))

This result is somewhat encouraging, since if 7 < € and p is not too small,
the label bound represents an exponential improvement in % compared to known
results for passive learning, while maintaining polylog dependence on % and poly-
nomial dependence on n, though the degree increases from 1 to 3. We might won-
der whether the property of being balanced is sufficient for these improvements.
However, as the following theorem shows, balancedness alone is insufficient for
guaranteeing polylog dependence on % The proof is omitted for brevity.

Theorem 6. Ifn > 2, there is a distribution D' on R™ such that, if C is the set
of axis-aligned rectangles h with Prx.p{h(X) =41} > A, then there is a V C

C 2¢-separated with respect to D' such that 2 (W) < XPTD(V,D,9).
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9 Open Problems

There are a number of possibilities for tightening these bounds. The upper bound
of Theorem 3 contains a O (log %) factor, which does not appear in any known
lower bounds. In the worst case, when XTD(C,D,n,d) = O(n), this factor
clearly does not belong, since the bound exceeds the passive learning sample
complexity in that case. It may be possible to reduce or remove this factor. On a
related note, Hegediis [3] introduces a modified MembHalving algorithm, which
makes queries in a particular greedy order. By doing so, the bound decreases to
Qb’;—f’to log, |C| instead of tglog, |C|. A similar technique might be possible here,
though the effect seems more difficult to quantify. Additionally, a more careful
treatment of the constants in these bounds may yield significant improvements.

The present analysis requires access to an upper bound 7 on the noise rate.
As mentioned, it is possible to remove this assumption by a guess-and-double
procedure, using a labeled validation set of size 2(1/¢€). In practice, this may
not be too severe, since we often use a validation set to tune parameters or
estimate the final error rate anyway. Nonetheless, it would be nice to remove
this requirement without sacrificing anything in dependence on % In particular,
it may sometimes be possible to determine whether a classifier is near-optimal
using only a few carefully chosen queries.

As a final remark, exploring the connections between the present analysis
and the related approaches discussed in Section 2 could prove fruitful. Thorough
study of these approaches and their interrelations seems essential for a complete
understanding of the label complexity of active learning.
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Abstract

In this paper, | describe a general framework in which a legralgorithm is
tasked with learning some concept from a known class by anoterg with a
teacher via questions. Each question has an arbitrary keostassociated with
it, which the learner is required to pay in order to have thestjon answered. Ex-
ploring the information-theoretic limits of this frameviot define a notion called
the cost complexityf learning, analogous to traditional notions of sample €om
plexity. | discuss this topic for the Exact Learning settagywell as PAC Learning
with a pool of unlabeled examples. In the former case, themégas allowed to
askany question, while in the latter case, all questions must contlee target
concept's behavior on a set of unlabeled examples. In bétihge, | derive upper
and lower bounds on the cost complexity of learning, based oambinatorial
quantity | call theGeneral Identification Cost

1 Introduction

The ability to ask questions to a knowledgeable teacher caltertearning easier. This fact is no
secret to any elementary school student. But how much @aSieme questions are more difficult
for the teacher to answer than others. How much inconveaiansst even the most conscientious
learner cause to a teacher in order to learn a concept? Tes paplores these and related questions
about the fundamental advantages and limitations of lagroy interaction.

In machine learning research, it is becoming increasinglyagent that well-designed interactive
learning algorithms can provide valuable improvementsamring performance while reducing the
amount of effort required of a human annotator. This resehes mainly focused on two formal
settings of learning: Exact Learning by queries and poskdaActive PAC Learning. Informally,
the objective in the setting of Exact Learning by querieipérfectly identify a target concept
(classifier) by asking questions. In contrast, the pooktaictive PAC setting is concerned only
with approximating the concept with high probability withspect to an unknown distribution on
the set of possible instances. In this latter setting, tamiag algorithm is restricted to asking only
guestions that relate to the concept’s behavior on a péatiset of unannotated instances drawn
independently from the unknown distribution.

In this paper, | study both of these active learning settimyder a broad definition. Specifically, |
consider a learning protocol in which the learner canaskquestion, but each possible question
has an associatewst For example, a query of the form “what is the label of examfilmight cost
$1, while a query of the form “show me a positive example” niighst $10. The objective is to learn
the concept while minimizing the totabstof queries made. One would like to know how much cost
even the most clever learner might be required to pay to laaoncept from a particular concept
space in the worst case. This can be viewed as a generalizdtimtions ofsample complexitgr



query complexitfound in the learning theory literature. | refer to this bestrst case cost as the
cost complexityf learning. This quantity is defined without reference tanpaitational feasibility,
focusing instead on the information-theoretic boundasifabis setting (in the limit of unbounded
computation). Below, | derive bounds on the cost complefitgarning, as a function of the concept
space and cost function, for both Exact Learning from qgexied pool-based Active PAC Learning.

Section 2 formally introduces the setting of Exact Learrfiregn queries, describes some related
work, and defines cost complexity for that setting. It alswag to introduce the notation and funda-
mental definitions used throughout this paper. The sectmsely parallels the work of Balcazar et
al. [1]. The primary contribution of Section 2 is a derivatiof upper and lower bounds on the cost
complexity of Exact Learning from queries. This is follow@&uSection 3, by a formal definition of
pool-base Active PAC Learning and extension of the notiooast complexity to that setting. The
primary contributions of Section 3 include a derivation pper and lower bounds on the cost com-
plexity of learning in that general setting, as well as aeriesting corollary for intersection-closed
concept spaces. | know of no previous work giving generailtesf this type.

2 Active Exact Learning

In this setting, there is amstance spacet’ andconcept spac€ on X such that any, € C is a
distinct functionh : X — {0,1}.1 Additionally, defineC* = {h : X — {0,1}}. Thatis,C* is the
most generatoncept space, containing all possible labeling& ofn particular, any concept space
C is a subset of*. For a particular learning problem, there is an unkndamet conceptf € C,
and the task is to identifyf using a teacher’s answers to queries made by the learningtaig.
Formally, anactual quenyis any functioninQ = {G : C* — 24"\ {@}},2 for someanswer setd*.
By a learning algorithm “making an actual query”, | mean thaelects a functiog € @, passes
it to the teacher, and the teacher returns a singlvera € ¢(f) wheref is the target concept. A
concepth € C* is consistentvith an answef: to an actual query if @ € g(h). Thus, | assume the
teacher always returns an answer that the target concepssstent with; however, when there are
multiple such answers, the teacher may arbitrarily sefechfamongst them.

Traditionally, the subject of active learning has beenistigvith respect to specific restricted query
types, such as membership queries, and the learning &gusibbjective has been to minimize the
numberof queries used to learn. However, it is often the case tlaahieg with these simple types
of queries is difficult, but if the learning algorithm is alled just a fewspecialqueries, learning
becomes significantly easier. The reason we are initialiictant to allow the learner to ask certain
types of queries is that these queries are difficult, expensir sometimes impossible to answer.
However, we can incorporate this difficulty level into tharfrework by assigning each query type
a specificcost and then allowing the learning algorithm to explicitly mpize thecostneeded to
learn, rather than theumberof queries. In addition to allowing the algorithm to tradé lmétween
different types of queries, this also gives us the addeddiliyito specify different costs within the
same family (e.g., perhaps some membership queries areeaxypeasive than others).

Formally, in this framework there is@st functionLet« > 0 be a constant. A cost function is any
¢: Q — (o, ). In practice~ would typically be defined by the user responsible for answethe
gueries, and could be based on the time, resources, or mgeexpenses necessary to obtain the
answer. Note that if a particular type of query is unanswlertdy a particular application, or if the
user wishes to work with a reduced set of possible queriescan always define the costs of those
undesirable query types to be, so that any reasonable learning algorithm ignores theims$ible.

While the notion ofactual queryclosely corresponds to the actual mechanism of queryingado-p
tice, it will be more convenient to work with the informatidheoretic implications of these queries.

Define the set oéffective querie® = {¢ : C* — 92 \{@}VfeCacq(f)=[f€anVhe

a,a € q(h)]}. Each effective query corresponds to an equivalence clesstoal queries, defined
by mapping any answer to the set of concepts consistent whitie can thus define the mapping

LAll of the main results easily generalize to multiclass a#l.we

The restriction thafi( f) # {} is a bit like an assumption that every valid question hasastlene answer
for any target concept. However, we can always define sontegar answer to mean “there is no answer,”
so this restriction is really more of a notational convengthan an assumption.



E(q) ={dalg € Q,¥f € C*,[Baeq(f)witha= {hlh € C*,ac q(h)}] & acq(f)}.

By an algorithm “making an effective quegy’ | mean that it makes an actual queryéfyg),® (a
good algorithm will pick a cheaper actual query). For thegmse of this best-worst-case analysis,
the following definition is appropriate. For a cost functigrefine a correspondirgffective cost
function(overloading notation} : Q — [a, oc], such that/q € Q, c(q) = infgeg(q) (). The
following definitions illustrate how query types can be defirusing effective queries.

A positive example quelg anyg € £(gs) for someS C X, such thays € Q is defined by
VfecC stz eS: f(z) =1],q9s(f) = {{h|lh € C* h(x) =1}z € S: f(z) =1}, and
VieclC*st[Vx e S, f(x) =0],qs(f) = {{h|h € C* : Vx € S,h(z) = 0}}.

A membership querig anyg € £(qq,y) for somez € X. This special case of a positive example
query can equivalently be defined by < C*, q(,(f) = {{h|h € C*, h(x) = f(x)}}.

These effectively correspond to asking for any exampleléab in .S or an indication that there
are none (positive example query), and asking for the latelparticular example i’
(membership query). | will refer to these two query typesihsequent examples, but the reader
should keep in mind that the theorems below applgltdypes of queries.

Additionally, it will be useful to have a notion of affective oraclewhich is an unknown function
defining how the teacher will answer the various queriesmiadly, an effective oraclé’ is any
functionin? = {T: Q — 2" |Vq € Q,T(q) € Usec-q(f)}.* For convenience, | also overload
this notation, defining for a set of queri&C Q, T'(R) = NgerT'(q).

Definition 2.1. Alearning algorithmA for C using cost functior is any algorithm which, for any
(unknown) target concepgt € C, by a finite number of finite cost actual queries, is guarathitee
reduce the set of concepts@rconsistent with the answers to precis€lf}. A concept space is
learnablewith cost functiore using total cost if there exists a learning algorithm faf usingc
guaranteed to have the sum of costs of the queries it makessit.m

Definition 2.2. For any instance spac&, concept spacé on X, and cost functiom, define the
cost complexitydenoted CostComplex{ty, ¢), as the infimum > 0 such thaC is learnable with
cost function: using total cost no greater than

Equivalently, we can define cost complexity using the follmywecurrence. IfC| = 1,
CostComplexitfC, ¢) = 0. Otherwise,

CostComplexitiC, c) = inf ¢(q) + max ; CostComplexiti{ h|h € C,a € G(h)},c)

GgeqQ fec,aeq(f)
Since
inf ¢(§) + max CostComplexiti{hi|h € C,a € G(h)},c)
GeqQ fec.aeq(f)
= inf inf ¢(§)+ max CostComplexityfC N{hlh € C* ac ¢(h)},c
Inf duf (9) jednax plexithyC N {A| q(h)},c)

= inf ¢(q) + max CostComplexityC N a,c),
q€Q @ feCiaeq(f) plexit )

we can equivalently define cost complexity in termgfiéctive querieandeffective costThat is,
CostComplexit§C, ¢) is the infimum¢ > 0 such that there is an algorithm guaranteed to identify
any f € C usingeffectivequeries with total offectivecosts no greater than

3l assumeA* is sufficiently expressive so thety € Q, £(q) # @; alternatively, we could defing(q) =
@ = ¢(q) = oo without sacrificing the main theorems. Additionally, | walssume that it is possible to find an
actual query ir€(q) with cost arbitrarily close tanfzc ¢ () ¢(§) for anyq € Q using finite computation.

“An effective oracle corresponds to a deterministic stateteacher, which gives up as little information as
possible. It is also possible to analyze a setting in whidtingstwo queries from the same equivalence class,
or asking the same question twice, can possibly lead to tifereint answers. However, the worst case in both
settings is identical, so the worst case results obtainethi® setting also apply to the more general case.

°I have made the dependence.fon the teacher implicit. To be formally correct, should have the
teacher’s effective oracl& as input, and is guaranteed to outgufor anyT € 7 s.t.Vq € Q, T(q) € q(f).
Cost is then a book-keeping device recording hdwsesI” during execution.



2.1 Related Work

There have been a relatively large number of contributioriké study of Exact Learning from
queries. In particular, much interest has been given tigsttn which the learning algorithm is
restricted to a few specific types of queries (e.g. membgeigiiéries and equivalence queries).
However, these contributions focus entirely on tluenberof queries needed, rather thaost The
most relevant work in this area is by Balcazar, Castro, amiga@o [1]. Prior to publication of [2],
there were a variety of publications in which the learnirgpaithm could use some specific set of
gueries, and which derived bounds on the number of queriealgorithm might be required to
make in the worst case in order to learn. For example, [3lyaedl the combination of membership
and proper equivalence queries, [4] additionally analyeaching from membership queries alone,
while [5] considered learning from just proper equivalegaeries. Amidst these various special
case analyses, somewhat surprisingly, Balcazar et ali§2pvered that the query complexity
bounds derived in these works were all special cases of &egjegeral theorem, applying to the
broad class ofample-based querie$hey further generalized this result in [1], giving resuihat
apply to any combination ainyquery types. That work defines an abstract combinatoriaitifya
which they call theGeneral Dimensioywhich provides a lower bound on the query complexity,
and is within a log factor of it. Furthermore, the General Bimion can actually be computed for a
variety of interesting combinations of query types. Untilnnthere has not been any analysis |
know of that considers learning witlll query types, but giving each query a cost, and bounding
the worst-caseostthat a learning algorithm might be required to incur. In gartar, the analysis

of the next subsection can be viewed as a generalizatior] tf Hdd this notion of cost, such

that [1] represents the special case of cost that is unifotnain a particular set of queries and

on all other queries.

2.2 Cost Complexity Bounds

| now turn to the subject of exploring the fundamental lintf$nteractive learning in terms of cost.
This discussion closely parallels that of Balcazar, @astnd Guijarro [1].

Definition 2.3. For any instance spac&, concept spacé on X', and cost functiom, define the
General Identification Costlenoted=IC(C, ¢), as follows.

GIC(C,c) = int{t|t > 0,YT € T,3R C Q, 5[ cp¢lq) < ] A[ICNT(R)| < 1]}

We can also express this @&4C(C, ¢) = supre 7 inf pco.jcnr(r)|<1 quR ¢(q). Note that
calculating this corresponds to a much simpler optimizagicoblem than calculating the cost
complexity. The General Identification Cost is a direct gatization of the General Dimension

of [1], which itself generalizes quantities such as Exteh@ieaching Dimension [4], Strong
Consistency Dimension [5], and the Certificate Sizes oflf3jan be interpreted as a sort of game.
This game is similar to the usual setting, except that thehiees answers are not restricted to be
consistent with a concept. Imagine there is a helpful spy kifaws precisely how the teacher will
respond to every query. The spy is able to suggest queribg tedrner, and wishes to cause the
learner to pay as little as possible. If the spy is sufficieakkver at suggesting queries, and the
learner follows every suggestion by the spy, then aftemaskome minimal cost set of queries the
learner can narrow the set of concept€ioonsistent with the answers down to at most one. The
General Identification Cost is precisely the worst casetiimgicost the learner might be forced to
pay during this process, no matter how clever the spy is ajesting queries.

Lemma 2.1. For any instance spac#, concept spacé on X', and cost functiom, if V' C C, then
GIC(V,c) < GIC(C,¢).

Proof. It clearly holds ifGIC(C, ¢) = 0. If GIC(C,c) < k,thenvT € 7,3R C 9 s.t.

> 4ercl@) <kandl > [CNT(R)| > [V NT(R)|, and therefor&/IC(V,c) < k. The limit as

k — GIC(C,c) gives the result. O

Lemma 2.2. For any~y > 0, instance spacg’, finite concept spaa@ on X’ with |C| > 1, and cost
functionc such thatz1C(C, ¢) < oo, 3¢ € Q such thatvT € T,

Cl-1

IC\T(q)| > C(Q)m-



That is, regardless of which answer the teacher picks, therat Ieastc(q)%

C inconsistent with the answer.

concepts in

Proof. Supposé&/q € Q, 3T, € 7 such thalC \ T,(q)| < c(q)%. Then define an

effective oraclel” with the property that'q € Q,T(¢q) = T,(q). We have thus defined an oracle
suchthatR C Q.5  pc(q) < GIC(C,c) +v =

CNT(R)| = [C|—[C\T(R)| = |c| = D [C\ Ty(q)]

geER
Cl -1 Ic] -1
> |C| ;c@)(m(c,c)ﬂ 2 1¢1 = (CICC.) + M grorea 17
In particular, this contradicts the definition 67 C(C, c). O

This brings us to the main theorem of this section.
Theorem 2.1. For any instance spac#&, concept spac€ on X, and cost functiom,

GIC(C,c) < CostComplexityC, c) < GIC(C, ¢)log, |C|

Proof. | begin with the lower bound. Let < GIC(C, ¢). By definition of GIC, 3T € T, such
thatVR C Q, > crclg) < k= [CNT(R)| > 1. In particular, this implies that an adversarial
teacher can answer any sequence of queries with cost n@gtieank in a way that leaves at least
2 concepts irC consistent with the answers, either of which could be thgetazoncepif. This
impliesCostComplexit§C, ¢) > k. The limit ask — GIC(C, ¢) gives the bound.

Next | prove the upper bound. #/C(C, ¢) = oo or |C| = oo, the bound holds vacuously, so let us
assume these are finite. Say the teacher’s answers cordaspsome effective oraclg € 7.
Consider a recursive algorithr, that makes effective queries fro@® If |C| = 1, thenA., halts
and outputs the single remaining concept. Otherwise;, lbet an effective query having the

property guaranteed by Lemma 2.2. Thatds) T'(q)| > c(q )%. DefiningV =CNT(q)

(a generalized notion afersion spack this implies that(q) < (GIC(C,¢) + v) IC|C\‘ “1/‘ and
[V] < |C|. SayA., makes effective query, and then recurses dn. In particular, we can
immediately see that this algorithm identifiesising no more thafC| — 1 queries.

I now prove by induction ofC| thatCostComplexitiC, c) < (GIC(C,c) + v)H¢c|—1, Where

H, = Y7, +isthen'™ harmonic number. IfC| = 1, then the cost complexity i& For|C| > 1,
CostComplexityC, c)

<c(q) + CostComplexitiV c)
Il - VI
Icl -1

<(GIC(C,¢) +) <'C|C'|‘—_'Y' " HW_l)

<(GIC(C,c) +7)Hc|-1

<(GIC(C,c) +7) + (GIC(V,¢) +v)Hv|—1

where the second inequality uses the inductive hypoth&sig avith the properties aof guaranteed
by Lemma 2.2, and the third inequality uses Lemma 2.1. Rinaditing thatH|c|_; < log, |C] and
taking the limit asy — 0 proves the theorem.

81 use the definition of cost complexity in terms of effectiwast; so that we need not concern ourselves with
how A chooses itsictual queries However, we could defind -, to make actual queries with cost withjnof
the effective query cost, so that the result still holds as 0.



2.3 An Example: Discrete Intervals

As a simple example of cost complexity, considee= {1,2,..., N}, for N > 4,

C={hap: X —{0,1}a,be X,a<bVre X, |a<xz<b<s hgp(z)=1]}, and define an
effective cost functior that is1 for membership querieg,, for anyz € X, k for the positive
example queryy where3 < k£ < N — 1, andoo for any other queries. In this case,

GIC(C,c) = k + 1. Inthe spy game, say the teacher answers effective queiteamweffective
oracleT. Let X, = {z|r € X,T(qy)) = {h|h € C*,h(z) = 1}}. If X # &, then let

a = min X} andb = max X’;. The spy tells the learner to make quenes,, q(vy, ¢a—1y (if

a > 1), andqgy11y (if b < N). This narrows the version spacefth, » }, at a worst-case effective
cost of 4. If X, = &, then the spy suggests quety. If T(qgx) = {f-}, the “all 0" concept, then
no concepts il are consistent. Otherwis&(qx) = {h|h € C*, h(z) = 1} for somez € X, and
the spy suggests membership query, . In this casel'(q(,}) N T(qx) = @, so the worst-case
costisk + 1 (without g, it would costN — 1). These are the only cases to consider, so
GIC(C,c) = k+ 1. By Theorem 2.1, this implies + 1 < CostComplexitfC, ¢) <2(k + 1) log, N.

We can slightly improve this by noting that we only ugg once. Specifically, if a learning
algorithm begins (in the regular setting) by asking revealing thaff () = 1 for somez € X,
then we can reduce to two disjoint learning problems, withoept spaces

Ci ={haplb€ {z,...,N}},andC) = {hq|a € {1,2,...,z}}, with cost functiong:; (¢) = ¢(q)
for ¢ € {q(z}> 424135 - - -, @y} @ndoo otherwise, andz(q) = c(q) for

q € {aq1}, 9423 - - - » Q{2  @ndoo otherwise, and corresponditgy C(Cy, c) < 2, GIC(Cy,c) < 2.
So we can say that

CostComplexitfC, ¢) < k + CostComplexit§C;, c1) + CostComplexitfC}, c2) < k + 4log, N.
One algorithm that achieves this begins by making the pestkample query, and then performs
binary search above and below the indicated positive exatogdind the boundaries.

3 Pool-Based Active PAC Learning

In many scenarios, a more realistic definition of learninip&t supplied by the Probably
Approximately Correct (PAC) model. In this case, unlike ginevious section, we are interested
only in discovering with high probability a function with bavior verysimilar to the target concept
on examples sampled from some distribution. Formally, aselthere is an instance spateand
a concept spaa@ C C* on X'; unlike above, there is also a distributidnover X', and | assumé is
well-behaved in a measure-theoretic sénge with Exact Learning, the learning algorithm
interacts with a teacher by making queries. However, ingbtting the learning algorithm is given
as input a finite sequentef unlabeled exampldg, each drawn independently accordind?pand
all queriesmade by the algorithm must concern only the behavior of tigetasoncept on
examples iri{.Formally, adata-dependent cost functigmany functiorc : Q x 2% — (a, oc]. For
a given set of unlabeled examplésand data-dependent cost functigmlefinecy(-) = c(-, U).
Thus,cy, is a cost function in the sense of the previous section. Fireng;,, the corresponding
effective cost functiom;, : Q — [a, o0] is defined as in the previous section.

Definition 3.1. Let X’ be an instance spacé,a concept space o, andi/ = (z1,z2,...,T)y|) @
finite sequence of unlabeled examples. Define C, h(U) = (h(x1), h(z2), ..., h(zw))).
Defin€ CU] C C as any concept space such thate C, |{h'|h’ € ClU], W (U) = h(U)}| = 1.
Definition 3.2. A sample-based cost functismany data-dependent cost functieauch that for
all finiteld C X,Vq € O,

cai(q) <oco=Vfecl*Vaeq(f),Vhel* [hlUU) =fU)=headal]

This corresponds to queries that aaboutthe target concept’s labels on some subsét of
Additionally, Vi C X,z € X, andq € Q, ¢(q,U U {x}) < ¢(q,U). That s, in addition to the
above property, adding extra examples to whjshanswers do not refer does not increase its cost.

"This mild assumption has almost no practical impact. Se#}@ full description.

8] will implicitly overload all notation for sets and sequess; so that if a set is used where a sequence is
required, then an arbitrary ordering of the set is impliéd(igh this ordering should be used consistently), and
if a sequence is used where a set is required, then the sestiofotlielements of the sequence is implied.

°The choice of which concept from each equivalence classctade inC[U/] can be made arbitrarily.



For example, membership queries:or U/ and positive examples queries Snc U/ could have
finite costs under a sample-based cost function. As in theéque section, there is a target concept
f € C, but unlike that section, we do not tryientify f, but instead attempt @pproximatet with
high probability.

Definition 3.3. For instance space’, concept spacé on X, distributionD on X, target concept

f € C, and concept € C, define theerror rateof h, denoteckrrorp (h, f), as

errorp(h, f) = Prx~p {h(X) # f(X)}
Definition 3.4. For (¢, ) € (0,1)2, an (e, 6)-learning algorithnfor C using sample-based cost
functionc is any algorithmA taking as input a finite sequence of unlabeled examples,thatifor
any target concepf € C and finite sequend, A(U) outputs a concept id after making a finite
number of actual queries with finite costs undgr Additionally, any(e, 4)-learning algorithmA
has the property thatm € [0, co) such that, for any target concefite C and distributionD on X,

Pry~pm {errorp(AU), f) > e} < 6.

A concept space€ is (¢, §)-learnablggiven sample-based cost functionsing total cost if there
exists an(e, 6)-learning algorithmA for C usingc such that for all finite example sequenégs
A(U) is guaranteed to have the sum of costs of the queries it makessit underc,.

Definition 3.5. For any instance spac#, concept spacé on X', sample-based cost function
and (e, §) € (0,1)?, define thee, §)-cost complexitydenoted CostComplexity, ¢, €, §), as the
infimumt > 0 such that is (e, 6)-learnable giverr using total cost no greater than

As in the previous section, because it is lingiting case, we can equivalently define tfeed)-cost
complexity as the infimum > 0 such that there is aft, §)-learning algorithm guaranteed to have
the sum ofeffectivecosts of theeffectivequeries it makes at moéat

The main results from this section include a new combinatguantityGPIC(C, ¢, m,T) such
that if d is the VC-dimension of, then

GPIC(C,c,0(1),0) < CostComplexitfC, c, ¢, 5) < GPIC(C,c,© (£),0)0(d).

3.1 Related Work

Previous work on pool-based active learning in the PAC mhbéeslbeen restricted almost
exclusively to uniform-cost membership queries on examipi¢he unlabeled sét. There has
been some recent progress on query complexity bounds forestaicted setting. Specifically,
Dasgupta [7] analyzes a greedy active learning scheme aivéslbounds for the number of
membership queries i it uses under aaverage caseetting, in which the target concept is
selected randomly from a known distribution. A similar tygfenalysis was previously given by
Freund et al. [8] to prove positive results for the Query byrBattee algorithm. In a subsequent
paper, Dasgupta [9] derives upper and lower bounds on théeuafi membership queriesin
required for active learning for any particular distrilmntiD, under the assumption thatis
known. The results | derive in this section impiprst-caseesults (over bottD and f) for this as
a special case of more general bounds applyiranissample-based cost function.

3.2 Cost Complexity Upper Bounds

I now derive bounds on the cost complexity of pool-basedvedHAC Learning.
Definition 3.6. For an instance spacé’, concept spacé on X', sample-based cost functienand
nonnegative integer, define theGeneral Identification Cost Growth Functiatenoted
GIC(C,c,m), as follows.
GIC(C,e,m) = sup GIC(CIU],cu)
Uexm
Definition 3.7. For any instance spac#&, concept spac€ on X, and(e,d) € (0,1)2, let
M(C, ¢,0) denote thesample complexitpf C (in the classigassive learningense), or the
smallestn such that there is an algorithma taking as input a set of examplé€sand labels, and
outputting a classifiefwithout making any queriesyuch that for anyD and f € C,
Pre~pm {errorp(A(L, f(L)), f) > e} <.

Itis known (e.g., [10]) that



max{%5L, LIt} < M(Coe,0) < 4mi2 4 41n2
for0 <e<1/8,0 <4 < .01, andd > 2, whered is the VC-dimension @. Furthermore,
Warmuth has conjectured [11] that (C, €, d) = @(%(d + log %))_

With these definitions in mind, we have the following noveddhem.

Theorem 3.1. For any instance spac#, concept spac€ on X with VC-dimensiomr € (0, o),
sample-based cost functiene € (0,1), ands € (0, 3), if m = M(C, ¢, ), then

CostComplexityC, c,¢,6) < GIC(C,c,m)dlog, <

Proof. For the unlabeled sequence, sanigle D™. If GIC(C, ¢, m) = oo, then the upper bound
holds vacuously, so let us assume this is finite. Als@, (0, oo) implies|i/| € (0, c0) [10]. By
definition of M (C, ¢, §), there exists a (passive learning) algoritdnsuch that

Vf € C,VD, Pry~pm{errorp (AU, f(UU)), f) > e} < . Therefore any algorithm that, by a finite
sequence of effective queries with finite cost undgridentifiesf (/) and then outputs

AU, fUU)), is an(e, 0)-learning algorithm foC usingc.

Suppose now that there igghost teachemwho knows the teacher’s target concépt C. The

ghost teacher uses thes C[U{] with h(U) = f(U) as its target concept. In order to answer any
actual querieg € Q with ¢,(¢) < oo, the ghost teacher simply passes the query to the real teache
and then answers the query using the real teacher’s anshisrafiswer is guaranteed to be valid
because,, is a sample-based cost function. Thus, identifyjiity) can be accomplished by
identifying h({/), which can be accomplished by identifyihg The task of identifying: can be
reduced to afExact Learningask with concept spa@i(] and cost functiom;,, where the teacher

for the Exact Learning task is the ghost teacher. Therebyr@heorem 2.1, the total cost required

to identify f (/) with a finite sequence of queries is no greater than

CostComplexitfC U], ci) < GIC(CIU], cu) logy |CU]| < GIC(C[U], crs)d og, %, (1)
where the last inequality is due to Sauer’'s Lemma (e.g.)[Fohally, taking the worst case
(supremum) over all{ € X" completes the proof. O

Note that (1) also implies a data-dependent bound, whickdqmatentially be useful for practical
applications in which the unlabeled examples are availahlen bounding the cost. It can also be
used to state a distribution-dependent bound.

3.3 An Example: Intersection-Closed Concept Spaces

As an example application, we can use the above theorem e pew results for any
intersection-closed concept sp#tas follows.

Lemma 3.1. For any instance spac#, intersection-closed concept spacaith VC-dimension
d > 1, sample-based cost functiersuch that membership queriegithave coskK u (i.e.,

YU C X,z €U, cu(qqsy) < p) and positive example queriestihhave cosk « (i.e.,

YU CX,S CU,cylgs) < k), and integenn > 0,

GIC(C,e,m) < k+ ud

Proof. Say we have some set of unlabeled examfleand consider bounding the value of
GIC(C[U], cy)- In the spy game, suppose the teacher is answering withtig&eraclel € 7.
LetU, = {z|r € U,T(qqzy) = {hlh € C*,h(x) = 1}}. The spy first tells the learner to make the
Qo query (ifU \ Uy # @). If 3z e U \ Uy st.T(qpwu, ) = {hlh € C*, h(z) = 1}, then the

spy tells the learner to make effective query; for thisz, and there are no conceptsdfi/]
consistent with the answers to these two queries; the tfftaitive cost for this case is + u. If

this is not the case, b/, | = 0, then there is at most one conceptid] consistent with the

An intersection-closed concept spathas the property that for ary , he € C, there is a concepts € C
suchthavz € X, [hi(x) = h2(z) = 1 < hs(z) = 1]. For example, conjunctions and axis-aligned rectangles
are intersection-closed.



answer tay\y,, - namely, theh € C[U] with h(x) = 0 for all = € U, if there is such anh. In this
case, the costis just

Otherwise, letS be a largest subset df, such thaBh € C with Vo € S, h(z) = 1. If S = @, then
making any membership querydfy leaves all concepts i@iji/] inconsistent (at cost), so let us
assumes # @. ForanyS C &, define

CLOS(S)={z|lzr e X,Vh e C,[Vy € S,h(y) = 1] = h(z) =1}

theclosureof S. Let S’ be a smallest subset §fsuch thatC LOS(S’) = CLOS(S), known as a
minimal spanning saif S [12]. The spy now tells the learner to make querigs for all z € S’

Any concept inC consistent with the answer tg,\;,, must label every € U/ \ U, as 0. Any
concept inC consistent with the answers to the membership querie® onust label every
x € CLOS(S") = CLOS(S) 2 S as 1. Additionally, every concept ththat labels every € S
as 1 must label every € U, \ S as 0, sinces is defined to be maximal. This labeling of these
three sets completely defines a labeling/ofand as such there is at most dne C[U{] consistent
with the answers to all queries made by the learner. HelmISithn, and Warmuth [12] proved
that, for an intersection-closed concept space with VCettisiond, for any setS, all minimal
spanning sets of have size at most. This implies the learner makes at mdsnembership
queries irt/, and thus has a total cost of at mest u.d. O

Corollary 3.1. Under the conditions of Lemma 3.1if> 10, then for0 < e < 1,and0 < § < 2,

. 164 2
CostComplexitiC, c, €, ) < (1 + pud)dlog, <§ max { 16d, 4 % 78 })
€ €

Proof. This follows from Theorem 3.1, Lemma 3.1, and Auer & Ortneesult [13] that for
intersection-closed concept spaces wiith 10, M (C,¢,6) < max {1 Ind, ¢In 2} . O

For example, consider the concept space of axis-paralfegectangles ik = R”,

C=1{h:X —{0,1}|3((a1,b1), (a2, ba2),...,(an,by)) : Vx ER" h(zx) =1 & Vi €
{1,2,...,n},a; < x; < b;}. One can show that this is an intersection-closed concegespith
VC-dimensior2n. For a sample-based cost functioof the form stated in Lemma 3.1, we have
thatCostComplexitiC, ¢, ¢, §) < O ((x + nu)n). Unlike the example in the previous section, if all
other query types have infinite cost, then fiop 2 there are distributions that force any algorithm
achieving this bound for smadlandé to use multiple positive example querigswith |S| > 1. In
particular, for finite constant, this is an exponential improvement over the cost comple{iPAC
active learning with only uniform cost membership queriré/

3.4 A Cost Complexity Lower Bound

At first glance, it might seem th&/C/(C, ¢, [1=<]) could be a lower bound on

€

CostComplexitiC, ¢, €, §). In fact, one can show this is true fér< (<¢)¢. However, there are
simple examples for which this is not a lower bound for geheemds.*! We therefore require a
slight modification ofGIC to introduce dependence én

Definition 3.8. For an instance spac#’, finite concept spaag on X', cost functiorr, and
d € [0,1), define theSeneral Partial Identification CostenotedZPIC(C, ¢, §) as follows.

GPIC(C,c,0) =inf{t[t >0,VT' € T,3R C Q, s.t.[}_ cpcle) < IA[ICNT(R)| < 5|C + 1]}
Definition 3.9. For an instance spac#’, concept spacé on X, sample-based cost functien
non-negative integer, andé € [0, 1), define theGeneral Partial Identification Cost Growth
Function denoted7PIC(C, ¢, m,d), as follows.

GPIC(C,e,m,0) = sup GPIC(CIU],cu,0)
Uexm

1The infamous “Monty Hall” problem is an interesting examplethis. For another example, consider
X ={1,2,...,N},C = {ha|z € X,Vy € X,ho(y) = I[x = y]}, and cost that is 1 for membership queries
in U and infinite for other queries. AlthougRIC(C,c, N) = N — 1, it is possible to achieve better than
€ = w7 With probability close tof=3 using cost no greater tha¥i — 2.



Itis easy to see th&t1C(C,c) = GPIC(C,¢,0) andGIC(C,c,m) = GPIC(C, ¢, m,0), so that
all of the above results could be stated in term&'éfIC.

Theorem 3.2. For any instance spac#, concept spac€ on X', sample-based cost function
(¢,9) € (0,1)%, and anyV C C,

GPIC(V,c, [1=£],6) < CostComplexitfC, c, €, 6)

€

Proof. Let.S C X be asetwith < |S| < [1=¢], and letDg be the uniform distribution 0.

Thus,errorp, (h, f) < e < h(S) = f(S). | will show that any algorithnl guaranteeing
Pry~py{errorps (AU), f) > €} < 6 cannot also guarantee cost strictly less than
GPIC(VS],cs,9). If 5|V]S]| > |V[S]| — 1, the result is clear since no algorithm guarantees cost
less than 0, so assum@/[S]| < |V[S]| — 1. Supposed is an algorithm that guarantees, for every
finite sequence of elements fron®, A(/) incurs total cost strictly less thawPIC(V[S], cs, )

underc, (and therefore also undeg). By definition of GPIC, 3T € T such that for any set of

queriesR thatA(U) makes|V[S] N T(R)| > §|V[S]| + 1. | now proceed by the probabilistic
method. Say the teacher draws the target contepiformly at random froni’[S], andvq € Q

s.t. f € T'(q), answers with'(¢). Any ¢ € Q such thatf ¢ 7'(¢) can be answered with an
arbitrarya € q(f). Lethy = A(U); let Ry, denote the set of querie/) would make ifall

queries were answered wiih
Ef[Pru~pp{errorps (AU), f) > €}]
=Evu~pyp [Pri{hu(S) # £(5)}]
>Bypyg [Pri{hu(S) # [(S) A f € T(Ru)}]
VS| N T(Ry)| - 1
Y R AT

Therefore, there exists a deterministic method for selggtiand answering queries such that
Pru~py{errorpgs (AU), f) > €} > 4. In particular, this proves that there are (apd)-learning
algorithms that guarantee cost strictly less th&R/C'(V'[S], cs, d). Taking the supremum over
setsS completes the proof. O

Corollary 3.2. Under the conditions of Theorem 3.2,

> 0.

GPIC(C,c,[1=£],6) < CostComplexitfC, c, e, §).

Equipped with Theorem 3.2, it is straightforward to prove ¢haim made in Section 3.3 that there
are distributions forcing ange, 6)-learning algorithm for Axis-parallel rectangles usindyon

membership queries (at cqsyto payQ( - 5)) The details are left as an exercise.

4 Discussion and Open Problems

Note that the usual “query counting” analysis done for Aefiearning is a special case of cost
complexity (uniform cost 1 on the allowed queries, infinitston the others). In particular,
Theorem 3.1 can easily be specialized to give a worst-casecbon the query complexity for the
widely studied setting in which the learner can make sw@mbership queriesn examples in

U [9, 14]. However, for this special case, one can derive &sligighter bound. Following the
proof technique of Hegedis [4], one can show that for anypéerinased cost functiansuch that
YUC X, q€ Q culq) <oo=[aulq) =1AVfeCq(f)]=1],

CostComplexitfC, cx) < 2% This implies for the PAC setting that

CostComplexitiC, c, e, §) < 2%% for VC-dimensiond > 3 andm = M(C, ¢, 8).

This includes the cost function assigning 1 to membershigigs ori/ andoo to all others.

Active Learning in the PAC model is closely related to thei¢ayd Semi-Supervised Learning
Balcan & Blum [15] have recently derived a variety of sampenplexity bounds for
Semi-Supervised Learning. Many of the techniques can Insfeeeed to the pool-based Active
Learning setting in a fairly natural way. Specifically, sopp there is a quantitative notion of



“compatibility” between a concept and a distribution, wh@an be estimated from a finite
unlabeled sample. If we know the target concept is highlymatible with the data distribution, we
can draw enough unlabeled examples to estimate comp@tithien identify and discard those
concepts that are probably highly incompatible. The seigiflit compatible concepts may be
significantly less expressive, therefore redudioghthe number of examples for which an
algorithm must learn the labels to guarantee generalizatiol the number of labelings of those
examples the algorithm must distinguish between, therdmyraducing the cost complexity.

There are a variety of interesting extensions of this fraor&worth pursuing. Perhaps the most
natural direction is to move into the agnostic PAC framewarich has thus far been quite elusive
for active learning except for a few results [16, 17]. Anathessibility is to derive cost complexity
bounds when the costis a function of not only the query, but also the target cohc€pen every
time the learning algorithm makes a queryt is charged:(q, f), but does not necessarily know
what this value is. However, it can always upper bound tha tmist so far by the worst case over
concepts in the version space. Can anything interestingideabout this setting (or variants),
perhaps under some benign smoothness constrair{gon? This is of some practical importance
since, for example, it is often more difficult to label exaegpthat occur near a decision boundary.
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